1
|
Alexander C, Jeon J, Nickerson K, Hassler S, Vasefi M. CBD and the 5-HT1A receptor: A medicinal and pharmacological review. Biochem Pharmacol 2025; 233:116742. [PMID: 39778776 DOI: 10.1016/j.bcp.2025.116742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Cannabidiol (CBD), a phytocannabinoid, has emerged as a promising candidate for addressing a wide array of symptoms. It has the ability to bind to multiple proteins and receptors, including 5-HT1AR, transient receptor potential vanilloid 1 (TRPV1), and cannabinoid receptors. However, CBD's pharmacodynamic interaction with 5-HT1AR and its medicinal outcomes are still debated. This review explores recent literature to elucidate these questions, highlighting the neurotherapeutic outcomes of this pharmacodynamic interaction and proposing a signaling pathway underlying the mechanism by which CBD desensitizes 5-HT1AR signaling. A comprehensive survey of the literature underscores CBD's multifaceted neurotherapeutic effects, which include antidepressant, anxiolytic, neuroprotective, antipsychotic, antiemetic, anti-allodynic, anti-epileptic, anti-degenerative, and addiction-treating properties, attributable in part to its interactions with 5-HT1AR. Furthermore, evidence suggests that the pharmacodynamic interaction between CBD and 5-HT1AR is contingent upon dosage. Moreover, we propose that CBD can induce desensitization of 5-HT1AR via both homologous and heterologous mechanisms. Homologous desensitization involves the recruitment of G protein-coupled receptor kinase 2 (GRK2) and β-arrestin, leading to receptor endocytosis. In contrast, heterologous desensitization is mediated by an elevated intracellular calcium level or activation of protein kinases, such as c-Jun N-terminal kinase (JNK), through the activity of other receptors.
Collapse
Affiliation(s)
- Claire Alexander
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Jiyoon Jeon
- Department of Biology, Lamar University, Beaumont, TX, 77710, USA
| | - Kyle Nickerson
- Department of Biology, Baylor University, Waco, TX, 76706, USA
| | - Shayne Hassler
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houton, Houston, TX, 77204, USA
| | - Maryam Vasefi
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houton, Houston, TX, 77204, USA.
| |
Collapse
|
2
|
Shen SY, Wu C, Yang ZQ, Wang KX, Shao ZH, Yan W. Advances in cannabinoid receptors pharmacology: from receptor structural insights to ligand discovery. Acta Pharmacol Sin 2025:10.1038/s41401-024-01472-9. [PMID: 39910211 DOI: 10.1038/s41401-024-01472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025] Open
Abstract
The medicinal and recreational uses of Cannabis sativa have been recognized for thousands of years. Today, cannabis-derived medicines are used to treat a variety of conditions, including chronic pain, epilepsy, multiple sclerosis, and chemotherapy-induced nausea. However, cannabis use disorder (CUD) has become the third most prevalent substance use disorder globally. Cannabinoid receptors are the primary targets that mediate the effects of cannabis and its analogs. Despite their importance, the mechanisms of modulation and the full therapeutic potential of cannabinoid receptors remain unclear, hindering the development of the next generation of cannabinoid-based drugs. This review summarizes the discovery and medicinal potential of phytocannabinoids and explores the distribution, signaling pathways, and functional roles of cannabinoid receptors. It also discusses classical cannabinoid drugs, as well as agonists, antagonists, and inverse agonists, which serve as key therapeutic agents. Recent advancements in the development of allosteric drugs are highlighted, with a focus on positive and negative allosteric modulators (PAMs and NAMs) that target CB1 and CB2 receptors. The identification of multiple allosteric sites on the CB1 receptor and the structural basis for allosteric modulation are emphasized, along with the structure-based discovery of ago-BAMs for CB1. This review concludes by examining the future potential of allosteric modulators in cannabinoid drug development, noting that ongoing progress in cannabinoid-derived drugs continues to open new avenues for therapeutic use and paves the way for future research into their full medicinal potential.
Collapse
Affiliation(s)
- Si-Yuan Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhi-Qian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke-Xin Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen-Hua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, Frontier Medical Center, Chengdu, 610212, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Green HM, Manning JJ, Greig IR, Ross RA, Finlay DB, Glass M. Positive allosteric modulation of the cannabinoid CB 1 receptor potentiates endocannabinoid signalling and changes ERK1/2 phosphorylation kinetics. Br J Pharmacol 2024; 181:3642-3662. [PMID: 38831545 DOI: 10.1111/bph.16433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Activation of CB1 by exogenous agonists causes adverse effects in vivo. Positive allosteric modulation may offer improved therapeutic potential and a reduced on-target adverse effect profile compared with orthosteric agonists, due to reduced desensitisation/tolerance, but this has not been directly tested. This study investigated the ability of PAMs/ago-PAMs to induce receptor regulation pathways, including desensitisation and receptor internalisation. EXPERIMENTAL APPROACH Bioluminescence resonance energy transfer (BRET) assays in HEK293 cells were performed to investigate G protein dissociation, ERK1/2 phosphorylation and β-arrestin 2 translocation, while immunocytochemistry was performed to measure internalisation of CB1 in response to the PAMs ZCZ011, GAT229 and ABD1236 alone and in combination with the orthosteric agonists AEA, 2-AG, and AMB-FUBINACA. KEY RESULTS ZCZ011, GAT229 and ABD1236 were allosteric agonists in all pathways tested. The ago-PAM ZCZ011 induced a biphasic ERK1/2 phosphorylation time course compared to transient activation by orthosteric agonists. In combination with 2-AG but not AEA or AMB-FUBINACA, ZCZ011 and ABD1236 caused the transient peak of ERK1/2 phosphorylation to become sustained. All PAMs increased the potency and efficacy of AEA-induced signalling in all pathways tested; however, no notable potentiation of 2-AG or AMB-FUBINACA was observed. CONCLUSION AND IMPLICATIONS Ago-PAMs can potentiate endocannabinoid CB1 agonism by AEA to a larger extent compared with 2-AG. However, all compounds were found to be allosteric agonists and induce activation of CB1 in the absence of endocannabinoid, including β-arrestin 2 recruitment and internalisation. Thus, the spatiotemporal signalling of endogenous cannabinoids will not be retained in vivo.
Collapse
Affiliation(s)
- Hayley M Green
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jamie J Manning
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ian R Greig
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Ruth A Ross
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Burger WAC, Draper-Joyce CJ, Valant C, Christopoulos A, Thal DM. Positive allosteric modulation of a GPCR ternary complex. SCIENCE ADVANCES 2024; 10:eadp7040. [PMID: 39259792 PMCID: PMC11389776 DOI: 10.1126/sciadv.adp7040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
The activation of a G protein-coupled receptor (GPCR) leads to the formation of a ternary complex between agonist, receptor, and G protein that is characterized by high-affinity binding. Allosteric modulators bind to a distinct binding site from the orthosteric agonist and can modulate both the affinity and the efficacy of orthosteric agonists. The influence allosteric modulators have on the high-affinity active state of the GPCR-G protein ternary complex is unknown due to limitations on attempting to characterize this interaction in recombinant whole cell or membrane-based assays. Here, we use the purified M2 muscarinic acetylcholine receptor reconstituted into nanodiscs to show that, once the agonist-bound high-affinity state is promoted by the G protein, positive allosteric modulators stabilize the ternary complex that, in the presence of nucleotides, leads to an enhanced initial rate of signaling. Our results enhance our understanding of how allosteric modulators influence orthosteric ligand signaling and will aid the design of allosteric therapeutics.
Collapse
Affiliation(s)
- Wessel A C Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J Draper-Joyce
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
5
|
Shpakov AO. Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. FRONT BIOSCI-LANDMRK 2024; 29:313. [PMID: 39344322 DOI: 10.31083/j.fbl2909313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (CG), like follicle-stimulating hormone, are the most important regulators of the reproductive system. They exert their effect on the cell through the LH/CG receptor (LHCGR), which belongs to the family of G protein-coupled receptors. Binding to gonadotropin induces the interaction of LHCGR with various types of heterotrimeric G proteins (Gs, Gq/11, Gi) and β-arrestins, which leads to stimulation (Gs) or inhibition (Gi) of cyclic adenosine monophosphate-dependent cascades, activation of the phospholipase pathway (Gq/11), and also to the formation of signalosomes that mediate the stimulation of mitogen-activated protein kinases (β-arrestins). The efficiency and selectivity of activation of intracellular cascades by different gonadotropins varies, which is due to differences in their interaction with the ligand-binding site of LHCGR. Gonadotropin signaling largely depends on the status of N- and O-glycosylation of LH and CG, on the formation of homo- and heterodimeric receptor complexes, on the cell-specific microenvironment of LHCGR and the presence of autoantibodies to it, and allosteric mechanisms are important in the implementation of these influences, which is due to the multiplicity of allosteric sites in different loci of the LHCGR. The development of low-molecular-weight allosteric regulators of LHCGR with different profiles of pharmacological activity, which can be used in medicine for the correction of reproductive disorders and in assisted reproductive technologies, is promising. These and other issues regarding the hormonal and allosteric regulation of LHCGR are summarized and discussed in this review.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
6
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Mohamed SK, Siddique SA, Karthikeyan S, Ahmed EA, Omran OA, Mague JT, Al-Salahi R, El Bakri Y. Synthesis, X-ray crystallography, computational investigation on quinoxaline derivatives as potent against adenosine receptor A2AAR. J Biomol Struct Dyn 2024:1-19. [PMID: 38385483 DOI: 10.1080/07391102.2024.2314268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/28/2024] [Indexed: 02/23/2024]
Abstract
Quinoxaline represents one of the most important classes of heterocyclic compounds, which have exhibited a wide range of biological activities and industrial importance in many different fields. In this regard, we have synthetized two new quinoxaline derivatives. Their structures were confirmed by single-crystal X-ray analysis. The compounds show potent activity against adenosine receptors A2AAR based on structural activity relationship studies. Further molecular docking, molecular dynamics, ADMET analysis, and DFT (density functional theory) calculations were performed to understand the titled compound's future drug candidacy. DFT computations confirmed the good stability of the synthesized compounds, as evidenced by the optimized molecular geometry, HOMO-LUMO energy gap, and intermolecular interactions. NBO analysis confirmed intermolecular interactions mediated by lone pair, bonding, and anti-bonding orbitals. All DFT findings were consistent with experimental results, indicating that the synthesized molecules are highly stable. These findings suggest that the synthesized compounds are promising candidates for further development as drugs for the treatment of A2AAR-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shaaban K Mohamed
- Chemistry and Environmental Division, Manchester Metropolitan University, Manchester, England
| | - Sabir Ali Siddique
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur, Pakistan
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology University, Chennai Campus, Chennai, Tamil Nadu, India
| | - Eman A Ahmed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Omran A Omran
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russian Federation
| |
Collapse
|
8
|
Zhu C, Lan X, Wei Z, Yu J, Zhang J. Allosteric modulation of G protein-coupled receptors as a novel therapeutic strategy in neuropathic pain. Acta Pharm Sin B 2024; 14:67-86. [PMID: 38239234 PMCID: PMC10792987 DOI: 10.1016/j.apsb.2023.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 01/22/2024] Open
Abstract
Neuropathic pain is a debilitating pathological condition that presents significant therapeutic challenges in clinical practice. Unfortunately, current pharmacological treatments for neuropathic pain lack clinical efficacy and often lead to harmful adverse reactions. As G protein-coupled receptors (GPCRs) are widely distributed throughout the body, including the pain transmission pathway and descending inhibition pathway, the development of novel neuropathic pain treatments based on GPCRs allosteric modulation theory is gaining momentum. Extensive research has shown that allosteric modulators targeting GPCRs on the pain pathway can effectively alleviate symptoms of neuropathic pain while reducing or eliminating adverse effects. This review aims to provide a comprehensive summary of the progress made in GPCRs allosteric modulators in the treatment of neuropathic pain, and discuss the potential benefits and adverse factors of this treatment. We will also concentrate on the development of biased agonists of GPCRs, and based on important examples of biased agonist development in recent years, we will describe universal strategies for designing structure-based biased agonists. It is foreseeable that, with the continuous improvement of GPCRs allosteric modulation and biased agonist theory, effective GPCRs allosteric drugs will eventually be available for the treatment of neuropathic pain with acceptable safety.
Collapse
Affiliation(s)
- Chunhao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaobing Lan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhiqiang Wei
- Medicinal Chemistry and Bioinformatics Center, Ocean University of China, Qingdao 266100, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
10
|
Nguyen ATN, Tran QL, Baltos JA, McNeill SM, Nguyen DTN, May LT. Small molecule allosteric modulation of the adenosine A 1 receptor. Front Endocrinol (Lausanne) 2023; 14:1184360. [PMID: 37435481 PMCID: PMC10331460 DOI: 10.3389/fendo.2023.1184360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/23/2023] [Indexed: 07/13/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent the target for approximately a third of FDA-approved small molecule drugs. The adenosine A1 receptor (A1R), one of four adenosine GPCR subtypes, has important (patho)physiological roles in humans. A1R has well-established roles in the regulation of the cardiovascular and nervous systems, where it has been identified as a potential therapeutic target for a number of conditions, including cardiac ischemia-reperfusion injury, cognition, epilepsy, and neuropathic pain. A1R small molecule drugs, typically orthosteric ligands, have undergone clinical trials. To date, none have progressed into the clinic, predominantly due to dose-limiting unwanted effects. The development of A1R allosteric modulators that target a topographically distinct binding site represent a promising approach to overcome current limitations. Pharmacological parameters of allosteric ligands, including affinity, efficacy and cooperativity, can be optimized to regulate A1R activity with high subtype, spatial and temporal selectivity. This review aims to offer insights into the A1R as a potential therapeutic target and highlight recent advances in the structural understanding of A1R allosteric modulation.
Collapse
Affiliation(s)
- Anh T. N. Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Quan L. Tran
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Samantha M. McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Diep T. N. Nguyen
- Department of Information Technology, Faculty of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
11
|
Della Corte V, Pacinella G, Todaro F, Pecoraro R, Tuttolomondo A. The Natriuretic Peptide System: A Single Entity, Pleiotropic Effects. Int J Mol Sci 2023; 24:ijms24119642. [PMID: 37298592 DOI: 10.3390/ijms24119642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
In the modern scientific landscape, natriuretic peptides are a complex and interesting network of molecules playing pleiotropic effects on many organs and tissues, ensuring the maintenance of homeostasis mainly in the cardiovascular system and regulating the water-salt balance. The characterization of their receptors, the understanding of the molecular mechanisms through which they exert their action, and the discovery of new peptides in the last period have made it possible to increasingly feature the physiological and pathophysiological role of the members of this family, also allowing to hypothesize the possible settings for using these molecules for therapeutic purposes. This literature review traces the history of the discovery and characterization of the key players among the natriuretic peptides, the scientific trials performed to ascertain their physiological role, and the applications of this knowledge in the clinical field, leaving a glimpse of new and exciting possibilities for their use in the treatment of diseases.
Collapse
Affiliation(s)
- Vittoriano Della Corte
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Gaetano Pacinella
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Federica Todaro
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Rosaria Pecoraro
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
12
|
Vuckovic Z, Wang J, Pham V, Mobbs JI, Belousoff MJ, Bhattarai A, Burger WAC, Thompson G, Yeasmin M, Nawaratne V, Leach K, van der Westhuizen ET, Khajehali E, Liang YL, Glukhova A, Wootten D, Lindsley CW, Tobin A, Sexton P, Danev R, Valant C, Miao Y, Christopoulos A, Thal DM. Pharmacological hallmarks of allostery at the M4 muscarinic receptor elucidated through structure and dynamics. eLife 2023; 12:83477. [PMID: 37248726 DOI: 10.7554/elife.83477] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Allosteric modulation of G protein-coupled receptors (GPCRs) is a major paradigm in drug discovery. Despite decades of research, a molecular-level understanding of the general principles that govern the myriad pharmacological effects exerted by GPCR allosteric modulators remains limited. The M4 muscarinic acetylcholine receptor (M4 mAChR) is a validated and clinically relevant allosteric drug target for several major psychiatric and cognitive disorders. In this study, we rigorously quantified the affinity, efficacy, and magnitude of modulation of two different positive allosteric modulators, LY2033298 (LY298) and VU0467154 (VU154), combined with the endogenous agonist acetylcholine (ACh) or the high-affinity agonist iperoxo (Ipx), at the human M4 mAChR. By determining the cryo-electron microscopy structures of the M4 mAChR, bound to a cognate Gi1 protein and in complex with ACh, Ipx, LY298-Ipx, and VU154-Ipx, and applying molecular dynamics simulations, we determine key molecular mechanisms underlying allosteric pharmacology. In addition to delineating the contribution of spatially distinct binding sites on observed pharmacology, our findings also revealed a vital role for orthosteric and allosteric ligand-receptor-transducer complex stability, mediated by conformational dynamics between these sites, in the ultimate determination of affinity, efficacy, cooperativity, probe dependence, and species variability. There results provide a holistic framework for further GPCR mechanistic studies and can aid in the discovery and design of future allosteric drugs.
Collapse
Affiliation(s)
- Ziva Vuckovic
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jesse I Mobbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Apurba Bhattarai
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Wessel A C Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Geoff Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Mahmuda Yeasmin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Vindhya Nawaratne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Emma T van der Westhuizen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Elham Khajehali
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yi-Lynn Liang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Alisa Glukhova
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Craig W Lindsley
- Department of Pharmacology, Warren Center for Neuroscience Drug Discovery and Department of Chemistry, Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, United States
| | - Andrew Tobin
- The Centre for Translational Pharmacology, Advanced Research Centre (ARC), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Patrick Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| |
Collapse
|
13
|
Lazzaretti C, Simoni M, Casarini L, Paradiso E. Allosteric modulation of gonadotropin receptors. Front Endocrinol (Lausanne) 2023; 14:1179079. [PMID: 37305033 PMCID: PMC10248450 DOI: 10.3389/fendo.2023.1179079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Gonadotropins regulate reproductive functions by binding to G protein-coupled receptors (FSHR and LHCGR) expressed in the gonads. They activate multiple, cell-specific signalling pathways, consisting of ligand-dependent intracellular events. Signalling cascades may be modulated by synthetic compounds which bind allosteric sites of FSHR and LHCGR or by membrane receptor interactions. Despite the hormone binding to the orthosteric site, allosteric ligands, and receptor heteromerizations may reshape intracellular signalling pattern. These molecules act as positive, negative, or neutral allosteric modulators, as well as non-competitive or inverse agonist ligands, providing a set of new compounds of a different nature and with unique pharmacological characteristics. Gonadotropin receptor allosteric modulation is gathering increasing interest from the scientific community and may be potentially exploited for clinical purposes. This review summarizes the current knowledge on gonadotropin receptor allosteric modulation and their potential, clinical use.
Collapse
Affiliation(s)
- Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Baggiovara Hospital, Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
14
|
Zhang L, Mobbs JI, May LT, Glukhova A, Thal DM. The impact of cryo-EM on determining allosteric modulator-bound structures of G protein-coupled receptors. Curr Opin Struct Biol 2023; 79:102560. [PMID: 36848776 DOI: 10.1016/j.sbi.2023.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/27/2023]
Abstract
G-protein coupled receptors (GPCRs) are important therapeutic targets for the treatment of human disease. Although GPCRs are highly successful drug targets, there are many challenges associated with the discovery and translation of small molecule ligands that target the endogenous ligand-binding site for GPCRs. Allosteric modulators are a class of ligands that target alternative binding sites known as allosteric sites and offer fresh opportunities for the development of new therapeutics. However, only a few allosteric modulators have been approved as drugs. Advances in GPCR structural biology enabled by the cryogenic electron microscopy (cryo-EM) revolution have provided new insights into the molecular mechanism and binding location of small molecule allosteric modulators. This review highlights the latest findings from allosteric modulator-bound structures of Class A, B, and C GPCRs with a focus on small molecule ligands. Emerging methods that will facilitate cryo-EM structures of more difficult ligand-bound GPCR complexes are also discussed. The results of these studies are anticipated to aid future structure-based drug discovery efforts across many different GPCRs.
Collapse
Affiliation(s)
- Liudi Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia
| | - Jesse I Mobbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia. https://twitter.com/@JesseMobbs
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia. https://twitter.com/@laurentmay
| | - Alisa Glukhova
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria 3010, Australia. https://twitter.com/@gl_alisa
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia.
| |
Collapse
|
15
|
Shpakov AO. Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. Int J Mol Sci 2023; 24:6187. [PMID: 37047169 PMCID: PMC10094638 DOI: 10.3390/ijms24076187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Allosteric regulation is critical for the functioning of G protein-coupled receptors (GPCRs) and their signaling pathways. Endogenous allosteric regulators of GPCRs are simple ions, various biomolecules, and protein components of GPCR signaling (G proteins and β-arrestins). The stability and functional activity of GPCR complexes is also due to multicenter allosteric interactions between protomers. The complexity of allosteric effects caused by numerous regulators differing in structure, availability, and mechanisms of action predetermines the multiplicity and different topology of allosteric sites in GPCRs. These sites can be localized in extracellular loops; inside the transmembrane tunnel and in its upper and lower vestibules; in cytoplasmic loops; and on the outer, membrane-contacting surface of the transmembrane domain. They are involved in the regulation of basal and orthosteric agonist-stimulated receptor activity, biased agonism, GPCR-complex formation, and endocytosis. They are targets for a large number of synthetic allosteric regulators and modulators, including those constructed using molecular docking. The review is devoted to the principles and mechanisms of GPCRs allosteric regulation, the multiplicity of allosteric sites and their topology, and the endogenous and synthetic allosteric regulators, including autoantibodies and pepducins. The allosteric regulation of chemokine receptors, proteinase-activated receptors, thyroid-stimulating and luteinizing hormone receptors, and beta-adrenergic receptors are described in more detail.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
16
|
Biophysical investigations of class A GPCRs. Biochimie 2023; 205:86-94. [PMID: 36220484 DOI: 10.1016/j.biochi.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/29/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
Abstract
G protein-coupled receptors (GPCRs) play a central role in cellular communication, converting external stimuli into intracellular responses. GPCRs bind a very broad panel of ligands, such as hormones, neurotransmitters, peptides and lipids. Ligand binding triggers a series of receptor conformational rearrangements, enabling the coupling to intracellular partners and the activation of signaling cascades. The major breakthrough in GPCRs structural biology of the past decade has considerably advanced our understanding of GPCR activation. However, structural information cannot fully explain the molecular details of GPCRs pharmacology. Biophysical investigations reveal that GPCRs are very dynamic proteins, capable of exploring a wide range of conformational states. Binding to ligands of various pharmacological classes, as well as intracellular effectors and allosteric modulators, can shift the equilibrium between these states and the kinetic of interconversions among the different conformers. Investigation of GPCR dynamic interplay is therefore important to better understand the complex pharmacology and signaling profile of these receptors.
Collapse
|
17
|
Xu J, Wang Q, Hübner H, Hu Y, Niu X, Wang H, Maeda S, Inoue A, Tao Y, Gmeiner P, Du Y, Jin C, Kobilka BK. Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor. Nat Commun 2023; 14:376. [PMID: 36690613 PMCID: PMC9870890 DOI: 10.1038/s41467-022-35726-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
The M2 muscarinic receptor (M2R) is a prototypical G-protein-coupled receptor (GPCR) that serves as a model system for understanding GPCR regulation by both orthosteric and allosteric ligands. Here, we investigate the mechanisms governing M2R signaling versatility using cryo-electron microscopy (cryo-EM) and NMR spectroscopy, focusing on the physiological agonist acetylcholine and a supra-physiological agonist iperoxo, as well as a positive allosteric modulator LY2119620. These studies reveal that acetylcholine stabilizes a more heterogeneous M2R-G-protein complex than iperoxo, where two conformers with distinctive G-protein orientations were determined. We find that LY2119620 increases the affinity for both agonists, but differentially modulates agonists efficacy in G-protein and β-arrestin pathways. Structural and spectroscopic analysis suggest that LY211620 stabilizes distinct intracellular conformational ensembles from agonist-bound M2R, which may enhance β-arrestin recruitment while impairing G-protein activation. These results highlight the role of conformational dynamics in the complex signaling behavior of GPCRs, and could facilitate design of better drugs.
Collapse
Affiliation(s)
- Jun Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Qinggong Wang
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, 518172, Shenzhen, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, 91058, Erlangen, Germany
| | - Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China
- Innovation Academy for Precision Measurement Science and Technology, CAS, 430071, Wuhan, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shoji Maeda
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pharmacology, Medical School, University of Michigan 1150 Medical Center Dr., 1315 Medical Science Research Bldg III, Ann Arbor, MI, 48109, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yuyong Tao
- Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, 91058, Erlangen, Germany
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, 518172, Shenzhen, China.
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
18
|
Ma H, Pagare PP, Li M, Neel LT, Mendez RE, Gillespie JC, Stevens DL, Dewey WL, Selley DE, Zhang Y. Structural Alterations of the "Address" Moiety of NAN Leading to the Discovery of a Novel Opioid Receptor Modulator with Reduced hERG Toxicity. J Med Chem 2023; 66:577-595. [PMID: 36538027 PMCID: PMC10546487 DOI: 10.1021/acs.jmedchem.2c01499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The search for selective opioid ligands with desired pharmacological potency and improved safety profile has always been an area of interest. Our previous effort yielded a potent opioid modulator, NAN, a 6α-N-7'-indolyl-substituted naltrexamine derivative, which exhibited promising pharmacological activities both in vitro and in vivo. However, significant human ether-a-go-go-related gene (hERG) liability limited its further development. Therefore, a systematic structural modification on NAN was conducted in order to alleviate hERG toxicity while preserving pharmacological properties, which led to the discovery of 2'-methylindolyl derivative compound 21. Compared to NAN, compound 21 manifested overall improved pharmacological profiles. Follow-up hERG channel inhibition evaluation revealed a seven-fold decreased potency of compound 21 compared to NAN. Furthermore, several fundamental drug-like property evaluations suggested a reasonable ADME profile of 21. Collectively, compound 21 appeared to be a promising opioid modulator for further development as a novel therapeutic agent toward opioid use disorder treatments.
Collapse
Affiliation(s)
- Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Logan T Neel
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Rolando E Mendez
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - James C Gillespie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - David L Stevens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - William L Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
- Institute for Drug and Alcohol Studies, 203 East Cary Street, Richmond, Virginia23298-0059, United States
| |
Collapse
|
19
|
Jakowiecki J, Orzeł U, Gliździnska A, Możajew M, Filipek S. Specificities of Protein Homology Modeling for Allosteric Drug Design. Methods Mol Biol 2023; 2627:339-348. [PMID: 36959457 DOI: 10.1007/978-1-0716-2974-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The allosteric binding sites are usually located in the flexible areas of proteins, which are hardly visible in the crystal structures. However, there are notable exceptions like allosteric sites in receptors in class B and C of GPCRs, which are located within a well-defined bundle of transmembrane helices. Class B and C evolved from class A and even after swapping of orthosteric and allosteric sites the central binding site persisted and it can be used for easy design of allosteric drugs. However, studying the ligand binding to the allosteric sites in the most populated class A of GPCRs is still a challenge, since they are located mostly in unresolved parts of the receptor's structure, and especially N-terminus. This chapter provides an example of cannabinoid CB1 receptor N-terminal homology modeling, ligand-guided modeling of the allosteric site in GABA receptor, as well as C-linker modeling in the potassium ion channels where the allosteric phospholipid ligand PIP2 is bound.
Collapse
Affiliation(s)
- Jakub Jakowiecki
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Urszula Orzeł
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Aleksandra Gliździnska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Mariusz Możajew
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
20
|
Fan G, Chen S, Liang L, Zhang H, Yu R. Novel Small Molecule Positive Allosteric Modulator SPAM1 Triggers the Nuclear Translocation of PAC1-R to Exert Neuroprotective Effects through Neuron-Restrictive Silencer Factor. Int J Mol Sci 2022; 23:ijms232415996. [PMID: 36555637 PMCID: PMC9784932 DOI: 10.3390/ijms232415996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) exerts effective neuroprotective activity through its specific receptor, PAC1-R. We accidentally discovered that as a positive allosteric modulator (PAM) of PAC1-R, the small-molecule PAM (SPAM1) has a hydrazide-like structure, but different binding characteristics, from hydrazide for the N-terminal extracellular domain of PAC1-R (PAC1-R-EC1). SPAM1 had a significant neuroprotective effect against oxidative stress, both in a cell model treated with hydrogen peroxide (H2O2) and an aging mouse model induced by D-galactose (D-gal). SPAM1 was found to block the decrease in PACAP levels in brain tissues induced by D-gal and significantly induced the nuclear translocation of PAC1-R in PAC1R-CHO cells and mouse retinal ganglion cells. Nuclear PAC1-R was subjected to fragmentation and the nuclear 35 kDa, but not the 15 kDa fragments, of PAC1-R interacted with SP1 to upregulate the expression of Huntingtin (Htt), which then exerted a neuroprotective effect by attenuating the binding availability of the neuron-restrictive silencer factor (NRSF) to the neuron-restrictive silencer element (NRSE). This resulted in an upregulation of the expression of NRSF-related neuropeptides, including PACAP, the brain-derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH), and synapsin-1 (SYN1). The novel mechanism reported in this study indicates that SPAM1 has potential use as a drug, as it exerts a neuroprotective effect by regulating NRSF.
Collapse
Affiliation(s)
- Guangchun Fan
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shang Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lili Liang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huahua Zhang
- Department of Medical Genetics, Guangdong Medical University, Dongguan 523808, China
| | - Rongjie Yu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Correspondence: or ; Tel.: +86-133-9262-5921
| |
Collapse
|
21
|
Green H, Finlay DB, Ross RA, Greig IR, Duffull SB, Glass M. In Vitro Characterization of 6-Methyl-3-(2-nitro-1-(thiophen-2-yl)ethyl)-2-phenyl-1 H-indole (ZCZ011) at the Type 1 Cannabinoid Receptor: Allosteric Agonist or Allosteric Modulator? ACS Pharmacol Transl Sci 2022; 5:1279-1291. [PMID: 36524007 PMCID: PMC9745890 DOI: 10.1021/acsptsci.2c00160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 11/23/2022]
Abstract
Orthosteric activation of CB1 is known to cause a plethora of adverse side effects in vivo. Allosteric modulation is an exciting therapeutic approach and is hoped to offer improved therapeutic potential and a reduced on-target side effect profile compared to orthosteric agonists. This study aimed to systematically characterize the in vitro activity of the positive allosteric modulator ZCZ011, explicitly considering its effects on receptor regulation. HEK293 cells expressing hCB1 receptors were used to characterize ZCZ011 alone and in combination with orthosteric agonists. Real-time BRET approaches were employed for G protein dissociation, cAMP signaling, and β-arrestin translocation. Characterization also included ERK1/2 phosphorylation (PerkinElmer AlphaLISA) and receptor internalization. ZCZ011 is an allosteric agonist of CB1 in all pathways tested, with a similar signaling profile to that of the partial orthosteric agonist Δ9-tetrahydrocannabinol. ZCZ011 also showed limited positive allosteric modulation in increasing the potency and efficacy of THC-induced ERK1/2 phosphorylation, β-arrestin translocation, and receptor internalization. However, no positive allosteric modulation was observed for ZCZ011 in combination with either CP55940 or AMB-FUBINACA, in G protein dissociation, nor cAMP inhibition. Our study suggests that ZCZ011 is an allosteric agonist, with effects that are often difficult to differentiate from those of orthosteric agonists. Together with its pronounced agonist activity, the limited extent of ZCZ011 positive allosteric modulation suggests that further investigation into the differences between allosteric and orthosteric agonism is required, especially in receptor regulation end points.
Collapse
Affiliation(s)
- Hayley
M. Green
- Department
of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin9054, New
Zealand
| | - David B. Finlay
- Department
of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin9054, New
Zealand
| | - Ruth A. Ross
- Department
of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, TorontoM5S 1A8, Canada
| | - Iain R. Greig
- School
of Medicine, Medical Sciences and Nutrition, University of Aberdeen, AberdeenAB24 3FX, U.K.
| | - Stephen B. Duffull
- Otago
Pharmacometrics Group, School of Pharmacy, University of Otago, Dunedin9016, New Zealand
| | - Michelle Glass
- Department
of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin9054, New
Zealand
| |
Collapse
|
22
|
Yen HY, Liko I, Song W, Kapoor P, Almeida F, Toporowska J, Gherbi K, Hopper JTS, Charlton SJ, Politis A, Sansom MSP, Jazayeri A, Robinson CV. Mass spectrometry captures biased signalling and allosteric modulation of a G-protein-coupled receptor. Nat Chem 2022; 14:1375-1382. [PMID: 36357787 PMCID: PMC9758051 DOI: 10.1038/s41557-022-01041-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/09/2022] [Indexed: 11/12/2022]
Abstract
G-protein-coupled receptors signal through cognate G proteins. Despite the widespread importance of these receptors, their regulatory mechanisms for G-protein selectivity are not fully understood. Here we present a native mass spectrometry-based approach to interrogate both biased signalling and allosteric modulation of the β1-adrenergic receptor in response to various ligands. By simultaneously capturing the effects of ligand binding and receptor coupling to different G proteins, we probed the relative importance of specific interactions with the receptor through systematic changes in 14 ligands, including isoprenaline derivatives, full and partial agonists, and antagonists. We observed enhanced dynamics of the intracellular loop 3 in the presence of isoprenaline, which is capable of acting as a biased agonist. We also show here that endogenous zinc ions augment the binding in receptor-Gs complexes and propose a zinc ion-binding hotspot at the TM5/TM6 intracellular interface of the receptor-Gs complex. Further interrogation led us to propose a mechanism in which zinc ions facilitate a structural transition of the intermediate complex towards the stable state.
Collapse
Affiliation(s)
- Hsin-Yung Yen
- Chemical Research Laboratory, University of Oxford, Oxford, UK.
- OMass Therapeutics, Oxford, UK.
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| | - Idlir Liko
- Chemical Research Laboratory, University of Oxford, Oxford, UK
- OMass Therapeutics, Oxford, UK
| | - Wanling Song
- Department of Biochemistry, University of Oxford, Oxford, UK
- Rahko, London, UK
| | | | | | | | | | | | - Steven J Charlton
- OMass Therapeutics, Oxford, UK
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Argyris Politis
- Department of Chemistry, King's College London, London, UK
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Carol V Robinson
- Chemical Research Laboratory, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, Oxford, UK.
| |
Collapse
|
23
|
Armour-Garb I, Han ISM, Cowan BS, Thayer KM. Variable Regions of p53 Isoforms Allosterically Hard Code DNA Interaction. J Phys Chem B 2022; 126:8495-8507. [PMID: 36245142 PMCID: PMC9623584 DOI: 10.1021/acs.jpcb.2c06229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Allosteric regulation of protein activity pervades biology as the "second secret of life." We have been examining the allosteric regulation and mutant reactivation of the tumor suppressor protein p53. We have found that generalizing the definition of allosteric effector to include entire proteins and expanding the meaning of binding site to include the interface of a transcription factor with its DNA to be useful in understanding the modulation of protein activity. Here, we cast the variable regions of p53 isoforms as allosteric regulators of p53 interactions with its consensus DNA. We implemented molecular dynamics simulations and our lab's new techniques of molecular dynamics (MD) sectors and MD-Markov state models to investigate the effects of nine naturally occurring splice variant isoforms of p53. We find that all of the isoforms differ from wild type in their dynamic properties and how they interact with the DNA. We consider the implications of these findings on allostery and cancer treatment.
Collapse
Affiliation(s)
- Isabel Armour-Garb
- †Department
of Mathematics and Computer Science, ‡Department of Chemistry, and §College of Integrative
Sciences, Wesleyan University, Middletown, Connecticut 06457, United States
| | - In Sub Mark Han
- †Department
of Mathematics and Computer Science, ‡Department of Chemistry, and §College of Integrative
Sciences, Wesleyan University, Middletown, Connecticut 06457, United States
| | - Benjamin S. Cowan
- †Department
of Mathematics and Computer Science, ‡Department of Chemistry, and §College of Integrative
Sciences, Wesleyan University, Middletown, Connecticut 06457, United States
| | - Kelly M. Thayer
- †Department
of Mathematics and Computer Science, ‡Department of Chemistry, and §College of Integrative
Sciences, Wesleyan University, Middletown, Connecticut 06457, United States,
| |
Collapse
|
24
|
Pasquini S, Contri C, Cappello M, Borea PA, Varani K, Vincenzi F. Update on the recent development of allosteric modulators for adenosine receptors and their therapeutic applications. Front Pharmacol 2022; 13:1030895. [PMID: 36278183 PMCID: PMC9581118 DOI: 10.3389/fphar.2022.1030895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Adenosine receptors (ARs) have been identified as promising therapeutic targets for countless pathological conditions, spanning from inflammatory diseases to central nervous system disorders, from cancer to metabolic diseases, from cardiovascular pathologies to respiratory diseases, and beyond. This extraordinary therapeutic potential is mainly due to the plurality of pathophysiological actions of adenosine and the ubiquitous expression of its receptors. This is, however, a double-edged sword that makes the clinical development of effective ligands with tolerable side effects difficult. Evidence of this is the low number of AR agonists or antagonists that have reached the market. An alternative approach is to target allosteric sites via allosteric modulators, compounds endowed with several advantages over orthosteric ligands. In addition to the typical advantages of allosteric modulators, those acting on ARs could benefit from the fact that adenosine levels are elevated in pathological tissues, thus potentially having negligible effects on normal tissues where adenosine levels are maintained low. Several A1 and various A3AR allosteric modulators have been identified so far, and some of them have been validated in different preclinical settings, achieving promising results. Less fruitful, instead, has been the discovery of A2A and A2BAR allosteric modulators, although the results obtained up to now are encouraging. Collectively, data in the literature suggests that allosteric modulators of ARs could represent valuable pharmacological tools, potentially able to overcome the limitations of orthosteric ligands.
Collapse
Affiliation(s)
- Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- *Correspondence: Katia Varani,
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
25
|
Ding T, Karlov DS, Pino-Angeles A, Tikhonova IG. Intermolecular Interactions in G Protein-Coupled Receptor Allosteric Sites at the Membrane Interface from Molecular Dynamics Simulations and Quantum Chemical Calculations. J Chem Inf Model 2022; 62:4736-4747. [PMID: 36178787 PMCID: PMC9554917 DOI: 10.1021/acs.jcim.2c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allosteric modulators are called promising candidates in G protein-coupled receptor (GPCR) drug development by displaying subtype selectivity and more specific receptor modulation. Among the allosteric sites known to date, cavities at the receptor-lipid interface represent an uncharacteristic binding location that raises many questions about the ligand interactions and stability, the binding site structure, and how all of these are affected by lipid molecules. In this work, we analyze interactions in the allosteric sites of the PAR2, C5aR1, and GCGR receptors in three lipid compositions using molecular dynamics simulations. In addition, we performed quantum chemical calculations involving the symmetry-adapted perturbation theory (SAPT) and the natural population analysis to quantify the strength of intermolecular interactions. We show that besides classical hydrogen bonds, weak polar interactions such as O-HC, O-Br, and long-range electrostatics with the backbone amides contribute to the stability of allosteric modulators at the receptor-lipid interface. The allosteric cavities are detectable in various membrane compositions. The availability of polar atoms for interactions in such cavities can be assessed by water molecules from simulations. Although ligand-lipid interactions are weak, lipid tails play a role in ligand binding pose stability and the size of allosteric cavities. We discuss physicochemical aspects of ligand binding at the receptor-lipid interface and suggest a compound library enriched by weak donor groups for ligand search in such sites.
Collapse
Affiliation(s)
- Tianyi Ding
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern IrelandBT9 7BL, U.K
| | - Dmitry S Karlov
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern IrelandBT9 7BL, U.K
| | - Almudena Pino-Angeles
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern IrelandBT9 7BL, U.K
| | - Irina G Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern IrelandBT9 7BL, U.K
| |
Collapse
|
26
|
Ferrisi R, Gado F, Polini B, Ricardi C, Mohamed KA, Stevenson LA, Ortore G, Rapposelli S, Saccomanni G, Pertwee RG, Laprairie RB, Manera C, Chiellini G. Design, synthesis and biological evaluation of novel orthosteric-allosteric ligands of the cannabinoid receptor type 2 (CB 2R). Front Chem 2022; 10:984069. [PMID: 36238097 PMCID: PMC9551276 DOI: 10.3389/fchem.2022.984069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
It is well known that G protein–coupled receptors (GPCRs) assume multiple active states. Orthosteric ligands and/or allosteric modulators can preferentially stabilize specific conformations, giving rise to pathway-biased signaling. One of the most promising strategies to expand the repertoire of signaling-selective GPCR activators consists of dualsteric agents, which are hybrid compounds consisting of orthosteric and allosteric pharmacophoric units. This approach proved to be very promising showing several advantages over monovalent targeting strategies, including an increased affinity or selectivity, a bias in signaling pathway activation, reduced off-target activity and therapeutic resistance. Our study focused on the cannabinoid receptor type 2 (CB2R), considered a clinically promising target for the control of brain damage in neurodegenerative disorders. Indeed, CB2R was found highly expressed in microglial cells, astrocytes, and even in some neuron subpopulations. Here, we describe the design, synthesis, and biological evaluation of two new classes of potential dualsteric (bitopic) CB2R ligands. The new compounds were obtained by connecting, through different linkers, the pharmacophoric portion of the CB2R positive allosteric modulator (PAM), EC21a, with that of the CB2R selective orthosteric agonist LV62, both developed in our laboratories. A preliminary screening enabled us to identify compound JR64a as the most promising of the series. Indeed, functional examination highlighted a signaling ‘bias’ in favor of G protein activation over βarrestin2 recruitment, combined with high affinity for CB2R and the ability to efficiently prevent inflammation in human microglial cells (HMC3) exposed to LPS/TNFα stimulation, thus demonstrating great promise for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Francesca Gado
- Department of Pharmacy, University of Pisa, Pisa, Italy,Department of Pharmaceutical Sciences, University of Milano Statale, Milan, Italy,*Correspondence: Francesca Gado, ; Clementina Manera, ; Grazia Chiellini,
| | | | | | - Kawthar A. Mohamed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lesley A. Stevenson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | | | | | - Roger G. Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Robert B. Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada,Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Pisa, Italy,CISUP, Centre for Instrumentation Sharing Pisa University, Pisa, Italy,*Correspondence: Francesca Gado, ; Clementina Manera, ; Grazia Chiellini,
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, Pisa, Italy,CISUP, Centre for Instrumentation Sharing Pisa University, Pisa, Italy,*Correspondence: Francesca Gado, ; Clementina Manera, ; Grazia Chiellini,
| |
Collapse
|
27
|
Allosteric modulation of GPCRs: From structural insights to in silico drug discovery. Pharmacol Ther 2022; 237:108242. [DOI: 10.1016/j.pharmthera.2022.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 11/19/2022]
|
28
|
García-Cárceles J, Vázquez-Villa H, Brea J, Ladron de Guevara-Miranda D, Cincilla G, Sánchez-Martínez M, Sánchez-Merino A, Algar S, Teresa de Los Frailes M, Roberts RS, Ballesteros JA, Rodríguez de Fonseca F, Benhamú B, Loza MI, López-Rodríguez ML. 2-(Fluoromethoxy)-4'-( S-methanesulfonimidoyl)-1,1'-biphenyl (UCM-1306), an Orally Bioavailable Positive Allosteric Modulator of the Human Dopamine D 1 Receptor for Parkinson's Disease. J Med Chem 2022; 65:12256-12272. [PMID: 36044544 PMCID: PMC9511493 DOI: 10.1021/acs.jmedchem.2c00949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
![]()
Tolerance development caused by dopamine replacement
with l-DOPA and therapeutic drawbacks upon activation of
dopaminergic receptors
with orthosteric agonists reveal a significant unmet need for safe
and effective treatment of Parkinson’s disease. In search for
selective modulators of the D1 receptor, the screening
of a chemical library and subsequent medicinal chemistry program around
an identified hit resulted in new synthetic compound 26 [UCM-1306, 2-(fluoromethoxy)-4′-(S-methanesulfonimidoyl)-1,1′-biphenyl]
that increases the dopamine maximal effect in a dose-dependent manner
in human and mouse D1 receptors, is inactive in the absence
of dopamine, modulates dopamine affinity for the receptor, exhibits
subtype selectivity, and displays low binding competition with orthosteric
ligands. The new allosteric modulator potentiates cocaine-induced
locomotion and enhances l-DOPA recovery of decreased locomotor
activity in reserpinized mice after oral administration. The behavior
of compound 26 supports the interest of a positive allosteric
modulator of the D1 receptor as a promising therapeutic
approach for Parkinson’s disease.
Collapse
Affiliation(s)
- Javier García-Cárceles
- Departamento de Química Orgánica, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Henar Vázquez-Villa
- Departamento de Química Orgánica, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - José Brea
- Biofarma Research Group, USEF Screening Platform, CIMUS, USC, E-15782 Santiago de Compostela, Spain
| | | | - Giovanni Cincilla
- Molomics S.L., Parc Científic de Barcelona, Baldiri Reixac 4-8, E-08028 Barcelona, Spain
| | | | - Anabel Sánchez-Merino
- Departamento de Química Orgánica, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Sergio Algar
- Departamento de Química Orgánica, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - María Teresa de Los Frailes
- Fundación Kærtor, Edificio EMPRENDIA, Planta 2, Oficina 4. Campus Vida, E-15706 Santiago de Compostela, Spain
| | - Richard S Roberts
- Fundación Kærtor, Edificio EMPRENDIA, Planta 2, Oficina 4. Campus Vida, E-15706 Santiago de Compostela, Spain
| | | | | | - Bellinda Benhamú
- Departamento de Química Orgánica, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - María I Loza
- Biofarma Research Group, USEF Screening Platform, CIMUS, USC, E-15782 Santiago de Compostela, Spain.,Fundación Kærtor, Edificio EMPRENDIA, Planta 2, Oficina 4. Campus Vida, E-15706 Santiago de Compostela, Spain
| | | |
Collapse
|
29
|
Ma C, Chung DJ, Abramson D, Langley DR, Thayer KM. Mutagenic Activation of Glutathione Peroxidase-4: Approaches toward Rational Design of Allosteric Drugs. ACS OMEGA 2022; 7:29587-29597. [PMID: 36061715 PMCID: PMC9434792 DOI: 10.1021/acsomega.2c01289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Glutathione peroxidase 4 (GPX4) reduces lipid hydroperoxides in lipid membranes, effectively inhibiting iron-dependent cell death or ferroptosis. The upregulation of the enzyme by the mutations at residues D21 and D23 has been suggested to be associated with higher protein activity, which confers more protection against neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. Therefore, it has become an attractive target for treating and preventing neurodegenerative diseases. However, identifying means of mimicking the beneficial effects of these mutations distant from the active site constitutes a formidable challenge in moving toward therapeutics. In this study, we explore using molecular dynamics simulations to computationally map the conformational and energetic landscape of the wild-type GPX4 protein and three mutant variants to identify the allosteric networks of the enzyme. We present the conformational dynamic profile providing the desired signature behavior of the enzyme. We also discuss the implications of these findings for drug design efforts.
Collapse
Affiliation(s)
- Chunyue Ma
- Department
of Mathematics & Computer Science, Wesleyan
University, Middletown, Connecticut 06459, United States
| | - Daniel J. Chung
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
- Molecular
Biophysics Program, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Dylan Abramson
- Department
of Mathematics & Computer Science, Wesleyan
University, Middletown, Connecticut 06459, United States
| | - David R. Langley
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
- Molecular
Biophysics Program, Wesleyan University, Middletown, Connecticut 06459, United States
- Arvinas
Inc., New Haven, Connecticut 06511, United States
| | - Kelly M. Thayer
- Department
of Mathematics & Computer Science, Wesleyan
University, Middletown, Connecticut 06459, United States
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
- Molecular
Biophysics Program, Wesleyan University, Middletown, Connecticut 06459, United States
| |
Collapse
|
30
|
Yang L, Liu D, Wüthrich K. GPCR structural characterization by NMR spectroscopy in solution. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1207-1212. [PMID: 36017890 PMCID: PMC9828178 DOI: 10.3724/abbs.2022106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the human proteome, 826 G-protein-coupled receptors (GPCRs) interact with extracellular stimuli to initiate cascades of intracellular signaling. Determining conformational dynamics and intermolecular interactions are key to understand GPCR function as a basis for drug design. X-ray crystallography and cryo-electron microscopy (cryo-EM) contribute molecular architectures of GPCRs and GPCR-signaling complexes. NMR spectroscopy is complementary by providing information on the dynamics of GPCR structures at physiological temperature. In this review, several NMR approaches in use to probe GPCR dynamics and intermolecular interactions are discussed. The topics include uniform stable-isotope labeling, amino acid residue-selective stable-isotope labeling, site-specific labeling by genetic engineering, the introduction of 19F-NMR probes, and the use of paramagnetic nitroxide spin labels. The unique information provided by NMR spectroscopy contributes to our understanding of GPCR biology and thus adds to the foundations for rational drug design.
Collapse
Affiliation(s)
- Lingyun Yang
- iHuman InstituteShanghaiTech UniversityShanghai201210China
| | - Dongsheng Liu
- iHuman InstituteShanghaiTech UniversityShanghai201210China,Correspondence address. Tel: +86-21-20685124; E-mail:
| | - Kurt Wüthrich
- iHuman InstituteShanghaiTech UniversityShanghai201210China,Department of Integrative Structural and Computational BiologyScripps ResearchLa JollaCA92037USA,Institute of Molecular Biology and BiophysicsETH ZürichOtto-Stern-Weg 58093ZürichSwitzerland
| |
Collapse
|
31
|
Dragan P, Atzei A, Sanmukh SG, Latek D. Computational and experimental approaches to probe GPCR activation and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:1-36. [PMID: 36357073 DOI: 10.1016/bs.pmbts.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
G protein-coupled receptors (GPCRs) regulate different physiological functions, e.g., sensation, growth, digestion, reproductivity, nervous and immune systems response, and many others. In eukaryotes, they are also responsible for intercellular communication in response to pathogens. The major primary messengers binding to these cell-surface receptors constitute small-molecule or peptide hormones and neurotransmitters, nucleotides, lipids as well as small proteins. The simplicity of the way how GPCR signaling can be regulated by their endogenous agonists prompted the usage of GPCRs as major drug targets in modern pharmacology. Drugs targeting GPCRs inhibit pathological processes at the very beginning. This enables to significantly reduce the occurrence of morphological changes caused by diseases. Until recently, X-ray crystallography was the method of the first choice to obtain high-resolution structural information about GPCRs. Following X-ray crystallography, cryo-EM gained attention in GPCR studies as a quick and low-cost alternative. FRET microscopy is also widely used for GPCRs in the analysis of protein-protein interactions (PPIs) in intact cells as well as for screening purposes. Regarding computational methods, molecular dynamics (MD) for many years has proven its usefulness in studying the GPCR activation. MODELLER and Rosetta were widely used to generate preliminary homology models of GPCRs for MD simulation systems. Apart from the conventional all-atom approach with explicitly defined solvent, also other techniques have been applied to GPCRs, e.g., MARTINI or hybrid methods involving the coarse-grained representation, less demanding regarding computational resources, and thus offering much larger simulation timescales.
Collapse
Affiliation(s)
- Paulina Dragan
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | | | | | - Dorota Latek
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
32
|
Gado F, Ferrisi R, Polini B, Mohamed KA, Ricardi C, Lucarini E, Carpi S, Domenichini F, Stevenson LA, Rapposelli S, Saccomanni G, Nieri P, Ortore G, Pertwee RG, Ghelardini C, Di Cesare Mannelli L, Chiellini G, Laprairie RB, Manera C. Design, Synthesis, and Biological Activity of New CB2 Receptor Ligands: from Orthosteric and Allosteric Modulators to Dualsteric/Bitopic Ligands. J Med Chem 2022; 65:9918-9938. [PMID: 35849804 PMCID: PMC10168668 DOI: 10.1021/acs.jmedchem.2c00582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The design of dualsteric/bitopic agents as single chemical entities able to simultaneously interact with both the orthosteric and an allosteric binding site represents a novel approach in medicinal chemistry. Biased dualsteric/bitopic agents could enhance certain signaling pathways while diminishing the others that cause unwanted side effects. We have designed, synthesized, and functionally characterized the first CB2R heterobivalent bitopic ligands. In contrast to the parent orthosteric compound, our bitopic ligands selectively target CB2R versus CB1R and show a functional selectivity for the cAMP signaling pathway versus βarrestin2 recruitment. Moreover, the most promising bitopic ligand FD-22a displayed anti-inflammatory activity in a human microglial cell inflammatory model and antinociceptive activity in vivo in an experimental mouse model of neuropathic pain. Finally, computational studies clarified the binding mode of these compounds inside the CB2R, further confirming their bitopic nature.
Collapse
Affiliation(s)
- Francesca Gado
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | - Rebecca Ferrisi
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,Department of Pathology, University of Pisa, Pisa 56126, Italy
| | - Kawthar A Mohamed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | | | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence 50139, Italy
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, Pisa 56126, Italy
| | | | - Lesley A Stevenson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, Pisa 56126, Italy
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | | | - Roger G Pertwee
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence 50139, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence 50139, Italy
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, Pisa 56126, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, Pisa 56126, Italy
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada.,Department of Pharmacology, College of Medicine, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, Pisa 56126, Italy
| |
Collapse
|
33
|
Liauw BWH, Foroutan A, Schamber MR, Lu W, Samareh Afsari H, Vafabakhsh R. Conformational fingerprinting of allosteric modulators in metabotropic glutamate receptor 2. eLife 2022; 11:e78982. [PMID: 35775730 PMCID: PMC9299836 DOI: 10.7554/elife.78982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of G protein-coupled receptors (GPCRs) is an allosteric process. It involves conformational coupling between the orthosteric ligand binding site and the G protein binding site. Factors that bind at non-cognate ligand binding sites to alter the allosteric activation process are classified as allosteric modulators and represent a promising class of therapeutics with distinct modes of binding and action. For many receptors, how modulation of signaling is represented at the structural level is unclear. Here, we developed fluorescence resonance energy transfer (FRET) sensors to quantify receptor modulation at each of the three structural domains of metabotropic glutamate receptor 2 (mGluR2). We identified the conformational fingerprint for several allosteric modulators in live cells. This approach enabled us to derive a receptor-centric representation of allosteric modulation and to correlate structural modulation to the standard signaling modulation metrics. Single-molecule FRET analysis revealed that a NAM (egative allosteric modulator) increases the occupancy of one of the intermediate states while a positive allosteric modulator increases the occupancy of the active state. Moreover, we found that the effect of allosteric modulators on the receptor dynamics is complex and depend on the orthosteric ligand. Collectively, our findings provide a structural mechanism of allosteric modulation in mGluR2 and suggest possible strategies for design of future modulators.
Collapse
Affiliation(s)
| | - Arash Foroutan
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Michael R Schamber
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Weifeng Lu
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hamid Samareh Afsari
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
34
|
Casadó-Anguera V, Casadó V. Unmasking allosteric binding sites: Novel targets for GPCR drug discovery. Expert Opin Drug Discov 2022; 17:897-923. [PMID: 35649692 DOI: 10.1080/17460441.2022.2085684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Unexpected non-apparent and hidden allosteric binding sites are non-classical and non-apparent allosteric centers in 3-D X-ray protein structures until orthosteric or allosteric ligands bind to them. The orthosteric center of one protomer that modulates binding centers of the other protomers within an oligomer is also an unexpected allosteric site. Furthermore, another partner protein can also produce these effects, acting as an unexpected allosteric modulator. AREAS COVERED This review summarizes both classical and non-classical allosterism. The authors focus on G protein-coupled receptor (GPCR) oligomers as a paradigm of allosteric molecules. Moreover, they show several examples of unexpected allosteric sites such as hidden allosteric sites in a protomer that appear after the interaction with other molecules and the allosterism exerted between orthosteric sites within GPCR oligomer, emphasizing on the allosteric modulations that can occur between binding sites. EXPERT OPINION The study of these new non-classical allosteric sites will expand the diversity of allosteric control on the function of orthosteric sites within proteins, whether GPCRs or other receptors, enzymes or transporters. Moreover, the design of new drugs targeting these hidden allosteric sites or already known orthosteric sites acting as allosteric sites in protein homo- or hetero-oligomers will increase the therapeutic potential of allosterism.
Collapse
Affiliation(s)
- Verònica Casadó-Anguera
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, and Institute of Biomedicine of the Universitat de Barcelona, Barcelona, Spain.,Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vicent Casadó
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, and Institute of Biomedicine of the Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Endothelin and the Cardiovascular System: The Long Journey and Where We Are Going. BIOLOGY 2022; 11:biology11050759. [PMID: 35625487 PMCID: PMC9138590 DOI: 10.3390/biology11050759] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
Simple Summary In this review, we describe the basic functions of endothelin and related molecules, including their receptors and enzymes. Furthermore, we discuss the important role of endothelin in several cardiovascular diseases, the relevant clinical evidence for targeting the endothelin pathway, and the scope of endothelin-targeting treatments in the future. We highlight the present uses of endothelin receptor antagonists and the advancements in the development of future treatment options, thereby providing an overview of endothelin research over the years and its future scope. Abstract Endothelin was first discovered more than 30 years ago as a potent vasoconstrictor. In subsequent years, three isoforms, two canonical receptors, and two converting enzymes were identified, and their basic functions were elucidated by numerous preclinical and clinical studies. Over the years, the endothelin system has been found to be critical in the pathogenesis of several cardiovascular diseases, including hypertension, pulmonary arterial hypertension, heart failure, and coronary artery disease. In this review, we summarize the current knowledge on endothelin and its role in cardiovascular diseases. Furthermore, we discuss how endothelin-targeting therapies, such as endothelin receptor antagonists, have been employed to treat cardiovascular diseases with varying degrees of success. Lastly, we provide a glimpse of what could be in store for endothelin-targeting treatment options for cardiovascular diseases in the future.
Collapse
|
36
|
Drakopoulos A, Moianos D, Prifti GM, Zoidis G, Decker M. Opioid ligands addressing unconventional binding sites and more than one opioid receptor subtype. ChemMedChem 2022; 17:e202200169. [PMID: 35560796 DOI: 10.1002/cmdc.202200169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Indexed: 11/10/2022]
Abstract
Opioid receptors (ORs) represent one of the most significant groups of G-protein coupled receptor (GPCR) drug targets and also act as prototypical models for GPCR function. In a constant effort to develop drugs with less side effects, and tools to explore the ORs nature and function, various (poly)pharmacological ligand design approaches have been performed. That is, besides classical ligands, a great number of bivalent ligands (i.e. aiming on two distinct OR subtypes), univalent heteromer-selective ligands and bitopic and allosteric ligands have been synthesized for the ORs. The scope of our review is to present the most important of the aforementioned ligands, highlight their properties and exhibit the current state-of-the-art pallet of promising drug candidates or useful molecular tools for the ORs.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- University of Gothenburg: Goteborgs Universitet, Department of Chemistry and Molecular Biology, Kemigåden 4, 431 45, Göteborg, SWEDEN
| | - Dimitrios Moianos
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Georgia-Myrto Prifti
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Grigoris Zoidis
- National and Kapodistrian University of Athens, Department of Pharmaceutical Chemistry, Panepistimioupolis-Zografou, 15771, Athens, GREECE
| | - Michael Decker
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, GERMANY
| |
Collapse
|
37
|
Aathi MS, Kumar C, Prabhudesai KS, Shanmugarajan D, Idicula-Thomas S. Mapping of FSHR agonists and antagonists binding sites to identify potential peptidomimetic modulators. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183842. [PMID: 34954201 DOI: 10.1016/j.bbamem.2021.183842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
Owing to the critical role of follicle stimulating hormone receptor (FSHR) signaling in human reproduction, FSHR has been widely explored for development of fertility regulators. Using high-throughput screening approaches, several low molecular weight (LMW) compounds that can modulate FSHR activity have been identified. However, the information about the binding sites of these molecules on FSHR is not known. In the present study, we extracted the structural and functional information of 161 experimentally validated LMW FSHR modulators available in PubMed records. The potential FSHR binding sites for these modulators were identified through molecular docking experiments. The binding sites were further mapped to the agonist or antagonist activity reported for these molecules in literature. MD simulations were performed to evaluate the effect of ligand binding on conformational changes in the receptor, specifically the transmembrane domain. A peptidomimetic library was screened using these binding sites. Six peptidomimetics that interacted with the residues of transmembrane domain and extracellular loops were evaluated for binding activity using in vitro cAMP assay. Two of the six peptidomimetics exhibited positive allosteric modulatory activity and four peptidomimetics exhibited negative allosteric modulatory activity. All six peptidomimetics interacted with Asp521 of hFSHR(TMD). Several of the experimentally known LMW FSHR modulators also participated in H-bond interactions with Asp521, suggesting its important role in FSHR modulatory activity.
Collapse
Affiliation(s)
- Muthu Sankar Aathi
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Chandan Kumar
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Kaushiki S Prabhudesai
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | | | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India.
| |
Collapse
|
38
|
Billen M, Schols D, Verwilst P. Targeting chemokine receptors from the inside-out: discovery and development of small-molecule intracellular antagonists. Chem Commun (Camb) 2022; 58:4132-4148. [PMID: 35274633 DOI: 10.1039/d1cc07080k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ever since the first biologically active chemokines were discovered in the late 1980s, these messenger proteins and their receptors have been the target for a plethora of drug discovery efforts in the pharmaceutical industry, as well as in academia. Owing to the publication of several chemokine receptor X-ray crystal structures, a highly druggable, intracellular, allosteric binding site which partially overlaps with the G protein binding site was discovered. This intriguing, new approach for chemokine receptor antagonism has captured researchers around the world, pushing the exploration of this intracellular binding site and new antagonists thereof. In this review, we have highlighted the past two decades of research on small-molecule chemokine receptor antagonists that modulate receptor function at the intracellular binding site.
Collapse
Affiliation(s)
- Margaux Billen
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000 Leuven, Belgium.
| | - Dominique Schols
- KU Leuven, Rega Institute for Medical Research, Virology and Chemotherapy, Herestraat 49 - Box 1041, 3000 Leuven, Belgium
| | - Peter Verwilst
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000 Leuven, Belgium.
| |
Collapse
|
39
|
Bassani D, Pavan M, Sturlese M, Moro S. Sodium or Not Sodium: Should Its Presence Affect the Accuracy of Pose Prediction in Docking GPCR Antagonists? Pharmaceuticals (Basel) 2022; 15:ph15030346. [PMID: 35337144 PMCID: PMC8950631 DOI: 10.3390/ph15030346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
The function of the allosteric sodium ion in stabilizing the inactive form of GPCRs has been extensively described in the past decades. Its presence has been reported to be essential for the binding of antagonist molecules in the orthosteric site of these very important therapeutical targets. Among the GPCR–antagonist crystal structures available, in most cases, the sodium ion could not be experimentally resolved, obliging computational scientists using GPCRs as targets for virtual screening to ask: “Should the sodium ion affect the accuracy of pose prediction in docking GPCR antagonists?” In the present study, we examined the performance of three orthogonal docking programs in the self-docking of GPCR antagonists to try to answer this question. The results of the present work highlight that if the sodium ion is resolved in the crystal structure used as the target, it should also be taken into account during the docking calculations. If the crystallographic studies were not able to resolve the sodium ion then no advantage would be obtained if this is manually inserted in the virtual target. The outcomes of the present analysis are useful for researchers exploiting molecular docking-based virtual screening to efficiently identify novel GPCR antagonists.
Collapse
|
40
|
Busquets-Garcia A, Melis M, Bellocchio L, Marsicano G. Cannabinoid Signalling in the Brain: New Vistas. Eur J Neurosci 2022; 55:903-908. [PMID: 35118747 DOI: 10.1111/ejn.15618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Affiliation(s)
- A Busquets-Garcia
- Cell-type mechanisms in normal and pathological behaviour Research Group, Neuroscience Programme, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - M Melis
- Department of Biomedical Sciences, University of Cagliari. Cagliari, Italy
| | - L Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - G Marsicano
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| |
Collapse
|
41
|
Discovery of small molecule guanylyl cyclase A receptor positive allosteric modulators. Proc Natl Acad Sci U S A 2021; 118:2109386118. [PMID: 34930837 DOI: 10.1073/pnas.2109386118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
The particulate guanylyl cyclase A receptor (GC-A), via activation by its endogenous ligands atrial natriuretic peptide (ANP) and b-type natriuretic peptide (BNP), possesses beneficial biological properties such as blood pressure regulation, natriuresis, suppression of adverse remodeling, inhibition of the renin-angiotensin-aldosterone system, and favorable metabolic actions through the generation of its second messenger cyclic guanosine monophosphate (cGMP). Thus, the GC-A represents an important molecular therapeutic target for cardiovascular disease and its associated risk factors. However, a small molecule that is orally bioavailable and directly targets the GC-A to potentiate cGMP has yet to be discovered. Here, we performed a cell-based high-throughput screening campaign of the NIH Molecular Libraries Small Molecule Repository, and we successfully identified small molecule GC-A positive allosteric modulator (PAM) scaffolds. Further medicinal chemistry structure-activity relationship efforts of the lead scaffold resulted in the development of a GC-A PAM, MCUF-651, which enhanced ANP-mediated cGMP generation in human cardiac, renal, and fat cells and inhibited cardiomyocyte hypertrophy in vitro. Further, binding analysis confirmed MCUF-651 binds to GC-A and selectively enhances the binding of ANP to GC-A. Moreover, MCUF-651 is orally bioavailable in mice and enhances the ability of endogenous ANP and BNP, found in the plasma of normal subjects and patients with hypertension or heart failure, to generate GC-A-mediated cGMP ex vivo. In this work, we report the discovery and development of an oral, small molecule GC-A PAM that holds great potential as a therapeutic for cardiovascular, renal, and metabolic diseases.
Collapse
|
42
|
Allosteric receptor modulation uncovers an FFA2R antagonist as a positive orthosteric modulator/agonist in disguise. Cell Signal 2021; 90:110208. [PMID: 34856356 DOI: 10.1016/j.cellsig.2021.110208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/22/2022]
Abstract
A novel receptor crosstalk activation mechanism, through which signals generated by the agonist-occupied P2Y2R (the neutrophil receptor for ATP) activate allosterically modulated free fatty acid 2 receptor (FFA2R) without the involvement of any FFA2R agonist, was used to determine the inhibitor profiles of two earlier-described, FFA2R-specific antagonists, CATPB and GLPG0974. These antagonists have been shown to have somewhat different receptor-interaction characteristics at the molecular/functional level, although both are recognized by the orthosteric site in FFA2R. The antagonists inhibited neutrophil activation induced by ATP, an activation occurred only in the presence of either of the two positive allosteric FFA2R modulators (PAMs) AZ1729 and Cmp58. No neutrophil activation was induced by either AZ1729 or Cmp58 alone, whereas together they acted as co-agonistic PAMs and activated the superoxide-generating NADPH-oxidase in neutrophils. This response was inhibited by CATPB but not by GLPG0974. In contrast, GLPG0974 acted as a positive modulator, increasing the potency, albeit not the efficacy, of the co-agonistic PAMs. GLPG0974 also altered signaling downstream of FFA2R when activated by the co-agonistic PAMs. In the presence of GLPG0974, the response of neutrophils induced by the co-agonistic PAMs included an increase in the cytosolic concentration of free calcium ions (Ca2+), and this effect was reciprocal in that GLPG0974 triggered an increase in intracellular Ca2+, demonstrating that GLPG0974 acted as an FFA2R agonist. In summary, by studying the effects of the FFA2R ligand GLPG0974 on neutrophil activation induced by the co-agonists AZ1729 + Cmp58, we show that GLPG0974 is not only an FFA2R antagonist, but also displays agonistic and positive FFA2R-modulating functions that affect NADPH-oxidase activity and alter the receptor-downstream signaling induced by the co-agonistic PAMs.
Collapse
|
43
|
Gado F, Ceni C, Ferrisi R, Sbrana G, Stevenson LA, Macchia M, Pertwee RG, Bertini S, Manera C, Ortore G. CB1 receptor binding sites for NAM and PAM: A first approach for studying, new n‑butyl‑diphenylcarboxamides as allosteric modulators. Eur J Pharm Sci 2021; 169:106088. [PMID: 34863873 DOI: 10.1016/j.ejps.2021.106088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 01/01/2023]
Abstract
The development of cannabinoid receptor type-1 (CB1R) modulators has been implicated in multiple pathophysiological events ranging from memory deficits to neurodegenerative disorders among others, even if their central psychiatric side effects such as depression, anxiety, and suicidal tendencies, have limited their clinical use. Thus, the identification of ligands which selectively act on peripheral CB1Rs, is becoming more interesting. A recent study reported a class of peripheral CB1R selective antagonists, characterized by a 5-aryl substituted nicotinamide core. These derivatives have structural similarities with the biphenyl compounds, endowed with CB2R antagonist activity, previously synthesized by our research group. In this work we combined the pharmacophoric portion of both classes, in order to obtain novel CBR antagonists. Among the synthesized compounds rather unexpectedly two compounds of this series, C7 and C10, did not show the radioligand ([3H]CP55940) displacement on CB1R but increased binding (∼ 150%), suggesting a possible allosteric behavior. Computational studies were performed to investigate the role of these compounds in CB1R modulation. The analysis of their binding poses in two different binding cavities of the CB1R surface, revealed a preferred interaction with the experimental binding site for negative allosteric modulators.
Collapse
Affiliation(s)
- Francesca Gado
- Department of Pharmacy, University of Pisa, 56126 Pisa Italy
| | - Costanza Ceni
- Department of Pharmacy, University of Pisa, 56126 Pisa Italy; Doctoral school in Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Rebecca Ferrisi
- Department of Pharmacy, University of Pisa, 56126 Pisa Italy
| | - Giulia Sbrana
- Department of Pharmacy, University of Pisa, 56126 Pisa Italy
| | - Lesley A Stevenson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD Aberdeen, Scotland, UK
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa Italy
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD Aberdeen, Scotland, UK
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, 56126 Pisa Italy
| | | | | |
Collapse
|
44
|
Ciancetta A, Gill AK, Ding T, Karlov DS, Chalhoub G, McCormick PJ, Tikhonova IG. Probe Confined Dynamic Mapping for G Protein-Coupled Receptor Allosteric Site Prediction. ACS CENTRAL SCIENCE 2021; 7:1847-1862. [PMID: 34841058 PMCID: PMC8614102 DOI: 10.1021/acscentsci.1c00802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 05/06/2023]
Abstract
Targeting G protein-coupled receptors (GPCRs) through allosteric sites offers advantages over orthosteric sites in identifying drugs with increased selectivity and potentially reduced side effects. In this study, we developed a probe confined dynamic mapping protocol that allows the prediction of allosteric sites at both the GPCR extracellular and intracellular sides, as well as at the receptor-lipid interface. The applied harmonic wall potential enhanced sampling of probe molecules in a selected area of a GPCR while preventing membrane distortion in molecular dynamics simulations. The specific probes derived from GPCR allosteric ligand structures performed better in allosteric site mapping compared to commonly used cosolvents. The M2 muscarinic, β2 adrenergic, and P2Y1 purinergic receptors were selected for the protocol's retrospective validation. The protocol was next validated prospectively to locate the binding site of [5-fluoro-4-(hydroxymethyl)-2-methoxyphenyl]-(4-fluoro-1H-indol-1-yl)methanone at the D2 dopamine receptor, and subsequent mutagenesis confirmed the prediction. The protocol provides fast and efficient prediction of key amino acid residues surrounding allosteric sites in membrane proteins and facilitates the structure-based design of allosteric modulators.
Collapse
Affiliation(s)
- Antonella Ciancetta
- School
of Pharmacy, Medical Biology Centre, Queen’s
University Belfast, Belfast, Northern Ireland BT9 7BL, U.K.
| | - Amandeep Kaur Gill
- Centre
for Endocrinology, William Harvey Research Institute, Bart’s
and the London School of Medicine and Dentistry, Queen
Mary, University of London, London, EC1M 6BQ, U.K.
| | - Tianyi Ding
- School
of Pharmacy, Medical Biology Centre, Queen’s
University Belfast, Belfast, Northern Ireland BT9 7BL, U.K.
| | - Dmitry S. Karlov
- School
of Pharmacy, Medical Biology Centre, Queen’s
University Belfast, Belfast, Northern Ireland BT9 7BL, U.K.
| | - George Chalhoub
- Centre
for Endocrinology, William Harvey Research Institute, Bart’s
and the London School of Medicine and Dentistry, Queen
Mary, University of London, London, EC1M 6BQ, U.K.
| | - Peter J. McCormick
- Centre
for Endocrinology, William Harvey Research Institute, Bart’s
and the London School of Medicine and Dentistry, Queen
Mary, University of London, London, EC1M 6BQ, U.K.
| | - Irina G. Tikhonova
- School
of Pharmacy, Medical Biology Centre, Queen’s
University Belfast, Belfast, Northern Ireland BT9 7BL, U.K.
| |
Collapse
|
45
|
Pani B, Ahn S, Rambarat PK, Vege S, Kahsai AW, Liu A, Valan BN, Staus DP, Costa T, Lefkowitz RJ. Unique Positive Cooperativity Between the β-Arrestin-Biased β-Blocker Carvedilol and a Small Molecule Positive Allosteric Modulator of the β2-Adrenergic Receptor. Mol Pharmacol 2021; 100:513-525. [PMID: 34580163 PMCID: PMC8998675 DOI: 10.1124/molpharm.121.000363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023] Open
Abstract
Among β-blockers that are clinically prescribed for heart failure, carvedilol is a first-choice agent with unique pharmacological properties. Carvedilol is distinct from other β-blockers in its ability to elicit β-arrestin-biased agonism, which has been suggested to underlie its cardioprotective effects. Augmenting the pharmacologic properties of carvedilol thus holds the promise of developing more efficacious and/or biased β-blockers. We recently identified compound-6 (cmpd-6), the first small molecule positive allosteric modulator of the β2-adrenergic receptor (β2AR). Cmpd-6 is positively cooperative with orthosteric agonists at the β2AR and enhances agonist-mediated transducer (G-protein and β-arrestin) signaling in an unbiased manner. Here, we report that cmpd-6, quite unexpectedly, displays strong positive cooperativity only with carvedilol among a panel of structurally diverse β-blockers. Cmpd-6 enhances the binding affinity of carvedilol for the β2AR and augments its ability to competitively antagonize agonist-induced cAMP generation. Cmpd-6 potentiates β-arrestin1- but not Gs-protein-mediated high-affinity binding of carvedilol at the β2AR and β-arrestin-mediated cellular functions in response to carvedilol including extracellular signal-regulated kinase phosphorylation, receptor endocytosis, and trafficking into lysosomes. Importantly, an analog of cmpd-6 that selectively retains positive cooperativity with carvedilol acts as a negative modulator of agonist-stimulated β2AR signaling. These unprecedented cooperative properties of carvedilol and cmpd-6 have implications for fundamental understanding of G-protein-coupled receptor (GPCR) allosteric modulation, as well as for the development of more effective biased beta blockers and other GPCR therapeutics. SIGNIFICANCE STATEMENT: This study reports on the small molecule-mediated allosteric modulation of the β-arrestin-biased β-blocker, carvedilol. The small molecule, compound-6 (cmpd-6), displays an exclusive positive cooperativity with carvedilol among other β-blockers and enhances the binding affinity of carvedilol for the β2-adrenergic receptor. Cooperative effects of cmpd-6 augment the β-blockade property of carvedilol while potentiating its β-arrestin-mediated signaling functions. These findings have potential implications in advancing G-protein-coupled receptor allostery, developing biased therapeutics and remedying cardiovascular ailments.
Collapse
Affiliation(s)
- Biswaranjan Pani
- Department of Medicine (B.P., S.A., S.V., A.W.K., A.L., B.N.V., D.P.S., R.J.L.), Department of Biochemistry (R.J.L.), and Howard Hughes Medical Institute (R.J.L.), Duke University Medical Center, Durham, North Carolina, USA; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA (P.K.R.); and Viale America 111, Rome, Italy (T.C.)
| | - Seungkirl Ahn
- Department of Medicine (B.P., S.A., S.V., A.W.K., A.L., B.N.V., D.P.S., R.J.L.), Department of Biochemistry (R.J.L.), and Howard Hughes Medical Institute (R.J.L.), Duke University Medical Center, Durham, North Carolina, USA; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA (P.K.R.); and Viale America 111, Rome, Italy (T.C.)
| | - Paula K Rambarat
- Department of Medicine (B.P., S.A., S.V., A.W.K., A.L., B.N.V., D.P.S., R.J.L.), Department of Biochemistry (R.J.L.), and Howard Hughes Medical Institute (R.J.L.), Duke University Medical Center, Durham, North Carolina, USA; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA (P.K.R.); and Viale America 111, Rome, Italy (T.C.)
| | - Shashank Vege
- Department of Medicine (B.P., S.A., S.V., A.W.K., A.L., B.N.V., D.P.S., R.J.L.), Department of Biochemistry (R.J.L.), and Howard Hughes Medical Institute (R.J.L.), Duke University Medical Center, Durham, North Carolina, USA; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA (P.K.R.); and Viale America 111, Rome, Italy (T.C.)
| | - Alem W Kahsai
- Department of Medicine (B.P., S.A., S.V., A.W.K., A.L., B.N.V., D.P.S., R.J.L.), Department of Biochemistry (R.J.L.), and Howard Hughes Medical Institute (R.J.L.), Duke University Medical Center, Durham, North Carolina, USA; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA (P.K.R.); and Viale America 111, Rome, Italy (T.C.)
| | - Andrew Liu
- Department of Medicine (B.P., S.A., S.V., A.W.K., A.L., B.N.V., D.P.S., R.J.L.), Department of Biochemistry (R.J.L.), and Howard Hughes Medical Institute (R.J.L.), Duke University Medical Center, Durham, North Carolina, USA; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA (P.K.R.); and Viale America 111, Rome, Italy (T.C.)
| | - Bruno N Valan
- Department of Medicine (B.P., S.A., S.V., A.W.K., A.L., B.N.V., D.P.S., R.J.L.), Department of Biochemistry (R.J.L.), and Howard Hughes Medical Institute (R.J.L.), Duke University Medical Center, Durham, North Carolina, USA; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA (P.K.R.); and Viale America 111, Rome, Italy (T.C.)
| | - Dean P Staus
- Department of Medicine (B.P., S.A., S.V., A.W.K., A.L., B.N.V., D.P.S., R.J.L.), Department of Biochemistry (R.J.L.), and Howard Hughes Medical Institute (R.J.L.), Duke University Medical Center, Durham, North Carolina, USA; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA (P.K.R.); and Viale America 111, Rome, Italy (T.C.)
| | - Tommaso Costa
- Department of Medicine (B.P., S.A., S.V., A.W.K., A.L., B.N.V., D.P.S., R.J.L.), Department of Biochemistry (R.J.L.), and Howard Hughes Medical Institute (R.J.L.), Duke University Medical Center, Durham, North Carolina, USA; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA (P.K.R.); and Viale America 111, Rome, Italy (T.C.)
| | - Robert J Lefkowitz
- Department of Medicine (B.P., S.A., S.V., A.W.K., A.L., B.N.V., D.P.S., R.J.L.), Department of Biochemistry (R.J.L.), and Howard Hughes Medical Institute (R.J.L.), Duke University Medical Center, Durham, North Carolina, USA; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA (P.K.R.); and Viale America 111, Rome, Italy (T.C.)
| |
Collapse
|
46
|
Nunes DADF, Santos FRDS, da Fonseca STD, de Lima WG, Nizer WSDC, Ferreira JMS, de Magalhães JC. NS2B-NS3 protease inhibitors as promising compounds in the development of antivirals against Zika virus: A systematic review. J Med Virol 2021; 94:442-453. [PMID: 34636434 DOI: 10.1002/jmv.27386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 01/18/2023]
Abstract
Zika virus (ZIKV) infections are associated with severe neurological complications and are a global public health concern. There are no approved vaccines or antiviral drugs to inhibit ZIKV replication. NS2B-NS3 protease (NS2B-NS3 pro), which is essential for viral replication, is a promising molecular target for anti-ZIKV drugs. We conducted a systematic review to identify compounds with promising effects against ZIKV; we discussed their pharmacodynamic and pharmacophoric characteristics. The online search, performed using the PubMed/MEDLINE and SCOPUS databases, yielded 56 articles; seven relevant studies that reported nine promising compounds with inhibitory activity against ZIKV NS2B-NS3 pro were selected. Of these, five (niclosamide, nitazoxanide, bromocriptine, temoporfin, and novobiocin) are currently available on the market and have been tested for off-label use against ZIKV. The 50% inhibitory concentration values of these compounds for the inhibition of NS2B-NS3 pro ranged at 0.38-21.6 µM; most compounds exhibited noncompetitive inhibition (66%). All compounds that could inhibit the NS2B-NS3 pro complex showed potent in vitro anti-ZIKV activity with a 50% effective concentration ranging 0.024-50 µM. The 50% cytotoxic concentration of the compounds assayed using A549, Vero, and WRL-69 cell lines ranged at 0.6-1388.02 µM and the selectivity index was 3.07-1698. This review summarizes the most promising antiviral agents against ZIKV that have inhibitory activity against viral proteases.
Collapse
Affiliation(s)
- Damiana Antônia de Fátima Nunes
- Department of Health Sciences, Laboratory of Medical Microbiology, Campus Centro Oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brasil
| | - Felipe Rocha da Silva Santos
- Department of Health Sciences, Laboratory of Medical Microbiology, Campus Centro Oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brasil
| | - Sara Thamires Dias da Fonseca
- Department of Health Sciences, Laboratory of Medical Microbiology, Campus Centro Oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brasil
| | - William Gustavo de Lima
- Department of Health Sciences, Laboratory of Medical Microbiology, Campus Centro Oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brasil
| | | | - Jaqueline Maria Siqueira Ferreira
- Department of Health Sciences, Laboratory of Medical Microbiology, Campus Centro Oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brasil
| | - José Carlos de Magalhães
- Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, Minas Gerais, Brasil
| |
Collapse
|
47
|
Oxytocin Is a Positive Allosteric Modulator of κ-Opioid Receptors but Not δ-Opioid Receptors in the G Protein Signaling Pathway. Cells 2021; 10:cells10102651. [PMID: 34685631 PMCID: PMC8534029 DOI: 10.3390/cells10102651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 01/22/2023] Open
Abstract
Oxytocin (OT) influences various physiological functions such as uterine contractions, maternal/social behavior, and analgesia. Opioid signaling pathways are involved in one of the analgesic mechanisms of OT. We previously showed that OT acts as a positive allosteric modulator (PAM) and enhances μ-opioid receptor (MOR) activity. In this study, which focused on other opioid receptor (OR) subtypes, we investigated whether OT influences opioid signaling pathways as a PAM for δ-OR (DOR) or κ-OR (KOR) using human embryonic kidney-293 cells expressing human DOR or KOR, respectively. The CellKeyTM results showed that OT enhanced impedance induced by endogenous/exogenous KOR agonists on KOR-expressing cells. OT did not affect DOR activity induced by endogenous/exogenous DOR agonists. OT potentiated the KOR agonist-induced Gi/o protein-mediated decrease in intracellular cAMP, but did not affect the increase in KOR internalization caused by the KOR agonists dynorphin A and (-)-U-50488 hydrochloride (U50488). OT did not bind to KOR orthosteric binding sites and did not affect the binding affinities of dynorphin A and U50488 for KOR. These results suggest that OT is a PAM of KOR and MOR and enhances G protein signaling without affecting β-arrestin signaling. Thus, OT has potential as a specific signaling-biased PAM of KOR.
Collapse
|
48
|
Lind S, Holdfeldt A, Mårtensson J, Granberg KL, Forsman H, Dahlgren C. Multiple ligand recognition sites in free fatty acid receptor 2 (FFA2R) direct distinct neutrophil activation patterns. Biochem Pharmacol 2021; 193:114762. [PMID: 34499871 DOI: 10.1016/j.bcp.2021.114762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022]
Abstract
The allosteric modulating free fatty acid receptor 2 ligands Cmp58 and AZ1729, increased the activity induced by orthosteric receptor agonists mediating a rise in intracellular calcium ions and activation of the neutrophil NADPH-oxidase. Together, the two modulators triggered an orthosteric-agonist-independent activation of the oxidase without any rise in the concentration of intracellular calcium ions. In this study, structurally diverse compounds presumed to be ligands for free fatty acid receptor 2 were used to gain additional insights into receptor-modulation/signaling. We identified two molecules that activate neutrophils on their own and we classified one as allosteric agonist and the other as orthosteric agonist. Ten compounds were classified as allosteric FFA2R modulators. Of these, one activated neutrophils when combined with AZ1729; the nine remaining compounds activated neutrophils solely when combined with Cmp58. The activation signals were primarily biased when stimulated by two allosteric modulators interacting with different binding sites, such that two complementary modulators together triggered an activation of the NADPH-oxidase but no increase in the intracellular concentration of calcium ions. No neutrophil activation was induced when allosteric receptor modulators suggested to be recognized by the same binding site were combined, results in agreement with our proposed model for activation, in which the receptor has two different sites that selectively bind allosteric modulators. The down-stream signaling mediated by cross-sensitizing allosteric receptor modulators, occurring independent of any orthosteric agonist, represent a new mechanism for activation of the neutrophil NADPH oxidase.
Collapse
Affiliation(s)
- Simon Lind
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - André Holdfeldt
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Unit of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kenneth L Granberg
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
49
|
The antidepressant drug vilazodone is an allosteric inhibitor of the serotonin transporter. Nat Commun 2021; 12:5063. [PMID: 34417466 PMCID: PMC8379219 DOI: 10.1038/s41467-021-25363-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Depression is a common mental disorder. The standard medical treatment is the selective serotonin reuptake inhibitors (SSRIs). All characterized SSRIs are competitive inhibitors of the serotonin transporter (SERT). A non-competitive inhibitor may produce a more favorable therapeutic profile. Vilazodone is an antidepressant with limited information on its molecular interactions with SERT. Here we use molecular pharmacology and cryo-EM structural elucidation to characterize vilazodone binding to SERT. We find that it exhibits non-competitive inhibition of serotonin uptake and impedes dissociation of [3H]imipramine at low nanomolar concentrations. Our SERT structure with bound imipramine and vilazodone reveals a unique binding pocket for vilazodone, expanding the boundaries of the extracellular vestibule. Characterization of the binding site is substantiated with molecular dynamics simulations and systematic mutagenesis of interacting residues resulting in decreased vilazodone binding to the allosteric site. Our findings underline the versatility of SERT allosteric ligands and describe the unique binding characteristics of vilazodone. Vilazodone (VLZ) is a drug for the treatment of major depressive disorders that targets the serotonin transporter (SERT). Here, the authors combine pharmacology measurements and cryo-EM structural analysis to characterize VLZ binding to SERT and observe that VLZ exhibits non-competitive inhibition of serotonin transport and binds with nanomolar affinity to an allosteric site in SERT.
Collapse
|
50
|
Arsova A, Møller TC, Hellyer SD, Vedel L, Foster SR, Hansen JL, Bräuner-Osborne H, Gregory KJ. Positive Allosteric Modulators of Metabotropic Glutamate Receptor 5 as Tool Compounds to Study Signaling Bias. Mol Pharmacol 2021; 99:328-341. [PMID: 33602724 DOI: 10.1124/molpharm.120.000185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/27/2021] [Indexed: 11/22/2022] Open
Abstract
Positive allosteric modulation of metabotropic glutamate subtype 5 (mGlu5) receptor has emerged as a potential new therapeutic strategy for the treatment of schizophrenia and cognitive impairments. However, positive allosteric modulator (PAM) agonist activity has been associated with adverse side effects, and neurotoxicity has also been observed for pure PAMs. The structural and pharmacological basis of therapeutic versus adverse mGlu5 PAM in vivo effects remains unknown. Thus, gaining insights into the signaling fingerprints, as well as the binding kinetics of structurally diverse mGlu5 PAMs, may help in the rational design of compounds with desired properties. We assessed the binding and signaling profiles of N-methyl-5-(phenylethynyl)pyrimidin-2-amine (MPPA), 3-cyano-N-(2,5-diphenylpyrazol-3-yl)benzamide (CDPPB), and 1-[4-(4-chloro-2-fluoro-phenyl)piperazin-1-yl]-2-(4-pyridylmethoxy)ethenone [compound 2c, a close analog of 1-(4-(2-chloro-4-fluorophenyl)piperazin-1-yl)-2-(pyridin-4-ylmethoxy)ethanone] in human embryonic kidney 293A cells stably expressing mGlu5 using Ca2+ mobilization, inositol monophosphate (IP1) accumulation, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and receptor internalization assays. Of the three allosteric ligands, only CDPPB had intrinsic agonist efficacy, and it also had the longest receptor residence time and highest affinity. MPPA was a biased PAM, showing higher positive cooperativity with orthosteric agonists in ERK1/2 phosphorylation and Ca2+ mobilization over IP1 accumulation and receptor internalization. In primary cortical neurons, all three PAMs showed stronger positive cooperativity with (S)-3,5-dihydroxyphenylglycine (DHPG) in Ca2+ mobilization over IP1 accumulation. Our characterization of three structurally diverse mGlu5 PAMs provides further molecular pharmacological insights and presents the first assessment of PAM-mediated mGlu5 internalization. SIGNIFICANCE STATEMENT: Enhancing metabotropic glutamate receptor subtype 5 (mGlu5) activity is a promising strategy to treat cognitive and positive symptoms in schizophrenia. It is increasingly evident that positive allosteric modulators (PAMs) of mGlu5 are not all equal in preclinical models; there remains a need to better understand the molecular pharmacological properties of mGlu5 PAMs. This study reports detailed characterization of the binding and functional pharmacological properties of mGlu5 PAMs and is the first study of the effects of mGlu5 PAMs on receptor internalization.
Collapse
Affiliation(s)
- Angela Arsova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Thor C Møller
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Shane D Hellyer
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Line Vedel
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Simon R Foster
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Jakob L Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Karen J Gregory
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| |
Collapse
|