1
|
Matsui M, Fukuda A, Onishi S, Ushiro K, Nishikawa T, Asai A, Kim SK, Nishikawa H. Impact of Alcohol Intake on Skeletal Muscle: A Large Cross-Sectional Analysis in Japanese Adults. Nutrients 2025; 17:894. [PMID: 40077764 PMCID: PMC11901683 DOI: 10.3390/nu17050894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
AIMS To clarify the impact of alcohol intake on skeletal muscle mass (SMM) using data from Japanese health checkup recipients (8405 males and 11,509 females). The fat-free (FF) index was regarded as the FF mass divided by height squared (kg/m2). METHODS The subjects were classified into four groups (type A (never drinker), B (chance or mild drinker), C (moderate drinker), and D (severe drinker)) according to the amount of alcohol consumed. RESULTS The average age in males and females was 52.2 and 50.1 years, respectively (p < 0.0001). The average FF index in males and females was 18.5 and 15.1 kg/m2, respectively (p < 0.0001). The proportion of subjects of type A, B, C, and D was 36.5%, 44.2%, 5.9%, and 13.4%, respectively, in males, and 59.8%, 31.3%, 3.7%, and 5.1%, respectively, in females (p < 0.0001). The average FF index in type A, B, C, and D males was 18.43, 18.62, 18.12, and 18.16 kg/m2, respectively (overall p < 0.0001). The average FF index in type A, B, C, and D females was 15.17, 15.14, 15.15, and 14.78 kg/m2, respectively (overall p < 0.0001). CONCLUSIONS Habitual heavy drinking has a negative effect on SMM. However, from the standpoint of maintaining SMM, it is not necessary to completely abstain from alcohol.
Collapse
Affiliation(s)
- Masahiro Matsui
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan
| | - Akira Fukuda
- Osaka Medical and Pharmaceutical University Health Science Clinic, Takatsuki 569-8686, Osaka, Japan
| | - Saori Onishi
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan
| | - Kosuke Ushiro
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan
| | - Tomohiro Nishikawa
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan
| | - Akira Asai
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan
| | - Soo Ki Kim
- Department of Gastroenterology, Kobe Asahi Hospital, Kobe 653-8501, Hyogo, Japan
| | - Hiroki Nishikawa
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan
| |
Collapse
|
2
|
Hanai T, Nishimura K, Unome S, Miwa T, Nakahata Y, Imai K, Suetsugu A, Takai K, Shimizu M. Alcohol-associated liver disease increases the risk of muscle loss and mortality in patients with cirrhosis. J Gastroenterol 2024; 59:932-940. [PMID: 39068612 PMCID: PMC11415521 DOI: 10.1007/s00535-024-02137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Rapid skeletal muscle loss adversely affects the clinical outcomes of liver cirrhosis. However, the relationships between the annual changes in skeletal muscle area (ΔSMA/year) and the etiology of cirrhosis, factors associated with muscle loss, and risk of mortality remains unclear. METHODS A total of 384 patients who underwent multiple computed tomography (CT) scans between March 2004 and June 2021 were enrolled in this study (median age, 67 years; 64% men; median model for end-stage liver disease score, 9). Body composition and ΔSMA/year were estimated using a 3D image analysis system and data from at least two distinct CT scans. Differences in ΔSMA/year among different etiologies of cirrhosis, factors associated with rapid muscle loss (defined as ΔSMA/year ≤ - 3.1%), and the association between ΔSMA/year and mortality were examined. RESULTS Patients with alcohol-associated liver disease (ALD) cirrhosis experienced more rapid muscle loss (ΔSMA/year, - 5.7%) than those with hepatitis B (ΔSMA/year, - 2.8%) and hepatitis C cirrhosis (ΔSMA/year, - 3.1%). ALD cirrhosis was independently associated with ΔSMA/year ≤ - 3.1% after adjusting for age, sex, and liver functional reserve. Over a median follow-up period of 3.8 years, ALD cirrhosis, ΔSMA/year ≤ - 3.1%, and low subcutaneous adipose tissue level were found to be significantly associated with reduced survival. ALD cirrhosis (hazard ratio [HR], 2.43; 95% confidence interval [CI] 1.12-5.28) and ΔSMA/year ≤ - 3.1% (HR, 3.68; 95% CI 2.46-5.52) were also predictive of mortality. CONCLUSIONS These results suggest that ALD cirrhosis increases the risk of rapid muscle loss and mortality in affected patients.
Collapse
Affiliation(s)
- Tatsunori Hanai
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Kayoko Nishimura
- Center for Nutrition Support and Infection Control, Gifu University Hospital, Gifu, Japan
| | - Shinji Unome
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takao Miwa
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yuki Nakahata
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kenji Imai
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Atsushi Suetsugu
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Koji Takai
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masahito Shimizu
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
3
|
Mishra S, Welch N, Singh SS, Singh KD, Bellar A, Kumar A, Deutz LN, Hanlon MD, Kant S, Dastidar S, Patel H, Agrawal V, Attaway AH, Musich R, Stark GR, Tedesco FS, Truskey GA, Weiner ID, Karnik SS, Dasarathy S. Ammonia transporter RhBG initiates downstream signaling and functional responses by activating NFκB. Proc Natl Acad Sci U S A 2024; 121:e2314760121. [PMID: 39052834 PMCID: PMC11294993 DOI: 10.1073/pnas.2314760121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Transceptors, solute transporters that facilitate intracellular entry of molecules and also initiate intracellular signaling events, have been primarily studied in lower-order species. Ammonia, a cytotoxic endogenous metabolite, is converted to urea in hepatocytes for urinary excretion in mammals. During hyperammonemia, when hepatic metabolism is impaired, nonureagenic ammonia disposal occurs primarily in skeletal muscle. Increased ammonia uptake in skeletal muscle is mediated by a membrane-bound, 12 transmembrane domain solute transporter, Rhesus blood group-associated B glycoprotein (RhBG). We show that in addition to its transport function, RhBG interacts with myeloid differentiation primary response-88 (MyD88) to initiate an intracellular signaling cascade that culminates in activation of NFκB. We also show that ammonia-induced MyD88 signaling is independent of the canonical toll-like receptor-initiated mechanism of MyD88-dependent NFκB activation. In silico, in vitro, and in situ experiments show that the conserved cytosolic J-domain of the RhBG protein interacts with the Toll-interleukin-1 receptor (TIR) domain of MyD88. In skeletal muscle from human patients, human-induced pluripotent stem cell-derived myotubes, and myobundles show an interaction of RhBG-MyD88 during hyperammonemia. Using complementary experimental and multiomics analyses in murine myotubes and mice with muscle-specific RhBG or MyD88 deletion, we show that the RhBG-MyD88 interaction is essential for the activation of NFkB but not ammonia transport. Our studies show a paradigm of substrate-dependent regulation of transceptor function with the potential for modulation of cellular responses in mammalian systems by decoupling transport and signaling functions of transceptors.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | - Nicole Welch
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
- Gastroenterology and Hepatology, Lerner Research Institute, Cleveland, OH44195
| | - Shashi Shekhar Singh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | | | - Annette Bellar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | - Avinash Kumar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | - Lars N. Deutz
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | - Maxmillian D. Hanlon
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | - Sashi Kant
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | - Sumitava Dastidar
- Department of Cell and Developmental Biology, University College London & The Francis Crick Institute, LondonWC1E6DE, UK
| | - Hailee Patel
- Duke Biomedical Engineering, Duke University, Durham, NC27708
| | - Vandana Agrawal
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | - Amy H. Attaway
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
- Pulmonary Medicine, Lerner Research Institute, Cleveland, OH44195
| | - Ryan Musich
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
| | - George R. Stark
- Cancer Biology, Lerner Research Institute, Cleveland, OH44195
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London & The Francis Crick Institute, LondonWC1E6DE, UK
| | | | - I. David Weiner
- Division of Nephrology Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL32610
- Nephrology and Hypertension Section, Gainesville, FL32610
| | - Sadashiva S. Karnik
- Cardiovascular and Metabolic Diseases, Lerner Research Institute, Cleveland, OH44195
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH44195
- Gastroenterology and Hepatology, Lerner Research Institute, Cleveland, OH44195
| |
Collapse
|
4
|
Tice AL, Steiner JL. Binge alcohol induces NRF2-related antioxidant response in the skeletal muscle of female mice. Biochem Biophys Res Commun 2024; 714:149968. [PMID: 38657445 DOI: 10.1016/j.bbrc.2024.149968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Chronic alcohol enhances oxidative stress, but the temporal response of antioxidant genes in skeletal muscle following a binge drinking episode remains unknown. METHODS Experiment 1: C57BL/6Hsd female mice received an IP injection of saline (CON; n = 39) or ethanol (ETOH; n = 39) (5 g/kg). Gastrocnemius muscles were collected from baseline (untreated; n = 3), CON (n = 3), and ETOH (n = 3) mice every 4 h for 48 h. Experiment 2: Gastrocnemius muscles were collected from control-fed (CON-FED; n = 17), control-fasted (CON-FAST; n = 18), or alcohol-fed (ETOH-FED; n = 18) mice every 4hrs for 20hrs after saline or ethanol (5 g/kg). RESULTS EtOH enhanced Superoxide dismutase 1 (Sod1) and NADPH Oxidase 4 (Nox4) from 24 to 48hr after the binge, while Sod2 and Nox2 were suppressed. Nuclear factor erythroid-derived 2-like 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) increased 12hrs after intoxication. Cytochrome P450 oxidoreductase (Por), Heme oxygenase 1 (Ho1), Peroxiredoxin 6 (Prdx6), Glutamate-cysteine ligase catalytic subunit (Gclc), Glutamate-cysteine ligase modifier subunit (Gclm), and Glutathione-disulfide reductase (Gsr) were increased by ETOH starting 12-16hrs post-binge. Fasting had similar effects on Nrf2 compared to alcohol, but downstream targets of NRF2, including Por, Ho1, Gclc, and Gclm, were differentially altered with fasting and EtOH. CONCLUSION These data suggest that acute alcohol intoxication induced markers of oxidative stress and antioxidant signaling through the NRF2 pathway and that there were effects of alcohol independent of a possible decrease in food intake caused by binge intoxication.
Collapse
Affiliation(s)
- Abigail L Tice
- Department of Health, Nutrition and Food Sciences, Florida State University, 600 W. College Avenue, Tallahassee, FL, 32306, USA
| | - Jennifer L Steiner
- Department of Health, Nutrition and Food Sciences, Florida State University, 600 W. College Avenue, Tallahassee, FL, 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. College Avenue, Tallahassee, FL, 32306, USA.
| |
Collapse
|
5
|
Welch N, Mishra S, Bellar A, Kannan P, Gopan A, Goudarzi M, King J, Luknis M, Musich R, Agrawal V, Bena J, Koch CJ, Li L, Willard B, Shah YM, Dasarathy S. Differential impact of sex on regulation of skeletal muscle mitochondrial function and protein homeostasis by hypoxia-inducible factor-1α in normoxia. J Physiol 2024; 602:2763-2806. [PMID: 38761133 PMCID: PMC11178475 DOI: 10.1113/jp285339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 04/19/2024] [Indexed: 05/20/2024] Open
Abstract
Hypoxia-inducible factor (HIF)-1α is continuously synthesized and degraded in normoxia. During hypoxia, HIF1α stabilization restricts cellular/mitochondrial oxygen utilization. Cellular stressors can stabilize HIF1α even during normoxia. However, less is known about HIF1α function(s) and sex-specific effects during normoxia in the basal state. Since skeletal muscle is the largest protein store in mammals and protein homeostasis has high energy demands, we determined HIF1α function at baseline during normoxia in skeletal muscle. Untargeted multiomics data analyses were followed by experimental validation in differentiated murine myotubes with loss/gain of function and skeletal muscle from mice without/with post-natal muscle-specific Hif1a deletion (Hif1amsd). Mitochondrial oxygen consumption studies using substrate, uncoupler, inhibitor, titration protocols; targeted metabolite quantification by gas chromatography-mass spectrometry; and post-mitotic senescence markers using biochemical assays were performed. Multiomics analyses showed enrichment in mitochondrial and cell cycle regulatory pathways in Hif1a deleted cells/tissue. Experimentally, mitochondrial oxidative functions and ATP content were higher with less mitochondrial free radical generation with Hif1a deletion. Deletion of Hif1a also resulted in higher concentrations of TCA cycle intermediates and HIF2α proteins in myotubes. Overall responses to Hif1amsd were similar in male and female mice, but changes in complex II function, maximum respiration, Sirt3 and HIF1β protein expression and muscle fibre diameter were sex-dependent. Adaptive responses to hypoxia are mediated by stabilization of constantly synthesized HIF1α. Despite rapid degradation, the presence of HIF1α during normoxia contributes to lower mitochondrial oxidative efficiency and greater post-mitotic senescence in skeletal muscle. In vivo responses to HIF1α in skeletal muscle were differentially impacted by sex. KEY POINTS: Hypoxia-inducible factor -1α (HIF1α), a critical transcription factor, undergoes continuous synthesis and proteolysis, enabling rapid adaptive responses to hypoxia by reducing mitochondrial oxygen consumption. In mammals, skeletal muscle is the largest protein store which is determined by a balance between protein synthesis and breakdown and is sensitive to mitochondrial oxidative function. To investigate the functional consequences of transient HIF1α expression during normoxia in the basal state, myotubes and skeletal muscle from male and female mice with HIF1α knockout were studied using complementary multiomics, biochemical and metabolite assays. HIF1α knockout altered the electron transport chain, mitochondrial oxidative function, signalling molecules for protein homeostasis, and post-mitotic senescence markers, some of which were differentially impacted by sex. The cost of rapid adaptive responses mediated by HIF1α is lower mitochondrial oxidative efficiency and post-mitotic senescence during normoxia.
Collapse
Affiliation(s)
- Nicole Welch
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Saurabh Mishra
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Annette Bellar
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Pugazhendhi Kannan
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Amrit Gopan
- KEM Hospital, Seth GS Medical College, Mumbai, India
| | - Maryam Goudarzi
- Respiratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jasmine King
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Mathew Luknis
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Ryan Musich
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Vandana Agrawal
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - James Bena
- Quantitative Health, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Ling Li
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Srinivasan Dasarathy
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
6
|
Aslam MA, Ma EB, Huh JY. Pathophysiology of sarcopenia: Genetic factors and their interplay with environmental factors. Metabolism 2023; 149:155711. [PMID: 37871831 DOI: 10.1016/j.metabol.2023.155711] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Sarcopenia is a geriatric disorder characterized by a progressive decline in muscle mass and function. This disorder has been associated with a range of adverse health outcomes, including fractures, functional deterioration, and increased mortality. The pathophysiology of sarcopenia is highly complex and multifactorial, involving both genetic and environmental factors as key contributors. This review consolidates current knowledge on the genetic factors influencing the pathogenesis of sarcopenia, particularly focusing on the altered gene expression of structural and metabolic proteins, growth factors, hormones, and inflammatory cytokines. While the influence of environmental factors such as physical inactivity, chronic diseases, smoking, alcohol consumption, and sleep disturbances on sarcopenia is relatively well understood, there is a dearth of studies examining their mechanistic roles. Therefore, this review emphasizes the interplay between genetic and environmental factors, elucidating their cumulative role in exacerbating the progression of sarcopenia beyond their individual effects. The unique contribution of this review lies in synthesizing the latest evidence on the genetic factors and their interaction with environmental factors, aiming to inform the development of novel therapeutic or preventive interventions for sarcopenia.
Collapse
Affiliation(s)
- Muhammad Arif Aslam
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Eun Bi Ma
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
7
|
Maldonado CJ, White-Phillip JA, Liu Y, Choi YS. Exposomic Signatures of Cervical Pain. Mil Med 2023; 188:116-123. [PMID: 37948218 DOI: 10.1093/milmed/usad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION We evaluated risk factors associated with cervical pain (CP) among officers and enlisted members of the U.S. Army and Marine Aviation community using an exposomic approach. Specifically, we aimed to determine the factors associated with reported CP. MATERIALS AND METHODS This is a retrospective cohort study that utilized the Medical Assessment and Readiness System housed at Womack Army Medical Center to evaluate the longitudinal data taken from medical and workforce resources. This study included 77,864 active duty AMAC members during October 2015-December 2019. Multivariable mixed-effects logistic regression was used to assess the relationship between the independent variables of rank, service time, deployment, Armed Forces Qualification Test score, tobacco use, alcohol use, age, gender, race, ethnicity, body mass index, marital status, and education level and the dependent variable, incidence occurrence of CP. RESULTS The total analysis included 77,864 individuals with 218,180 person-years of observations. The incidence rate of CP was 18.8 per 100 person-years, with a 12% period prevalence. Cervical pain was independently associated with rank, service time, Armed Forces Qualification Test score, and alcohol use (all P < .05). CONCLUSIONS Our longitudinal exposomic signatures-based approach aims to complement the outcomes of data science and analytics from Medical Assessment and Readiness System with validations of objective biochemical indicator species observed in Army and Marine Aviation community members suffering from CP. This initial approach using parallel track complementarity has the potential of substantiating the underlying mechanisms foundational to design prospective personalized algorithms that can be used as a predictive model. Finally, a specific evaluation of occupational risk factors may provide insight into factors not readily ascertained from the civilian literature.
Collapse
Affiliation(s)
- Carlos J Maldonado
- Department of Clinical Investigation, Womack Army Medical Center, Fort Bragg, NC 28310, USA
| | | | - Yuliang Liu
- Department of Veterans Affairs, Veterans Administration Central Office, Washington, DC 20420, USA
| | - Y Sammy Choi
- Department of Clinical Investigation, Womack Army Medical Center, Fort Bragg, NC 28310, USA
| |
Collapse
|
8
|
Abstract
PURPOSE Alcohol-related myopathy is one of the earliest alcohol-associated pathological tissue changes that is progressively exacerbated by cumulative long-term alcohol misuse. Acute and chronic alcohol use leads to changes in skeletal muscle mass and function. As discussed in this evidence-based review, alcohol-mediated mechanisms are multifactorial with effects on anabolic and catabolic signaling, mitochondrial bioenergetics, extracellular matrix remodeling, and epigenomic alterations. However, systematic studies are limited, especially regarding the acute effects of alcohol on skeletal muscle. SEARCH METHODS This review focuses on peer-reviewed manuscripts published between January 2012 and November 2022 using the search terms "alcohol" or "ethanol" and "skeletal muscle" in MEDLINE, PubMed, and Web of Science using EndNote reference management software. SEARCH RESULTS Eligible manuscripts included full-length research papers that discussed acute and chronic effects of alcohol on skeletal muscle mass and function in both clinical and preclinical studies. The review also includes alcohol-mediated skeletal muscle effects in the context of comorbidities. The three databases together yielded 708 manuscripts. Of these, the authors excluded from this review 548 papers that did not have "alcohol" or "muscle" in the title and 64 papers that were duplicates or did not discuss skeletal muscle. Thus, of all the manuscripts considered for this review, 96 are included and 612 are excluded. Additionally, relevant papers published earlier than 2012 are included to provide context to the review. DISCUSSION AND CONCLUSIONS Both acute and chronic alcohol use decrease protein synthesis and increase protein degradation. Alcohol also impairs mitochondrial function and extracellular matrix remodeling. However, there is a gap in the literature on the known alcohol-mediated mechanisms, including senescence, role of immune activation, and interorgan communication, on the development of alcohol-related myopathy. With increased life expectancy, changing alcohol use patterns, and increasing frequency of alcohol use among females, current observational studies are needed on the prevalence of alcohol-related myopathy. Additionally, the compounding effects of acute and chronic alcohol use on skeletal muscle with aging or exercise, in response to injury or disuse, and in the context of comorbidities including diabetes and human immunodeficiency virus (HIV), call for further investigation. Though evidence suggests that abstinence or reducing alcohol use can improve muscle mass and function, they are not restored to normal levels. Hence, understanding the pathophysiological mechanisms can help in the design of therapeutic strategies to improve skeletal muscle health.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Brianna L Bourgeois
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
9
|
Zhang Y, Wei L, Chang C, Duan F, Quan M, Yang S. Sarcopenia defined with L3-SMI is an independent predictor of survival in male patients with ARLD in mainland China. Front Nutr 2023; 10:1238433. [PMID: 37781108 PMCID: PMC10540780 DOI: 10.3389/fnut.2023.1238433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Background The burden of alcohol-related liver disease (ARLD) is increasing in China. Patients with ARLD are more likely to have comorbid sarcopenia, which may impair their survival. This study aimed to evaluate the relationship between the prognoses of patients with ARLD and sarcopenia, identified using the skeletal muscle index at the third lumbar vertebra level (L3-SMI). Methods Hospitalized patients with ARLD were retrospectively enrolled between 2015 and 2018 and followed up for 24 months to evaluate their survival profiles. Cox proportional hazards regression models were used to estimate patient survival factors. A receiver operating characteristic curve was created to identify the cut-off point of the L3-SMI for predicting the prognoses of Chinese patients with ARLD. Results The study enrolled 168 male patients with ARLD who were followed-up for 24 months or until a study endpoint was met. The overall L3-SMI in patients with ARLD was 42.61 ± 9.15 cm2/m2, and 42.86% (72/168) of patients with ARLD were comorbid with sarcopenia. The overall survival in patients with ARLD was 77.38% at 24 months. The survival rate of patients with sarcopenia was lower than that of patients without sarcopenia (66.67% vs. 85.42%, p = 0.004). Multiple Cox regression analysis showed that sarcopenia, abstinence, and baseline creatinine level were independent prognostic factors of 24-month survival with hazard ratios (95% confidence intervals) of 2.022 (1.025-3.991), 0.275 (0.122-0.617), and 1.018 (1.008-1.027), respectively. The cut-off value of the L3-SMI for predicting 24-month survival was 40.0 cm2/m2 for male patients with ARLD. Conclusion Sarcopenia is an independent mortality risk factor in male patients with ARLD in mainland China. Early diagnosis and intervention of sarcopenia are important for optimizing the management of patients with ARLD.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, Beijing, China
| | - Liangui Wei
- Department of Radiology, Beijing Ditan Hospital of Capital Medical University, Beijing, China
| | - Chunyan Chang
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, Beijing, China
| | - Fangfang Duan
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, Beijing, China
| | - Min Quan
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, Beijing, China
| | - Song Yang
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, Beijing, China
- Department of Hepatology, The Fourth People’s Hospital of Qinghai Province, Xining, China
| |
Collapse
|
10
|
Iepsen UW, Rinnov AR, Munch GW, Rugbjerg M, Winding KM, Lauridsen C, Berg RMG, Pedersen BK, Gluud LL, van Hall G. Skeletal muscle protein turnover responses to parenteral nutrition in patients with alcoholic liver cirrhosis and sarcopenia. Am J Physiol Gastrointest Liver Physiol 2023; 325:G174-G183. [PMID: 37339940 DOI: 10.1152/ajpgi.00242.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
Alcoholic liver cirrhosis (ALC) is accompanied by sarcopenia. The aim of this study was to investigate the acute effects of balanced parenteral nutrition (PN) on skeletal muscle protein turnover in ALC. Eight male patients with ALC and seven age- and sex-matched healthy controls were studied for 3 h of fasting followed by 3 h of intravenous PN (SmofKabiven 1,206 mL: amino acid = 38 g, carbohydrates = 85 g, and fat = 34 g) 4 mL/kg/h. We measured leg blood flow and sampled paired femoral arteriovenous concentrations and quadriceps muscle biopsies while providing a primed continuous infusion of [ring-2d5]-phenylalanine to quantify muscle protein synthesis and breakdown. Patients with ALC exhibited shorter 6-min walking distance (ALC: 487 ± 38 vs. controls: 722 ± 14 m, P < 0.05), lower hand-grip strength (ALC: 34 ± 2 vs. controls: 52 ± 2 kg, P < 0.05), and computed tomography (CT)-verified leg muscle loss (ALC: 5,922 ± 246 vs. controls: 8,110 ± 345 mm2, P < 0.05). Net leg muscle phenylalanine uptake changed from negative (muscle loss) during fasting to positive (muscle gain) in response to PN (ALC: -0.18 ± +0.01 vs. 0.24 ± 0.03 µmol/kg muscle·min-1; P < 0.001 and controls: -0.15 ± 0.01 vs. 0.09 ± 0.01 µmol/kg muscle·min-1; P < 0.001) but with higher net muscle phenylalanine uptake in ALC than controls (P < 0.001). Insulin concentrations were substantially higher in patients with ALC during PN. Our results suggest a higher net muscle phenylalanine uptake during a single infusion of PN in stable patients with ALC with sarcopenia compared with healthy controls.NEW & NOTEWORTHY Muscle protein turnover responses to parenteral nutritional (PN) supplementation have not previously been studied in stable alcoholic liver cirrhosis (ALC). We applied stable isotope tracers of amino acids to directly quantify net muscle protein turnover responses to PN in sarcopenic males with ALC and healthy controls. We found a higher net muscle protein gain in ALC during PN, thereby providing the physiological rationale for future clinical trials of PN as a potential countermeasure to sarcopenia.
Collapse
Affiliation(s)
- Ulrik Winning Iepsen
- The Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Anaesthesiology and Intensive Care, Copenhagen University Hospital-Hvidovre Hospital, Copenhagen, Denmark
| | - Anders Rasmussen Rinnov
- The Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gregers Winding Munch
- The Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mette Rugbjerg
- The Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kamilla Munch Winding
- The Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Carsten Lauridsen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Technology, Copenhagen University College, Copenhagen, Denmark
| | - Ronan M G Berg
- The Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Bente Klarlund Pedersen
- The Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Gerrit van Hall
- Clinical Metabolomics Core Facility, Clinical Biochemistry, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Biomedical Sciences, Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Zhang Y, Zhu Y. Development and validation of risk prediction model for sarcopenia in patients with colorectal cancer. Front Oncol 2023; 13:1172096. [PMID: 37576879 PMCID: PMC10416104 DOI: 10.3389/fonc.2023.1172096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Objectives Sarcopenia is associated with a poor prognosis in patients with colorectal cancer. However, the clinical factors that lead to colorectal cancer patients with sarcopenia are still unclear. The objective of this study is to develop and validate a nomogram for predicting the occurrence of sarcopenia and to provide healthcare professionals with a reliable tool for early identification of high-risk patients with colorectal cancer associated sarcopenia. Methods A total of 359 patients diagnosed with colorectal cancer from July 2021 to May 2022 were included. All patients were randomly divided into a training (n = 287) cohort and a validation cohort (n = 72) at the ratio of 80/20. Univariate and multivariate logistic analysis were performed to evaluate the factors associated with sarcopenia. The diagnostic nomogram of sarcopenia in patients with colorectal cancer was constructed in the training cohort and validated in the validation cohort. Various evaluation metrics were employed to assess the performance of the developed nomogram, including the ROC curve, calibration curve, and Hosmer-Lemeshow test. Results Smoking history, drinking history, diabetes, TNM stage, nutritional status, and physical activity were included in the nomogram for the prediction of sarcopenia. The diagnostic nomograms demonstrated excellent discrimination, with AUC values of 0.971 and 0.922 in the training and validation cohorts, respectively. Moreover, the calibration performance of the nomogram is also excellent, as evidenced by the Hosmer-Lemeshow test result of 0.886. Conclusions The nomogram consisting of preoperative factors was able to successfully predict the occurrence of sarcopenia in colorectal cancer patients, aiding in the early identification of high-risk patients and facilitating timely implementation of appropriate intervention measures.
Collapse
Affiliation(s)
- Ying Zhang
- College of Nursing, Qingdao University, Qingdao, China
| | - Yongjian Zhu
- College of Nursing, Qingdao University, Qingdao, China
- Nursing Department, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
12
|
Xiao Q, Chen YH, Chen YL, Chien YS, Hsieh LH, Shirakawa H, Yang SC. Potential Benefits of Epidermal Growth Factor for Inhibiting Muscle Degrative Markers in Rats with Alcoholic Liver Damage. Int J Mol Sci 2023; 24:ijms24108845. [PMID: 37240190 DOI: 10.3390/ijms24108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
This study investigated the beneficial effects of epidermal growth factor (EGF) on muscle loss in rats with chronic ethanol feeding. Six-week-old male Wistar rats were fed either a control liquid diet without EGF (C group, n = 12) or EGF (EGF-C group, n = 18) for two weeks. From the 3rd to 8th week, the C group was divided into two groups. One was continually fed with a control liquid diet (C group), and the other one was fed with an ethanol-containing liquid diet (E group); moreover, the EGF-C group was divided into three groups, such as the AEGF-C (continually fed with the same diet), PEGF-E (fed with the ethanol-containing liquid diet without EGF), and AEGF-E (fed with the ethanol-containing liquid diet with EGF). As a result, the E group had significantly higher plasma ALT and AST, endotoxin, ammonia, and interleukin 1b (IL-1b) levels, along with liver injuries, such as hepatic fatty changes and inflammatory cell infiltration. However, plasma endotoxin and IL-1b levels were significantly decreased in the PEGF-E and AEGF-E groups. In addition, the protein level of muscular myostatin and the mRNA levels of forkhead box transcription factors (FOXO), muscle RING-finger protein-1 (MURF-1) and atorgin-1 was increased considerably in the E group but inhibited in the PEGF-E and AEGF-E groups. According to the principal coordinate analysis findings, the gut microbiota composition differed between the control and ethanol liquid diet groups. In conclusion, although there was no noticeable improvement in muscle loss, EGF supplementation inhibited muscular protein degradation in rats fed with an ethanol-containing liquid diet for six weeks. The mechanisms might be related to endotoxin translocation inhibition, microbiota composition alteration as well as the amelioration of liver injury. However, the reproducibility of the results must be confirmed in future studies.
Collapse
Affiliation(s)
- Qian Xiao
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Hsiu Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Shan Chien
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Hsuan Hsieh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8857, Japan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
13
|
Salama MM, Bayoumi EM, Sayed MM, Abdul-Rahman SA, Saleh SAB, Zaky AS, Mohamed GA. Evaluation of handgrip strength as a predictor of sarcopenia in patients with HCV-related cirrhosis. EGYPTIAN LIVER JOURNAL 2023; 13:24. [DOI: 10.1186/s43066-023-00261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/06/2023] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background
Sarcopenia, characterised by a loss of muscle strength, quantity/quality, and physical performance, is associated with increased mortality and poor clinical outcomes in patients with liver cirrhosis. The use of the currently accepted methods for estimating muscle mass, such as computed tomography, dual-energy X-ray absorptiometry, and bioelectrical impedance analysis, in routine clinical practice is restricted because of limited availability, radiation exposure, time consumption, or high cost. Therefore, an alternative, simple, safe, reproducible, and financially accessible method for the routine assessment of sarcopenia is needed. Hence, we aim to assess the utility of handgrip strength (HGS) in diagnosing sarcopenia in patients with HCV-related cirrhosis compared to appendicular skeletal muscle index assessed by dual-energy X-ray absorptiometry (DEXA-ASMI). A total of 64 participants older than 18 years were consecutively recruited. The subjects were divided into the following groups: Control group included 32 healthy control subjects, and the HCV-related liver cirrhosis group included 32 patients who were subdivided equally into two subgroups (Child A and Child C) with 16 patients each. All participants were subjected to dominant hand dynamometer and DEXA scan.
Results
The prevalence of sarcopenia was significantly higher in the cirrhosis group than in the control group (7.75 ± 1.35 vs. 8.29 ± 1.25 kg/m2, P < 0.001), with increasing prevalence in the Child C class group (P < 0.001). HGS was significantly lower in the Child C group compared to other groups (P < 0.001). Regarding the differentiation of sarcopenic patients, defining HGS using a cutoff of ≤ 28.6 kg has an AUC of 0.879, sensitivity of 100%, specificity of 66.7%, PPV of 61.1%, and NPV of 100% (95% CI = 0.715 to 0.967; P < 0.0001).
Conclusion
Given the low cost, reproducibility, and safety of handgrip strength dynamometry, this is a promising method for both the diagnosis of sarcopenia as well as serial monitoring of muscle function in patients with HCV-related cirrhosis.
Collapse
|
14
|
Bellar A, Welch N, Dasarathy J, Attaway A, Musich R, Kumar A, Sekar J, Mishra S, Sandlers Y, Streem D, Nagy LE, Dasarathy S. Peripheral blood mononuclear cell mitochondrial dysfunction in acute alcohol-associated hepatitis. Clin Transl Med 2023; 13:e1276. [PMID: 37228227 PMCID: PMC10212276 DOI: 10.1002/ctm2.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Patients with acute alcohol-associated hepatitis (AH) have immune dysfunction. Mitochondrial function is critical for immune cell responses and regulates senescence. Clinical translational studies using complementary bioinformatics-experimental validation of mitochondrial responses were performed in peripheral blood mononuclear cells (PBMC) from patients with AH, healthy controls (HC), and heavy drinkers without evidence of liver disease (HD). METHODS Feature extraction for differentially expressed genes (DEG) in mitochondrial components and telomere regulatory pathways from single-cell RNAseq (scRNAseq) and integrated 'pseudobulk' transcriptomics from PBMC from AH and HC (n = 4 each) were performed. After optimising isolation and processing protocols for functional studies in PBMC, mitochondrial oxidative responses to substrates, uncoupler, and inhibitors were quantified in independent discovery (AH n = 12; HD n = 6; HC n = 12) and validation cohorts (AH n = 10; HC n = 7). Intermediary metabolites (gas-chromatography/mass-spectrometry) and telomere length (real-time PCR) were quantified in subsets of subjects (PBMC/plasma AH n = 69/59; HD n = 8/8; HC n = 14/27 for metabolites; HC n = 13; HD n = 8; AH n = 72 for telomere length). RESULTS Mitochondrial, intermediary metabolite, and senescence-regulatory genes were differentially expressed in PBMC from AH and HC in a cell type-specific manner at baseline and with lipopolysaccharide (LPS). Fresh PBMC isolated using the cell preparation tube generated optimum mitochondrial responses. Intact cell and maximal respiration were lower (p ≤ .05) in AH than HC/HD in the discovery and validation cohorts. In permeabilised PBMC, maximum respiration, complex I and II function were lower in AH than HC. Most tricarboxylic acid (TCA) cycle intermediates in plasma were higher while those in PBMC were lower in patients with AH than those from HC. Lower telomere length, a measure of cellular senescence, was associated with higher mortality in AH. CONCLUSION Patients with AH have lower mitochondrial oxidative function, higher plasma TCA cycle intermediates, with telomere shortening in nonsurvivors.
Collapse
Affiliation(s)
- Annette Bellar
- Department of Inflammation and ImmunityLerner Research Institue, Cleveland ClinicClevelandOhio
| | - Nicole Welch
- Department of Inflammation and ImmunityLerner Research Institue, Cleveland ClinicClevelandOhio
- Department of Gastroenterology and HepatologyCleveland ClinicClevelandOhio
| | | | - Amy Attaway
- Departnent of Pulmonary MedicineCleveland ClinicClevelandOhio
| | - Ryan Musich
- Department of Inflammation and ImmunityLerner Research Institue, Cleveland ClinicClevelandOhio
| | - Avinash Kumar
- Department of Inflammation and ImmunityLerner Research Institue, Cleveland ClinicClevelandOhio
| | - Jinendiran Sekar
- Department of Inflammation and ImmunityLerner Research Institue, Cleveland ClinicClevelandOhio
| | - Saurabh Mishra
- Department of Inflammation and ImmunityLerner Research Institue, Cleveland ClinicClevelandOhio
| | - Yana Sandlers
- Department of ChemistryCleveland State UniversityClevelandOhio
| | - David Streem
- Department of Psychiatry and PsychologyCleveland Clinc Lutheran HospitalClevelandOhio
| | - Laura E Nagy
- Department of Inflammation and ImmunityLerner Research Institue, Cleveland ClinicClevelandOhio
| | - Srinivasan Dasarathy
- Department of Inflammation and ImmunityLerner Research Institue, Cleveland ClinicClevelandOhio
- Department of Gastroenterology and HepatologyCleveland ClinicClevelandOhio
| |
Collapse
|
15
|
Prokopidis K, Witard OC. Understanding the role of smoking and chronic excess alcohol consumption on reduced caloric intake and the development of sarcopenia. Nutr Res Rev 2022; 35:197-206. [PMID: 34027849 DOI: 10.1017/s0954422421000135] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This narrative review provides mechanistic insight into the biological link between smoking and/or chronic excess alcohol consumption, and increased risk of developing sarcopenia. Although the combination of excessive alcohol consumption and smoking is often associated with ectopic adipose deposition, this review is focused on the context of a reduced caloric intake (leading to energy deficit) that also may ensue due to either lifestyle habit. Smoking is a primary cause of periodontitis and chronic obstructive pulmonary disease that both induce swallowing difficulties, inhibit taste and mastication, and are associated with increased risk of muscle atrophy and mitochondrial dysfunction. Smoking may contribute to physical inactivity, energy deficit via reduced caloric intake, and increased systemic inflammation, all of which are factors known to suppress muscle protein synthesis rates. Moreover, chronic excess alcohol consumption may result in gut microbiota dysbiosis and autophagy-induced hyperammonemia, initiating the up-regulation of muscle protein breakdown and down-regulation of muscle protein synthesis via activation of myostatin, AMPK and REDD1, and deactivation of IGF-1. Future research is warranted to explore the link between oral healthcare management and personalised nutrition counselling in light of potential detrimental consequences of chronic smoking on musculoskeletal health outcomes in older adults. Experimental studies should investigate the impact of smoking and chronic excess alcohol consumption on the gut-brain axis, and explore biomarkers of smoking-induced oral disease progression. The implementation of behavioural change interventions and health policies regarding smoking and alcohol intake habits may mitigate the clinical and financial burden of sarcopenia on the healthcare system.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, White City, London, UK
| | - Oliver C Witard
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
16
|
Welch N, Singh SS, Musich R, Mansuri MS, Bellar A, Mishra S, Chelluboyina AK, Sekar J, Attaway AH, Li L, Willard B, Hornberger TA, Dasarathy S. Shared and unique phosphoproteomics responses in skeletal muscle from exercise models and in hyperammonemic myotubes. iScience 2022; 25:105325. [PMID: 36345342 PMCID: PMC9636548 DOI: 10.1016/j.isci.2022.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/22/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle generation of ammonia, an endogenous cytotoxin, is increased during exercise. Perturbations in ammonia metabolism consistently occur in chronic diseases, and may blunt beneficial skeletal muscle molecular responses and protein homeostasis with exercise. Phosphorylation of skeletal muscle proteins mediates cellular signaling responses to hyperammonemia and exercise. Comparative bioinformatics and machine learning-based analyses of published and experimentally derived phosphoproteomics data identified differentially expressed phosphoproteins that were unique and shared between hyperammonemic murine myotubes and skeletal muscle from exercise models. Enriched processes identified in both hyperammonemic myotubes and muscle from exercise models with selected experimental validation included protein kinase A (PKA), calcium signaling, mitogen-activated protein kinase (MAPK) signaling, and protein homeostasis. Our approach of feature extraction from comparative untargeted "omics" data allows for selection of preclinical models that recapitulate specific human exercise responses and potentially optimize functional capacity and skeletal muscle protein homeostasis with exercise in chronic diseases.
Collapse
Affiliation(s)
- Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shashi Shekhar Singh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ryan Musich
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - M. Shahid Mansuri
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Annette Bellar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Saurabh Mishra
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Jinendiran Sekar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amy H. Attaway
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ling Li
- Proteomics Core, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Belinda Willard
- Proteomics Core, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
17
|
Reed CH, Buhr TJ, Tystahl AC, Bauer EE, Clark PJ, Valentine RJ. The effects of voluntary binge-patterned ethanol ingestion and daily wheel running on signaling of muscle protein synthesis and degradation in female mice. Alcohol 2022; 104:45-52. [PMID: 35926812 DOI: 10.1016/j.alcohol.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 01/26/2023]
Abstract
Excessive ethanol ingestion can reduce skeletal muscle protein synthesis (MPS) through the disruption of signaling along the Akt-mTOR pathway and increase muscle protein degradation (MPD) through the Ubiquitin Proteasome Pathway (UPP) and autophagy. Identification of interventions that curb the disrupting effects of alcohol misuse on MPS and MPD are of central importance for the prevention of chronic health complications that arise from muscle loss. Physical activity is one potential strategy to combat the deleterious effects of alcohol on skeletal muscle. Therefore, the purpose of this study was to investigate the interaction between daily wheel running and binge-patterned ethanol consumption, through episodes of voluntary binge-patterned ethanol drinking, on signaling factors along the Akt-mTOR, Ubiquitin-Proteasome, and autophagy pathways. Adult female C57BL/6J mice received daily access to cages with or without running wheels for 2.5 h/day for five weeks. During the final five days of the study, mice received 2-4 h of daily access to sipper tubes containing water (n = 14 sedentary; n = 15 running) or 20% ethanol (n = 14 sedentary; n = 16 running) 30 min after running wheel access, using the "Drinking in the Dark" (DID) model of binge-patterned ethanol consumption. Immediately after the final episode of DID, gastrocnemius muscle was extracted. Western blotting was performed to measure proteins along Akt-mTOR, Ubiquitin-Proteasome, and autophagy pathways, and PCR was used to assess mRNA expression of atrogenes. Ethanol access increased expression of MAFbx by 82% (p = 0.048), but did not robustly influence Akt-mTOR or UPP signaling. Daily wheel access did not prevent alcohol-induced MAFbx expression; however, ethanol access decreased the phosphorylation of p70S6K by 45% in running mice (p = 0.020). These results suggest that physical activity may be insufficient to prevent alcohol-induced changes to signaling factors along pathways involved in muscle loss. Instead, binge-patterned ethanol ingestion may impair the benefits of physical activity on factors involved in MPS.
Collapse
Affiliation(s)
- Carter H Reed
- Department of Kinesiology, Forker Building, 534 Wallace Road, Iowa State University, Ames, IA, 50011, United States; Interdepartmental Graduate Program of Nutritional Sciences, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States
| | - Trevor J Buhr
- Neuroscience Program, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States; Department of Food Science and Human Nutrition, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States
| | - Anna C Tystahl
- Department of Kinesiology, Forker Building, 534 Wallace Road, Iowa State University, Ames, IA, 50011, United States
| | - Ella E Bauer
- Interdepartmental Graduate Program of Nutritional Sciences, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States; Neuroscience Program, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States; Department of Food Science and Human Nutrition, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States
| | - Peter J Clark
- Interdepartmental Graduate Program of Nutritional Sciences, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States; Neuroscience Program, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States; Department of Food Science and Human Nutrition, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States.
| | - Rudy J Valentine
- Department of Kinesiology, Forker Building, 534 Wallace Road, Iowa State University, Ames, IA, 50011, United States; Interdepartmental Graduate Program of Nutritional Sciences, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States; Neuroscience Program, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States.
| |
Collapse
|
18
|
Allen SL, Seabright AP, Quinlan JI, Dhaliwal A, Williams FR, Fine NHF, Hodson DJ, Armstrong MJ, Elsharkaway AM, Greig CA, Lai YC, Lord JM, Lavery GG, Breen L. The Effect of Ex Vivo Human Serum from Liver Disease Patients on Cellular Protein Synthesis and Growth. Cells 2022; 11:cells11071098. [PMID: 35406665 PMCID: PMC8997893 DOI: 10.3390/cells11071098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Sarcopenia is a common complication affecting liver disease patients, yet the underlying mechanisms remain unclear. We aimed to elucidate the cellular mechanisms that drive sarcopenia progression using an in vitro model of liver disease. C2C12 myotubes were serum and amino acid starved for 1-h and subsequently conditioned with fasted ex vivo serum from four non-cirrhotic non-alcoholic fatty liver disease patients (NAFLD), four decompensated end-stage liver disease patients (ESLD) and four age-matched healthy controls (CON) for 4- or 24-h. After 4-h C2C12 myotubes were treated with an anabolic stimulus (5 mM leucine) for 30-min. Myotube diameter was reduced following treatment with serum from ESLD compared with CON (−45%) and NAFLD (−35%; p < 0.001 for both). A reduction in maximal mitochondrial respiration (24% and 29%, respectively), coupling efficiency (~12%) and mitophagy (~13%) was identified in myotubes conditioned with NAFLD and ESLD serum compared with CON (p < 0.05 for both). Myostatin (43%, p = 0.04) and MuRF-1 (41%, p = 0.03) protein content was elevated in myotubes treated with ESLD serum compared with CON. Here we highlight a novel, experimental platform to further probe changes in circulating markers associated with liver disease that may drive sarcopenia and develop targeted therapeutic interventions.
Collapse
Affiliation(s)
- Sophie L. Allen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK; (S.L.A.); (A.P.S.); (J.I.Q.); (C.A.G.); (Y.-C.L.)
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (A.D.); (F.R.W.); (M.J.A.); (A.M.E.); (J.M.L.); (G.G.L.)
| | - Alex P. Seabright
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK; (S.L.A.); (A.P.S.); (J.I.Q.); (C.A.G.); (Y.-C.L.)
| | - Jonathan I. Quinlan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK; (S.L.A.); (A.P.S.); (J.I.Q.); (C.A.G.); (Y.-C.L.)
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (A.D.); (F.R.W.); (M.J.A.); (A.M.E.); (J.M.L.); (G.G.L.)
| | - Amritpal Dhaliwal
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (A.D.); (F.R.W.); (M.J.A.); (A.M.E.); (J.M.L.); (G.G.L.)
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
- Liver Unit, Queen Elizabeth Hospital Birmingham, Nuffield House, Mindelsohn Way, Birmingham B15 2TH, UK
| | - Felicity R. Williams
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (A.D.); (F.R.W.); (M.J.A.); (A.M.E.); (J.M.L.); (G.G.L.)
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
- Liver Unit, Queen Elizabeth Hospital Birmingham, Nuffield House, Mindelsohn Way, Birmingham B15 2TH, UK
| | - Nicholas H. F. Fine
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; (N.H.F.F.); (D.J.H.)
| | - David J. Hodson
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; (N.H.F.F.); (D.J.H.)
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hosptial, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Matthew J. Armstrong
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (A.D.); (F.R.W.); (M.J.A.); (A.M.E.); (J.M.L.); (G.G.L.)
- Liver Unit, Queen Elizabeth Hospital Birmingham, Nuffield House, Mindelsohn Way, Birmingham B15 2TH, UK
| | - Ahmed M. Elsharkaway
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (A.D.); (F.R.W.); (M.J.A.); (A.M.E.); (J.M.L.); (G.G.L.)
- Liver Unit, Queen Elizabeth Hospital Birmingham, Nuffield House, Mindelsohn Way, Birmingham B15 2TH, UK
| | - Carolyn A. Greig
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK; (S.L.A.); (A.P.S.); (J.I.Q.); (C.A.G.); (Y.-C.L.)
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (A.D.); (F.R.W.); (M.J.A.); (A.M.E.); (J.M.L.); (G.G.L.)
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Yu-Chiang Lai
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK; (S.L.A.); (A.P.S.); (J.I.Q.); (C.A.G.); (Y.-C.L.)
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; (N.H.F.F.); (D.J.H.)
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Janet M. Lord
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (A.D.); (F.R.W.); (M.J.A.); (A.M.E.); (J.M.L.); (G.G.L.)
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Gareth G. Lavery
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (A.D.); (F.R.W.); (M.J.A.); (A.M.E.); (J.M.L.); (G.G.L.)
- Department of Biosciences, Nottingham Trent University, Nottingham NG1 8NS, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK; (S.L.A.); (A.P.S.); (J.I.Q.); (C.A.G.); (Y.-C.L.)
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (A.D.); (F.R.W.); (M.J.A.); (A.M.E.); (J.M.L.); (G.G.L.)
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence:
| |
Collapse
|
19
|
Fox R, Stenning K, Slee A, Macnaughtan J, Davies N. Sarcopenia in liver cirrhosis: Prevalence, pathophysiology and therapeutic strategies. Anal Biochem 2022; 647:114581. [PMID: 35134388 DOI: 10.1016/j.ab.2022.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/31/2022] [Indexed: 11/01/2022]
|
20
|
Kumar A, Welch N, Mishra S, Bellar A, Silva RN, Li L, Singh SS, Sharkoff M, Kerr A, Chelluboyina AK, Sekar J, Attaway AH, Hoppel C, Willard B, Davuluri G, Dasarathy S. Metabolic reprogramming during hyperammonemia targets mitochondrial function and postmitotic senescence. JCI Insight 2021; 6:154089. [PMID: 34935641 PMCID: PMC8783680 DOI: 10.1172/jci.insight.154089] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
Ammonia is a cytotoxic metabolite with pleiotropic molecular and metabolic effects, including senescence induction. During dysregulated ammonia metabolism, which occurs in chronic diseases, skeletal muscle becomes a major organ for nonhepatocyte ammonia uptake. Muscle ammonia disposal occurs in mitochondria via cataplerosis of critical intermediary metabolite α-ketoglutarate, a senescence-ameliorating molecule. Untargeted and mitochondrially targeted data were analyzed by multiomics approaches. These analyses were validated experimentally to dissect the specific mitochondrial oxidative defects and functional consequences, including senescence. Responses to ammonia lowering in myotubes and in hyperammonemic portacaval anastomosis rat muscle were studied. Whole-cell transcriptomics integrated with whole-cell, mitochondrial, and tissue proteomics showed distinct temporal clusters of responses with enrichment of oxidative dysfunction and senescence-related pathways/proteins during hyperammonemia and after ammonia withdrawal. Functional and metabolic studies showed defects in electron transport chain complexes I, III, and IV; loss of supercomplex assembly; decreased ATP synthesis; increased free radical generation with oxidative modification of proteins/lipids; and senescence-associated molecular phenotype–increased β-galactosidase activity and expression of p16INK, p21, and p53. These perturbations were partially reversed by ammonia lowering. Dysregulated ammonia metabolism caused reversible mitochondrial dysfunction by transcriptional and translational perturbations in multiple pathways with a distinct skeletal muscle senescence-associated molecular phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Li
- Proteomics & Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | | - Charles Hoppel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Belinda Willard
- Proteomics & Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gangarao Davuluri
- Department of Integrated Physiology and Molecular Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Srinivasan Dasarathy
- Department of Inflammation & Immunity and.,Department of Gastroenterology, Hepatology & Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Wang Q, Guan K, Lv Y, Zhang Y, Yu Z, Kan Q. Disturbance of hepatocyte growth and metabolism in a hyperammonemia microenvironment. Arch Biochem Biophys 2021; 716:109109. [PMID: 34932992 DOI: 10.1016/j.abb.2021.109109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND We found through previous research that hyperammonemia can cause secondary liver damage. However, whether hepatocytes are target cells of ammonia toxicity and whether hyperammonemia affects hepatocyte metabolism remain unknown. AIMS The purpose of the current study is to examine whether the hepatocyte is a specific target cell of ammonia toxicity and whether hyperammonemia can interfere with hepatocyte metabolism. METHODS Cell viability and apoptosis were analyzed in primary hepatocytes and other cells that had been exposed to ammonium chloride. Western blotting was adopted to examine the expression of proteins related to ammonia transport. We also established a metabolomics method based on gas chromatography-mass spectrometry to understand the characteristics of the hepatocyte metabolic spectrum in a hyperammonemia microenvironment, to screen and identify differential metabolites, and to determine the differential metabolic pathway. Different technologies were used to verify the differential metabolic pathways. RESULTS Hepatocytes are target cells of ammonia toxicity. The mechanism is related to the ammonia transporter. Hyperammonemia interferes with hepatocyte metabolism, which leads to TCA cycle, urea cycle, and RNA synthesis disorder. CONCLUSIONS This study demonstrates that hepatocyte growth and metabolism are disturbed in a hyperammonemia microenvironment, which further deteriorates hepatocyte function.
Collapse
Affiliation(s)
- Qiongye Wang
- Departments of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kelei Guan
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanjun Lv
- Department of Respiratory. the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingxuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery. the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Departments of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Quancheng Kan
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
22
|
Chen YH, Chiu WC, Xiao Q, Chen YL, Shirakawa H, Yang SC. Synbiotics Alleviate Hepatic Damage, Intestinal Injury and Muscular Beclin-1 Elevation in Rats after Chronic Ethanol Administration. Int J Mol Sci 2021; 22:ijms222212547. [PMID: 34830430 PMCID: PMC8622351 DOI: 10.3390/ijms222212547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate the beneficial effects of synbiotics on liver damage, intestinal health, and muscle loss, and their relevance in rats with chronic ethanol feeding. Thirty Wistar rats fed with a control liquid diet were divided into control and synbiotics groups, which were respectively provided with water or synbiotics solution (1.5 g/kg body weight/day) for 2 weeks. From the 3rd to 8th week, the control group was divided into a C group (control liquid diet + water) and an E group (ethanol liquid diet + water). The synbiotics group was separated in to three groups, SC, ASE, and PSE. The SC group was given a control liquid diet with synbiotics solution; the ASE group was given ethanol liquid diet with synbiotics solution, and the PSE group was given ethanol liquid diet and water. As the results, the E group exhibited liver damage, including increased AST and ALT activities, hepatic fatty changes, and higher CYP2E1 expression. Intestinal mRNA expressions of occludin and claudin-1 were significantly decreased and the plasma endotoxin level was significantly higher in the E group. In muscles, beclin-1 was significantly increased in the E group. Compared to the E group, the PSE and ASE groups had lower plasma ALT activities, hepatic fatty changes, and CYP2E1 expression. The PSE and ASE groups had significantly higher intestinal occludin and claudin-1 mRNA expressions and lower muscular beclin-1 expression when compared to the E group. In conclusion, synbiotics supplementation might reduce protein expression of muscle protein degradation biomarkers such as beclin-1 in rats with chronic ethanol feeding, which is speculated to be linked to the improvement of intestinal tight junction and the reduction of liver damage.
Collapse
Affiliation(s)
- Yi-Hsiu Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Qian Xiao
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8857, Japan;
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 6553); Fax: +886-2-27373112
| |
Collapse
|
23
|
Welch N, Singh SS, Kumar A, Dhruba SR, Mishra S, Sekar J, Bellar A, Attaway AH, Chelluboyina A, Willard BB, Li L, Huo Z, Karnik SS, Esser K, Longworth MS, Shah YM, Davuluri G, Pal R, Dasarathy S. Integrated multiomics analysis identifies molecular landscape perturbations during hyperammonemia in skeletal muscle and myotubes. J Biol Chem 2021; 297:101023. [PMID: 34343564 PMCID: PMC8424232 DOI: 10.1016/j.jbc.2021.101023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.
Collapse
Affiliation(s)
- Nicole Welch
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shashi Shekhar Singh
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Avinash Kumar
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Saugato Rahman Dhruba
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Saurabh Mishra
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jinendiran Sekar
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Annette Bellar
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Amy H Attaway
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pulmonary Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Aruna Chelluboyina
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Belinda B Willard
- Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ling Li
- Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health and Health Profession, University of Florida, Gainesville, Florida, USA
| | - Sadashiva S Karnik
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Karyn Esser
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Michelle S Longworth
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology and Department of Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gangarao Davuluri
- Integrated Physiology and Molecular Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Ranadip Pal
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas, USA.
| | - Srinivasan Dasarathy
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
24
|
Singh SS, Kumar A, Welch N, Sekar J, Mishra S, Bellar A, Gangadhariah M, Attaway A, Al Khafaji H, Wu X, Pathak V, Agrawal V, McMullen MR, Hornberger TA, Nagy LE, Davuluri G, Dasarathy S. Multiomics-Identified Intervention to Restore Ethanol-Induced Dysregulated Proteostasis and Secondary Sarcopenia in Alcoholic Liver Disease. Cell Physiol Biochem 2021; 55:91-116. [PMID: 33543862 DOI: 10.33594/000000327] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS Signaling and metabolic perturbations contribute to dysregulated skeletal muscle protein homeostasis and secondary sarcopenia in response to a number of cellular stressors including ethanol exposure. Using an innovative multiomics-based curating of unbiased data, we identified molecular and metabolic therapeutic targets and experimentally validated restoration of protein homeostasis in an ethanol-fed mouse model of liver disease. METHODS Studies were performed in ethanol-treated differentiated C2C12 myotubes and physiological relevance established in an ethanol-fed mouse model of alcohol-related liver disease (mALD) or pair-fed control C57BL/6 mice. Transcriptome and proteome from ethanol treated-myotubes and gastrocnemius muscle from mALD and pair-fed mice were analyzed to identify target pathways and molecules. Readouts including signaling responses and autophagy markers by immunoblots, mitochondrial oxidative function and free radical generation, and metabolic studies by gas chromatography-mass spectrometry and sarcopenic phenotype by imaging. RESULTS Multiomics analyses showed that ethanol impaired skeletal muscle mTORC1 signaling, mitochondrial oxidative pathways, including intermediary metabolite regulatory genes, interleukin-6, and amino acid degradation pathways are β-hydroxymethyl-butyrate targets. Ethanol decreased mTORC1 signaling, increased autophagy flux, impaired mitochondrial oxidative function with decreased tricarboxylic acid cycle intermediary metabolites, ATP synthesis, protein synthesis and myotube diameter that were reversed by HMB. Consistently, skeletal muscle from mALD had decreased mTORC1 signaling, reduced fractional and total muscle protein synthesis rates, increased autophagy markers, lower intermediary metabolite concentrations, and lower muscle mass and fiber diameter that were reversed by β-hydroxymethyl-butyrate treatment. CONCLUSION An innovative multiomics approach followed by experimental validation showed that β-hydroxymethyl-butyrate restores muscle protein homeostasis in liver disease.
Collapse
Affiliation(s)
| | - Avinash Kumar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA.,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Jinendiran Sekar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Saurabh Mishra
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Annette Bellar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | | | - Amy Attaway
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA.,Department of Pulmonology, Cleveland Clinic, Cleveland, OH, USA
| | - Hayder Al Khafaji
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaoqin Wu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Vai Pathak
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Vandana Agrawal
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Megan R McMullen
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Troy A Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | | | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA, .,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
25
|
Tandon P, Montano-Loza AJ, Lai JC, Dasarathy S, Merli M. Sarcopenia and frailty in decompensated cirrhosis. J Hepatol 2021; 75 Suppl 1:S147-S162. [PMID: 34039486 PMCID: PMC9125684 DOI: 10.1016/j.jhep.2021.01.025] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
In patients with decompensated cirrhosis, sarcopenia and frailty are prevalent. Although several definitions exist for these terms, in the field of hepatology, sarcopenia has commonly been defined as loss of muscle mass, and frailty has been broadly defined as the phenotypic manifestation of the loss of muscle function. Prompt recognition and accurate assessment of these conditions are critical as they are both strongly associated with morbidity, mortality, poor quality of life and worse post-liver transplant outcomes in patients with cirrhosis. In this review, we describe the complex pathophysiology that underlies the clinical phenotypes of sarcopenia and frailty, their association with decompensation, and provide an overview of tools to assess these conditions in patients with cirrhosis. When available, we highlight data focusing on patients with acutely decompensated cirrhosis, such as inpatients, as this is an area of unmet clinical need. Finally, we discuss management strategies to reverse and/or prevent the development of sarcopenia and frailty, which include adequate nutritional intake of calories and protein, as well as regular exercise of at least moderate intensity, with a mix of aerobic and resistance training. Key knowledge gaps in our understanding of sarcopenia and frailty in decompensated cirrhosis remain, including best methods to measure muscle mass and function in the inpatient setting, racial/ethnic variation in the development and presentation of sarcopenia and frailty, and optimal clinical metrics to assess response to therapeutic interventions that translate into a reduction in adverse outcomes associated with these conditions.
Collapse
Affiliation(s)
- Puneeta Tandon
- Division of Gastroenterology & Liver Unit, University of Alberta Hospital, Canada.
| | - Aldo J Montano-Loza
- Division of Gastroenterology & Liver Unit, University of Alberta Hospital, Canada
| | - Jennifer C Lai
- Divisions of Gastroenterology and Hepatology, University of California, San Francisco, San Francisco, CA, USA
| | - Srinivasan Dasarathy
- Division of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Manuela Merli
- Department of Clinical Medicine, Gastroenterology, Sapienza University of Rome, Italy.
| |
Collapse
|
26
|
Eo H, Reed CH, Valentine RJ. Imoxin prevents dexamethasone-induced promotion of muscle-specific E3 ubiquitin ligases and stimulates anabolic signaling in C2C12 myotubes. Biomed Pharmacother 2020; 128:110238. [PMID: 32450522 DOI: 10.1016/j.biopha.2020.110238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 12/26/2022] Open
Abstract
Muscle atrophy is the loss of skeletal muscle mass during several pathological conditions such as long-term fasting, aging, cancer, diabetes, sepsis and immune disorders. Glucocorticoids are known to trigger skeletal muscle atrophy. Dexamethasone (DEX), a synthetic glucocorticoid, induces skeletal muscle atrophy by suppression of protein synthesis and promotion of protein degradation. The double-stranded RNA (dsRNA)-activated protein kinase R (PKR) plays a significant role in mediating lipopolysaccharide-induced inflammation. However, pathological roles of PKR in muscle atrophy are not fully understood. The current study aimed to investigate the effect of imoxin, a PKR inhibitor, on DEX-induced muscle atrophy in C2C12 myotubes. Myotubes were incubated with imoxin at different concentrations with or without 5 μM DEX for 24 h. In the current study, imoxin treatment significantly reduced protein levels of MuRF1 and MAFbx induced by DEX by 88 ± 2% and MAFbx by 99 ± 0%, respectively. Moreover, 5 μM imoxin treatment reduced protein ubiquitination by 42 ± 4% and protein content of nuclear FoxO3α (77 ± 4%) in presence of DEX. Furthermore, 5 μM imoxin treatment stimulated Akt phosphorylation (195 ± 5%), mTOR phosphorylation (171 ± 21 %) and p70S6K1 phosphorylation (314 ± 31 %) under DEX-treated condition even though DEX treatment did not suppressed Akt/mTOR/p70S6K1 axis. These findings suggest that imoxin may protect against DEX-induced skeletal muscle atrophy by alleviating muscle specific E3 ubiquitin ligases and imoxin alone may promote protein synthesis via Akt/mTOR/S6K1 axis in muscle cells.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States; Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, Iowa, United States
| | - Carter H Reed
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States; Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, Iowa, United States; Department of Food Science and Human Nutrition, Ames, Iowa, United States
| | - Rudy J Valentine
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States; Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, Iowa, United States.
| |
Collapse
|
27
|
Welch N, Dasarathy J, Runkana A, Penumatsa R, Bellar A, Reen J, Rotroff D, McCullough AJ, Dasarathy S. Continued muscle loss increases mortality in cirrhosis: Impact of aetiology of liver disease. Liver Int 2020; 40:1178-1188. [PMID: 31889396 PMCID: PMC7195232 DOI: 10.1111/liv.14358] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Sarcopenia or skeletal muscle loss adversely affects outcomes in cirrhosis. The impact of aetiology of liver disease on the severity or the rate of muscle loss is not known. METHODS Consecutive, well-characterized adult patients with cirrhosis due to viral hepatitis (VH), alcoholic liver disease (ALD) or non-alcoholic fatty liver disease (NAFLD) and non-diseased controls with at least two temporally distinct abdominal CT (computed tomography) scans were evaluated. Psoas, paraspinal and abdominal wall muscle areas at the L3 vertebra level were quantified on the CT scans. Standardized rate of change in muscle area was expressed as change in area/100 days. Univariate and multivariable analyses were performed to identify contributors to rate of muscle loss and survival. RESULTS Among 83 cirrhotics (NAFLD n = 26, ALD n = 39, VH n = 18), there were 20 (24.1%) deaths over 62.7 ± 41.3 months. The mean percentage change in psoas area was -0.03 ± 0.05/100d in controls and -3.52 ± 0.45/100d in cirrhosis (P < .001). The mean percentage change in psoas area was -1.72 ± 0.27/100d in NAFLD, -5.28 ± 0.86/100d in ALD and -2.29 ± 0.28/100d in VH. Among cirrhotics, patients with ALD had the lowest initial muscle area and most rapid rate of reduction in muscle area. Aetiology of liver disease, model for end-stage liver disease (MELD) and the rate of loss of muscle area were independent risk factors for survival. CONCLUSIONS Aetiology of liver disease is an independent risk factor for sarcopenia with the greatest rate of muscle loss noted in ALD. Survival in cirrhosis was dependent on initial muscle mass, rate of muscle loss and MELD score.
Collapse
Affiliation(s)
- Nicole Welch
- Departments of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio,Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
| | | | - Ashok Runkana
- Department of Cardiology, West Virginia University Hospitals, Morgantown, West Virginia
| | - Revathi Penumatsa
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
| | - Annette Bellar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
| | - Jaspreet Reen
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
| | - Daniel Rotroff
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Arthur J. McCullough
- Departments of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio
| | - Srinivasan Dasarathy
- Departments of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio,Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
28
|
Bellar A, Welch N, Dasarathy S. Exercise and physical activity in cirrhosis: opportunities or perils. J Appl Physiol (1985) 2020; 128:1547-1567. [PMID: 32240017 DOI: 10.1152/japplphysiol.00798.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reduced exercise capacity and impaired physical performance are observed in nearly all patients with liver cirrhosis. Physical activity and exercise are physiological anabolic stimuli that can reverse dysregulated protein homeostasis or proteostasis and potentially increase muscle mass and contractile function in healthy subjects. Cirrhosis is a state of anabolic resistance, and unlike the beneficial responses to exercise reported in physiological states, there are few systematic studies evaluating the response to exercise in cirrhosis. Hyperammonemia is a mediator of the liver-muscle axis with net skeletal muscle ammonia uptake in cirrhosis causing signaling perturbations, mitochondrial dysfunction with decreased ATP content, modifications of contractile proteins, and impaired ribosomal function, all of which contribute to anabolic resistance in cirrhosis and have the potential to impair the beneficial responses to exercise. English language-publications in peer-reviewed journals that specifically evaluated the impact of exercise in cirrhosis were reviewed. Most studies evaluated responses to endurance exercise, and readouts included peak or maximum oxygen utilization, grip strength, and functional capacity. Endurance exercise for up to 12 wk is clinically tolerated in well-compensated cirrhosis. Data on the safety of resistance exercise are conflicting. Nutritional supplements enhance the benefits of exercise in healthy subjects but have not been evaluated in cirrhosis. Whether the beneficial physiological responses with endurance exercise and increase in muscle mass with resistance exercise that occur in healthy subjects also occur in cirrhotics is not known. Specific organ-system responses, changes in body composition, or improved long-term clinical outcomes with exercise in cirrhosis need evaluation.
Collapse
Affiliation(s)
- Annette Bellar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Nicole Welch
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Gastroenterology, Hepatology Cleveland Clinic, Cleveland, Ohio
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Gastroenterology, Hepatology Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
29
|
Kim SB, Koo J, Yoon J, Hourlier-Fargette A, Lee B, Chen S, Jo S, Choi J, Oh YS, Lee G, Won SM, Aranyosi AJ, Lee SP, Model JB, Braun PV, Ghaffari R, Park C, Rogers JA. Soft, skin-interfaced microfluidic systems with integrated enzymatic assays for measuring the concentration of ammonia and ethanol in sweat. LAB ON A CHIP 2020; 20:84-92. [PMID: 31776526 DOI: 10.1039/c9lc01045a] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Eccrine sweat is a rich and largely unexplored biofluid that contains a range of important biomarkers, from electrolytes, metabolites, micronutrients and hormones to exogenous agents, each of which can change in concentration with diet, stress level, hydration status and physiologic or metabolic state. Traditionally, clinicians and researchers have used absorbent pads and benchtop analyzers to collect and analyze the biochemical constituents of sweat in controlled, laboratory settings. Recently reported wearable microfluidic and electrochemical sensing devices represent significant advances in this context, with capabilities for rapid, in situ evaluations, in many cases with improved repeatability and accuracy. A limitation is that assays performed in these platforms offer limited control of reaction kinetics and mixing of different reagents and samples. Here, we present a multi-layered microfluidic device platform with designs that eliminate these constraints, to enable integrated enzymatic assays with demonstrations of in situ analysis of the concentrations of ammonia and ethanol in microliter volumes of sweat. Careful characterization of the reaction kinetics and their optimization using statistical techniques yield robust analysis protocols. Human subject studies with sweat initiated by warm-water bathing highlight the operational features of these systems.
Collapse
Affiliation(s)
- Sung Bong Kim
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA and Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Jahyun Koo
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA. and Department of Materials Science and Engineering, Evanston, IL 60208, USA
| | - Jangryeol Yoon
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA and Advanced Research Team, R&D Center, Samsung Display, Yongin-si, Gyeonggi-do 17113, South Korea
| | - Aurélie Hourlier-Fargette
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA. and Department of Materials Science and Engineering, Evanston, IL 60208, USA and Institut Charles Sadron, CNRS, Université de Strasbourg, UPR22, 23 rue du Loess, 67034 Strasbourg cedex 2, France
| | - Boram Lee
- Department of Medicine, Konkuk University, Seoul 05029, South Korea
| | - Shulin Chen
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Seongbin Jo
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Jungil Choi
- School of Mechanical Engineering, Kookmin University, Seoul 02707, South Korea
| | - Yong Suk Oh
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Geumbee Lee
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA. and Department of Materials Science and Engineering, Evanston, IL 60208, USA
| | - Sang Min Won
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA and Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Alexander J Aranyosi
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Stephen P Lee
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Jeffrey B Model
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | - Paul V Braun
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Roozbeh Ghaffari
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA. and Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Chulwhan Park
- Dept. of Chem. Eng., Kwangwoon University, Seoul 01897, South Korea
| | - John A Rogers
- Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL 60208, USA. and Department of Materials Science and Engineering, Evanston, IL 60208, USA and Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA and Department of Chemistry, Department of Electrical Engineering and Computer Science, Department of Neurological Surgery, Simpson Querrey Institute for Nano/Biotechnology, McCormick School of Engineering and Feinberg, School of Medicine, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
30
|
Kumar A, Davuluri G, Welch N, Kim A, Gangadhariah M, Allawy A, Priyadarshini A, McMullen MR, Sandlers Y, Willard B, Hoppel CL, Nagy LE, Dasarathy S. Oxidative stress mediates ethanol-induced skeletal muscle mitochondrial dysfunction and dysregulated protein synthesis and autophagy. Free Radic Biol Med 2019; 145:284-299. [PMID: 31574345 PMCID: PMC6910229 DOI: 10.1016/j.freeradbiomed.2019.09.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022]
Abstract
Protein synthesis and autophagy are regulated by cellular ATP content. We tested the hypothesis that mitochondrial dysfunction, including generation of reactive oxygen species (ROS), contributes to impaired protein synthesis and increased proteolysis resulting in tissue atrophy in a comprehensive array of models. In myotubes treated with ethanol, using unbiased approaches, we identified defects in mitochondrial electron transport chain components, endogenous antioxidants, and enzymes regulating the tricarboxylic acid (TCA) cycle. Using high sensitivity respirometry, we observed impaired cellular respiration, decreased function of complexes I, II, and IV, and a reduction in oxidative phosphorylation in ethanol-treated myotubes and muscle from ethanol-fed mice. These perturbations resulted in lower skeletal muscle ATP content and redox ratio (NAD+/NADH). Ethanol also caused a leak of electrons, primarily from complex III, with generation of mitochondrial ROS and reverse electron transport. Oxidant stress with lipid peroxidation (thiobarbituric acid reactive substances) and protein oxidation (carbonylated proteins) were increased in myotubes and skeletal muscle from mice and humans with alcoholic liver disease. Ethanol also impaired succinate oxidation in the TCA cycle with decreased metabolic intermediates. MitoTEMPO, a mitochondrial specific antioxidant, reversed ethanol-induced mitochondrial perturbations (including reduced oxygen consumption, generation of ROS and oxidative stress), increased TCA cycle intermediates, and reversed impaired protein synthesis and the sarcopenic phenotype. We show that ethanol causes skeletal muscle mitochondrial dysfunction, decreased protein synthesis, and increased autophagy, and that these perturbations are reversed by targeting mitochondrial ROS.
Collapse
Affiliation(s)
- Avinash Kumar
- The Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gangarao Davuluri
- Integrated Physiology and Molecular Metabolism, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Nicole Welch
- The Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; The Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Adam Kim
- The Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mahesha Gangadhariah
- The Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Allawy Allawy
- The Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anupama Priyadarshini
- The Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Megan R McMullen
- The Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yana Sandlers
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Belinda Willard
- The Department of Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charles L Hoppel
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Laura E Nagy
- The Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Srinivasan Dasarathy
- The Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; The Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
31
|
Davuluri G, Giusto M, Chandel R, Welch N, Alsabbagh K, Kant S, Kumar A, Kim A, Gangadhariah M, Ghosh PK, Tran U, Krajcik DM, Vasu K, DiDonato AJ, DiDonato JA, Willard B, Monga SP, Wang Y, Fox PL, Stark GR, Wessely O, Esser KA, Dasarathy S. Impaired Ribosomal Biogenesis by Noncanonical Degradation of β-Catenin during Hyperammonemia. Mol Cell Biol 2019; 39:e00451-18. [PMID: 31138664 PMCID: PMC6664607 DOI: 10.1128/mcb.00451-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
Increased ribosomal biogenesis occurs during tissue hypertrophy, but whether ribosomal biogenesis is impaired during atrophy is not known. We show that hyperammonemia, which occurs in diverse chronic disorders, impairs protein synthesis as a result of decreased ribosomal content and translational capacity. Transcriptome analyses, real-time PCR, and immunoblotting showed consistent reductions in the expression of the large and small ribosomal protein subunits (RPL and RPS, respectively) in hyperammonemic murine skeletal myotubes, HEK cells, and skeletal muscle from hyperammonemic rats and human cirrhotics. Decreased ribosomal content was accompanied by decreased expression of cMYC, a positive regulator of ribosomal biogenesis, as well as reduced expression and activity of β-catenin, a transcriptional activator of cMYC. However, unlike the canonical regulation of β-catenin via glycogen synthase kinase 3β (GSK3β)-dependent degradation, GSK3β expression and phosphorylation were unaltered during hyperammonemia, and depletion of GSK3β did not prevent ammonia-induced degradation of β-catenin. Overexpression of GSK3β-resistant variants, genetic depletion of IκB kinase β (IKKβ) (activated during hyperammonemia), protein interactions, and in vitro kinase assays showed that IKKβ phosphorylated β-catenin directly. Overexpressing β-catenin restored hyperammonemia-induced perturbations in signaling responses that regulate ribosomal biogenesis. Our data show that decreased protein synthesis during hyperammonemia is mediated via a novel GSK3β-independent, IKKβ-dependent impairment of the β-catenin-cMYC axis.
Collapse
Affiliation(s)
- Gangarao Davuluri
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michela Giusto
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rajeev Chandel
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Khaled Alsabbagh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sashi Kant
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Avinash Kumar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam Kim
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Prabar K Ghosh
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Uyen Tran
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel M Krajcik
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kommireddy Vasu
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anthony J DiDonato
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Joseph A DiDonato
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Belinda Willard
- Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuxin Wang
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paul L Fox
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - George R Stark
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Oliver Wessely
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, Institute of Myology, University of Florida, Gainesville, Florida, USA
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|