1
|
Černoša A, Gostinčar C, Holcar M, Kostanjšek R, Lenassi M, Gunde-Cimerman N. The impact of Aureobasidium melanogenum cells and extracellular vesicles on human cell lines. Sci Rep 2025; 15:1413. [PMID: 39789015 PMCID: PMC11718310 DOI: 10.1038/s41598-024-84189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Aureobasidium melanogenum is a black yeast-like fungus that occurs frequently both in nature and in domestic environments. It is becoming increasingly important as an opportunistic pathogen. Nevertheless, its effect on human cells has not yet been studied. In this study, we investigated the effect of A. melanogenum cells and extracellular vesicles (EVs) on human cell lines A549 (human lung cells), HDFa (human dermal fibroblasts), and SH-SY5Y (human neuroblastoma cells). Scanning electron microscopy (SEM) showed no direct interaction between A. melanogenum cells and human cell lines, but there were some changes in HDFa cells. As a possible cause for this change, we tested the cytotoxic effect of EVs from A. melanogenum on the same cell lines. We isolated EVs from the fungus and prepared three different pools: a non-melanin pool (containing mainly EVs), a melanin pool (containing mainly melanin nanoparticles), and a total pool (containing both EVs and melanin nanoparticles). All three pools were characterized and then added to human cell lines to test their cytotoxicity. Unlike in some other fungal opportunistic pathogens, no effects of fungal EVs on human cell viability were observed. Therefore, the opportunistic potential of A. melanogenum remains only partially understood.
Collapse
Affiliation(s)
- Anja Černoša
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
- InnoRenew CoE, Livade 6a, Izola, 6310, Slovenia.
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marija Holcar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Probst C, Denning-Jannace CA, du Plooy LM, Giamberardino C, Asfaw Y, Franz KJ, Alspaugh JA. A cysteine-rich domain of the Cuf1 transcription factor is required for high copper stress sensing and fungal virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628380. [PMID: 39713408 PMCID: PMC11661212 DOI: 10.1101/2024.12.13.628380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The ability to sense, import but also detoxify copper (Cu) has been shown to be crucial for microbial pathogens to survive within the host. Previous studies conducted with the opportunistic human fungal pathogen Cryptococcus neoformans ( Cn ) have revealed two extreme Cu environments encountered during infection: A high Cu environment within the lung and a low Cu environment within the brain. However, how Cn senses these different host Cu microenvironments, and the consequences of a blunted Cu stress adaption for pathogenesis, are not well understood. In contrast to other fungi, Cn has a single transcription factor, Cuf1, to regulate adaptive responses to both high- and low-Cu stress. Sequence analysis of Cn Cuf1 identified three conserved cysteine (Cys)-rich regions that may play a role in Cu sensing. We mutated the 1 st Cys-rich region within the CUF1 gene to investigate its role for Cn high Cu stress sensing. Subsequent analysis of Cuf1 transcriptional activity and target gene promoter binding demonstrated that the 1 st Cys-rich region is required for Cuf1 transcriptional activity in high Cu stress. We performed an inhalational murine infection to analyze the effects of a blunted high Cu stress response on pathogenesis. No significant differences in lung fungal burden were observed based on variable Cuf1 activity. However, strains with defective high Cu stress regulation induced a markedly altered immune response in mice. Based on these findings, we hypothesize that Cuf1-driven high Cu responses are not required for initial survival but instead modulate immune recognition and inflammation within the mouse lung. Importance Copper is an essential micronutrient required for survival in all kingdoms of life as it is used as a catalytic cofactor for many essential processes in the cell. In turn, this reactivity of copper ions makes elevated levels of free copper toxic for the cell. This dual nature of copper-essential for life but toxic at elevated levels- is used by our innate immune system in a process called nutritional immunity to combat and kill invading pathogens. In this work we explore how the fungal human pathogen Cryptococcus neoformans senses high copper stress, a copper microenvironment encountered within the host lung. We identified a specific cysteine-rich region within the copper responsive transcription factor Cuf1 to be essential for high copper stress sensing. Mutation of this region led to an impaired high copper stress adaptation, which did not affect fitness of the yeast but did impact immune recognition and inflammation inside the host lung.
Collapse
|
3
|
Liporagi-Lopes LC, Chrissian C, Kacirani A, Camacho E, Stark RE, Casadevall A. New Insights Into The Melanin Structure Of Lomentospora prolificans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621558. [PMID: 39554014 PMCID: PMC11565999 DOI: 10.1101/2024.11.01.621558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Lomentospora prolificans is a filamentous fungus with a global distribution, manifesting particularly higher prevalence in human-impacted environments. This organism is associated with a wide spectrum of human infections, especially in immunosuppressed individuals, for whom it causes severe and debilitating illnesses with high morbidity and mortality that are compounded by its pan-resistant profile with respect to antifungal drugs. Melanin is a ubiquitous pigment among fungi with a broad range of actions that include promoting fungal virulence. Although melanin is one of the most studied virulence factors in pathogenic fungi, relatively little is known about the chemistry of this pigment in L. prolificans. In the current study we characterized L. prolificans -associated melanin using chemical, biological, biophysical and structural techniques, also assessing the impact of inhibitors of distinct melanization pathways. Our results reveal that this pathogenic fungus makes multiple types of melanin pigments and suggests the possibility of a new type of melanin, which is synthesized together with a mixture of DHN-, DOPA- and pyomelanin types. These insights enhance our understanding of L. prolificans' virulence mechanisms, paving the way for potential therapeutic interventions.
Collapse
|
4
|
du Plooy LM, Telzrow CL, Nichols CB, Probst C, Castro-Lopez N, Wormley FL, Alspaugh JA. A fungal ubiquitin ligase and arrestin binding partner contribute to pathogenesis and survival during cellular stress. mBio 2024; 15:e0098124. [PMID: 39235249 PMCID: PMC11481503 DOI: 10.1128/mbio.00981-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Cellular responses to external stress allow microorganisms to adapt to a vast array of environmental conditions, including infection sites. The molecular mechanisms behind these responses are studied to gain insight into microbial pathogenesis, which could lead to new antimicrobial therapies. Here, we explore a role for arrestin protein-mediated ubiquitination in stress response and pathogenesis in the pathogenic fungus Cryptococcus neoformans. In a previous study, we identified four arrestin-like proteins in C. neoformans and found that one of these is required for efficient membrane synthesis, likely by directing interaction between fatty acid synthases and the Rsp5 E3 ubiquitin ligase. Here, we further explore Cn Rsp5 function and determine that this single Ub ligase is absolutely required for pathogenesis and survival in the presence of cellular stress. Additionally, we show that a second arrestin-like protein, Ali2, similarly facilitates interaction between Rsp5 and some of its protein targets. Of the four postulated C. neoformans arrestin-like proteins, Ali2 appears to contribute the most to C. neoformans pathogenesis, likely by directing Rsp5 to pathogenesis-related ubiquitination targets. A proteomics-based differential ubiquitination screen revealed that several known cell surface proteins are ubiquitinated by Rsp5 and a subset also requires Ali2 for their ubiquitination. Rsp5-mediated ubiquitination alters the stability and the localization of these proteins. A loss of Rsp5-mediated ubiquitination results in cell wall defects that increase susceptibility to external stresses. These findings support a model in which arrestin-like proteins guide Rsp5 to ubiquitinate specific target proteins, some of which are required for survival during stress. IMPORTANCE Microbial proteins involved in human infectious diseases often need to be modified by specific chemical additions to be fully functional. Here, we explore the role of a particular protein modification, ubiquitination, in infections due to the human fungal pathogen Cryptococcus neoformans. We identified a complex of proteins responsible for adding ubiquitin groups to fungal proteins, and this complex is required for virulence. These proteins are fungal specific and might be targets for novel anti-infection therapy.
Collapse
Affiliation(s)
- Lukas M. du Plooy
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Calla L. Telzrow
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Connie B. Nichols
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Corinna Probst
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Natalia Castro-Lopez
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Floyd L. Wormley
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - J. Andrew Alspaugh
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
5
|
Pirdaus NA, Ahmad N, Dahlan NY, Redzuan AN, Zalizan AH, Muhammad-Sukki F, Bani NA, Abdul Patah MF, Wan-Mohtar WAAQI. Performance of yellow and pink oyster mushroom dyes in dye sensitized solar cell. Sci Rep 2024; 14:23757. [PMID: 39390088 PMCID: PMC11467313 DOI: 10.1038/s41598-024-73865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
A solar photovoltaic (PV) cell, is an electrical device that uses the PV effect to convert light energy into electricity. The application of oyster mushroom dyes in dye sensitized solar cell (DSSC) is a novel strategy to substitute the costly chemical production process with easily extractable, environmentally acceptable dyes. Both dyes of yellow and pink oyster mushrooms were extracted using the same process but dried into powder form using two techniques, warm drying and freeze drying. The characterization was carried out utilizing current-voltage (I-V) characterization for electrical properties, Ultraviolet-Visible (UV-Vis) spectrophotometer for optical properties, Field Emission Scanning Electron Microscopy (FESEM), and Atomic Force Microscopy (AFM) for the structural properties. It was found that freeze-dried pink and yellow oyster mushroom had shown the good properties for DSSC application as it produced energy bandgap which lies within the range of efficient dye sensitizer; 1.7 eV and 2.2 eV, the most uniform distribution of pores and a nearly spherical form in FESEM analysis, and AFM result obtained with the highest root mean square (RMS) roughness value (26.922 and 34.033) with stereoscopic morphologies. The data proved that mushroom dyes can be incorporated in DSSC with the optimization of drying method in the extraction process, dilution of dye and the layer of deposition on the glass substrate. The current density-voltage (J-V) characteristics of fabricated DSSC was characterized using Newport Oriel Sol3A solar simulator under AM 1.5 Sun condition (100 mW/cm2, 25 oC). From the result obtained by solar simulator, the fabricated FTO/TiO2/Pleurotus djamor dye/Pt indicated the Voc of 0.499 V and Jsc of 0.397 mA/cm2.
Collapse
Affiliation(s)
- Nur Alfarina Pirdaus
- Solar Research Institute (SRI), Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia
| | - Nurfadzilah Ahmad
- Solar Research Institute (SRI), Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia.
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia.
| | - Nofri Yenita Dahlan
- Solar Research Institute (SRI), Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia
| | - Ainur Nisha Redzuan
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia
| | - Aisyatul Husna Zalizan
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia
| | - Firdaus Muhammad-Sukki
- School of Computing, Engineering & the Built Environment, Merchiston Campus, Edinburgh Napier University, 10 Colinton Road, Edinburgh, EH10 5DT, UK.
| | - Nurul Aini Bani
- Smart Engineering and Advanced Technology Department, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Muhamad Fazly Abdul Patah
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Solar Research Institute (SRI), Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia.
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Baker RP, Liu AZ, Casadevall A. Cell wall melanin impedes growth of the Cryptococcus neoformans polysaccharide capsule by sequestering calcium. Proc Natl Acad Sci U S A 2024; 121:e2412534121. [PMID: 39259590 PMCID: PMC11420191 DOI: 10.1073/pnas.2412534121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Cryptococcus neoformans has emerged as a frontrunner among deadly fungal pathogens and is particularly life-threatening for many HIV-infected individuals with compromised immunity. Multiple virulence factors contribute to the growth and survival of C. neoformans within the human host, the two most prominent of which are the polysaccharide capsule and melanin. As both of these features are associated with the cell wall, we were interested to explore possible cooperative or competitive interactions between these two virulence factors. Whereas capsule thickness had no effect on the rate at which cells became melanized, build-up of the melanin pigment layer resulted in a concomitant loss of polysaccharide material, leaving melanized cells with significantly thinner capsules than their nonmelanized counterparts. When melanin was provided exogenously to cells in a transwell culture system we observed a similar inhibition of capsule growth and maintenance. Our results show that melanin sequesters calcium thereby limiting its availability to form divalent bridges between polysaccharide subunits required for outer capsule assembly. The decreased ability of melanized cells to incorporate exported polysaccharide into the growing capsule correlated with the amount of shed polysaccharide, which could have profound negative impacts on the host immune response.
Collapse
Affiliation(s)
- Rosanna P. Baker
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Amy Z. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
7
|
Pejenaute-Ochoa MD, Tomás-Gallardo L, Ibeas JI, Barrales RR. Row1, a member of a new family of conserved fungal proteins involved in infection, is required for appressoria functionality in Ustilago maydis. THE NEW PHYTOLOGIST 2024; 243:1101-1122. [PMID: 38742361 DOI: 10.1111/nph.19798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
The appressorium of phytopathogenic fungi is a specific structure with a crucial role in plant cuticle penetration. Pathogens with melanized appressoria break the cuticle through cell wall melanization and intracellular turgor pressure. However, in fungi with nonmelanized appressorium, the mechanisms governing cuticle penetration are poorly understood. Here we characterize Row1, a previously uncharacterized appressoria-specific protein of Ustilago maydis that localizes to membrane and secretory vesicles. Deletion of row1 decreases appressoria formation and plant penetration, thereby reducing virulence. Specifically, the Δrow1 mutant has a thicker cell wall that is more resistant to glucanase degradation. We also observed that the Δrow1 mutant has secretion defects. We show that Row1 is functionally conserved at least among Ustilaginaceae and belongs to the Row family, which consists of five other proteins that are highly conserved among Basidiomycota fungi and are involved in U. maydis virulence. We observed similarities in localization between Row1 and Row2, which is also involved in cell wall remodelling and secretion, suggesting similar molecular functions for members of this protein family. Our data suggest that Row1 could modify the chitin-glucan matrix of the fungal cell wall and may be involved in unconventional protein secretion, thereby promoting both appressoria maturation and penetration.
Collapse
Affiliation(s)
- María Dolores Pejenaute-Ochoa
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km.1, 41013, Seville, Spain
| | - Laura Tomás-Gallardo
- Proteomics and Biochemistry Platform, Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km. 1, 41013, Seville, Spain
| | - José I Ibeas
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km.1, 41013, Seville, Spain
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km.1, 41013, Seville, Spain
| |
Collapse
|
8
|
Diehl C, Pinzan CF, de Castro PA, Delbaje E, García Carnero LC, Sánchez-León E, Bhalla K, Kronstad JW, Kim DG, Doering TL, Alkhazraji S, Mishra NN, Ibrahim AS, Yoshimura M, Vega Isuhuaylas LA, Pham LTK, Yashiroda Y, Boone C, dos Reis TF, Goldman GH. Brilacidin, a novel antifungal agent against Cryptococcus neoformans. mBio 2024; 15:e0103124. [PMID: 38916308 PMCID: PMC11253610 DOI: 10.1128/mbio.01031-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 06/26/2024] Open
Abstract
Cryptococcus neoformans causes cryptococcosis, one of the most prevalent fungal diseases, generally characterized by meningitis. There is a limited and not very effective number of drugs available to combat this disease. In this manuscript, we show the host defense peptide mimetic brilacidin (BRI) as a promising antifungal drug against C. neoformans. BRI can affect the organization of the cell membrane, increasing the fungal cell permeability. We also investigated the effects of BRI against the model system Saccharomyces cerevisiae by analyzing libraries of mutants grown in the presence of BRI. In S. cerevisiae, BRI also affects the cell membrane organization, but in addition the cell wall integrity pathway and calcium metabolism. In vivo experiments show BRI significantly reduces C. neoformans survival inside macrophages and partially clears C. neoformans lung infection in an immunocompetent murine model of invasive pulmonary cryptococcosis. We also observed that BRI interacts with caspofungin (CAS) and amphotericin (AmB), potentiating their mechanism of action against C. neoformans. BRI + CAS affects endocytic movement, calcineurin, and mitogen-activated protein kinases. Our results indicate that BRI is a novel antifungal drug against cryptococcosis. IMPORTANCE Invasive fungal infections have a high mortality rate causing more deaths annually than tuberculosis or malaria. Cryptococcosis, one of the most prevalent fungal diseases, is generally characterized by meningitis and is mainly caused by two closely related species of basidiomycetous yeasts, Cryptococcus neoformans and Cryptococcus gattii. There are few therapeutic options for treating cryptococcosis, and searching for new antifungal agents against this disease is very important. Here, we present brilacidin (BRI) as a potential antifungal agent against C. neoformans. BRI is a small molecule host defense peptide mimetic that has previously exhibited broad-spectrum immunomodulatory/anti-inflammatory activity against bacteria and viruses. BRI alone was shown to inhibit the growth of C. neoformans, acting as a fungicidal drug, but surprisingly also potentiated the activity of caspofungin (CAS) against this species. We investigated the mechanism of action of BRI and BRI + CAS against C. neoformans. We propose BRI as a new antifungal agent against cryptococcosis.
Collapse
Affiliation(s)
- Camila Diehl
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Endrews Delbaje
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Laura C. García Carnero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Eddy Sánchez-León
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kabir Bhalla
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - James W. Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dong-gyu Kim
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sondus Alkhazraji
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
| | - Nagendra N. Mishra
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mami Yoshimura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | | | | | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Charles Boone
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
9
|
Baker RP, Liu AZ, Casadevall A. Cell wall melanin impedes growth of the Cryptococcus neoformans polysaccharide capsule by sequestering calcium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599928. [PMID: 38948764 PMCID: PMC11212976 DOI: 10.1101/2024.06.20.599928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cryptococcus neoformans has emerged as a frontrunner among deadly fungal pathogens and is particularly life-threatening for many HIV-infected individuals with compromised immunity. Multiple virulence factors contribute to the growth and survival of C. neoformans within the human host, the two most prominent of which are the polysaccharide capsule and melanin. As both of these features are associated with the cell wall, we were interested to explore possible cooperative or competitive interactions between these two virulence factors. Whereas capsule thickness had no effect on the rate at which cells became melanized, build-up of the melanin pigment layer resulted in a concomitant loss of polysaccharide material, leaving melanized cells with significantly thinner capsules than their non-melanized counterparts. When melanin was provided exogenously to cells in a transwell culture system we observed a similar inhibition of capsule growth and maintenance. Our results show that melanin sequesters calcium thereby limiting its availability to form divalent bridges between polysaccharide subunits required for outer capsule assembly. The decreased ability of melanized cells to incorporate exported polysaccharide into the growing capsule correlated with the amount of shed polysaccharide, which could have profound negative impacts on the host immune response. Significance Statement Cryptococcus neoformans is an opportunistic fungal pathogen that presents a significant health risk for immunocompromised individuals. We report an interaction between the two major cryptococcal virulence factors, the polysaccharide capsule and melanin. Melanin impacted the growth and maintenance of the polysaccharide capsule, resulting in loss of capsular material during melanization. Our results suggest that melanin can act as a sink for calcium, thereby limiting its availability to form ionic bridges between polysaccharide chains on the growing surface of the outer capsule. As polysaccharide is continuously exported to support capsule growth, failure of melanized cells to incorporate this material results in a higher concentration of shed polysaccharide in the extracellular milieu, which is expected to interfere with host immunity.
Collapse
|
10
|
Xie W, Dhinojwala A, Gianneschi NC, Shawkey MD. Interactions of Melanin with Electromagnetic Radiation: From Fundamentals to Applications. Chem Rev 2024; 124:7165-7213. [PMID: 38758918 DOI: 10.1021/acs.chemrev.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.
Collapse
Affiliation(s)
- Wanjie Xie
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| |
Collapse
|
11
|
Choi Y, Hyeon H, Lee K, Bahn YS. Sua5 catalyzing universal t 6A tRNA modification is responsible for multifaceted functions of the KEOPS complex in Cryptococcus neoformans. mSphere 2024; 9:e0055723. [PMID: 38085018 PMCID: PMC10826353 DOI: 10.1128/msphere.00557-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/01/2023] [Indexed: 01/07/2024] Open
Abstract
The N6-threonylcarbamoyl adenosine (t6A) tRNA modification is critical for ensuring translation fidelity across three domains of life. Our prior work highlighted the KEOPS complex, organized in a Pcc1-Kae1-Bud32-Cgi121 linear arrangement, not only serves an evolutionarily conserved role in t6A tRNA modification but also exerts diverse functional impacts on pathobiological characteristics in Cryptococcus neoformans, a leading cause of fungal meningitis worldwide. However, the extent to which the pleiotropic functions of the KEOPS complex are specifically tied to tRNA modification remains uncertain. To address this, we undertook a functional characterization of Sua5, responsible for generating the precursor threonylcarbamoyl-adenylate (TC-AMP) for t6A tRNA modification, using a reverse genetics approach. Comparative phenotypic analyses with KEOPS mutants revealed that Sua5 plays a vital role in multiple cellular processes, such as t6A tRNA modification, growth, sexual development, stress response, and virulence factor production, thus reflecting the multifaceted functions of the KEOPS complex. In support of this, sua5Δ bud32Δ double mutants showed phenotypes comparable to those of the corresponding single mutants. Intriguingly, a SUA5 allele lacking a mitochondria targeting sequence (SUA5MTSΔ) was sufficient to restore the wild-type phenotypes in the sua5Δ mutant, suggesting that Sua5's primary functional locus may be cytosolic, akin to the KEOPS complex. Further supporting this, the deletion of Qri7, a mitochondrial paralog of Kae1, had no discernible phenotypic impact on C. neoformans. We concluded that cytosolic t6A tRNA modifications, orchestrated by Sua5 and the KEOPS complex, are central to the regulation of diverse pathobiological functions in C. neoformans.IMPORTANCEUnderstanding cellular functions at the molecular level is crucial for advancing disease treatments. Our research reveals a critical connection between the KEOPS complex and Sua5 in Cryptococcus neoformans, a significant cause of fungal meningitis. While the KEOPS complex is known for its versatile roles in cellular processes, Sua5 is specialized in t6A tRNA modification. Our key finding is that the diverse roles of the KEOPS complex, ranging from cell growth and stress response to virulence, are fundamentally linked to its function in t6A tRNA modification. This conclusion is supported by the remarkable similarities between the impacts of Sua5 and KEOPS on these processes, despite their roles in different steps of the t6A modification pathway. This newfound understanding deepens our insight into fungal biology and opens new avenues for developing potential therapies against dangerous fungal diseases.
Collapse
Affiliation(s)
- Yeseul Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Hana Hyeon
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
12
|
Bikmurzin R, Maršalka A, Kalėdienė L. Solid-State 13C Nuclear Magnetic Resonance Study of Soluble and Insoluble β-Glucans Extracted from Candida lusitaniae. Molecules 2023; 28:8066. [PMID: 38138557 PMCID: PMC10745363 DOI: 10.3390/molecules28248066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
β-glucans are widely known for their biological activities. However, the choice of extraction method can significantly influence their structural characteristics, thereby potentially impacting their biological functions. In this paper, three fractions of β-glucans were obtained from Candida lusitaniae yeast via alkali and hot-water extraction methods and were analyzed using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Solid-state NMR spectroscopy was used as a nondestructive technique that preserves the structure of the analyzed molecules. The results suggest that differences in the β-glucan structure are affected by the choice of extraction method. The main difference occurred in the 82-92 ppm region with signal presence suggesting that β-glucans have a linear structure when hot-water-extracted, which is absent in alkali-extracted fractions resulting in the acquisition of β-glucans with an ordered, possibly helical structure. A hot-water extracted water-insoluble (HWN) fraction consists of linear β-1,3-glucans with other signals indicating the presence of β-1,6-linked side chains, chitin and small amounts of α-glucan impurities. For those that are alkali-extracted, alkali-insoluble (AN) and water-soluble (AWS) fractions are structurally similar and consist of an ordered β-1,3-glucan structure with β-1,6-linked side chains and a significant amount of α-glucan and chitin in both fractions.
Collapse
Affiliation(s)
- Ruslan Bikmurzin
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, LT-10257 Vilnius, Lithuania
- Department of Medical Technology and Dietetics, Faculty of Health Care, Vilniaus Kolegija/Higher Education Institution, Didlaukio Str. 45, LT-08303 Vilnius, Lithuania
| | - Arūnas Maršalka
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania;
| | - Lilija Kalėdienė
- Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| |
Collapse
|
13
|
Chen Q, An B, Peng X, Wu Y, Peng M, Zhang C, He Y, Sang H, Kong Q. Simplified and effective RNA interference and CRISPR-Cas9 systems for Cryptococcus neoformans. J Basic Microbiol 2023; 63:1095-1105. [PMID: 37309240 DOI: 10.1002/jobm.202300102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
The 3,4-dihydroxyphenylalanine (DOPA) melanin is one of the important virulence factors for Cryptococcus neoformans, which may trigger immune responses in the host. While the production of DOPA melanin is catalyzed by laccase that is predominantly encoded by LAC1 gene. Therefore, regulating the genetic expression of C. neoformans is conducive to exploring the impact of interested molecules on the host. In this work, we established two systems that were constructed quickly and easily for the knock-down/knock-out of LAC1 gene: RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats CRISPR-Cas9. The RNAi system was constructed by pSilencer 4.1-CMV neo plasmid and short hairpin RNA to achieve effective transcriptional suppression. The CRISPR-Cas9 system was used the PNK003 vectors to obtain a stable albino mutant strain. The results of phenotype, quantitative real-time polymerase chain reaction, transmission electron microscope, and spectrophotometry were used to assess the ability of melanin production. As a result, the RNAi system displayed attenuation of transcriptional suppression when the transformants continuously passed on new plates. However, the transcriptional suppression of long loop in short hairpin RNA was more powerful and lasted longer. An albino strain produced by CRISPR-Cas9 was completely unable to synthesize melanin. In conclusion, strains with different capacities of melanin production were obtained by RNAi and CRISPR-Cas9 systems, which might be useful for exploring the linear relation between melanin and immunoreaction of the host. In addition, the two systems in this article might be convenient to quickly screen the possible trait-regulating genes of other serotypes of C. neoformans.
Collapse
Affiliation(s)
- Qiying Chen
- Department of Dermatology, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Binyi An
- Department of Dermatology, Nanjing Medical University, Nanjing, China
| | - Xinyuan Peng
- Department of Dermatology, Nanjing University, Nanjing, China
| | - Yifan Wu
- Department of Dermatology, Nanjing Medical University, Nanjing, China
| | - Min Peng
- Department of Dermatology, Nanjing University, Nanjing, China
| | - Chen Zhang
- Department of Dermatology, Nanjing University, Nanjing, China
| | - Yifan He
- Department of Dermatology, Nanjing Medical University, Nanjing, China
| | - Hong Sang
- Department of Dermatology, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Dermatology, Nanjing Jinling Hospital, Nanjing, China
| | - Qingtao Kong
- Department of Dermatology, Nanjing Jinling Hospital, Nanjing, China
| |
Collapse
|
14
|
Romero V, Kalinhoff C, Saa LR, Sánchez A. Fungi's Swiss Army Knife: Pleiotropic Effect of Melanin in Fungal Pathogenesis during Cattle Mycosis. J Fungi (Basel) 2023; 9:929. [PMID: 37755037 PMCID: PMC10532448 DOI: 10.3390/jof9090929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Fungal threats to public health, food security, and biodiversity have escalated, with a significant rise in mycosis cases globally. Around 300 million people suffer from severe fungal diseases annually, while one-third of food crops are decimated by fungi. Vertebrate, including livestock, are also affected. Our limited understanding of fungal virulence mechanisms hampers our ability to prevent and treat cattle mycoses. Here we aim to bridge knowledge gaps in fungal virulence factors and the role of melanin in evading bovine immune responses. We investigate mycosis in bovines employing a PRISMA-based methodology, bioinformatics, and data mining techniques. Our analysis identified 107 fungal species causing mycoses, primarily within the Ascomycota division. Candida, Aspergillus, Malassezia, and Trichophyton were the most prevalent genera. Of these pathogens, 25% produce melanin. Further research is required to explore the involvement of melanin and develop intervention strategies. While the literature on melanin-mediated fungal evasion mechanisms in cattle is lacking, we successfully evaluated the transferability of immunological mechanisms from other model mammals through homology. Bioinformatics enables knowledge transfer and enhances our understanding of mycosis in cattle. This synthesis fills critical information gaps and paves the way for proposing biotechnological strategies to mitigate the impact of mycoses in cattle.
Collapse
Affiliation(s)
- Víctor Romero
- Maestría en Biotecnología Agropecuaria, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador
- Museo de Zoología, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador
| | - Carolina Kalinhoff
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador; (C.K.)
| | - Luis Rodrigo Saa
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador; (C.K.)
| | - Aminael Sánchez
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador; (C.K.)
| |
Collapse
|
15
|
Ma Y, Yang L, Jiang M, Zhao X, Xue P. Connecting Cryptococcal Meningitis and Gut Microbiome. Int J Mol Sci 2023; 24:13515. [PMID: 37686320 PMCID: PMC10487799 DOI: 10.3390/ijms241713515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Fungal pathogens of the Cryptococcus neoformans species complex (C. neoformans SC) are a major cause of fungal meningitis in immunocompromised individuals. As with other melanotic microorganisms associated with human diseases, the cell-wall-associated melanin of C. neoformans SC is a major virulence factor that contributes to its ability to evade host immune responses. The levels of melanin substrate and the regulation of melanin formation could be influenced by the microbiota-gut-brain axis. Moreover, recent studies show that C. neoformans infections cause dysbiosis in the human gut microbiome. In this review, we discuss the potential association between cryptococcal meningitis and the gut microbiome. Additionally, the significant potential of targeting the gut microbiome in the diagnosis and treatment of this debilitating disease is emphasized.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.M.); (M.J.)
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Mengna Jiang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.M.); (M.J.)
| | - Xinyuan Zhao
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.M.); (M.J.)
| | - Peng Xue
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.M.); (M.J.)
| |
Collapse
|
16
|
Daminova AG, Rassabina AE, Khabibrakhmanova VR, Beckett RP, Minibayeva FV. Topography of UV-Melanized Thalli of Lobaria pulmonaria (L.) Hoffm. PLANTS (BASEL, SWITZERLAND) 2023; 12:2627. [PMID: 37514242 PMCID: PMC10383456 DOI: 10.3390/plants12142627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Lichens are unique extremophilic organisms due to their phenomenal resistance to adverse environmental factors, including ultraviolet (UV) irradiation. Melanization plays a special role in the protection of lichens from UV-B stress. In the present study, we analyzed the binding of melanins with the components of cell walls of the mycobiont of the upper cortex in the melanized lichen thalli Lobaria pulmonaria. Using scanning electron and atomic force microscopy, the morphological and nanomechanical characteristics of the melanized layer of mycobiont cells were visualized. Melanization of lichen thalli led to the smoothing of the surface relief and thickening of mycobiont cell walls, as well as the reduction in adhesion properties of the lichen thallus. Treatment of thalli with hydrolytic enzymes, especially chitinase and lichenase, enhanced the yield of melanin from melanized thalli and promoted the release of carbohydrates, while treatment with pectinase increased the release of carbohydrates and phenols. Our results suggest that melanin can firmly bind with hyphal cell wall carbohydrates, particularly chitin and 1,4-β-glucans, strengthening the melanized upper cortex of lichen thalli, and thereby it can contribute to lichen survival under UV stress.
Collapse
Affiliation(s)
- Amina G Daminova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31, Lobachevsky Str., Kazan 420111, Russia
| | - Anna E Rassabina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31, Lobachevsky Str., Kazan 420111, Russia
| | - Venera R Khabibrakhmanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31, Lobachevsky Str., Kazan 420111, Russia
| | - Richard P Beckett
- School of Life Sciences, University of KwaZulu-Natal, PBag X01, Scottsville 3209, South Africa
| | - Farida V Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31, Lobachevsky Str., Kazan 420111, Russia
| |
Collapse
|
17
|
Jacobs E, Chrissian C, Rankin-Turner S, Wear M, Camacho E, Broderick NA, McMeniman CJ, Stark RE, Casadevall A. Cuticular profiling of insecticide resistant Aedes aegypti. Sci Rep 2023; 13:10154. [PMID: 37349387 PMCID: PMC10287657 DOI: 10.1038/s41598-023-36926-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Insecticides have made great strides in reducing the global burden of vector-borne disease. Nonetheless, serious public health concerns remain because insecticide-resistant vector populations continue to spread globally. To circumvent insecticide resistance, it is essential to understand all contributing mechanisms. Contact-based insecticides are absorbed through the insect cuticle, which is comprised mainly of chitin polysaccharides, cuticular proteins, hydrocarbons, and phenolic biopolymers sclerotin and melanin. Cuticle interface alterations can slow or prevent insecticide penetration in a phenomenon referred to as cuticular resistance. Cuticular resistance characterization of the yellow fever mosquito, Aedes aegypti, is lacking. In the current study, we utilized solid-state nuclear magnetic resonance spectroscopy, gas chromatography/mass spectrometry, and transmission electron microscopy to gain insights into the cuticle composition of congenic cytochrome P450 monooxygenase insecticide resistant and susceptible Ae. aegypti. No differences in cuticular hydrocarbon content or phenolic biopolymer deposition were found. In contrast, we observed cuticle thickness of insecticide resistant Ae. aegypti increased over time and exhibited higher polysaccharide abundance. Moreover, we found these local cuticular changes correlated with global metabolic differences in the whole mosquito, suggesting the existence of novel cuticular resistance mechanisms in this major disease vector.
Collapse
|
18
|
Wakamatsu K, Ito S. Recent Advances in Characterization of Melanin Pigments in Biological Samples. Int J Mol Sci 2023; 24:ijms24098305. [PMID: 37176019 PMCID: PMC10179066 DOI: 10.3390/ijms24098305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The melanin pigments eumelanin (EM) and pheomelanin (PM), which are dark brown to black and yellow to reddish-brown, respectively, are widely found among vertebrates. They are produced in melanocytes in the epidermis, hair follicles, the choroid, the iris, the inner ear, and other tissues. The diversity of colors in animals is mainly caused by the quantity and quality of their melanin, such as by the ratios of EM versus PM. We have developed micro-analytical methods to simultaneously measure EM and PM and used these to study the biochemical and genetic fundamentals of pigmentation. The photoreactivity of melanin has become a major focus of research because of the postulated relevance of EM and PM for the risk of UVA-induced melanoma. Our biochemical methods have found application in many clinical studies on genetic conditions associated with alterations in pigmentation. Recently, besides chemical degradative methods, other methods have been developed for the characterization of melanin, and these are also discussed here.
Collapse
Affiliation(s)
- Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-192, Aichi, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-192, Aichi, Japan
| |
Collapse
|
19
|
MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol 2023; 32:2565-2581. [PMID: 35231147 PMCID: PMC11032213 DOI: 10.1111/mec.16411] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Microbial communities of the human microbiota exhibit diverse effects on human health and disease. Microbial homeostasis is important for normal physiological functions and changes to the microbiota are associated with many human diseases including diabetes, cancer, and colitis. In addition, there are many microorganisms that are either commensal or acquired from environmental reservoirs that can cause diverse pathologies. Importantly, the balance between health and disease is intricately connected to how members of the microbiota interact and affect one another's growth and pathogenicity. However, the mechanisms that govern these interactions are only beginning to be understood. In this review, we outline bacterial-fungal interactions in the human body, including examining the mechanisms by which bacteria govern fungal growth and virulence, as well as how fungi regulate bacterial pathogenesis. We summarize advances in the understanding of chemical, physical, and protein-based interactions, and their role in exacerbating or impeding human disease. We focus on the three fungal species responsible for the majority of systemic fungal infections in humans: Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. We conclude by summarizing recent studies that have mined microbes for novel antimicrobials and antivirulence factors, highlighting the potential of the human microbiota as a rich resource for small molecule discovery.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
20
|
D’Amora U, Ronca A, Scialla S, Soriente A, Manini P, Phua JW, Ottenheim C, Pezzella A, Calabrese G, Raucci MG, Ambrosio L. Bioactive Composite Methacrylated Gellan Gum for 3D-Printed Bone Tissue-Engineered Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:772. [PMID: 36839140 PMCID: PMC9963483 DOI: 10.3390/nano13040772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Gellan gum (GG) was chemically modified with methacrylic moieties to produce a photocrosslinkable biomaterial ink, hereinafter called methacrylated GG (GGMA), with improved physico-chemical properties, mechanical behavior and stability under physiological conditions. Afterwards, GGMA was functionalized by incorporating two different bioactive compounds, a naturally derived eumelanin extracted from the black soldier fly (BSF-Eumel), or hydroxyapatite nanoparticles (HAp), synthesized by the sol-gel method. Different ink formulations based on GGMA (2 and 4% (w/v)), BSF-Eumel, at a selected concentration (0.3125 mg/mL), or HAp (10 and 30% wHAp/wGGMA) were developed and processed by three-dimensional (3D) printing. All the functionalized GGMA-based ink formulations allowed obtaining 3D-printed GGMA-based scaffolds with a well-organized structure. For both bioactive signals, the scaffolds with the highest GGMA concentration (4% (w/v)) and the highest percentage of infill (45%) showed the best performances in terms of morphological and mechanical properties. Indeed, these scaffolds showed a good structural integrity over 28 days. Given the presence of negatively charged groups along the eumelanin backbone, scaffolds consisting of GGMA/BSF-Eumel demonstrated a higher stability. From a mechanical point of view, GGMA/BSF-Eumel scaffolds exhibited values of storage modulus similar to those of GGMA ones, while the inclusion of HAp at 30% (wHAp/wGGMA) led to a storage modulus of 32.5 kPa, 3.5-fold greater than neat GGMA. In vitro studies proved the capability of the bioactivated 3D-printed scaffolds to support 7F2 osteoblast cell growth and differentiation. BSF-Eumel and HAp triggered a different time-dependent physiological response in the osteoblasts. Specifically, while the ink with BSF-Eumel acted as a stimulus towards cell proliferation, reaching the highest value at 14 days, a higher expression of alkaline phosphatase activity was detected for scaffolds consisting of GGMA and HAp. The overall findings demonstrated the possible use of these biomaterial inks for 3D-printed bone tissue-engineered scaffolds.
Collapse
Affiliation(s)
- Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Stefania Scialla
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Paola Manini
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy
| | - Jun Wei Phua
- Insectta, 60 Jalan Penjara, Singapore 149375, Singapore
| | | | - Alessandro Pezzella
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
- Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy
- Department of Physics “E. Pancini”, University of Naples Federico II, 80126 Naples, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
- Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| |
Collapse
|
21
|
Baker RP, Casadevall A. Reciprocal modulation of ammonia and melanin production has implications for cryptococcal virulence. Nat Commun 2023; 14:849. [PMID: 36792633 PMCID: PMC9932161 DOI: 10.1038/s41467-023-36552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
The fungus Cryptococcus neoformans is the causative agent of cryptococcosis, a disease that is uniformly lethal unless treated with antifungal drugs, yet current regimens are hindered by host toxicity and pathogen resistance. An attractive alternative approach to combat this deadly disease is the direct targeting of pathogen-derived virulence mechanisms. C. neoformans expresses multiple virulence factors that have been studied previously as isolated entities. Among these, are urease, which increases phagosomal pH and promotes brain invasion, and melanization, which protects against immune cells and antifungal treatments. Here we report a reciprocal interdependency between these two virulence factors. Cells hydrolyzing urea release ammonia gas which acts at a distance to raise pH and increase melanization rates for nearby cells, which in turn reduces secretion of urease-carrying extracellular vesicles. This reciprocal relationship manifests as an emergent property that may explain why targeting isolated virulence mechanisms for drug development has been difficult and argues for a more holistic approach that considers the virulence composite.
Collapse
Affiliation(s)
- Rosanna P Baker
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
22
|
Solid-state NMR molecular snapshots of Aspergillus fumigatus cell wall architecture during a conidial morphotype transition. Proc Natl Acad Sci U S A 2023; 120:e2212003120. [PMID: 36719915 PMCID: PMC9963690 DOI: 10.1073/pnas.2212003120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
While establishing an invasive infection, the dormant conidia of Aspergillus fumigatus transit through swollen and germinating stages, to form hyphae. During this morphotype transition, the conidial cell wall undergoes dynamic remodeling, which poses challenges to the host immune system and antifungal drugs. However, such cell wall reorganization during conidial germination has not been studied so far. Here, we explored the molecular rearrangement of Aspergillus fumigatus cell wall polysaccharides during different stages of germination. We took advantage of magic-angle spinning NMR to investigate the cell wall polysaccharides, without employing any destructive method for sample preparation. The breaking of dormancy was associated with a significant change in the molar ratio between the major polysaccharides β-1,3-glucan and α-1,3-glucan, while chitin remained equally abundant. The use of various polarization transfers allowed the detection of rigid and mobile polysaccharides; the appearance of mobile galactosaminogalactan was a molecular hallmark of germinating conidia. We also report for the first time highly abundant triglyceride lipids in the mobile matrix of conidial cell walls. Water to polysaccharides polarization transfers revealed an increased surface exposure of glucans during germination, while chitin remained embedded deeper in the cell wall, suggesting a molecular compensation mechanism to keep the cell wall rigidity. We complement the NMR analysis with confocal and atomic force microscopies to explore the role of melanin and RodA hydrophobin on the dormant conidial surface. Exemplified here using Aspergillus fumigatus as a model, our approach provides a powerful tool to decipher the molecular remodeling of fungal cell walls during their morphotype switching.
Collapse
|
23
|
Guegan H, Poirier W, Ravenel K, Dion S, Delabarre A, Desvillechabrol D, Pinson X, Sergent O, Gallais I, Gangneux JP, Giraud S, Gastebois A. Deciphering the Role of PIG1 and DHN-Melanin in Scedosporium apiospermum Conidia. J Fungi (Basel) 2023; 9:jof9020134. [PMID: 36836250 PMCID: PMC9965090 DOI: 10.3390/jof9020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Scedosporium apiospermum is a saprophytic filamentous fungus involved in human infections, of which the virulence factors that contribute to pathogenesis are still poorly characterized. In particular, little is known about the specific role of dihydroxynaphtalene (DHN)-melanin, located on the external layer of the conidia cell wall. We previously identified a transcription factor, PIG1, which may be involved in DHN-melanin biosynthesis. To elucidate the role of PIG1 and DHN-melanin in S. apiospermum, a CRISPR-Cas9-mediated PIG1 deletion was carried out from two parental strains to evaluate its impact on melanin biosynthesis, conidia cell-wall assembly, and resistance to stress, including the ability to survive macrophage engulfment. ΔPIG1 mutants did not produce melanin and showed a disorganized and thinner cell wall, resulting in a lower survival rate when exposed to oxidizing conditions, or high temperature. The absence of melanin increased the exposure of antigenic patterns on the conidia surface. PIG1 regulates the melanization of S. apiospermum conidia, and is involved in the survival to environmental injuries and to the host immune response, that might participate in virulence. Moreover, a transcriptomic analysis was performed to explain the observed aberrant septate conidia morphology and found differentially expressed genes, underlining the pleiotropic function of PIG1.
Collapse
Affiliation(s)
- Hélène Guegan
- CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
- Correspondence: ; Tel.: +33-223233496
| | - Wilfried Poirier
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Kevin Ravenel
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Sarah Dion
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Aymeric Delabarre
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Dimitri Desvillechabrol
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Xavier Pinson
- CNRS, INSERM, Biosit UAR 3480 US_S 018, MRic Core Facility, 35000 Rennes, France
| | - Odile Sergent
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Isabelle Gallais
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Jean-Pierre Gangneux
- CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Sandrine Giraud
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Amandine Gastebois
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| |
Collapse
|
24
|
Jacobs E, Chrissian C, Rankin-Turner S, Wear M, Camacho E, Scott JG, Broderick NA, McMeniman CJ, Stark RE, Casadevall A. Cuticular profiling of insecticide resistant Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523989. [PMID: 36712033 PMCID: PMC9882251 DOI: 10.1101/2023.01.13.523989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insecticides have made great strides in reducing the global burden of vector-borne disease. Nonetheless, serious public health concerns remain because insecticide-resistant vector populations continue to spread globally. To circumvent insecticide resistance, it is essential to understand all contributing mechanisms. Contact-based insecticides are absorbed through the insect cuticle, which is comprised mainly of chitin polysaccharides, cuticular proteins, hydrocarbons, and phenolic biopolymers sclerotin and melanin. Cuticle interface alterations can slow or prevent insecticide penetration in a phenomenon referred to as cuticular resistance. Cuticular resistance characterization of the yellow fever mosquito, Aedes aegypti , is lacking. In the current study, we utilized solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy, gas chromatography/mass spectrometry (GC-MS), and transmission electron microscopy (TEM) to gain insights into the cuticle composition of congenic cytochrome P450 monooxygenase insecticide resistant and susceptible Ae. aegypti . No differences in cuticular hydrocarbon content or phenolic biopolymer deposition were found. In contrast, we observed cuticle thickness of insecticide resistant Ae. aegypti increased over time and exhibited higher polysaccharide abundance. Moreover, we found these local cuticular changes correlated with global metabolic differences in the whole mosquito, suggesting the existence of novel cuticular resistance mechanisms in this major disease vector.
Collapse
Affiliation(s)
| | - Christine Chrissian
- The City College of New York and CUNY Institute for Macromolecular Assemblies
| | | | - Maggie Wear
- Johns Hopkins University Bloomberg School of Public Health
| | - Emma Camacho
- Johns Hopkins University Bloomberg School of Public Health
| | | | | | | | - Ruth E. Stark
- The City College of New York and CUNY Institute for Macromolecular Assemblies
| | | |
Collapse
|
25
|
Smith DFQ, Dragotakes Q, Kulkarni M, Hardwick JM, Casadevall A. Galleria mellonella immune melanization is fungicidal during infection. Commun Biol 2022; 5:1364. [PMID: 36510005 PMCID: PMC9744840 DOI: 10.1038/s42003-022-04340-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
A key component of the insect immune response is melanin production, including within nodules, or aggregations of immune cells surrounding microbes. Melanization produces oxidative and toxic intermediates that limit microbial infections. However, a direct fungicidal role of melanin during infection has not been demonstrated. We previously reported that the fungus Cryptococcus neoformans is encapsulated with melanin within nodules of Galleria mellonella hosts. Here we developed techniques to study melanin's role during C. neoformans infection in G. mellonella. We provided evidence that in vivo melanin-encapsulation was fungicidal. To further study immune melanization, we applied tissue-clearing techniques to visualize melanized nodules in situ throughout the larvae. Further, we developed a time-lapse microscopy protocol to visualize the melanization kinetics in extracted hemolymph following fungal exposure. Using this technique, we found that cryptococcal melanin and laccase enhance immune melanization. We extended this approach to study the fungal pathogens Candida albicans and Candida auris. We find that the yeast morphologies of these fungi elicited robust melanization responses, while hyphal and pseudohyphal morphologies were melanin-evasive. Approximately 23% of melanin-encapsulated C. albicans yeast can survive and breakthrough the encapsulation. Overall, our results provide direct evidence that immune melanization functions as a direct antifungal mechanism in G. mellonella.
Collapse
Affiliation(s)
- Daniel F Q Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Quigly Dragotakes
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Madhura Kulkarni
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
26
|
Smith DFQ, Mudrak NJ, Zamith-Miranda D, Honorato L, Nimrichter L, Chrissian C, Smith B, Gerfen G, Stark RE, Nosanchuk JD, Casadevall A. Melanization of Candida auris Is Associated with Alteration of Extracellular pH. J Fungi (Basel) 2022; 8:1068. [PMID: 36294632 PMCID: PMC9604884 DOI: 10.3390/jof8101068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Candida auris is a recently emerged global fungal pathogen, which causes life-threatening infections, often in healthcare settings. C. auris infections are worrisome because the fungus is often resistant to multiple antifungal drug classes. Furthermore, C. auris forms durable and difficult to remove biofilms. Due to the relatively recent, resilient, and resistant nature of C. auris, we investigated whether it produces the common fungal virulence factor melanin. Melanin is a black-brown pigment typically produced following enzymatic oxidation of aromatic precursors, which promotes fungal virulence through oxidative stress resistance, mammalian immune response evasion, and antifungal peptide and pharmaceutical inactivation. We found that certain strains of C. auris oxidized L-DOPA and catecholamines into melanin. Melanization occurred extracellularly in a process mediated by alkalinization of the extracellular environment, resulting in granule-like structures that adhere to the fungus' external surface. C. auris had relatively high cell surface hydrophobicity, but there was no correlation between hydrophobicity and melanization. Melanin protected the fungus from oxidative damage, but we did not observe a protective role during infection of macrophages or Galleria mellonella larvae. In summary, C. auris alkalinizes the extracellular medium, which promotes the non-enzymatic oxidation of L-DOPA to melanin that attaches to its surface, thus illustrating a novel mechanism for fungal melanization.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nathan J. Mudrak
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Krieger School of Arts & Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Leandro Honorato
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Christine Chrissian
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, The City University of New York, New York, NY 10031, USA
| | - Barbara Smith
- Institute for Basic Biomedical Sciences Microscope Facility, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Gary Gerfen
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Ruth E. Stark
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, The City University of New York, New York, NY 10031, USA
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
27
|
Liu R, Meng X, Mo C, Wei X, Ma A. Melanin of fungi: from classification to application. World J Microbiol Biotechnol 2022; 38:228. [PMID: 36149606 DOI: 10.1007/s11274-022-03415-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022]
Abstract
Melanin is a secondary metabolite composed of complex heterogeneous polymers. Fungal melanin is considered to be a sustainable and biodegradable natural pigment and has a variety of functional properties and biological activities. On one hand, due to its own specific properties it can play the role of antioxidant, anti-radiation, adsorption, and photoprotection. On the other hand, it has good biological activities such as hepatoprotective effect, hypolipidemic effect and anti-cancer. Therefore, it is widely used in various fields of daily life, including dyeing, food, biomedical and commercial industry. It is conducive to environmental protection and human health. However, the insolubility of fungal melanin in water, acids and organic solvents has been an obstacle to its commercial applications. Thus, the chemical modification methods of fungal melanin are summarized to increase its solubility and expand the application fields. Although fungal melanin has been used in many industries, as the structure and function of fungal melanin and modified melanin are further studied, more functional properties and bioactivities are expected to be discovered for a wide range of applications in the future.
Collapse
Affiliation(s)
- Ruofan Liu
- College of Food Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xianfu Meng
- College of Food Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Cuiyuan Mo
- College of Food Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, 430070, Wuhan, China.
| |
Collapse
|
28
|
Cordero RJB, Dragotakes Q, Friello PJ, Casadevall A. Melanin protects Cryptococcus neoformans from spaceflight effects. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:679-685. [PMID: 35852045 PMCID: PMC9326845 DOI: 10.1111/1758-2229.13078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 05/08/2023]
Abstract
As human activity in space continues to increase, understanding how biological assets respond to spaceflight conditions is becoming more important. Spaceflight conditions include exposure to ionizing radiation, microgravity, spacecraft vibrations and hypervelocity; all of which can affect the viability of biological organisms. Previous studies have shown that melanin-producing fungi are capable of surviving the vacuum of space and Mars-simulated conditions in Low Earth Orbit. This survival has been associated in part with the protective effects of melanin, but a comparison of fungal viability in the presence or absence of melanin following spaceflight has never been tested. In this study, we evaluated the protective effects of melanin by comparing the viability of melanized and non-melanized clones of Cryptococcus neoformans yeasts following a roundtrip to the International Space Station. Yeast colonies were placed inside two MixStix silicone tubes; one stayed on Earth and the other was transported inside for 29 days before returning to Earth. Post-flight analysis based on colony-forming unit numbers shows that melanized yeast viability was 50% higher than non-melanized yeasts, while no difference was observed between the Earth-bound control samples. The results suggest that fungal melanin could increase the lifespan of biological assets in space.
Collapse
Affiliation(s)
- Radames J. B. Cordero
- Molecular Microbiology and Immunology DepartmentJohns Hopkins Bloomberg School of Public HealthBaltimoreMD21205USA
| | - Quigly Dragotakes
- Molecular Microbiology and Immunology DepartmentJohns Hopkins Bloomberg School of Public HealthBaltimoreMD21205USA
| | | | - Arturo Casadevall
- Molecular Microbiology and Immunology DepartmentJohns Hopkins Bloomberg School of Public HealthBaltimoreMD21205USA
| |
Collapse
|
29
|
Daminova AG, Rogov AM, Rassabina AE, Beckett RP, Minibayeva FV. Effect of Melanization on Thallus Microstructure in the Lichen Lobaria pulmonaria. J Fungi (Basel) 2022; 8:791. [PMID: 36012780 PMCID: PMC9409904 DOI: 10.3390/jof8080791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Lichens often grow in microhabitats where they experience severe abiotic stresses. Some species respond to high UV radiation by synthesizing dark brown melanic pigments in the upper cortex. However, unlike the melanized structures of non-lichenized fungi, the morphology of the melanic layer in lichens remains unstudied. Here, we analyzed the morphology, ultrastructure, and elemental composition of the melanized layer in UV-exposed thalli of the lichen Lobaria pulmonaria (L.) Hoffm. Using light microscopy, we detected a pigmented layer sensitive to staining with 3,4-L-dihydroxyphenylalanine, a precursor of eumelanin, in the upper cortex of melanized thalli. Analysis of cross-sections of melanized thalli using scanning electron microscopy revealed that melanin-like granules are deposited into the hyphal lumens. Melanized thalli also possessed thicker hyphal cell walls compared to pale thalli. Energy-dispersive X-ray spectroscopy analysis of the elemental composition of the hyphal walls and extracted melanin indicated that the type of melanin synthesized by L. pulmonaria is eumelanin. Transmission electron microscopy was used to show that during melanization melanosome-like dark vesicles are transported to the cell surface and secreted into the cell walls of the fungal hyphae. Results from this study provide new insights into the effects of melanin synthesis on the microstructure of lichen thalli.
Collapse
Affiliation(s)
- Amina G. Daminova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.G.D.); (A.E.R.)
| | - Alexey M. Rogov
- Interdisciplinary Center for Analytical Microscopy, Kazan (Volga Region) Federal University, 420018 Kazan, Russia;
| | - Anna E. Rassabina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.G.D.); (A.E.R.)
| | - Richard P. Beckett
- School of Life Sciences, University of KwaZulu-Natal, PBag X01, Scottsville 3209, South Africa;
| | - Farida V. Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.G.D.); (A.E.R.)
| |
Collapse
|
30
|
Qian W, Wang W, Zhang J, Fu Y, Liu Q, Li X, Wang T, Zhang Q. Exploitation of the antifungal and antibiofilm activities of plumbagin against Cryptococcus neoformans. BIOFOULING 2022; 38:558-574. [PMID: 35818738 DOI: 10.1080/08927014.2022.2094260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Cryptococcus neoformans is an important opportunistic fungal pathogen that causes various infections. Here, the antifungal and antibiofilm activities of plumbagin against C. neoformans and the underlying mechanisms were evaluated. The minimum inhibitory concentration (MIC) of plumbagin against C. neoformans H99 was 8 μg ml-1. Plumbagin disrupted the cell membrane integrity and reduced the metabolic activities of C. neoformans H99. C. neoformans H99 biofilm cells were damaged by plumbagin at a concentration of 64 μg ml-1, whereas 48-h mature biofilms were dispersed at a plumbagin concentration of 128 μg ml-1. Whole-transcriptome analysis of plumbagin-treated C. neoformans H99 in the biofilm and planktonic states identified differentially expressed genes enriched in several important cellular processes (cell membrane, ribosome biogenesis, fatty acid synthesis, melanin and capsule production). Notably, plumbagin damaged biofilm cells by downregulating FAS1 and FAS2 expression. Thus, plumbagin can be exploited as an antifungal agent to combat C. neoformans-related infections.
Collapse
Affiliation(s)
- Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Wenjing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Jianing Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Yuting Fu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Qiming Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Xinchen Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Qian Zhang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, PR China
| |
Collapse
|
31
|
Interactions between copper homeostasis and the fungal cell wall affect copper stress resistance. PLoS Pathog 2022; 18:e1010195. [PMID: 35737716 PMCID: PMC9258870 DOI: 10.1371/journal.ppat.1010195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/06/2022] [Accepted: 05/31/2022] [Indexed: 01/09/2023] Open
Abstract
Copper homeostasis mechanisms are essential for microbial adaption to changing copper levels within the host during infection. In the opportunistic fungal pathogen Cryptococcus neoformans (Cn), the Cn Cbi1/Bim1 protein is a newly identified copper binding and release protein that is highly induced during copper limitation. Recent studies demonstrated that Cbi1 functions in copper uptake through the Ctr1 copper transporter during copper limitation. However, the mechanism of Cbi1 action is unknown. The fungal cell wall is a dynamic structure primarily composed of carbohydrate polymers, such as chitin and chitosan, polymers known to strongly bind copper ions. We demonstrated that Cbi1 depletion affects cell wall integrity and architecture, connecting copper homeostasis with adaptive changes within the fungal cell wall. The cbi1Δ mutant strain possesses an aberrant cell wall gene transcriptional signature as well as defects in chitin / chitosan deposition and exposure. Furthermore, using Cn strains defective in chitosan biosynthesis, we demonstrated that cell wall chitosan modulates the ability of the fungal cell to withstand copper stress. Given the previously described role for Cbi1 in copper uptake, we propose that this copper-binding protein could be involved in shuttling copper from the cell wall to the copper transporter Ctr1 for regulated microbial copper uptake.
Collapse
|
32
|
Panchanawaporn S, Chutrakul C, Jeennor S, Anantayanon J, Rattanaphan N, Laoteng K. Potential of Aspergillus oryzae as a biosynthetic platform for indigoidine, a non-ribosomal peptide pigment with antioxidant activity. PLoS One 2022; 17:e0270359. [PMID: 35737654 PMCID: PMC9223385 DOI: 10.1371/journal.pone.0270359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
The growing demand for natural pigments in the industrial sector is a significant driving force in the development of production processes. The production of natural blue pigments, which have wide industrial applications, using microbial systems has been gaining significant attention. In this study, we used Aspergillus oryzae as a platform cell factory to produce the blue pigment indigoidine (InK), by genetic manipulation of its non-ribosomal peptide synthetase system to overexpress the indigoidine synthetase gene (AoinK). Phenotypic analysis showed that InK production from the engineered strain was growth associated, owing to the constitutive control of gene expression. Furthermore, the initial pH, temperature, and glutamine and MgSO4 concentrations were key factors affecting InK production by the engineered strain. The pigment secretion was enhanced by addition of 1% Tween 80 solution to the culture medium. The maximum titer of total InK was 1409.22 ± 95.33 mg/L, and the maximum productivity was 265.09 ± 14.74 mg/L·d. Moreover, the recombinant InK produced by the engineered strain exhibited antioxidant activity. These results indicate that A. oryzae has the potential to be used as a fungal platform for overproduction of extracellular non-ribosomal peptide pigments.
Collapse
Affiliation(s)
- Sarocha Panchanawaporn
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Chanikul Chutrakul
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
- * E-mail:
| | - Sukanya Jeennor
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Jutamas Anantayanon
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Nakul Rattanaphan
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Kobkul Laoteng
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
33
|
Li Z, Heng H, Qin Q, Chen L, Wang Y, Zhou Z. Physicochemical properties, molecular structure, antioxidant activity, and biological function of extracellular melanin from Ascosphaera apis. J Zhejiang Univ Sci B 2022; 23:365-381. [PMID: 35557038 DOI: 10.1631/jzus.b2100718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ascosphaera apis spores containing a dark-colored pigment infect honeybee larvae, resulting in a large-scale collapse of the bee colony due to chalkbrood disease. However, little is known about the pigment or whether it plays a role in bee infection caused by A. apis. In this study, the pigment was isolated by alkali extraction, acid hydrolysis, and repeated precipitation. Ultraviolet (UV) analysis revealed that the pigment had a color value of 273, a maximum absorption peak at 195 nm, and a high alkaline solubility (7.67%) and acid precipitability. Further chemical structure analysis of the pigment, including elemental composition, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, mass spectrometry, and nuclear magnetic resonance (NMR), proved that it was a eumelanin with a typical indole structure. The molecular formula of melanin is C10H6O4N2, and its molecular weight is 409 Da. Melanin has hydroxyl, carboxyl, amino, and phenolic groups that can potentially chelate to metal ions. Antioxidant function analyses showed that A. apis melanin had a high scavenging activity against superoxide, hydroxyl, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, and a high reducing ability to Fe3+. Indirect immunofluorescence assay (IFA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses showed that A. apis melanin was located on the spore wall. The spore wall localization, antioxidant activity, and metal ion chelating properties of fungal melanin have been suggested to contribute to spore pathogenicity. However, further infection experiments showed that melanin-deficient spores did not reduce the mortality of bee larvae, indicating that melanin does not increase the virulence of A. apis spores. This study is the first report on melanin produced by A. apis, providing an important background reference for further study on its role in A. apis.
Collapse
Affiliation(s)
- Zhi Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China. .,Chongqing Key Laboratory of Vector Insects, Chongqing 401331, China. .,Chongqing Key Laboratory of Animal Biology, Chongqing 401331, China.
| | - Hui Heng
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiqian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Lanchun Chen
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yuedi Wang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zeyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Chongqing 400715, China.,The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
34
|
Erives VH, Munzen ME, Zamith-Miranda D, Hernandez H, Manepalli S, Nguyen LN, Hamed MF, Nosanchuk JD, Martinez LR. Methamphetamine Enhances Cryptococcus neoformans Melanization, Antifungal Resistance, and Pathogenesis in a Murine Model of Drug Administration and Systemic Infection. Infect Immun 2022; 90:e0009122. [PMID: 35357221 PMCID: PMC9022586 DOI: 10.1128/iai.00091-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
Methamphetamine (METH) is a major public health and safety problem in the United States. Chronic METH abuse is associated with a 2-fold-higher risk of HIV infection and, possibly, additional infections, particularly those that enter through the respiratory tract or skin. Cryptococcus neoformans is an encapsulated opportunistic yeast-like fungus that is a relatively frequent cause of meningoencephalitis in immunocompromised patients, especially in individuals with AIDS. C. neoformans melanizes during mammalian infection in a process that presumably uses host-supplied compounds such as catecholamines. l-3,4-Dihydroxyphenylalanine (l-Dopa) is a natural catecholamine that is frequently used to induce melanization in C. neoformans. l-Dopa-melanized cryptococci manifest resistance to radiation, phagocytosis, detergents, and heavy metals. Using a systemic mouse model of infection and in vitro assays to critically assess the impact of METH on C. neoformans melanization and pathogenesis, we demonstrated that METH-treated mice infected with melanized yeast cells showed increased fungal burdens in the blood and brain, exacerbating mortality. Interestingly, analyses of cultures of METH-exposed cryptococci supplemented with l-Dopa revealed that METH accelerates fungal melanization, an event of adaptation to external stimuli that can be advantageous to the fungus during pathogenesis. Our findings provide novel evidence of the impact of METH abuse on host homeostasis and increased permissiveness to opportunistic microorganisms.
Collapse
Affiliation(s)
- Victor H. Erives
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Melissa E. Munzen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Daniel Zamith-Miranda
- Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hazael Hernandez
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
- Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Swetha Manepalli
- Department of Biomedical Sciences, Long Island University-Post, Brookville, New York, USA
| | - Long N. Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mohamed F. Hamed
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Joshua D. Nosanchuk
- Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Luis R. Martinez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Department of Biomedical Sciences, Long Island University-Post, Brookville, New York, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, Florida, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
35
|
de Sousa HR, de Oliveira GP, Frazão SDO, Gorgonha KCDM, Rosa CP, Garcez EM, Lucas J, Correia AF, de Freitas WF, Borges HM, de Brito Alves LG, Paes HC, Trilles L, Lazera MDS, Teixeira MDM, Pinto VL, Felipe MSS, Casadevall A, Silva-Pereira I, Albuquerque P, Nicola AM. Faster Cryptococcus Melanization Increases Virulence in Experimental and Human Cryptococcosis. J Fungi (Basel) 2022; 8:393. [PMID: 35448624 PMCID: PMC9029458 DOI: 10.3390/jof8040393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Cryptococcus spp. are human pathogens that cause 181,000 deaths per year. In this work, we systematically investigated the virulence attributes of Cryptococcus spp. clinical isolates and correlated them with patient data to better understand cryptococcosis. We collected 66 C. neoformans and 19 C. gattii clinical isolates and analyzed multiple virulence phenotypes and host-pathogen interaction outcomes. C. neoformans isolates tended to melanize faster and more intensely and produce thinner capsules in comparison with C. gattii. We also observed correlations that match previous studies, such as that between secreted laccase and disease outcome in patients. We measured Cryptococcus colony melanization kinetics, which followed a sigmoidal curve for most isolates, and showed that faster melanization correlated positively with LC3-associated phagocytosis evasion, virulence in Galleria mellonella and worse prognosis in humans. These results suggest that the speed of melanization, more than the total amount of melanin Cryptococcus spp. produces, is crucial for virulence.
Collapse
Affiliation(s)
- Herdson Renney de Sousa
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Getúlio Pereira de Oliveira
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Stefânia de Oliveira Frazão
- Laboratory of Molecular Biology of Pathogenic Fungi, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (S.d.O.F.); (I.S.-P.); (P.A.)
| | - Kaio César de Melo Gorgonha
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Camila Pereira Rosa
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Emãnuella Melgaço Garcez
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Joaquim Lucas
- Oswaldo Cruz Foundation (Fiocruz–Brasília), Brasília 70904-130, DF, Brazil; (J.L.J.); (V.L.P.J.)
| | | | - Waleriano Ferreira de Freitas
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Higor Matos Borges
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Lucas Gomes de Brito Alves
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Hugo Costa Paes
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Luciana Trilles
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (Fiocruz–Rio de Janeiro), Rio de Janeiro 21045-900, RJ, Brazil; (L.T.); (M.d.S.L.)
| | - Márcia dos Santos Lazera
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (Fiocruz–Rio de Janeiro), Rio de Janeiro 21045-900, RJ, Brazil; (L.T.); (M.d.S.L.)
| | - Marcus de Melo Teixeira
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Vitor Laerte Pinto
- Oswaldo Cruz Foundation (Fiocruz–Brasília), Brasília 70904-130, DF, Brazil; (J.L.J.); (V.L.P.J.)
| | - Maria Sueli Soares Felipe
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 70790-160, DF, Brazil;
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Ildinete Silva-Pereira
- Laboratory of Molecular Biology of Pathogenic Fungi, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (S.d.O.F.); (I.S.-P.); (P.A.)
| | - Patrícia Albuquerque
- Laboratory of Molecular Biology of Pathogenic Fungi, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (S.d.O.F.); (I.S.-P.); (P.A.)
- Faculty of Ceilândia, University of Brasília, Brasília 72220-275, DF, Brazil
| | - André Moraes Nicola
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 70790-160, DF, Brazil;
| |
Collapse
|
36
|
Zhang Y, Wu X, Huang C, Zhang Z, Gao W. Isolation and identification of pigments from oyster mushrooms with black, yellow and pink caps. Food Chem 2022; 372:131171. [PMID: 34601416 DOI: 10.1016/j.foodchem.2021.131171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022]
Abstract
The genus Pleurotus, namely oyster mushroom, is widely cultivated and consumed worldwide. Cap color is an important commercial trait for oyster mushroom. Diverse color is determined by various pigment constituents. However, the pigments of oyster mushrooms are still ambiguous. In this study, we extracted and identified pigments of oyster mushroom species with black, yellow and pink cap color. The extracted pigments appearing the three color types correspondingly to the cap color, which were all identified as melanin using a panel of spectroscopic and physical/imaging techniques. Nevertheless, HPLC and elemental analysis indicated that the melanin in oyster mushrooms was actually a mixture of eumelanin and phaeomelanin. Differences in the quantities and relative proportions of eumelanin and phaeomelanin resulted in the color variation in oyster mushroom caps. Electron microscopy studies showed that the melanin units are likely located in the cell wall, as reported in other fungi. The pigments in oyster mushrooms with three different cap color were extracted and identified for the first time in this study, which provided fundamental knowledge for future studies on the mechanism of color formation in mushrooms.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China; Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zehua Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wei Gao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China.
| |
Collapse
|
37
|
Soltani S, Sowlati-Hashjin S, Tetsassi Feugmo CG, Karttunen M. Free Energy and Stacking of Eumelanin Nanoaggregates. J Phys Chem B 2022; 126:1805-1818. [PMID: 35175060 DOI: 10.1021/acs.jpcb.1c07884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eumelanin, a member of the melanin family, is a black-brown insoluble pigment. It possesses a broad range of properties such as antioxidation, free radical scavenging, photoprotection, and charge carrier transportation. Surprisingly, the exact molecular structure of eumelanin remains undefined. It is, however, generally considered to consist of two main building blocks, 5,6-dihydroxyindole (DHI) and 5,6- dihydroxyindole carboxylic acid (DHICA). We focus on DHI and report, for the first time, a computational investigation of the structural properties of DHI-eumelanin aggregates in aqueous solutions. First, multimicrosecond molecular dynamics (MD) simulations at different concentrations were performed to investigate the aggregation and ordering of tetrameric DHI-eumelanin protomolecules. This was followed by umbrella sampling (US) and density functional theory (DFT) calculations to study the physical mechanisms of stacking. Aggregation occurs through formation of nanoscale stacks and was observed in all systems. Further analyses showed that aggregation and coarsening of the domains is due to a decrease in hydrogen bonds between the eumelanins and water; while domains exist, there is no long-range order. The results show noncovalent stacks with the interlayer distance between eumelanin protomolecules being less than 3.5 Å. This is in good agreement with transmission electron microscopy data. Both free energy calculations and DFT revealed strong stacking interactions. The electrostatic potential map provides an explanation and a rationale for the slightly sheared relative orientations and, consequently, for the curved shapes of the nanoscale domains.
Collapse
Affiliation(s)
- Sepideh Soltani
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada.,The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Shahin Sowlati-Hashjin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Conrard Giresse Tetsassi Feugmo
- National Research Council Canada, Energy Mining and Environment, Mississauga, Ontario L5K 1B1, Canada.,Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Mikko Karttunen
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada.,Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
38
|
Transcription Factors Pmr1 and Pmr2 Cooperatively Regulate Melanin Biosynthesis, Conidia Development and Secondary Metabolism in Pestalotiopsis microspora. J Fungi (Basel) 2021; 8:jof8010038. [PMID: 35049978 PMCID: PMC8781371 DOI: 10.3390/jof8010038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023] Open
Abstract
Melanins are the common fungal pigment, which contribute to stress resistance and pathogenesis. However, few studies have explored the regulation mechanism of its synthesis in filamentous fungi. In this study, we identified two transcription factors, Pmr1 and Pmr2, in the filamentous fungus Pestalotiopsis microspora. Computational and phylogenetic analyses revealed that Pmr1 and Pmr2 were located in the gene cluster for melanin biosynthesis. The targeted deletion mutant strain Δpmr1 displayed defects in biosynthesis of conidia pigment and morphological integrity. The deletion of pmr2 resulted in reduced conidia pigment, but the mycelial morphology had little change. Moreover, Δpmr2 produced decreased conidia. RT-qPCR data revealed that expression levels of genes in the melanin biosynthesis gene cluster were downregulated from the loss of Pmr1 and Pmr2. Interestingly, the yield of secondary metabolites in the mutant strains Δpmr1 and Δpmr2 increased, comparing with the wild type, and additionally, Pmr1 played a larger regulatory role in secondary metabolism. Taken together, our results revealed the crucial roles of the transcription factors Pmr1 and Pmr2 in melanin synthesis, asexual development and secondary metabolism in the filamentous fungus P. microspora.
Collapse
|
39
|
Singla S, Htut KZ, Zhu R, Davis A, Ma J, Ni QZ, Burkart MD, Maurer C, Miyoshi T, Dhinojwala A. Isolation and Characterization of Allomelanin from Pathogenic Black Knot Fungus-a Sustainable Source of Melanin. ACS OMEGA 2021; 6:35514-35522. [PMID: 34984283 PMCID: PMC8717558 DOI: 10.1021/acsomega.1c05030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Melanin, a widespread pigment found in many taxa, is widely recognized for its high refractive index, ultraviolet (UV) protection, radical quenching ability, metal binding, and many other unique properties. The aforementioned characteristic traits make melanin a potential candidate for biomedical, separation, structural coloration, and space applications. However, the commercially available natural (sepia) and synthetic melanin are very expensive, limiting their use in various applications. Additionally, eumelanin has been the primary focus in most of these studies. In the present study, we demonstrate that melanin can be extracted from the pathogenic black knot fungus Apiosporina morbosa with a yield of ∼10% using the acid-base extraction method. The extracted melanin shows irregular morphology. Chemical characterization using X-ray photoelectron spectroscopy, infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy reveals that the melanin derived from black knots is the less explored nitrogen-free allomelanin. Additionally, the extracted melanin shows broadband UV absorption typical of other types of melanin. Because of the wide availability and low cost of black knots and the invasive nature of the fungus, black knots can serve as an alternative green source for obtaining allomelanin at a low cost, which could stimulate its use as an UV light absorber and antioxidant in cosmetics and packaging industries.
Collapse
Affiliation(s)
- Saranshu Singla
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - K. Zin Htut
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Runyao Zhu
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Amara Davis
- Department
of Chemical Engineering, The University
of Akron, Akron, Ohio 44325, United
States
| | - Jiayang Ma
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Qing Zhe Ni
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093, United States
| | - Michael D. Burkart
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093, United States
| | | | - Toshikazu Miyoshi
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
40
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
41
|
Choi KY. Bioprocess of Microbial Melanin Production and Isolation. Front Bioeng Biotechnol 2021; 9:765110. [PMID: 34869277 PMCID: PMC8637283 DOI: 10.3389/fbioe.2021.765110] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Melanin is one of the most abundant pigments found in the biosphere. Owing to its high biocompatibility and diverse biological activities, it has been widely applied as a functional biomaterial in the cosmetic, pharmaceutical, biopolymer, and environmental fields. In this study, the production of melanin was comprehensively reviewed concerning bioconversion and isolation processes. First, several melanogenic microbes, including fungi and bacteria, were summarized. Melanin production was classified by host and melanin type and was analyzed by titers in g/L in addition to reaction conditions, including pH and temperature. The production was further interpreted using a space-time yields chart, which showed two distinct classifications in productivity, and reaction conditions were analyzed using a pH-temperature-titer chart. Next, the extraction process was summarized by crude and pure melanin preparation procedures, and the extraction yields were highlighted. Finally, the recent applications of melanin were briefly summarized, and prospects for further application and development in industrial applications were suggested.
Collapse
Affiliation(s)
- Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea.,Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
42
|
Raman Characterization of Fungal DHN and DOPA Melanin Biosynthesis Pathways. J Fungi (Basel) 2021; 7:jof7100841. [PMID: 34682262 PMCID: PMC8540899 DOI: 10.3390/jof7100841] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/16/2022] Open
Abstract
Fungal melanins represent a resource for important breakthroughs in industry and medicine, but the characterization of their composition, synthesis, and structure is not well understood. Raman spectroscopy is a powerful tool for the elucidation of molecular composition and structure. In this work, we characterize the Raman spectra of wild-type Aspergillus fumigatus and Cryptococcus neoformans and their melanin biosynthetic mutants and provide a rough “map” of the DHN (A. fumigatus) and DOPA (C. neoformans) melanin biosynthetic pathways. We compare this map to the Raman spectral data of Aspergillus nidulans wild-type and melanin biosynthetic mutants obtained from a previous study. We find that the fully polymerized A. nidulans melanin cannot be classified according to the DOPA pathway; nor can it be solely classified according to the DHN pathway, consistent with mutational analysis and chemical inhibition studies. Our approach points the way forward for an increased understanding of, and methodology for, investigating fungal melanins.
Collapse
|
43
|
Freitas DF, da Rocha IM, Vieira-da-Motta O, de Paula Santos C. The Role of Melanin in the Biology and Ecology of Nematophagous Fungi. J Chem Ecol 2021; 47:597-613. [PMID: 34232439 DOI: 10.1007/s10886-021-01282-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
Melanin is a heteropolymer formed by the polymerization of phenolic and indolic compounds. It occurs in organisms across all biological kingdoms and has a range different of functions, thus indicating its important evolutionary role. The presence of melanin offers several protective advantages, including against ultraviolet radiation, traumatic damage, oxidative stress, extreme temperatures, and pressure. For many species of fungi, melanin also participates directly in the process of virulence and pathogenicity. These organisms can synthesize melanin in two main ways: using a substrate of endogenous origin, involving 1,8-dihydroxynaphthalene (DHN); alternatively, in an exogenous manner with the addition of L-3, 4-dihydroxyphenylalanine (L-DOPA or levodopa). As melanin is an amorphous and complex substance, its study requires expensive and inaccessible technologies and analyses are often difficult to perform with conventional biochemical techniques. As such, details about its chemical structure are not yet fully understood, particularly for nematophagous fungi that remain poorly studied. Thus, this review presents an overview of the different types of melanin, with an emphasis on fungi, and discusses the role of melanin in the biology and ecology of nematophagous fungi.
Collapse
Affiliation(s)
- Deivid França Freitas
- Laboratory of Cellular and Tissue Biology-LBCT, State University of the North Fluminense Darcy Ribeiro-UENF, Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, RJ, Cep. 28013‑600, Brazil
| | - Izabelli Martins da Rocha
- Laboratory of Cellular and Tissue Biology-LBCT, State University of the North Fluminense Darcy Ribeiro-UENF, Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, RJ, Cep. 28013‑600, Brazil
| | - Olney Vieira-da-Motta
- Animal Health Laboratory - Infectious Contagious Diseases Sector, State University of North Fluminense Darcy Ribeiro-UENF, Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, RJ, Cep. 28013‑600, Brazil
| | - Clóvis de Paula Santos
- Laboratory of Cellular and Tissue Biology-LBCT, State University of the North Fluminense Darcy Ribeiro-UENF, Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, RJ, Cep. 28013‑600, Brazil.
| |
Collapse
|
44
|
Fungal Melanins and Applications in Healthcare, Bioremediation and Industry. J Fungi (Basel) 2021; 7:jof7060488. [PMID: 34207260 PMCID: PMC8235761 DOI: 10.3390/jof7060488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 01/01/2023] Open
Abstract
Melanin is a complex multifunctional pigment found in all kingdoms of life, including fungi. The complex chemical structure of fungal melanins, yet to be fully elucidated, lends them multiple unique functions ranging from radioprotection and antioxidant activity to heavy metal chelation and organic compound absorption. Given their many biological functions, fungal melanins present many possibilities as natural compounds that could be exploited for human use. This review summarizes the current discourse and attempts to apply fungal melanin to enhance human health, remove pollutants from ecosystems, and streamline industrial processes. While the potential applications of fungal melanins are often discussed in the scientific community, they are successfully executed less often. Some of the challenges in the applications of fungal melanin to technology include the knowledge gap about their detailed structure, difficulties in isolating melanotic fungi, challenges in extracting melanin from isolated species, and the pathogenicity concerns that accompany working with live melanotic fungi. With proper acknowledgment of these challenges, fungal melanin holds great potential for societal benefit in the coming years.
Collapse
|
45
|
Abstract
Colorants find social and commercial applications in cosmetics, food, pharmaceuticals, textiles, and other industrial sectors. Among the available options, chemically synthesized colorants are popular due to their low-cost and flexible production modes, but health and environmental concerns have encouraged the valorization of biopigments that are natural and ecofriendly. Among natural biopigment producers, microorganisms are noteworthy for their all-seasonal production of stable and low-cost pigments with high-yield titers. Fungi are paramount sources of natural pigments. They occupy diverse ecological niches with adaptive metabolisms and biocatalytic pathways, making them entities with an industrial interest. Industrially important biopigments like carotenoids, melanins, riboflavins, azaphilones, and quinones produced by filamentous fungi are described within the context of this review. Most recent information about fungal pigment characteristics, biochemical production routes and pathways, potential applications, limitations, and future research perspectives are described.
Collapse
Affiliation(s)
- Haritha Meruvu
- Department of Chemical Engineering, Andhra University College of Engineering - AU North Campus, Andhra University, Visakhapatnam, India.,Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, India.,Department of Bioengineering, Faculty of Engineering and Natural Sciences, Gaziosmanpaşa University, Tokat, Turkey
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo (USP), Estrada Municipal do Campinho, Lorena/SP, Brazil
| |
Collapse
|
46
|
Liu S, Youngchim S, Zamith-Miranda D, Nosanchuk JD. Fungal Melanin and the Mammalian Immune System. J Fungi (Basel) 2021; 7:jof7040264. [PMID: 33807336 PMCID: PMC8066723 DOI: 10.3390/jof7040264] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Melanins are ubiquitous complex polymers that are commonly known in humans to cause pigmentation of our skin. Melanins are also present in bacteria, fungi, and helminths. In this review, we will describe the diverse interactions of fungal melanin with the mammalian immune system. We will particularly focus on Cryptococcus neoformans and also discuss other major melanotic pathogenic fungi. Melanin interacts with the immune system through diverse pathways, reducing the effectiveness of phagocytic cells, binding effector molecules and antifungals, and modifying complement and antibody responses.
Collapse
Affiliation(s)
- Sichen Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (S.L.); (D.Z.-M.)
| | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Daniel Zamith-Miranda
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (S.L.); (D.Z.-M.)
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joshua D. Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (S.L.); (D.Z.-M.)
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
47
|
Eskandari S, Etemadifar Z. Melanin biopolymers from newly isolated Pseudomonas koreensis strain UIS 19 with potential for cosmetics application, and optimization on molasses waste medium. J Appl Microbiol 2021; 131:1331-1343. [PMID: 33609007 DOI: 10.1111/jam.15046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/22/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022]
Abstract
AIMS Bacterial melanins are UV-absorber biopolymers with potential applications in cosmetics and pharmaceutical industries. However, the cost concern of these pigments remains a limiting factor for their commercial production. Hence, the present study was aimed to isolate a bacterium with high yield of melanin by optimization of an inexpensive waste sources. METHODS AND RESULTS Pseudomonas koreensis UIS 19 (accession number: MG548583), which displayed significant bioproduction of melanin along with high tyrosinase enzyme activity was isolated from soil and introduced as a melanin-producing bacterium. Scanning and transmission electron microscope studies revealed that melanin pigments accumulated inside as well as the extracellular space of the cells. Melanin was extracted from the isolated strain and its detection was investigated using NMR and HPLC analyses. Here, we showed that the DPPH radical scavenging activity of 20 mg ml-1 melanin extracted from the isolated strain was >92·42% and its sun protection factor (SPF) value was 61·55. Melanin production by the UIS 19 in molasses medium showed sugar consumption (32 g l-1 ) for biomass production (5·4 g dry wt) and melanin yield of 0·44 g dry wt g-1 biomass from l-tyrosine. Some critical intermediated such tyramine, l-dopa, dopamine and dopaquinone related to the melanin Raper Mason pathway were detected by H-NMR. Furthermore, to achieve high bioproduction of melanin in inexpensive media include 5% molasses 5 Brix as an industrial waste, nutritional and environmental parameters were screened using response surface methodology by Box-Behnken design in which, maximum melanin yield of 5·5 g dry wt l-1 was obtained. CONCLUSIONS The bioproduction of melanin as valuable compound from P. koreensis was performed using an optimized waste medium. The purified melanin showed high radical scavenging activity and high SPF value. SIGNIFICANCE AND IMPACT OF THE STUDY Pseudomonas koreensis UIS 19 is a promising candidate for industrial production of melanin as cosmetic skin-care product.
Collapse
Affiliation(s)
- S Eskandari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Z Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
48
|
A novel melanin complex displayed the affinity to HepG2 cell membrane and nucleus. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111923. [PMID: 33641916 DOI: 10.1016/j.msec.2021.111923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 01/07/2023]
Abstract
Chitosan-melanin complex from Catharsius molossus L. has proven to possess superior pharmaceutical excipient performance and may be the new source of water-soluble protein-free natural melanin. Herein, it was enzymatically hydrolyzed into the chitooligosaccharide-melanin complex (CMC) whose main chemical units were composed of eumelanin and chitooligosaccharides and showed three-layer structures. Additionally, this biomacromolecule could self-assemble into 40 nm nanoparticles (CMC Nps) in a weakly acidic aqueous solution. Interestingly, CMC displayed strong affinity for cell membrane by binding the phosphatidylserine, glycoprotein, glycolipids and glycosaminoglycans accumulated on the surface of tumor cells, notably, CMC Nps could enter cells and mainly target the nucleus by interacting with DNA and/or RNA substrates located around the nucleus to disrupt the proliferation and apoptosis processes. The findings suggest CMC may be the novel material for subcellular organelle targeting of cancer cells.
Collapse
|
49
|
Galeb HA, Wilkinson EL, Stowell AF, Lin H, Murphy ST, Martin‐Hirsch PL, Mort RL, Taylor AM, Hardy JG. Melanins as Sustainable Resources for Advanced Biotechnological Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000102. [PMID: 33552556 PMCID: PMC7857133 DOI: 10.1002/gch2.202000102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Indexed: 05/17/2023]
Abstract
Melanins are a class of biopolymers that are widespread in nature and have diverse origins, chemical compositions, and functions. Their chemical, electrical, optical, and paramagnetic properties offer opportunities for applications in materials science, particularly for medical and technical uses. This review focuses on the application of analytical techniques to study melanins in multidisciplinary contexts with a view to their use as sustainable resources for advanced biotechnological applications, and how these may facilitate the achievement of the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Hanaa A. Galeb
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of ChemistryScience and Arts CollegeRabigh CampusKing Abdulaziz UniversityJeddah21577Saudi Arabia
| | - Emma L. Wilkinson
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Alison F. Stowell
- Department of Organisation, Work and TechnologyLancaster University Management SchoolLancaster UniversityLancasterLA1 4YXUK
| | - Hungyen Lin
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
| | - Samuel T. Murphy
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| | - Pierre L. Martin‐Hirsch
- Lancashire Teaching Hospitals NHS TrustRoyal Preston HospitalSharoe Green LanePrestonPR2 9HTUK
| | - Richard L. Mort
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Adam M. Taylor
- Lancaster Medical SchoolLancaster UniversityLancasterLA1 4YWUK
| | - John G. Hardy
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| |
Collapse
|
50
|
Fungal Extracellular Vesicles in Interkingdom Communication. Curr Top Microbiol Immunol 2021; 432:81-88. [DOI: 10.1007/978-3-030-83391-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|