1
|
Zhang H, Zheng R, Yu B, Yu Y, Luo X, Yin S, Zheng Y, Shi J, Ai S. Dissecting shared genetic architecture between depression and body mass index. BMC Med 2024; 22:455. [PMID: 39394142 PMCID: PMC11481102 DOI: 10.1186/s12916-024-03681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND A growing body of evidence supports the comorbidity between depression (DEP) and obesity, yet the genetic mechanisms underlying this association remain unclear. Our study explored the shared genetic architecture and causal associations of DEP with BMI. METHODS We investigated the multigene overlap and genetic correlation between DEP (N > 1.3 million) and BMI (N = 806,834) based on genome-wide association studies (GWAS) and using the bivariate causal mixture model and linkage disequilibrium score regression (LDSC). The causal association was explored by bi-directional Mendelian randomization (MR). Common risk loci were identified through cross-trait meta-analyses. Stratified LDSC and multi-marker gene annotation analyses were applied to investigate single-nucleotide polymorphisms enrichment across tissue types, cell types, and functional categories. Finally, we explored shared functional genes by Summary Data-Based Mendelian Randomization (SMR) and further detected differential expression genes (DEG) in brain tissues of individuals with depression and obesity. RESULTS We found a positive genetic correlation between DEP and BMI (rg = 0.19, P = 4.07 × 10-26), which was more evident in local genomic regions. Cross-trait meta-analyses identified 16 shared genetic loci, 5 of which were newly identified, and they had influence on both diseases in the same direction. MR analysis showed a bidirectional causal association between DEP and BMI, with comparable effect sizes estimated in both directions. Combined with gene expression information, we found that genetic correlations between DEP and BMI were enriched in 6 brain regions, predominantly in the nucleus accumbens and anterior cingulate cortex. Moreover, 6 specific cell types and 23 functional genes were found to have an impact on both DEP and BMI across the brain regions. Of which, NEGR1 was identified as the most significant functional gene and associated with DEP and BMI at the genome-wide significance level (P < 5 × 10-8). Compared with healthy controls, the expression levels of NEGR1 gene were significant lower in brain tissues of individuals with depression and obesity. CONCLUSIONS Our study reveals shared genetic basis underpinnings between DEP and BMI, including genetic correlations and common genes. These insights offer novel opportunities and avenues for future research into their comorbidities.
Collapse
Affiliation(s)
- Hengyu Zhang
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
| | - Rui Zheng
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 511436, China
| | - Binhe Yu
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center, Weihui, 453100, Henan, China
| | - Yuefeng Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Xiaomin Luo
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shujuan Yin
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China.
| | - Jie Shi
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Haidian District, 38 Xueyuan Road, Beijing, 100191, China.
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, 100191, China.
| | - Sizhi Ai
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center, Weihui, 453100, Henan, China.
| |
Collapse
|
2
|
Pascual-Caro C, de Juan-Sanz J. Monitoring of activity-driven trafficking of endogenous synaptic proteins through proximity labeling. PLoS Biol 2024; 22:e3002860. [PMID: 39466808 DOI: 10.1371/journal.pbio.3002860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/07/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
To enable transmission of information in the brain, synaptic vesicles fuse to presynaptic membranes, liberating their content and exposing transiently a myriad of vesicular transmembrane proteins. However, versatile methods for quantifying the synaptic translocation of endogenous proteins during neuronal activity remain unavailable, as the fast dynamics of synaptic vesicle cycling difficult specific isolation of trafficking proteins during such a transient surface exposure. Here, we developed a novel approach using synaptic cleft proximity labeling to capture and quantify activity-driven trafficking of endogenous synaptic proteins at the synapse. We show that accelerating cleft biotinylation times to match the fast dynamics of vesicle exocytosis allows capturing endogenous proteins transiently exposed at the synaptic surface during neural activity, enabling for the first time the study of the translocation of nearly every endogenous synaptic protein. As proof-of-concept, we further applied this technology to obtain direct evidence of the surface translocation of noncanonical trafficking proteins, such as ATG9A and NPTX1, which had been proposed to traffic during activity but for which direct proof had not yet been shown. The technological advancement presented here will facilitate future studies dissecting the molecular identity of proteins exocytosed at the synapse during activity, helping to define the molecular machinery that sustains neurotransmission in the mammalian brain.
Collapse
Affiliation(s)
- Carlos Pascual-Caro
- Paris Brain Institute (ICM). Sorbonne University, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jaime de Juan-Sanz
- Paris Brain Institute (ICM). Sorbonne University, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
3
|
Price T, Shiers S, Mazhar K, Wangzhou A, Haberberger R, Lesnak J, Sankaranarayanan I, Tavares-Ferreira D, Cervantes A, Funk G, Horton P, Vines E, Dussor G. Nageotte nodules in human DRG reveal neurodegeneration in painful diabetic neuropathy. RESEARCH SQUARE 2024:rs.3.rs-5006011. [PMID: 39399674 PMCID: PMC11469377 DOI: 10.21203/rs.3.rs-5006011/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Diabetic neuropathy is frequently accompanied by pain and loss of sensation attributed to axonal dieback. We recovered dorsal root ganglia (DRGs) from 90 organ donors, 19 of whom had medical indices for diabetic painful neuropathy (DPN). Nageotte nodules, dead sensory neurons engulfed by non-neuronal cells, were abundant in DPN DRGs and accounted for 25% of all neurons. Peripherin-and Nav1.7-positive dystrophic axons invaded Nageotte nodules, forming small neuroma-like structures. Using histology and spatial sequencing, we demonstrate that Nageotte nodules are mainly composed of satellite glia and non-myelinating Schwann cells that express SPP1 and are intertwined with sprouting sensory axons originating from neighboring neurons. Our findings solve a 100-year mystery of the nature of Nageotte nodules linking these pathological structures to pain and sensory loss in DPN.
Collapse
|
4
|
Shiers SI, Mazhar K, Wangzhou A, Haberberger R, Lesnak JB, Sankaranarayanan I, Tavares-Ferreira D, Cervantes A, Funk G, Horton P, Vines E, Dussor G, Price TJ. Nageotte nodules in human DRG reveal neurodegeneration in painful diabetic neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609215. [PMID: 39229145 PMCID: PMC11370606 DOI: 10.1101/2024.08.22.609215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Diabetic neuropathy is frequently accompanied by pain and loss of sensation attributed to axonal dieback. We recovered dorsal root ganglia (DRGs) from 90 organ donors, 19 of whom had medical indices for diabetic painful neuropathy (DPN). Nageotte nodules, dead sensory neurons engulfed by non-neuronal cells, were abundant in DPN DRGs and accounted for 25% of all neurons. Peripherin-and Nav1.7-positive dystrophic axons invaded Nageotte nodules, forming small neuroma-like structures. Using histology and spatial sequencing, we demonstrate that Nageotte nodules are mainly composed of satellite glia and non-myelinating Schwann cells that express SPP1 and are intertwined with sprouting sensory axons originating from neighboring neurons. Our findings solve a 100-year mystery of the nature of Nageotte nodules linking these pathological structures to pain and sensory loss in DPN.
Collapse
Affiliation(s)
- Stephanie I Shiers
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Khadijah Mazhar
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Andi Wangzhou
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | | | - Joseph B Lesnak
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Diana Tavares-Ferreira
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | | | | | | | | | - Gregory Dussor
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Theodore J Price
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| |
Collapse
|
5
|
Yan T, Boatner LM, Cui L, Tontonoz PJ, Backus KM. Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics. JACS AU 2023; 3:3506-3523. [PMID: 38155636 PMCID: PMC10751780 DOI: 10.1021/jacsau.3c00707] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
The plasma membrane proteome is a rich resource of functionally important and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here, we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of low-density lipoprotein (LDL) particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Lisa M. Boatner
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Liujuan Cui
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, United States
| | - Peter J. Tontonoz
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, United States
| | - Keriann M. Backus
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE
Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli
and Edythe
Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Yan T, Boatner LM, Cui L, Tontonoz P, Backus KM. Defining the Cell Surface Cysteinome using Two-step Enrichment Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562832. [PMID: 37904933 PMCID: PMC10614875 DOI: 10.1101/2023.10.17.562832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The plasma membrane proteome is a rich resource of functional and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of LDL particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Lisa M. Boatner
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Liujuan Cui
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Keriann M. Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095 (USA)
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095 (USA)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095 (USA)
| |
Collapse
|
7
|
Salluzzo M, Vianello C, Abdullatef S, Rimondini R, Piccoli G, Carboni L. The Role of IgLON Cell Adhesion Molecules in Neurodegenerative Diseases. Genes (Basel) 2023; 14:1886. [PMID: 37895235 PMCID: PMC10606101 DOI: 10.3390/genes14101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
In the brain, cell adhesion molecules (CAMs) are critical for neurite outgrowth, axonal fasciculation, neuronal survival and migration, and synapse formation and maintenance. Among CAMs, the IgLON family comprises five members: Opioid Binding Protein/Cell Adhesion Molecule Like (OPCML or OBCAM), Limbic System Associated Membrane Protein (LSAMP), neurotrimin (NTM), Neuronal Growth Regulator 1 (NEGR1), and IgLON5. IgLONs exhibit three N-terminal C2 immunoglobulin domains; several glycosylation sites; and a glycosylphosphatidylinositol anchoring to the membrane. Interactions as homo- or heterodimers in cis and in trans, as well as binding to other molecules, appear critical for their functions. Shedding by metalloproteases generates soluble factors interacting with cellular receptors and activating signal transduction. The aim of this review was to analyse the available data implicating a role for IgLONs in neuropsychiatric disorders. Starting from the identification of a pathological role for antibodies against IgLON5 in an autoimmune neurodegenerative disease with a poorly understood mechanism of action, accumulating evidence links IgLONs to neuropsychiatric disorders, albeit with still undefined mechanisms which will require future thorough investigations.
Collapse
Affiliation(s)
- Marco Salluzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Clara Vianello
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (C.V.); (R.R.)
| | - Sandra Abdullatef
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy; (S.A.); (G.P.)
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (C.V.); (R.R.)
| | - Giovanni Piccoli
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy; (S.A.); (G.P.)
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
8
|
Pischedda F, Ghirelli A, Tripathi V, Piccoli G. Negr1-Derived Peptides Trigger ALK Degradation and Halt Neuroblastoma Progression In Vitro and In Vivo. Pharmaceutics 2023; 15:2307. [PMID: 37765276 PMCID: PMC10536585 DOI: 10.3390/pharmaceutics15092307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroblastoma is among the most common childhood cancers. Neuroblastoma in advanced stages is one of the most intractable pediatric cancers, notwithstanding the recent therapeutic advances. ALK mutations are among the leading cause of hereditary neuroblastoma and account for more than 14% of the somatically acquired alterations. ALK kinase activity is currently one of the main targets for pharmacological strategies. However, evidence from ALK fusion-positive lung cancer studies has shown that resistance to ALK inhibition arises during the therapy, causing a relapse within several years. IgLONs are membrane-bound proteins involved in cell-to-cell adhesion. The expression of the IgLON family results altered in different cancers. We found that the IgLON member Negr1 is downregulated in neuroblastoma. The ectopic overexpression of Negr1 impairs neuroblastoma growth in vitro and in vivo. Negr1 exists as a GPI-anchored membrane-bound protein and as a soluble protein released upon metalloprotease cleavage. We generated and characterized a panel of Negr1-derived peptides. The treatment with Negr1 protein and derived peptides induce ALK downregulation and halt neuroblastoma progression in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | - Giovanni Piccoli
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| |
Collapse
|
9
|
Liu Y, Zhang M, Liu Z, Li S, Liu H, Huang R, Yi F, Zhou J. A strategy can be used to analyze intracellular interaction proteomics of cell-surface receptors. Amino Acids 2023; 55:263-273. [PMID: 36539546 DOI: 10.1007/s00726-022-03223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Comprehensive knowledge of the intracellular protein interactions of cell-surface receptors will greatly advance our comprehension of the underlying trafficking mechanisms. Hence, development of effective and high-throughput approaches is highly desired. In this work, we presented a strategy aiming to tailor toward the analysis of intracellular protein interactome of cell-surface receptors. We used α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors subunit GluA1 as an example to illustrate the methodological application. To capture intracellular proteins that interact with GluA1, after surface biotinylation of the prepared hippocampal neurons and slices, the non-biotinylated protein components as intracellular protein-enriched fraction were unconventionally applied for the following co-immunoprecipitation. The co-immuno-precipitated proteins were then analyzed through mass spectrometry-based proteomics and bioinformatics platforms. The detailed localizations indicated that intracellular proteins accounted for up to 93.7 and 90.3% of the analyzed proteins in the neurons and slices, respectively, suggesting that our protein preparation was highly effective to characterize intracellular interactome of GluA1. Further, we systematically revealed the protein functional profile of GluA1 intracellular interactome, thereby providing complete overview and better comprehension of diverse intracellular biological processes correlated with the complex GluA1 trafficking. All experimental results demonstrated that our methodology would be applicable and useful for intracellular interaction proteomics of general cell-surface receptors.
Collapse
Affiliation(s)
- Yanchen Liu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Mingming Zhang
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Zhao Liu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Shuiming Li
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hangfei Liu
- Shenzhen Wininnovate Bio-Tech Co., Ltd,, Shenzhen, 518073, China
| | - Rongzhong Huang
- ChuangXu Institute of Life Science, Chongqing, 400016, China.,Chongqing Institute of Life Science, Chongqing, 400016, China
| | - Faping Yi
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China.
| | - Jian Zhou
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China.
| |
Collapse
|
10
|
Single-cell transcriptomic analysis reveals diversity within mammalian spinal motor neurons. Nat Commun 2023; 14:46. [PMID: 36596814 PMCID: PMC9810664 DOI: 10.1038/s41467-022-35574-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Spinal motor neurons (MNs) integrate sensory stimuli and brain commands to generate movements. In vertebrates, the molecular identities of the cardinal MN types such as those innervating limb versus trunk muscles are well elucidated. Yet the identities of finer subtypes within these cell populations that innervate individual muscle groups remain enigmatic. Here we investigate heterogeneity in mouse MNs using single-cell transcriptomics. Among limb-innervating MNs, we reveal a diverse neuropeptide code for delineating putative motor pool identities. Additionally, we uncover that axial MNs are subdivided into three molecularly distinct subtypes, defined by mediolaterally-biased Satb2, Nr2f2 or Bcl11b expression patterns with different axon guidance signatures. These three subtypes are present in chicken and human embryos, suggesting a conserved axial MN expression pattern across higher vertebrates. Overall, our study provides a molecular resource of spinal MN types and paves the way towards deciphering how neuronal subtypes evolved to accommodate vertebrate motor behaviors.
Collapse
|
11
|
Kaare M, Jayaram M, Jagomäe T, Singh K, Kilk K, Mikheim K, Leevik M, Leidmaa E, Varul J, Nõmm H, Rähn K, Visnapuu T, Plaas M, Lilleväli K, Schäfer MKE, Philips MA, Vasar E. Depression-Associated Negr1 Gene-Deficiency Induces Alterations in the Monoaminergic Neurotransmission Enhancing Time-Dependent Sensitization to Amphetamine in Male Mice. Brain Sci 2022; 12:1696. [PMID: 36552158 PMCID: PMC9776224 DOI: 10.3390/brainsci12121696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
In GWAS studies, the neural adhesion molecule encoding the neuronal growth regulator 1 (NEGR1) gene has been consistently linked with both depression and obesity. Although the linkage between NEGR1 and depression is the strongest, evidence also suggests the involvement of NEGR1 in a wide spectrum of psychiatric conditions. Here we show the expression of NEGR1 both in tyrosine- and tryptophan hydroxylase-positive cells. Negr1-/- mice show a time-dependent increase in behavioral sensitization to amphetamine associated with increased dopamine release in both the dorsal and ventral striatum. Upregulation of transcripts encoding dopamine and serotonin transporters and higher levels of several monoamines and their metabolites was evident in distinct brain areas of Negr1-/- mice. Chronic (23 days) escitalopram-induced reduction of serotonin and dopamine turnover is enhanced in Negr1-/- mice, and escitalopram rescued reduced weight of hippocampi in Negr1-/- mice. The current study is the first to show alterations in the brain monoaminergic systems in Negr1-deficient mice, suggesting that monoaminergic neural circuits contribute to both depressive and obesity-related phenotypes linked to the human NEGR1 gene.
Collapse
Affiliation(s)
- Maria Kaare
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Mohan Jayaram
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Toomas Jagomäe
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Centre, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Katyayani Singh
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kalle Kilk
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Kaie Mikheim
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Marko Leevik
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53129 Bonn, Germany
| | - Jane Varul
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Helis Nõmm
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kristi Rähn
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Tanel Visnapuu
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Mario Plaas
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Centre, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Kersti Lilleväli
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Michael K. E. Schäfer
- Department of Anesthesiology, Focus Program Translational Neurosciences, Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
- Focus Program Translational Neurosciences, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Mari-Anne Philips
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
12
|
Shuster SA, Li J, Chon UR, Sinantha-Hu MC, Luginbuhl DJ, Udeshi ND, Carey DK, Takeo YH, Xie Q, Xu C, Mani DR, Han S, Ting AY, Carr SA, Luo L. In situ cell-type-specific cell-surface proteomic profiling in mice. Neuron 2022; 110:3882-3896.e9. [PMID: 36220098 PMCID: PMC9742329 DOI: 10.1016/j.neuron.2022.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Cell-surface proteins (CSPs) mediate intercellular communication throughout the lives of multicellular organisms. However, there are no generalizable methods for quantitative CSP profiling in specific cell types in vertebrate tissues. Here, we present in situ cell-surface proteome extraction by extracellular labeling (iPEEL), a proximity labeling method in mice that enables spatiotemporally precise labeling of cell-surface proteomes in a cell-type-specific environment in native tissues for discovery proteomics. Applying iPEEL to developing and mature cerebellar Purkinje cells revealed differential enrichment in CSPs with post-translational protein processing and synaptic functions in the developing and mature cell-surface proteomes, respectively. A proteome-instructed in vivo loss-of-function screen identified a critical, multifaceted role for Armh4 in Purkinje cell dendrite morphogenesis. Armh4 overexpression also disrupts dendrite morphogenesis; this effect requires its conserved cytoplasmic domain and is augmented by disrupting its endocytosis. Our results highlight the utility of CSP profiling in native mammalian tissues for identifying regulators of cell-surface signaling.
Collapse
Affiliation(s)
- S Andrew Shuster
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, CA 94305, USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - URee Chon
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, CA 94305, USA
| | - Miley C Sinantha-Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Yukari H Takeo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, CA 94305, USA
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Watson LS, Wilken-Resman B, Williams A, DiLucia S, Sanchez G, McLeod TL, Sims-Robinson C. Hyperinsulinemia alters insulin receptor presentation and internalization in brain microvascular endothelial cells. Diab Vasc Dis Res 2022; 19:14791641221118626. [PMID: 35975361 PMCID: PMC9393688 DOI: 10.1177/14791641221118626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Insulin receptors are internalized by endothelial cells to facilitate their physiological processes; however, the impact of hyperinsulinemia in brain endothelial cells is not known. Thus, the aim of this study was to elucidate the impact hyperinsulinemia plays on insulin receptor internalization through changes in phosphorylation, as well as the potential impact of protein tyrosine phosphatase 1B (PTP1B). Hippocampal microvessels were isolated from high-fat diet fed mice and assessed for insulin signaling activation, a process known to be involved with receptor internalization. Surface insulin receptors in brain microvascular endothelial cells were labelled to assess the role hyperinsulinemia plays on receptor internalization in response to stimulation, with and without the PTP1B antagonist, Claramine. Our results indicated that insulin receptor levels increased in tandem with decreased receptor signaling in the high-fat diet mouse microvessels. Insulin receptors of cells subjected to hyperinsulinemic treatment demonstrate splice variation towards decreased IR-A mRNA expression and demonstrate a higher membrane-localized proportion. This corresponded with decreased autophosphorylation at sites critical for receptor internalization and signaling. Claramine restored signaling and receptor internalization in cells treated with hyperinsulinemia. In conclusion, hyperinsulinemia impacts brain microvascular endothelial cell insulin receptor signaling and internalization, likely via alternative splicing and increased negative feedback from PTP1B.
Collapse
Affiliation(s)
- Luke S Watson
- Department of Neurology, Medical University of South
Carolina, Charleston, SC, USA
- Molecular and Cellular Biology and
Pathobiology Program, Medical University of South
Carolina, Charleston, SC, USA
| | - Brynna Wilken-Resman
- Molecular and Cellular Biology and
Pathobiology Program, Medical University of South
Carolina, Charleston, SC, USA
| | - Alexus Williams
- Molecular and Cellular Biology and
Pathobiology Program, Medical University of South
Carolina, Charleston, SC, USA
| | - Stephanie DiLucia
- Department of Neurology, Medical University of South
Carolina, Charleston, SC, USA
- Molecular and Cellular Biology and
Pathobiology Program, Medical University of South
Carolina, Charleston, SC, USA
| | - Guadalupe Sanchez
- Molecular and Cellular Biology and
Pathobiology Program, Medical University of South
Carolina, Charleston, SC, USA
| | - Taylor L McLeod
- Molecular and Cellular Biology and
Pathobiology Program, Medical University of South
Carolina, Charleston, SC, USA
| | - Catrina Sims-Robinson
- Molecular and Cellular Biology and
Pathobiology Program, Medical University of South
Carolina, Charleston, SC, USA
- Catrina Sims-Robinson, PhD, Molecular and
Cellular Biology and Pathobiology Program, Medical University of South Carolina,
96 Jonathan Lucas Street Suite 309D2 CSB, MSC 606, Charleston, SC 29425-2503,
USA.
| |
Collapse
|
14
|
Dall’Aglio L, Lewis CM, Pain O. Delineating the Genetic Component of Gene Expression in Major Depression. Biol Psychiatry 2021; 89:627-636. [PMID: 33279206 PMCID: PMC7886308 DOI: 10.1016/j.biopsych.2020.09.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Major depression (MD) is determined by a multitude of factors including genetic risk variants that regulate gene expression. We examined the genetic component of gene expression in MD by performing a transcriptome-wide association study (TWAS), inferring gene expression-trait relationships from genetic, transcriptomic, and phenotypic information. METHODS Genes differentially expressed in depression were identified with the TWAS FUSION method, based on summary statistics from the largest genome-wide association analysis of MD (n = 135,458 cases, n = 344,901 controls) and gene expression levels from 21 tissue datasets (brain; blood; thyroid, adrenal, and pituitary glands). Follow-up analyses were performed to extensively characterize the identified associations: colocalization, conditional, and fine-mapping analyses together with TWAS-based pathway investigations. RESULTS Transcriptome-wide significant differences between cases and controls were found at 94 genes, approximately half of which were novel. Of the 94 significant genes, 6 represented strong, colocalized, and potentially causal associations with depression. Such high-confidence associations include NEGR1, CTC-467M3.3, TMEM106B, LRFN5, ESR2, and PROX2. Lastly, TWAS-based enrichment analysis highlighted dysregulation of gene sets for, among others, neuronal and synaptic processes. CONCLUSIONS This study sheds further light on the genetic component of gene expression in depression by characterizing the identified associations, unraveling novel risk genes, and determining which associations are congruent with a causal model. These findings can be used as a resource for prioritizing and designing subsequent functional studies of MD.
Collapse
Affiliation(s)
- Lorenza Dall’Aglio
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom,Department of Child and Adolescent Psychiatry, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands,Generation R Study Group, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cathryn M. Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom,Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Oliver Pain
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
15
|
Spagnolli G, Massignan T, Astolfi A, Biggi S, Rigoli M, Brunelli P, Libergoli M, Ianeselli A, Orioli S, Boldrini A, Terruzzi L, Bonaldo V, Maietta G, Lorenzo NL, Fernandez LC, Codeseira YB, Tosatto L, Linsenmeier L, Vignoli B, Petris G, Gasparotto D, Pennuto M, Guella G, Canossa M, Altmeppen HC, Lolli G, Biressi S, Pastor MM, Requena JR, Mancini I, Barreca ML, Faccioli P, Biasini E. Pharmacological inactivation of the prion protein by targeting a folding intermediate. Commun Biol 2021; 4:62. [PMID: 33437023 PMCID: PMC7804251 DOI: 10.1038/s42003-020-01585-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023] Open
Abstract
Recent computational advancements in the simulation of biochemical processes allow investigating the mechanisms involved in protein regulation with realistic physics-based models, at an atomistic level of resolution. These techniques allowed us to design a drug discovery approach, named Pharmacological Protein Inactivation by Folding Intermediate Targeting (PPI-FIT), based on the rationale of negatively regulating protein levels by targeting folding intermediates. Here, PPI-FIT was tested for the first time on the cellular prion protein (PrP), a cell surface glycoprotein playing a key role in fatal and transmissible neurodegenerative pathologies known as prion diseases. We predicted the all-atom structure of an intermediate appearing along the folding pathway of PrP and identified four different small molecule ligands for this conformer, all capable of selectively lowering the load of the protein by promoting its degradation. Our data support the notion that the level of target proteins could be modulated by acting on their folding pathways, implying a previously unappreciated role for folding intermediates in the biological regulation of protein expression. Spagnolli, Massignan, Astolfi et al. design a new drug discovery approach, termed Pharmacological Protein Inactivation by Folding Intermediate Targeting, in which folding intermediates of disease-causing proteins are targeted. They test it on the cellular prion protein, identifying ligands stabilizing a folding intermediate and consequently promoting its degradation by the cellular quality control machinery.
Collapse
Affiliation(s)
- Giovanni Spagnolli
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123, Povo, TN, Italy.,Dulbecco Telethon Institute, University of Trento, 38123, Povo, TN, Italy
| | - Tania Massignan
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123, Povo, TN, Italy.,Dulbecco Telethon Institute, University of Trento, 38123, Povo, TN, Italy.,Sibylla Biotech SRL, 37121, Verona, VR, Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, PG, Italy
| | - Silvia Biggi
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123, Povo, TN, Italy.,Dulbecco Telethon Institute, University of Trento, 38123, Povo, TN, Italy
| | - Marta Rigoli
- Department of Physics, University of Trento, Povo, Trento, TN, Italy
| | - Paolo Brunelli
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123, Povo, TN, Italy.,Dulbecco Telethon Institute, University of Trento, 38123, Povo, TN, Italy
| | - Michela Libergoli
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123, Povo, TN, Italy.,Dulbecco Telethon Institute, University of Trento, 38123, Povo, TN, Italy
| | - Alan Ianeselli
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123, Povo, TN, Italy.,Dulbecco Telethon Institute, University of Trento, 38123, Povo, TN, Italy
| | - Simone Orioli
- Department of Physics, University of Trento, Povo, Trento, TN, Italy.,INFN-TIFPA, University of Trento, Povo, Trento, TN, Italy
| | - Alberto Boldrini
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123, Povo, TN, Italy.,Sibylla Biotech SRL, 37121, Verona, VR, Italy
| | - Luca Terruzzi
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123, Povo, TN, Italy.,Sibylla Biotech SRL, 37121, Verona, VR, Italy
| | - Valerio Bonaldo
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123, Povo, TN, Italy.,Dulbecco Telethon Institute, University of Trento, 38123, Povo, TN, Italy
| | - Giulia Maietta
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123, Povo, TN, Italy.,Dulbecco Telethon Institute, University of Trento, 38123, Povo, TN, Italy
| | - Nuria L Lorenzo
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Leticia C Fernandez
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Yaiza B Codeseira
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Laura Tosatto
- Institute of Biophysics, National Council of Research, 38123 Povo, Trento, TN, Italy
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Beatrice Vignoli
- Department of Physics, University of Trento, Povo, Trento, TN, Italy
| | - Gianluca Petris
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123, Povo, TN, Italy
| | - Dino Gasparotto
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123, Povo, TN, Italy.,Dulbecco Telethon Institute, University of Trento, 38123, Povo, TN, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy
| | - Graziano Guella
- Department of Physics, University of Trento, Povo, Trento, TN, Italy
| | - Marco Canossa
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123, Povo, TN, Italy
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Graziano Lolli
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123, Povo, TN, Italy
| | - Stefano Biressi
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123, Povo, TN, Italy.,Dulbecco Telethon Institute, University of Trento, 38123, Povo, TN, Italy
| | - Manuel M Pastor
- RIAIDT, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Jesús R Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Ines Mancini
- Department of Physics, University of Trento, Povo, Trento, TN, Italy
| | - Maria L Barreca
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, PG, Italy.
| | - Pietro Faccioli
- Department of Physics, University of Trento, Povo, Trento, TN, Italy. .,INFN-TIFPA, University of Trento, Povo, Trento, TN, Italy.
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123, Povo, TN, Italy. .,Dulbecco Telethon Institute, University of Trento, 38123, Povo, TN, Italy.
| |
Collapse
|
16
|
Minehart JA, Speer CM. A Picture Worth a Thousand Molecules-Integrative Technologies for Mapping Subcellular Molecular Organization and Plasticity in Developing Circuits. Front Synaptic Neurosci 2021; 12:615059. [PMID: 33469427 PMCID: PMC7813761 DOI: 10.3389/fnsyn.2020.615059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
A key challenge in developmental neuroscience is identifying the local regulatory mechanisms that control neurite and synaptic refinement over large brain volumes. Innovative molecular techniques and high-resolution imaging tools are beginning to reshape our view of how local protein translation in subcellular compartments drives axonal, dendritic, and synaptic development and plasticity. Here we review recent progress in three areas of neurite and synaptic study in situ-compartment-specific transcriptomics/translatomics, targeted proteomics, and super-resolution imaging analysis of synaptic organization and development. We discuss synergies between sequencing and imaging techniques for the discovery and validation of local molecular signaling mechanisms regulating synaptic development, plasticity, and maintenance in circuits.
Collapse
Affiliation(s)
| | - Colenso M. Speer
- Department of Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|
17
|
Brugger SW, Gardner MC, Beales JT, Briggs F, Davis MF. Depression in multiple sclerosis patients associated with risk variant near NEGR1. Mult Scler Relat Disord 2020; 46:102537. [PMID: 33296963 DOI: 10.1016/j.msard.2020.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/09/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND A substantial number of patients diagnosed with multiple sclerosis (MS) suffer from depression in addition to physical symptoms and disability. Recent evidence suggests a stronger relationship may exist between MS and depression than previously thought, in which a diagnosis of depression may be prodromic to the development of MS. METHODS A genome-wide association study (GWAS) was performed to identify genetic variants associated with the development of depression in a cohort of MS patients. The control group (n = 1180) was composed of MS patients with no diagnoses of depression as determined by ICD-9 and ICD-10 billing codes present in the electronic health record (EHR). Separate analyses were performed for three different case groups: 1) MS patients having a depression diagnosis at any time (n = 182), 2) MS patients having a depression diagnosis one year pre-MS diagnosis (n = 27), and 3) MS patients having a depression diagnosis one year post-MS diagnosis (n = 130). Logistic regression analyses were also performed to test for associations between the development of depression and an APOE tagging variant, as APOE was previously linked to depressive affect in MS. An additional logistic regression analysis tested for associations between depression in MS patients and SNPs associated with depression in the general population. Pathway enrichment analyses were also conducted to identify pathways that link the two diseases. RESULTS GWAS identified no novel associations between variants and a diagnosis of depression relative to a diagnosis of MS. One variant, rs1432639, associated with depression in the general population, was significantly associated with the development of depression post-MS diagnosis. The APOE-related SNPs were not associated with depression in this study population. An IGF1 pathway approached statistical significance in patients diagnosed with depression prior to a diagnosis of MS. CONCLUSION rs1432639 and the IGF1 pathway provide evidence for a genetic link between MS and depression that warrants further research.
Collapse
Affiliation(s)
- Steven W Brugger
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - M Cannon Gardner
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Jeremy T Beales
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Farren Briggs
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Mary F Davis
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States; Department Biomedical Informatics, Vanderbilt University, Nashville, Tennessee, United States.
| |
Collapse
|
18
|
Venkannagari H, Kasper JM, Misra A, Rush SA, Fan S, Lee H, Sun H, Seshadrinathan S, Machius M, Hommel JD, Rudenko G. Highly Conserved Molecular Features in IgLONs Contrast Their Distinct Structural and Biological Outcomes. J Mol Biol 2020; 432:5287-5303. [PMID: 32710982 DOI: 10.1016/j.jmb.2020.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
Neuronal growth regulator 1 (NEGR1) and neurotrimin (NTM) are abundant cell-surface proteins found in the brain and form part of the IgLON (Immunoglobulin LSAMP, OBCAM, Neurotrimin) family. In humans, NEGR1 is implicated in obesity and mental disorders, while NTM is linked to intelligence and cognitive function. IgLONs dimerize homophilically and heterophilically, and they are thought to shape synaptic connections and neural circuits by acting in trans (spanning cellular junctions) and/or in cis (at the same side of a junction). Here, we reveal homodimeric structures of NEGR1 and NTM. They assemble into V-shaped complexes via their Ig1 domains, and disruption of the Ig1-Ig1 interface abolishes dimerization in solution. A hydrophobic ridge from one Ig1 domain inserts into a hydrophobic pocket from the opposing Ig1 domain producing an interaction interface that is highly conserved among IgLONs but remarkably plastic structurally. Given the high degree of sequence conservation at the interaction interface, we tested whether different IgLONs could elicit the same biological effect in vivo. In a small-scale study administering different soluble IgLONs directly into the brain and monitoring feeding, only NEGR1 altered food intake significantly. Taking NEGR1 as a prototype, our studies thus indicate that while IgLONs share a conserved mode of interaction and are able to bind each other as homomers and heteromers, they are structurally plastic and can exert unique biological action.
Collapse
Affiliation(s)
- Harikanth Venkannagari
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - James M Kasper
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Anurag Misra
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Scott A Rush
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shanghua Fan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hubert Lee
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hong Sun
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Suchithra Seshadrinathan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mischa Machius
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jonathan D Hommel
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gabby Rudenko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
19
|
Depression-Associated Gene Negr1-Fgfr2 Pathway Is Altered by Antidepressant Treatment. Cells 2020; 9:cells9081818. [PMID: 32751911 PMCID: PMC7464991 DOI: 10.3390/cells9081818] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Negr1 gene has been significantly associated with major depression in genetic studies. Negr1 encodes for a cell adhesion molecule cleaved by the protease Adam10, thus activating Fgfr2 and promoting neuronal spine plasticity. We investigated whether antidepressants modulate the expression of genes belonging to Negr1-Fgfr2 pathway in Flinders sensitive line (FSL) rats, in a corticosterone-treated mouse model of depression, and in mouse primary neurons. Negr1 and Adam10 were the genes mostly affected by antidepressant treatment, and in opposite directions. Negr1 was down-regulated by escitalopram in the hypothalamus of FSL rats, by fluoxetine in the hippocampal dentate gyrus of corticosterone-treated mice, and by nortriptyline in hippocampal primary neurons. Adam10 mRNA was increased by nortriptyline administration in the hypothalamus, by escitalopram in the hippocampus of FSL rats, and by fluoxetine in mouse dorsal dentate gyrus. Similarly, nortriptyline increased Adam10 expression in hippocampal cultures. Fgfr2 expression was increased by nortriptyline in the hypothalamus of FSL rats and in hippocampal neurons. Lsamp, another IgLON family protein, increased in mouse dentate gyrus after fluoxetine treatment. These findings suggest that Negr1-Fgfr2 pathway plays a role in the modulation of synaptic plasticity induced by antidepressant treatment to promote therapeutic efficacy by rearranging connectivity in corticolimbic circuits impaired in depression.
Collapse
|
20
|
Bouza AA, Philippe JM, Edokobi N, Pinsky AM, Offord J, Calhoun JD, Lopez-Florán M, Lopez-Santiago LF, Jenkins PM, Isom LL. Sodium channel β1 subunits are post-translationally modified by tyrosine phosphorylation, S-palmitoylation, and regulated intramembrane proteolysis. J Biol Chem 2020; 295:10380-10393. [PMID: 32503841 PMCID: PMC7383382 DOI: 10.1074/jbc.ra120.013978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/02/2020] [Indexed: 01/05/2023] Open
Abstract
Voltage-gated sodium channel (VGSC) β1 subunits are multifunctional proteins that modulate the biophysical properties and cell-surface localization of VGSC α subunits and participate in cell-cell and cell-matrix adhesion, all with important implications for intracellular signal transduction, cell migration, and differentiation. Human loss-of-function variants in SCN1B, the gene encoding the VGSC β1 subunits, are linked to severe diseases with high risk for sudden death, including epileptic encephalopathy and cardiac arrhythmia. We showed previously that β1 subunits are post-translationally modified by tyrosine phosphorylation. We also showed that β1 subunits undergo regulated intramembrane proteolysis via the activity of β-secretase 1 and γ-secretase, resulting in the generation of a soluble intracellular domain, β1-ICD, which modulates transcription. Here, we report that β1 subunits are phosphorylated by FYN kinase. Moreover, we show that β1 subunits are S-palmitoylated. Substitution of a single residue in β1, Cys-162, to alanine prevented palmitoylation, reduced the level of β1 polypeptides at the plasma membrane, and reduced the extent of β1-regulated intramembrane proteolysis, suggesting that the plasma membrane is the site of β1 proteolytic processing. Treatment with the clathrin-mediated endocytosis inhibitor, Dyngo-4a, re-stored the plasma membrane association of β1-p.C162A to WT levels. Despite these observations, palmitoylation-null β1-p.C162A modulated sodium current and sorted to detergent-resistant membrane fractions normally. This is the first demonstration of S-palmitoylation of a VGSC β subunit, establishing precedence for this post-translational modification as a regulatory mechanism in this protein family.
Collapse
Affiliation(s)
- Alexandra A Bouza
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Julie M Philippe
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nnamdi Edokobi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexa M Pinsky
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - James Offord
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jeffrey D Calhoun
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mariana Lopez-Florán
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Luis F Lopez-Santiago
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lori L Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Tassano E, Uccella S, Giacomini T, Fiorio P, Tavella E, Malacarne M, Gimelli G, Coviello D, Ronchetto P. 1p31.1 microdeletion including only NEGR1 gene in two patients. Eur J Med Genet 2020; 63:103919. [PMID: 32209393 DOI: 10.1016/j.ejmg.2020.103919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/10/2020] [Accepted: 03/18/2020] [Indexed: 01/21/2023]
Abstract
Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been involved in neuronal growth and connectivity. Genetic variants, in or near the NEGR1 locus, have been associated with obesity and, more recently, with learning difficulties, intellectual disability, and psychiatric disorders. Here, we described the only second report of NEGR1 gene disruption in 1p31.1 microdeletion in two patients. Patient 1 is a 14-year-old female with neurological and psychiatric features present also in her family. Patient 2 is a 5-month-old infant showing global hypotonia as unique neurological features till now. This patient also carries 7p22.1 duplication, of paternal origin, that could be responsible for some malformations present in the child. We hypothesize a role of NEGR1 in producing the phenotype of our patients and compare them with other cases previously reported in the literature and DECIPHER database to better identify a possible genotype-phenotype correlation.
Collapse
Affiliation(s)
- Elisa Tassano
- Laboratory of Cytogenetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Sara Uccella
- Unit of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Thea Giacomini
- Unit of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Patrizia Fiorio
- Laboratory of Cytogenetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elisa Tavella
- Laboratory of Cytogenetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michela Malacarne
- Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giorgio Gimelli
- Laboratory of Cytogenetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Domenico Coviello
- Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia Ronchetto
- Laboratory of Cytogenetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
22
|
Integrating genome-wide association study and expression quantitative trait loci data identifies NEGR1 as a causal risk gene of major depression disorder. J Affect Disord 2020; 265:679-686. [PMID: 32090785 DOI: 10.1016/j.jad.2019.11.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 10/31/2019] [Accepted: 11/28/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified several genetic variants associated with major depression disorder (MDD). However, pinpointing the causal variants which are responsible for the association signal at a risk locus remains a major challenge. METHODS We used Summary data-based Mendelian Randomization (SMR) with Psychiatric Genomics Consortium (PGC) GWAS summary and brain expression quantitative trait loci (eQTL) data to identify genes whose expression levels are causally associated with MDD. Then we performed differential expression analysis, methylation quantitative trait loci analysis, and cognitive genetics analysis to investigate the potential roles of risk genes in the pathogenesis of MDD. RESULTS Through SMR integrative analysis, we identified the SNP rs10789336 located in Neuronal growth regulator 1 (NEGR1) gene significantly affected the expression level of RPL31P12 in brain tissues and contributed to the risk of MDD (P = 1.96 × 10-6). Consistently, the SNP rs10789336 was associated with the methylation levels of three nearby DNA methylation sites, including cg09256413 (NEGR1, P=1.72 × 10-10), cg11418303 (prostaglandin E receptor 3 [PTGER3], P = 4.78 × 10-6), and cg23032215 (ZRANB2 antisense RNA 2 [ZRANB2-AS2], P = 1.23 × 10-4). Differential expression analysis suggested that the NEGR1 gene was upregulated in prefrontal cortex (P = 5.14 × 10-3). Cognitive genetics analysis showed that the SNP rs10789336 was associated with cognitive performance (P = 2.41 × 10-16), educational attainment (P = 1.75 × 10-14), general cognitive function (P = 2.65 × 10-12), and verbal numerical reasoning (P = 1.36 × 10-12). CONCLUSION Collectively, our results revealed that the SNP rs10789336 in NEGR1 might confer risk to MDD. Further investigation of the roles of NEGR1 in the pathogenesis of MDD is warranted.
Collapse
|
23
|
Noh K, Park JC, Han JS, Lee SJ. From Bound Cells Comes a Sound Mind: The Role of Neuronal Growth Regulator 1 in Psychiatric Disorders. Exp Neurobiol 2020; 29:1-10. [PMID: 32122104 PMCID: PMC7075657 DOI: 10.5607/en.2020.29.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Cell-to-cell adhesion is important for maintenance of brain structure and function. Abnormal neuronal cell adhesion and loss of its connectivity are considered a main cause of psychiatric disorders such as major depressive disorder (MDD). Various cell adhesion molecules (CAMs) are involved in neuronal cell adhesions and thereby affect brain functions such as learning and memory, cognitive functions, and psychiatric functions. Compared with other CAMs, neuronal growth regulator 1 (Negr1) has a distinct functioning mechanism in terms of its cross-talk with cytokine receptor signaling. Negr1 is a member of the immunoglobulin LON (IgLON) family of proteins and is involved in neuronal outgrowth, dendritic arborization, and synapse formation. In humans, Negr1 is a risk gene for obesity based on a genome-wide association study. More recently, accumulating evidence supports that it also plays a critical role in psychiatric disorders. In this review, we discuss the recent findings on the role of Negr1 in MDD, focusing on its regulatory mechanism. We also provide evidence of putative involvement of Negr1 in other psychiatric disorders based on the novel behavioral phenotypes of Negr1 knockout mice.
Collapse
Affiliation(s)
- Kyungchul Noh
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea
| | - Jung-Cheol Park
- Department of Biological Science, Konkuk University, Seoul 05029, Korea
| | - Jung-Soo Han
- Department of Biological Science, Konkuk University, Seoul 05029, Korea
| | - Sung Joong Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea
| |
Collapse
|
24
|
Wang X, Xu G, Yang N, Yan Y, Wu G, Sun C. Differential proteomic analysis revealed crucial egg white proteins for hatchability of chickens. Poult Sci 2019; 98:7076-7089. [PMID: 31424521 PMCID: PMC8913984 DOI: 10.3382/ps/pez459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/26/2019] [Indexed: 11/20/2022] Open
Abstract
For healthy development, an avian embryo needs the nutritional and functional molecules maternally deposited in avian eggs. Egg white not only provides nutritional components but also exhibits functional properties, such as defenses against microbial invasion. However, the roles of the more detailed messages in embryo development remain unclear. In this study, a tandem mass tag labeling quantitation approach was used to innovatively identify the differential proteins in the egg whites of fresh eggs produced by hens with divergent high/low hatchability and in the egg whites of embryonated eggs with healthy and dead embryos. A total of 378 proteins were quantified in egg white, which is the most complete proteome identified for egg white to date, and up to 102 differential proteins were identified. GO enrichment, pathway, and hierarchical clustering analysis revealed some of the differential proteins that are the main participants in several biological processes, including blood coagulation, intermediate filament, antibacterial activity, and neurodevelopment. A list of 11 putative protein biomarkers, such as keratin (KRT19, KRT12, KRT15, and KRT6A), which is involved in cell architecture, and fibrinogen (fibrinogen alpha chain, fibrinogen beta chain, and fibrinogen gamma chain), which is related to blood coagulation, were ultimately screened. The current study screened egg white proteins that can predict low hatchability and embryonic death and deciphered the role of these proteins in embryonic development, which is meaningful for the comprehensive understanding of embryonic growth.
Collapse
Affiliation(s)
- Xiqiong Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yiyuan Yan
- Beijing Engineering Research Center of Layer, Beijing 101206, China
| | - Guiqin Wu
- Beijing Engineering Research Center of Layer, Beijing 101206, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Breton E, Gagné-Ouellet V, Thibeault K, Guérin R, Van Lieshout R, Perron P, Hivert M, Bouchard L. Placental NEGR1 DNA methylation is associated with BMI and neurodevelopment in preschool-age children. Epigenetics 2019; 15:323-335. [PMID: 31510847 DOI: 10.1080/15592294.2019.1666653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Studies have linked maternal pre-pregnancy obesity and hyperglycaemia with metabolic and neurodevelopmental complications in childhood. DNA methylation (DNAm) might enable foetal adaptations to environmental adversities through important gene loci. NEGR1 is involved in both energy balance and behaviour regulation. The aim of this study was to investigate associations between placental DNAm at the NEGR1 gene locus and childhood anthropometric and neurodevelopmental profiles in preschoolers. We analysed 276 mother-child dyads from Gen3G, a prospective birth cohort from Sherbrooke. At 3yo (40.4 ± 3.0 months), we measured body mass index (BMI) and the mothers reported on offspring neurobehavior using the Strengths and Difficulties Questionnaire (SDQ). We quantified DNAm levels at 30 CpGs at the NEGR1 locus using the MethylationEPIC Array in placental biopsies. DNAm at four CpGs located before NEGR1 second exon predicted child's BMI z-score (cg26153364: β=-0.16 ± 0.04; p=0.008, cg23166710: β=0.14 ± 0.08; p=0.03) and SDQ total score (cg04932878: β=0.22 ± 1.0; p= 3.0x10-4, cg16525738: β=-0.14 ± 0.18; p=0.01, cg23166710: β=-0.13 ± 0.36; p= 0.04), explaining 4.2% (p=0.003) and 7.3% (p= 1.3 x 10-4) of BMI-z and SDQ variances. cg23166710 was associated with both childhood phenotypes and correlated with NEGR1 placental expression (r=-0.22, p=0.04), suggesting its possible functional role. Together, maternal metabolic characteristics during pregnancy with NEGR1 DNAm levels explained 7.4% (p=4.2 x 10-4) of BMI-z and 14.2% (p=2.8 x 10-7) of SDQ variance at 3yo. This longitudinal study suggests that placental NEGR1 DNAm is associated with adiposity and neurodevelopment in preschool children and highlights its potential role in their comorbidity.
Collapse
Affiliation(s)
- E Breton
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - V Gagné-Ouellet
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - K Thibeault
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - R Guérin
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC, Canada
| | - Rj Van Lieshout
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - P Perron
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mf Hivert
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA.,Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - L Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC, Canada
| |
Collapse
|
26
|
Zhang Q, Liu C, Li Q, Li J, Wu Y, Liu J. MicroRNA-25-5p counteracts oxidized LDL-induced pathological changes by targeting neuronal growth regulator 1 (NEGR1) in human brain micro-vessel endothelial cells. Biochimie 2019; 165:141-149. [PMID: 31365884 DOI: 10.1016/j.biochi.2019.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
MicroRNA-25-5p (miR-25-5p) may be involved in the pathogenesis and processes of vascular diseases. The aim of this study was to investigate the role of miR-25-5p in oxidized low-density lipoprotein (ox-LDL)-treated human brain microvessel endothelial cells (HBMECs) and the underlying mechanisms. RT-qPCR and/or Western blot were used to detect the expression levels of miR-25-5p and neuronal growth regulator 1 (NEGR1). The effect of miR-25-5p overexpression and NEGR1 silencing on cell proliferation, migration, apoptosis and reactive oxygen species (ROS) production of HBMECs were measured by using CCK-8 assay, transwell assay and flow cytometry, respectively. The expression levels of apoptosis-related protein (cleaved caspase-3 and pro-caspase-3) were detected using Western blot, and the nitric oxide (NO) production was measured by a nitric oxide assay kit. The expression level of miR-25-5p was decreased in HBMECs treated with ox-LDL. Compared with the control group, miR-25-5p overexpression significantly promoted the proliferation and migration of HBMECs treated with ox-LDL (p < 0.01). Overexpression of miR-25-5p significantly suppressed cell apoptosis, ROS production and NO reduction of ox-LDL-induced HBMECs (p < 0.01). In addition, the target gene of miR-25-5p was predicted to be NEGR1 through Targetscan online analysis. The effect of NEGR1 silencing on cell proliferation, migration, apoptosis, ROS and NO production of ox-LDL-induced HBMECs was similar to that of miR-25-5p overexpression. Furthermore, miR-25-5p overexpression and NEGR1 silencing significantly downregulated the protein expression levels of JAK2 and STAT3. Thus, miR-25-5p neutralizes the effects of ox-LDL on multiple functions of HBMECs through suppressing the expression of NEGR1 via regulating the JAK/STA signaling pathway.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cerebrovascular Diseases, Blue Cross Brain Hospital Affiliated to Tongji University, Shanghai, 201101, China.
| | - Chun Liu
- Department of Cerebrovascular Diseases, Blue Cross Brain Hospital Affiliated to Tongji University, Shanghai, 201101, China
| | - Qiang Li
- Department of Neurosurgery, Changhai Hospital of Shanghai Affiliated to Naval Military Medical University, Shanghai, 200433, China
| | - Jianan Li
- Department of Neurosurgery, Changhai Hospital of Shanghai Affiliated to Naval Military Medical University, Shanghai, 200433, China
| | - Yina Wu
- Department of Neurosurgery, Changhai Hospital of Shanghai Affiliated to Naval Military Medical University, Shanghai, 200433, China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital of Shanghai Affiliated to Naval Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
27
|
Szczurkowska J, Pischedda F, Pinto B, Managò F, Haas CA, Summa M, Bertorelli R, Papaleo F, Schäfer MK, Piccoli G, Cancedda L. NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice. Brain 2019; 141:2772-2794. [PMID: 30059965 PMCID: PMC6113639 DOI: 10.1093/brain/awy190] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/04/2018] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorders are neurodevelopmental conditions with diverse aetiologies, all characterized by common core symptoms such as impaired social skills and communication, as well as repetitive behaviour. Cell adhesion molecules, receptor tyrosine kinases and associated downstream signalling have been strongly implicated in both neurodevelopment and autism spectrum disorders. We found that downregulation of the cell adhesion molecule NEGR1 or the receptor tyrosine kinase fibroblast growth factor receptor 2 (FGFR2) similarly affects neuronal migration and spine density during mouse cortical development in vivo and results in impaired core behaviours related to autism spectrum disorders. Mechanistically, NEGR1 physically interacts with FGFR2 and modulates FGFR2-dependent extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) signalling by decreasing FGFR2 degradation from the plasma membrane. Accordingly, FGFR2 overexpression rescues all defects due to Negr1 knockdown in vivo. Negr1 knockout mice present phenotypes similar to Negr1-downregulated animals. These data indicate that NEGR1 and FGFR2 cooperatively regulate cortical development and suggest a role for defective NEGR1-FGFR2 complex and convergent downstream ERK and AKT signalling in autism spectrum disorders.
Collapse
Affiliation(s)
- Joanna Szczurkowska
- Local Micro-environment and Brain Development Laboratory, Italian Institute of Technology, Genoa, Italy.,Università degli Studi di Genova, Via Balbi, 5, Genoa, Italy
| | - Francesca Pischedda
- Laboratory of Biology of Synapse. Center for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Italian Institute of Technology, Genoa, Italy.,Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Francesca Managò
- Genetics of Cognition Laboratory, Italian Institute of Technology, Genoa, Italy
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Summa
- Department of Drug Discovery and Development, Italian Institute of Technology, Genoa, Italy
| | - Rosalia Bertorelli
- Department of Drug Discovery and Development, Italian Institute of Technology, Genoa, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Italian Institute of Technology, Genoa, Italy
| | - Michael K Schäfer
- Department of Anesthesiology and Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Giovanni Piccoli
- Laboratory of Biology of Synapse. Center for Integrative Biology (CIBIO), University of Trento, Trento, Italy.,Dulbecco Telethon Institute, Varese Street 16b - 00185 Rome, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Italian Institute of Technology, Genoa, Italy.,Dulbecco Telethon Institute, Varese Street 16b - 00185 Rome, Italy
| |
Collapse
|
28
|
van de Vegte YJ, Tegegne BS, Verweij N, Snieder H, van der Harst P. Genetics and the heart rate response to exercise. Cell Mol Life Sci 2019; 76:2391-2409. [PMID: 30919020 PMCID: PMC6529381 DOI: 10.1007/s00018-019-03079-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/18/2019] [Indexed: 01/01/2023]
Abstract
The acute heart rate response to exercise, i.e., heart rate increase during and heart rate recovery after exercise, has often been associated with all-cause and cardiovascular mortality. The long-term response of heart rate to exercise results in favourable changes in chronotropic function, including decreased resting and submaximal heart rate as well as increased heart rate recovery. Both the acute and long-term heart rate response to exercise have been shown to be heritable. Advances in genetic analysis enable researchers to investigate this hereditary component to gain insights in possible molecular mechanisms underlying interindividual differences in the heart rate response to exercise. In this review, we comprehensively searched candidate gene, linkage, and genome-wide association studies that investigated the heart rate response to exercise. A total of ten genes were associated with the acute heart rate response to exercise in candidate gene studies. Only one gene (CHRM2), related to heart rate recovery, was replicated in recent genome-wide association studies (GWASs). Additional 17 candidate causal genes were identified for heart rate increase and 26 for heart rate recovery in these GWASs. Nine of these genes were associated with both acute increase and recovery of the heart rate during exercise. These genes can be broadly categorized into four categories: (1) development of the nervous system (CCDC141, PAX2, SOX5, and CAV2); (2) prolongation of neuronal life span (SYT10); (3) cardiac development (RNF220 and MCTP2); (4) cardiac rhythm (SCN10A and RGS6). Additional 10 genes were linked to long-term modification of the heart rate response to exercise, nine with heart rate increase and one with heart rate recovery. Follow-up will be essential to get functional insights in how candidate causal genes affect the heart rate response to exercise. Future work will be required to translate these findings to preventive and therapeutic applications.
Collapse
Affiliation(s)
- Yordi J van de Vegte
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Balewgizie S Tegegne
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
- Durrer Center for Cardiogenetic Research, Netherlands Heart Institute, 3511 GC, Utrecht, The Netherlands.
| |
Collapse
|
29
|
Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, Pallesen J, Agerbo E, Andreassen OA, Anney R, Awashti S, Belliveau R, Bettella F, Buxbaum JD, Bybjerg-Grauholm J, Bækvad-Hansen M, Cerrato F, Chambert K, Christensen JH, Churchhouse C, Dellenvall K, Demontis D, De Rubeis S, Devlin B, Djurovic S, Dumont AL, Goldstein JI, Hansen CS, Hauberg ME, Hollegaard MV, Hope S, Howrigan DP, Huang H, Hultman CM, Klei L, Maller J, Martin J, Martin AR, Moran JL, Nyegaard M, Nærland T, Palmer DS, Palotie A, Pedersen CB, Pedersen MG, dPoterba T, Poulsen JB, Pourcain BS, Qvist P, Rehnström K, Reichenberg A, Reichert J, Robinson EB, Roeder K, Roussos P, Saemundsen E, Sandin S, Satterstrom FK, Davey Smith G, Stefansson H, Steinberg S, Stevens CR, Sullivan PF, Turley P, Walters GB, Xu X, Stefansson K, Geschwind DH, Nordentoft M, Hougaard DM, Werge T, Mors O, Mortensen PB, Neale BM, Daly MJ, Børglum AD. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet 2019; 51:431-444. [PMID: 30804558 PMCID: PMC6454898 DOI: 10.1038/s41588-019-0344-8] [Citation(s) in RCA: 1277] [Impact Index Per Article: 255.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.
Collapse
Affiliation(s)
- Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany
| | - Thomas D Als
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Manuel Mattheisen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Raymond K Walters
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonatan Pallesen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Esben Agerbo
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Ole A Andreassen
- NORMENT-KG Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Richard Anney
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Swapnil Awashti
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany
| | - Rich Belliveau
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Francesco Bettella
- NORMENT-KG Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonas Bybjerg-Grauholm
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Marie Bækvad-Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Felecia Cerrato
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kimberly Chambert
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jane H Christensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Claire Churchhouse
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Karin Dellenvall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Srdjan Djurovic
- NORMENT-KG Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ashley L Dumont
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jacqueline I Goldstein
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Christine S Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Institute of Biological Psychiatry, MHC SctHans, Mental Health Services, Copenhagen, Denmark
| | - Mads Engel Hauberg
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Mads V Hollegaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Sigrun Hope
- NORMENT-KG Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Daniel P Howrigan
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julian Maller
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Genomics plc, Oxford, UK
- Vertex Pharmaceuticals, Abingdon, UK
| | - Joanna Martin
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jennifer L Moran
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mette Nyegaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Terje Nærland
- NORMENT-KG Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway
- NevSom, Department of Rare Disorders and Disabilities, , Oslo University Hospital, Oslo, Norway
| | - Duncan S Palmer
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Aarno Palotie
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Carsten Bøcker Pedersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Marianne Giørtz Pedersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Timothy dPoterba
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jesper Buchhave Poulsen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Per Qvist
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | | | - Abraham Reichenberg
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Reichert
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elise B Robinson
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kathryn Roeder
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| | | | - Sven Sandin
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - F Kyle Satterstrom
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | | | - Christine R Stevens
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick Turley
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - G Bragi Walters
- deCODE genetics/Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Xinyi Xu
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment and Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Mental Health Services in the Capital Region of Denmark, Mental Health Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Institute of Biological Psychiatry, MHC SctHans, Mental Health Services, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
30
|
Wu Y, Wu S, Ma S, Yan F, Weng Z. Cytocompatible Modification of Thermoresponsive Polymers on Living Cells for Membrane Proteomic Isolation and Analysis. Anal Chem 2019; 91:3187-3194. [DOI: 10.1021/acs.analchem.8b04201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuanzi Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Shuigen Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Shanyun Ma
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Fen Yan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| |
Collapse
|
31
|
Kumar P, Mahalingam K. In silico approach to identify non-synonymous SNPs with highest predicted deleterious effect on protein function in human obesity related gene, neuronal growth regulator 1 ( NEGR1). 3 Biotech 2018; 8:466. [PMID: 30402368 DOI: 10.1007/s13205-018-1463-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/24/2018] [Indexed: 11/29/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1) is a candidate gene for human obesity, which encodes the neural cell adhesion and growth molecule. The aim of the current study was to recognize the non-synonymous SNPs (nsSNPs) with the highest predicted deleterious effect on protein function of the NEGR1 gene. We have used five computational tools, namely, PolyPhen, SIFT, PROVEAN, MutPred and M-CAP, to predict the deleterious and pathogenic nsSNPs of the NEGR1 gene. Homology modeling approach was used to model the native and mutant NEGR1 protein models. Furthermore, structural validation was performed by the PROCHECK server to interpret the stability of the predicted models. We have predicted four potential deleterious nsSNPs, i.e., rs145524630 (Ala70Thr), rs267598710 (Pro168Leu), rs373419972 (Arg239Cys) and rs375352213 (Leu158Phe), which might be involved in causing obesity phenotypes. The predicted mutant models showed higher root mean square deviation and free energy values under the PyMoL and SWISS-PDB viewer, respectively. Additionally, the FTSite server predicted one nsSNP, i.e., rs145524630 (Ala70Thr) out of four identified nsSNPs found in the NEGR1 protein-binding site. There were four potential deleterious and pathogenic nsSNPs, i.e., rs145524630, rs267598710, rs373419972 and rs375352213, identified from the above-mentioned tools. In future, further functional in vitro and in vivo analysis could lead to better knowledge about these nsSNPs on the influence of the NEGR1 gene in causing human obesity. Hence, the present computational examination suggest that predicated nsSNPs may feasibly be a drug target and play an important role in contributing to human obesity.
Collapse
Affiliation(s)
- Permendra Kumar
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamilnadu India
| | - Kulandaivelu Mahalingam
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamilnadu India
| |
Collapse
|
32
|
Singh K, Lilleväli K, Gilbert SF, Bregin A, Narvik J, Jayaram M, Rahi M, Innos J, Kaasik A, Vasar E, Philips MA. The combined impact of IgLON family proteins Lsamp and Neurotrimin on developing neurons and behavioral profiles in mouse. Brain Res Bull 2018; 140:5-18. [PMID: 29605488 DOI: 10.1016/j.brainresbull.2018.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/26/2018] [Accepted: 03/23/2018] [Indexed: 12/13/2022]
Abstract
Cell surface neural adhesion proteins are critical components in the complex orchestration of cell proliferation, apoptosis, and neuritogenesis essential for proper brain construction and behavior. We focused on the impact of two plasticity-associated IgLON family neural adhesion molecules, Neurotrimin (Ntm) and Limbic system associated membrane protein (Lsamp), on mouse behavior and its underlying neural development. Phenotyping neurons derived from the hippocampi of Lsamp-/-, Ntm-/- and Lsamp-/-Ntm-/- mice was performed in parallel with behavioral testing. While the anatomy of mutant brains revealed no gross changes, the Ntm-/- hippocampal neurons exhibited premature sprouting of neurites and manifested accelerated neurite elongation and branching. We propose that Ntm exerts an inhibitory impact on neurite outgrowth, whereas Lsamp appears to be an enhancer of the said process as premature neuritogenesis in Ntm-/- neurons is apparent only in the presence of Lsamp. We also show interplay between Lsamp and Ntm in regulating tissue homeostasis: the impact of Ntm on cellular proliferation was dependent on Lsamp, and Lsamp appeared to be a positive regulator of apoptosis in the presence of Ntm. Behavioral phenotyping indicated test-specific interactions between Lsamp and Ntm. The phenotypes of single mutant lines, such as reduced swimming speed in Morris water maze and increased activity in the elevated plus maze, were magnified in Lsamp-/-Ntm-/- mice. Altogether, evidence both from behavioral experiments and cultured hippocampal cells show combined and differential interactions between Ntm and Lsamp in the formation of hippocampal circuits and behavioral profiles. We demonstrate that mutual interactions between IgLON molecules regulate the initiation of neurite sprouting at very early ages, and even cell-autonomously, independent of their regulation of cell-cell adhesion.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Aleksandr Bregin
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Jane Narvik
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Märt Rahi
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr.R. Kreutzwaldi 5, 51014, Tartu, Estonia
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
| |
Collapse
|
33
|
Genetic study links components of the autonomous nervous system to heart-rate profile during exercise. Nat Commun 2018; 9:898. [PMID: 29497042 PMCID: PMC5832790 DOI: 10.1038/s41467-018-03395-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/09/2018] [Indexed: 01/01/2023] Open
Abstract
Heart rate (HR) responds to exercise by increasing during exercise and recovering after exercise. As such, HR is an important predictor of mortality that researchers believe is modulated by the autonomic nervous system. However, the mechanistic basis underlying inter-individual differences has yet to be explained. Here, we perform a large-scale genome-wide analysis of HR increase and HR recovery in 58,818 UK Biobank individuals. Twenty-five independent SNPs in 23 loci are identified to be associated (p < 8.3 × 10−9) with HR increase or HR recovery. A total of 36 candidate causal genes are prioritized that are enriched for pathways related to neuron biology. No evidence is found of a causal relationship with mortality or cardiovascular diseases. However, a nominal association with parental lifespan requires further study. In conclusion, the findings provide new biological and clinical insight into the mechanistic underpinnings of HR response to exercise. The results also underscore the role of the autonomous nervous system in HR recovery. Response of the heart rate (HR) to exercise is associated with cardiac fitness and risk of cardiac death. Here, in a genome-wide association study, Verweij et al. identify 23 loci for HR increase during exercise or HR recovery, and highlight pleiotropy with blood pressure by polygenic risk score analysis.
Collapse
|
34
|
Katiyar A, Sharma S, Singh TP, Kaur P. Identification of Shared Molecular Signatures Indicate the Susceptibility of Endometriosis to Multiple Sclerosis. Front Genet 2018; 9:42. [PMID: 29503661 PMCID: PMC5820528 DOI: 10.3389/fgene.2018.00042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/30/2018] [Indexed: 01/21/2023] Open
Abstract
Women with endometriosis (EMS) appear to be at a higher risk of developing other autoimmune diseases predominantly multiple sclerosis (MS). Though EMS and MS are evidently diverse in their phenotype, they are linked by a common autoimmune condition or immunodeficiency which could play a role in the expansion of endometriosis and possibly increase the risk of developing MS in women with EMS. However, the common molecular links connecting EMS with MS are still unclear. We conducted a meta-analysis of microarray experiments focused on EMS and MS with their respective controls. The GEO2R web application discovered a total of 711 and 1516 genes that are differentially expressed across the experimental conditions in EMS and MS, respectively with 129 shared DEGs between them. The functional enrichment analysis of DEGs predicts the shared gene expression signatures as well as the overlapping biological processes likely to infer the co-occurrence of EMS with MS. Network based meta-analysis unveiled six interaction networks/crosstalks through overlapping edges between commonly dysregulated pathways of EMS and MS. The PTPN1, ERBB3, and CDH1 were observed to be the highly ranked hub genes connected with disease-related genes of both EMS and MS. Androgen receptor (AR) and nuclear factor-kB p65 (RelA) were observed to be the most enriched transcription factor in the upstream of shared down-regulated and up-regulated genes, respectively. The two disease sample sets compared through crosstalk interactions between shared pathways revealed commonly up- and down-regulated expressions of 10 immunomodulatory proteins as probable linkers between EMS and MS. This study pinpoints the number of shared genes, pathways, protein kinases, and upstream regulators that may help in the development of biomarkers for diagnosis of MS and endometriosis at the same time through improved understanding of shared molecular signatures and crosstalk.
Collapse
Affiliation(s)
- Amit Katiyar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
35
|
Singh K, Loreth D, Pöttker B, Hefti K, Innos J, Schwald K, Hengstler H, Menzel L, Sommer CJ, Radyushkin K, Kretz O, Philips MA, Haas CA, Frauenknecht K, Lilleväli K, Heimrich B, Vasar E, Schäfer MKE. Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene. Front Mol Neurosci 2018; 11:30. [PMID: 29479305 PMCID: PMC5811522 DOI: 10.3389/fnmol.2018.00030] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of β-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral assessments provide first evidence that deficiency of the psychiatric disease-associated Negr1 gene may affect neuronal growth and behavior. These findings might be relevant to further evaluate the role of NEGR1 in cognitive and psychiatric disorders.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Desirée Loreth
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bruno Pöttker
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kyra Hefti
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kathrin Schwald
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heidi Hengstler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Menzel
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Clemens J Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Mouse Behavioral Unit, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Oliver Kretz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Frauenknecht
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
36
|
Karis K, Eskla KL, Kaare M, Täht K, Tuusov J, Visnapuu T, Innos J, Jayaram M, Timmusk T, Weickert CS, Väli M, Vasar E, Philips MA. Altered Expression Profile of IgLON Family of Neural Cell Adhesion Molecules in the Dorsolateral Prefrontal Cortex of Schizophrenic Patients. Front Mol Neurosci 2018; 11:8. [PMID: 29434535 PMCID: PMC5797424 DOI: 10.3389/fnmol.2018.00008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/08/2018] [Indexed: 01/03/2023] Open
Abstract
Neural adhesion proteins are crucial in the development and maintenance of functional neural connectivity. Growing evidence suggests that the IgLON family of neural adhesion molecules LSAMP, NTM, NEGR1, and OPCML are important candidates in forming the susceptibility to schizophrenia (SCZ). IgLON proteins have been shown to be involved in neurite outgrowth, synaptic plasticity and neuronal connectivity, all of which have been shown to be altered in the brains of patients with the diagnosis of schizophrenia. Here we optimized custom 5'-isoform-specific TaqMan gene-expression analysis for the transcripts of human IgLON genes to study the expression of IgLONs in the dorsolateral prefrontal cortex (DLPFC) of schizophrenic patients (n = 36) and control subjects (n = 36). Uniform 5'-region and a single promoter was confirmed for the human NEGR1 gene by in silico analysis. IgLON5, a recently described family member, was also included in the study. We detected significantly elevated levels of the NEGR1 transcript (1.33-fold increase) and the NTM 1b isoform transcript (1.47-fold increase) in the DLPFC of schizophrenia patients compared to healthy controls. Consequent protein analysis performed in male subjects confirmed the increase in NEGR1 protein content both in patients with the paranoid subtype and in patients with other subtypes. In-group analysis of patients revealed that lower expression of certain IgLON transcripts, mostly LSAMP 1a and 1b, could be related with concurrent depressive endophenotype in schizophrenic patients. Additionally, our study cohort provides further evidence that cannabis use may be a relevant risk factor associated with suicidal behaviors in psychotic patients. In conclusion, we provide clinical evidence of increased expression levels of particular IgLON family members in the DLPFC of schizophrenic patients. We propose that alterations in the expression profile of IgLON neural adhesion molecules are associated with brain circuit disorganization in neuropsychiatric disorders, such as schizophrenia. In the light of previously published data, we suggest that increased level of NEGR1 in the frontal cortex may serve as molecular marker for a wider spectrum of psychiatric conditions.
Collapse
Affiliation(s)
- Karina Karis
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maria Kaare
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Karin Täht
- Institute of Psychology, University of Tartu, Tartu, Estonia
| | - Jana Tuusov
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, Tartu, Estonia.,Estonian Forensic Science Institute, Tallinn, Estonia
| | - Tanel Visnapuu
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cynthia S Weickert
- Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Schizophrenia Research Institute, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Marika Väli
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, Tartu, Estonia.,Estonian Forensic Science Institute, Tallinn, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
37
|
The LRRK2 G2385R variant is a partial loss-of-function mutation that affects synaptic vesicle trafficking through altered protein interactions. Sci Rep 2017; 7:5377. [PMID: 28710481 PMCID: PMC5511190 DOI: 10.1038/s41598-017-05760-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/04/2017] [Indexed: 12/20/2022] Open
Abstract
Mutations in the Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial Parkinson's disease (PD). LRRK2 protein contains several functional domains, including protein-protein interaction domains at its N- and C-termini. In this study, we analyzed the functional features attributed to LRRK2 by its N- and C-terminal domains. We combined TIRF microscopy and synaptopHluorin assay to visualize synaptic vesicle trafficking. We found that N- and C-terminal domains have opposite impact on synaptic vesicle dynamics. Biochemical analysis demonstrated that different proteins are bound at the two extremities, namely β3-Cav2.1 at N-terminus part and β-Actin and Synapsin I at C-terminus domain. A sequence variant (G2385R) harboured within the C-terminal WD40 domain increases the risk for PD. Complementary biochemical and imaging approaches revealed that the G2385R variant alters strength and quality of LRRK2 interactions and increases fusion of synaptic vesicles. Our data suggest that the G2385R variant behaves like a loss-of-function mutation that mimics activity-driven events. Impaired scaffolding capabilities of mutant LRRK2 resulting in perturbed vesicular trafficking may arise as a common pathophysiological denominator through which different LRRK2 pathological mutations cause disease.
Collapse
|
38
|
Woodward EL, Biloglav A, Ravi N, Yang M, Ekblad L, Wennerberg J, Paulsson K. Genomic complexity and targeted genes in anaplastic thyroid cancer cell lines. Endocr Relat Cancer 2017; 24:209-220. [PMID: 28235956 DOI: 10.1530/erc-16-0522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/14/2022]
Abstract
Anaplastic thyroid cancer (ATC) is a highly malignant disease with a very short median survival time. Few studies have addressed the underlying somatic mutations, and the genomic landscape of ATC thus remains largely unknown. In the present study, we have ascertained copy number aberrations, gene fusions, gene expression patterns, and mutations in early-passage cells from ten newly established ATC cell lines using single nucleotide polymorphism (SNP) array analysis, RNA sequencing and whole exome sequencing. The ATC cell line genomes were highly complex and displayed signs of replicative stress and genomic instability, including massive aneuploidy and frequent breakpoints in the centromeric regions and in fragile sites. Loss of heterozygosity involving whole chromosomes was common, but there were no signs of previous near-haploidisation events or chromothripsis. A total of 21 fusion genes were detected, including six predicted in-frame fusions; none were recurrent. Global gene expression analysis showed 661 genes to be differentially expressed between ATC and papillary thyroid cancer cell lines, with pathway enrichment analyses showing downregulation of TP53 signalling as well as cell adhesion molecules in ATC. Besides previously known driver events, such as mutations in BRAF, NRAS, TP53 and the TERT promoter, we identified PTPRD and NEGR1 as putative novel target genes in ATC, based on deletions in six and four cell lines, respectively; the latter gene also carried a somatic mutation in one cell line. Taken together, our data provide novel insights into the tumourigenesis of ATC and may be used to identify new therapeutic targets.
Collapse
Affiliation(s)
- Eleanor L Woodward
- Division of Clinical GeneticsDepartment of Laboratory Medicine, Lund University, Lund, Sweden
| | - Andrea Biloglav
- Division of Clinical GeneticsDepartment of Laboratory Medicine, Lund University, Lund, Sweden
| | - Naveen Ravi
- Division of Clinical GeneticsDepartment of Laboratory Medicine, Lund University, Lund, Sweden
| | - Minjun Yang
- Division of Clinical GeneticsDepartment of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lars Ekblad
- Division of Oncology and PathologyClinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Johan Wennerberg
- Division of Otorhinolaryngology/Head and Neck SurgeryClinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Kajsa Paulsson
- Division of Clinical GeneticsDepartment of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
39
|
Qiao R, Li S, Zhou M, Chen P, Liu Z, Tang M, Zhou J. In-depth analysis of the synaptic plasma membrane proteome of small hippocampal slices using an integrated approach. Neuroscience 2017; 353:119-132. [PMID: 28435053 DOI: 10.1016/j.neuroscience.2017.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Comprehensive knowledge of the synaptic plasma membrane (SPM) proteome of a distinct brain region in a defined pathological state would greatly advance the understanding of the underlying biology of synaptic plasticity. The development of innovative approaches for studying the SPM proteome of small brain tissues is highly desired. This study presents a suitable protocol that integrates biotinylation-based affinity capture of cell surface-exposed proteins, isolation of synaptosomes, and biochemical extraction of SPM proteins from biotinylated hippocampal slices. The effectiveness of this integrated method was initially confirmed using immunoblot analysis of synaptic markers. Subsequently, we used highly sensitive mass spectrometry and streamlined bioinformatics to analyze the obtained SPM protein-enriched fraction. Our workflow positively identified 241 SPM proteins comprising 85 previously reported classical proteins from the pre- and/or post-synaptic membrane and 156 nonclassical proteins that localized to both the plasma membrane and synapse, and have not been previously reported as SPM proteins. Further analyses revealed considerable similarities in the physicochemical and functional properties of these proteins. Analysis of the interaction network using STRING indicated that the two groups showed a relatively strong functional correlation. Using MCODE analysis, we observed that 65 nonclassical SPM proteins formed 12 highly interconnected clusters with 47 classical SPM proteins, suggesting that they were the more likely SPM candidates. Taken together, the results of this study provide an integrated tool for analyzing the SPM proteome of small brain tissues, as well as a dataset of putative novel SPM proteins to improve the understanding of hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Rui Qiao
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Shuiming Li
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mi Zhou
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Penghui Chen
- Department of Neurobiology, The Third Military Medical University, Chongqing 400038, China
| | - Zhao Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Min Tang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Jian Zhou
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
| |
Collapse
|
40
|
Altered brain morphology and functional connectivity reflect a vulnerable affective state after cumulative multigenerational stress in rats. Neuroscience 2016; 330:79-89. [PMID: 27241944 DOI: 10.1016/j.neuroscience.2016.05.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 01/09/2023]
Abstract
Prenatal stress is a risk factor for abnormal neuroanatomical, cognitive, behavioral and mental health outcomes with potentially transgenerational consequences. Females in general seem more resilient to the effects of prenatal stress than males. Here, we examined if repeated stress across generations may diminish stress resiliency and cumulatively enhance the susceptibility for adverse health outcomes in females. Pregnant female rats of three successive generations were exposed to stress from gestational days 12-18 to generate multigenerational prenatal stress (MPS) in the maternal lineage. Stress response was measured by plasma corticosterone levels and open-field exploration in each generation. Neuromorphological consequences of MPS were investigated in the F3 generation using in vivo manganese-enhanced magnetic resonance imaging (MEMRI), T2-relaxometry, and cytoarchitectonics in relation to candidate gene expression involved in brain plasticity and mental health. Each additional generation of prenatal stress incrementally elevated hypothalamic-pituitary-adrenal axis activation, anxiety-like and aversive behaviors in adult female offspring. Elevated stress responses in the MPS F3 generation were accompanied by reduced neural density in prefrontal cortex, hippocampus and whole brain along with altered brain activation patterns in in vivo MEMRI. MPS increased ephrin receptor A5 (Epha5), neuronal growth regulator (Negr1) and synaptosomal-associated protein 25 (Snap25) gene expression and reduced fibroblast growth factor 12 (Fgf12) in prefrontal cortex. These genes regulate neuronal maturation, arborization and synaptic plasticity and may explain altered brain cytoarchitectonics and connectivity. These findings emphasize that recurrent stress across generations may cumulatively increase stress vulnerability and the risk of adverse health outcomes through perinatal programing in females.
Collapse
|
41
|
Fang F, Zhao Q, Sui Z, Liang Y, Jiang H, Yang K, Liang Z, Zhang L, Zhang Y. Glycan Moieties as Bait to Fish Plasma Membrane Proteins. Anal Chem 2016; 88:5065-71. [DOI: 10.1021/acs.analchem.6b01082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fei Fang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qun Zhao
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Zhigang Sui
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yu Liang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Hao Jiang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kaiguang Yang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Zhen Liang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yukui Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| |
Collapse
|
42
|
A long non-coding RNA, BC048612 and a microRNA, miR-203 coordinate the gene expression of neuronal growth regulator 1 (NEGR1) adhesion protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:533-43. [DOI: 10.1016/j.bbamcr.2015.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 11/20/2015] [Accepted: 12/16/2015] [Indexed: 12/26/2022]
|
43
|
Pischedda F, Piccoli G. The IgLON Family Member Negr1 Promotes Neuronal Arborization Acting as Soluble Factor via FGFR2. Front Mol Neurosci 2016; 8:89. [PMID: 26793057 PMCID: PMC4710852 DOI: 10.3389/fnmol.2015.00089] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/22/2015] [Indexed: 01/03/2023] Open
Abstract
IgLON proteins are GPI anchored adhesion molecules that control neurite outgrowth. In particular, Negr1 down-regulation negatively influences neuronal arborization in vitro and in vivo. In the present study, we found that the metalloprotease ADAM10 releases Negr1 from neuronal membrane. Ectodomain shedding influences several neuronal mechanisms, including survival, synaptogenesis, and the formation of neurite trees. By combining morphological analysis and virus-mediated selective protein silencing in primary murine cortical neurons, we found that pharmacologically inhibition of ADAM10 results in an impairment of neurite tree maturation that can be rescued upon treatment with soluble Negr1. Furthermore, we report that released Negr1 influences neurite outgrowth in a P-ERK1/2 and FGFR2 dependent manner. Together our findings suggest a role for Negr1 in regulating neurite outgrowth through the modulation of FGFR2 signaling pathway. Given the physiological and pathological role of ADAM10, Negr1, and FGFR2, the regulation of Negr1 shedding may play a crucial role in sustaining brain function and development.
Collapse
Affiliation(s)
- Francesca Pischedda
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Giovanni Piccoli
- Department of Neuroscience, Istituto Di Neuroscienze-Consiglio Nazionale delle Ricerche, San Raffaele Scientific Park Milano, Italy
| |
Collapse
|
44
|
Schira J, Falkenberg H, Hendricks M, Waldera-Lupa DM, Kögler G, Meyer HE, Müller HW, Stühler K. Characterization of Regenerative Phenotype of Unrestricted Somatic Stem Cells (USSC) from Human Umbilical Cord Blood (hUCB) by Functional Secretome Analysis. Mol Cell Proteomics 2015; 14:2630-43. [PMID: 26183719 DOI: 10.1074/mcp.m115.049312] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 12/13/2022] Open
Abstract
Stem cell transplantation is a promising therapeutic strategy to enhance axonal regeneration after spinal cord injury. Unrestricted somatic stem cells (USSC) isolated from human umbilical cord blood is an attractive stem cell population available at GMP grade without any ethical concerns. It has been shown that USSC transplantation into acute injured rat spinal cords leads to axonal regrowth and significant locomotor recovery, yet lacking cell replacement. Instead, USSC secrete trophic factors enhancing neurite growth of primary cortical neurons in vitro. Here, we applied a functional secretome approach characterizing proteins secreted by USSC for the first time and validated candidate neurite growth promoting factors using primary cortical neurons in vitro. By mass spectrometric analysis and exhaustive bioinformatic interrogation we identified 1156 proteins representing the secretome of USSC. Using Gene Ontology we revealed that USSC secretome contains proteins involved in a number of relevant biological processes of nerve regeneration such as cell adhesion, cell motion, blood vessel formation, cytoskeleton organization and extracellular matrix organization. We found for instance that 31 well-known neurite growth promoting factors like, e.g. neuronal growth regulator 1, NDNF, SPARC, and PEDF span the whole abundance range of USSC secretome. By the means of primary cortical neurons in vitro assays we verified SPARC and PEDF as significantly involved in USSC mediated neurite growth and therewith underline their role in improved locomotor recovery after transplantation. From our data we are convinced that USSC are a valuable tool in regenerative medicine as USSC's secretome contains a comprehensive network of trophic factors supporting nerve regeneration not only by a single process but also maintained its regenerative phenotype by a multitude of relevant biological processes.
Collapse
Affiliation(s)
- Jessica Schira
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; §Molecular Neurobiology Laboratory, Department of Neurology, Heinrich Heine University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Heiner Falkenberg
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marion Hendricks
- §Molecular Neurobiology Laboratory, Department of Neurology, Heinrich Heine University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Daniel M Waldera-Lupa
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Gesine Kögler
- ¶Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Helmut E Meyer
- ‖Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund, Germany
| | - Hans Werner Müller
- §Molecular Neurobiology Laboratory, Department of Neurology, Heinrich Heine University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; **Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; **Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
45
|
Pischedda F, Szczurkowska J, Daniela Cirnaru M, Cancedda L, Piccoli G. The role of Negr1 in cortical development via NCAM-FGFR2 signaling. SPRINGERPLUS 2015. [PMCID: PMC4796980 DOI: 10.1186/2193-1801-4-s1-p38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Smolders K, Lombaert N, Valkenborg D, Baggerman G, Arckens L. An effective plasma membrane proteomics approach for small tissue samples. Sci Rep 2015; 5:10917. [PMID: 26047021 PMCID: PMC4456939 DOI: 10.1038/srep10917] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/27/2015] [Indexed: 01/22/2023] Open
Abstract
Advancing the quest for new drug targets demands the development of innovative plasma membrane proteome research strategies applicable to small, functionally defined tissue samples. Biotinylation of acute tissue slices and streptavidin pull-down followed by shotgun proteomics allowed the selective extraction and identification of >1,600 proteins of which >60% are associated with the plasma membrane, including (G-protein coupled) receptors, ion channels and transporters, and this from mm3-scale tissue.
Collapse
Affiliation(s)
- Katrien Smolders
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Leuven, Belgium
| | - Nathalie Lombaert
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Leuven, Belgium
| | - Dirk Valkenborg
- 1] Unit Environmental Risk &Health, VITO, Mol, Belgium [2] Center for Proteomics, UAntwerp, Antwerp, Belgium [3] Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Belgium
| | - Geert Baggerman
- 1] Unit Environmental Risk &Health, VITO, Mol, Belgium [2] Center for Proteomics, UAntwerp, Antwerp, Belgium
| | - Lutgarde Arckens
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Leuven, Belgium
| |
Collapse
|
47
|
Abstract
Previous studies have shown that chronic cocaine administration induces SIRT1, a Class III histone deacetylase, in the nucleus accumbens (NAc), a key brain reward region, and that such induction influences the gene regulation and place conditioning effects of cocaine. To determine the mechanisms by which SIRT1 mediates cocaine-induced plasticity in NAc, we used chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq), 1 d after 7 daily cocaine (20 mg/kg) or saline injections, to map SIRT1 binding genome-wide in mouse NAc. Our unbiased results revealed two modes of SIRT1 action. First, despite its induction in NAc, chronic cocaine causes depletion of SIRT1 from most affected gene promoters in concert with enrichment of H4K16ac (itself a deacetylation target of SIRT1), which is associated with increased expression of these genes. Second, we deduced the forkhead transcription factor (FOXO) family to be a downstream mechanism through which SIRT1 regulates cocaine action. We proceeded to demonstrate that SIRT1 induction causes the deacetylation and activation of FOXO3a in NAc, which leads to the induction of several known FOXO3a gene targets in other systems. Finally, we directly establish a role for FOXO3a in promoting cocaine-elicited behavioral responses by use of viral-mediated gene transfer: we show that overexpressing FOXO3a in NAc enhances cocaine place conditioning. The discovery of these two actions of SIRT1 in NAc in the context of behavioral adaptations to cocaine represents an important step forward in advancing our understanding of the molecular adaptations underlying cocaine action.
Collapse
|
48
|
Sanz R, Ferraro GB, Fournier AE. IgLON cell adhesion molecules are shed from the cell surface of cortical neurons to promote neuronal growth. J Biol Chem 2014; 290:4330-42. [PMID: 25538237 DOI: 10.1074/jbc.m114.628438] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases and a disintegrin and metalloproteinases are members of the zinc endopeptidases, which cleave components of the extracellular matrix as well as cell surface proteins resulting in degradation or release of biologically active fragments. Surface ectodomain shedding affects numerous biological processes, including survival, axon outgrowth, axon guidance, and synaptogenesis. In this study, we evaluated the role of metalloproteinases in regulating cortical neurite growth. We found that treatment of mature cortical neurons with pan-metalloproteinase inhibitors or with tissue inhibitors of metalloproteinase-3 reduced neurite outgrowth. Through mass spectrometry, we characterized the metalloproteinase-sensitive cell surface proteome of mature cortical neurons. Members of the IgLON family of glycosylphosphatidylinositol-anchored neural cell adhesion molecules were identified and validated as proteins that were shed from the surface of mature cortical neurons in a metalloproteinase-dependent manner. Introduction of two members of the IgLON family, neurotrimin and NEGR1, in early embryonic neurons was sufficient to confer sensitivity to metalloproteinase inhibitors in neurite outgrowth assays. Outgrowth experiments on immobilized IgLON proteins revealed a role for all IgLON family members in promoting neurite extension from cortical neurons. Together, our findings support a role for metalloproteinase-dependent shedding of IgLON family members in regulating neurite outgrowth from mature cortical neurons.
Collapse
Affiliation(s)
- Ricardo Sanz
- From the Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Gino B Ferraro
- From the Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Alyson E Fournier
- From the Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec H3A 2B4, Canada
| |
Collapse
|
49
|
Kaur P, Karolina DS, Sepramaniam S, Armugam A, Jeyaseelan K. Expression profiling of RNA transcripts during neuronal maturation and ischemic injury. PLoS One 2014; 9:e103525. [PMID: 25061880 PMCID: PMC4111601 DOI: 10.1371/journal.pone.0103525] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 07/01/2014] [Indexed: 02/07/2023] Open
Abstract
Neuronal development is a pro-survival process that involves neurite growth, synaptogenesis, synaptic and neuronal pruning. During development, these processes can be controlled by temporal gene expression that is orchestrated by both long non-coding RNAs and microRNAs. To examine the interplay between these different components of the transcriptome during neuronal differentiation, we carried out mRNA, long non-coding RNA and microRNA expression profiling on maturing primary neurons. Subsequent gene ontology analysis revealed regulation of axonogenesis and dendritogenesis processes by these differentially expressed mRNAs and non-coding RNAs. Temporally regulated mRNAs and their associated long non-coding RNAs were significantly over-represented in proliferation and differentiation associated signalling, cell adhesion and neurotrophin signalling pathways. Verification of expression of the Axin2, Prkcb, Cntn1, Ncam1, Negr1, Nrxn1 and Sh2b3 mRNAs and their respective long non-coding RNAs in an in vitro model of ischemic-reperfusion injury showed an inverse expression profile to the maturation process, thus suggesting their role(s) in maintaining neuronal structure and function. Furthermore, we propose that expression of the cell adhesion molecules, Ncam1 and Negr1 might be tightly regulated by both long non-coding RNAs and microRNAs.
Collapse
Affiliation(s)
- Prameet Kaur
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dwi Setyowati Karolina
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sugunavathi Sepramaniam
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arunmozhiarasi Armugam
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kandiah Jeyaseelan
- Department of Biochemistry and Neuroscience Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|