1
|
Shoji H, Hirano H, Nojima Y, Gunji D, Shinkura A, Muraoka S, Abe Y, Narumi R, Nagao C, Aoki M, Obama K, Honda K, Mizuguchi K, Tomonaga T, Saito Y, Yoshikawa T, Kato K, Boku N, Adachi J. Phosphoproteomic subtyping of gastric cancer reveals dynamic transformation with chemotherapy and guides targeted cancer treatment. Cell Rep 2024; 43:114774. [PMID: 39357518 DOI: 10.1016/j.celrep.2024.114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
There are only a few effective molecular targeted agents for advanced unresectable or recurrent advanced gastric cancer (AGC), which has a poor prognosis with a median survival time of less than 14 months. Focusing on phosphorylation signaling in cancer cells, we have been developing deep phosphoproteome analysis from minute endoscopic biopsy specimens frozen within 20 s of collection. Phosphoproteomic analysis of 127 fresh-frozen endoscopic biopsy samples from untreated patients with AGC revealed three subtypes reflecting different cellular signaling statuses. Subsequent serial biopsy analysis has revealed the dynamic mesenchymal transitions within cancer cells, along with the concomitant rewiring of the kinome network, ultimately resulting in the conversion to the epithelial-mesenchymal transition (EMT) subtype throughout treatment. We present our investigation of intracellular signaling related to the EMT in gastric cancer and propose therapeutic approaches targeting AXL. This study also provides a wealth of resources for the future development of treatments and biomarkers for AGC.
Collapse
Affiliation(s)
- Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo 104-0045, Japan.
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan
| | - Yosui Nojima
- Center for Mathematical Modeling and Data Science, Osaka University, Osaka 560-8531, Japan; Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 566-0002, Japan
| | - Daigo Gunji
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan; Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Akina Shinkura
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan; Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Satoshi Muraoka
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan; Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Yuichi Abe
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan; Immunoproteomics Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1112, Japan
| | - Ryohei Narumi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan
| | - Chioko Nagao
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 566-0002, Japan; Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Masahiko Aoki
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Kazutaka Obama
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kazufumi Honda
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 566-0002, Japan; Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan; Proteobiologics Co., Ltd., Osaka 562-0011, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Takaki Yoshikawa
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; Department of Medical Oncology and General Medicine, IMSUT Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan; Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
Li Y, Yadollahi P, Essien F, Putluri V, Chandra S, Kami Reddy KR, Kamal A, Putluri N, Abdurrahman LM, Ruiz-Echartea E, Ernste K, Trivedi A, Vazquez-Perez J, Hudson WH, Decker W, Patel R, Osman AA, Kheradmand F, Lai SY, Myers JN, Skinner HD, Coarfa C, Lee K, Jain A, Malovannaya A, Frederick MJ, Sandulache VC. Tobacco smoke exposure is a driver of altered oxidative stress response and immunity in head and neck cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618907. [PMID: 39484602 PMCID: PMC11526855 DOI: 10.1101/2024.10.17.618907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Purpose Exposomes are critical drivers of carcinogenesis. However, how they modulate tumor behavior remains unclear. Extensive clinical data link cigarette smoke as a key exposome that promotes aggressive tumors, higher rates of metastasis, reduced response to chemoradiotherapy, and suppressed anti-tumor immunity. We sought to determine whether smoke itself can modulate aggressive tumor behavior in head and neck squamous cell carcinoma (HNSCC) through reprogramming the cellular reductive state. Experimental design Using established human and murine HNSCC cell lines and syngeneic mouse models, we utilized conventional western blotting, steady state and flux metabolomics, RNA sequencing, quantitative proteomics and flow cytometry to analyze the impact of smoke exposure on HNSCC tumor biology. Results Cigarette smoke persistently activated Nrf2 target genes essential for maintenance of the cellular reductive state and survival under conditions of increased oxidative stress in HNSCC regardless of HPV status. In contrast to e-cigarette vapor, conventional cigarette smoke mobilizes cellular metabolism toward oxidative stress adaptation, resulting in development of cross-resistance to cisplatin. In parallel, smoke exposure modulates both expression of PDL1 and the secretory phenotype of HNSCC cells through activation of NF-κB resulting in an altered tumor immune microenvironment (TIME) in syngeneic mouse models and altered PBMC differentiation that includes downregulated expression of antigen presentation and costimulatory genes in myeloid cells. Conclusion Cigarette smoke exposome is a potent activator of the Nrf2 pathway and is a likely primary trigger for the tripartite phenotype of aggressive HNSCC consisting of: 1) reduced chemotherapy sensitivity, 2) enhanced metastatic potential and 3) suppressed anti-tumor immunity. Statement of significance The smoke exposome drives aggressive tumor behavior, treatment resistance and suppressed immunity through coordinated metabolic reprogramming. Successfully targeting this adaptation is critical to improving survival in smokers with head and neck cancer.
Collapse
|
3
|
Aboulache BL, Hoitsma NM, Luger K. Phosphorylation regulates the chromatin remodeler SMARCAD1 in nucleosome binding, ATP hydrolysis, and histone exchange. J Biol Chem 2024:107893. [PMID: 39424143 DOI: 10.1016/j.jbc.2024.107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
Maintaining the dynamic structure of chromatin is critical for regulating the cellular processes that require access to the DNA template, such as DNA damage repair, transcription, and replication. Histone chaperones and ATP-dependent chromatin remodeling factors facilitate transitions in chromatin structure by assembling and positioning nucleosomes through a variety of enzymatic activities. SMARCAD1 is a unique chromatin remodeler that combines the ATP-dependent ability to exchange histones, with the chaperone-like activity of nucleosome deposition. We have shown previously that phosphorylated SMARCAD1 exhibits reduced binding to nucleosomes. However, it is unknown how phosphorylation affects SMARCAD1's ability to perform its various enzymatic activities. Here we use mutational analysis, activity assays, and mass spectrometry, to probe SMARCAD1 regulation and to investigate the role of its flexible N-terminal region. We show that phosphorylation affects SMARCAD1 binding to nucleosomes, DNA, and histones H2A-H2B as well as ATP hydrolysis and histone exchange. Conversely, we report only a marginal effect of phosphorylation for histone H3-H4 binding and nucleosome assembly. In addition, the SMARCAD1 N-terminal region is revealed to be critical for nucleosome assembly and histone exchange. Together, this work examines the intricacies of how phosphorylation governs SMARCAD1 activity and provides insight into its complex regulation and diverse activities.
Collapse
Affiliation(s)
- Briana L Aboulache
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Nicole M Hoitsma
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado; Howard Hughes Medical Institute, Chevy Chase, Maryland.
| |
Collapse
|
4
|
Chermside-Scabbo CJ, Shuster JT, Erdmann-Gilmore P, Tycksen E, Zhang Q, Townsend RR, Silva MJ. A proteomics approach to study mouse long bones: examining baseline differences and mechanical loading-induced bone formation in young-adult and old mice. Aging (Albany NY) 2024; 16:12726-12768. [PMID: 39400554 PMCID: PMC11501390 DOI: 10.18632/aging.206131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
With aging, bone mass declines and the anabolic effects of skeletal loading diminish. While much research has focused on gene transcription, how bone ages and loses its mechanoresponsiveness at the protein level remains unclear. We developed a novel proteomics approach and performed a paired mass spectrometry and RNA-seq analysis on tibias from young-adult (5-month) and old (22-month) mice. We report the first correlation estimate between the bone proteome and transcriptome (Spearman ρ = 0.40), which is in line with other tissues but indicates that a relatively low amount of variation in protein levels is explained by the variation in transcript levels. Of 71 shared targets that differed with age, eight were associated with bone mineral density in previous GWAS, including understudied targets Asrgl1 and Timp2. We used complementary RNA in situ hybridization to confirm that Asrgl1 and Timp2 had reduced expression in osteoblasts/osteocytes in old bones. We also found evidence for reduced TGF-beta signaling with aging, in particular Tgfb2. Next, we defined proteomic changes following mechanical loading. At the protein level, bone differed more with age than with loading, and aged bone had fewer loading-induced changes. Overall, our findings underscore the need for complementary protein-level assays in skeletal biology research.
Collapse
Affiliation(s)
- Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John T. Shuster
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Petra Erdmann-Gilmore
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Tycksen
- Department of Genetics, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Qiang Zhang
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - R. Reid Townsend
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
5
|
Saunders H, Holloran S, Trinca G, Artigues A, Villar M, Tinoco J, Dias WB, Werner L, Chowanec E, Heard A, Chalise P, Slawson C, Hagan C. Site specific O-GlcNAcylation of progesterone receptor (PR) supports PR attenuation of interferon stimulated genes (ISGs) and tumor growth in breast cancer. J Biol Chem 2024:107886. [PMID: 39395796 DOI: 10.1016/j.jbc.2024.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
Hormone receptor (HR) positive breast cancer, defined by expression of estrogen (ER) and/or progesterone (PR) receptor expression, is the most commonly diagnosed type of breast cancer. PR alters the transcriptional landscape to support tumor growth in concert with or independent of ER. Thus, understanding the mechanisms regulating PR function are critical to developing new strategies to treat HR+ breast cancer. O-GlcNAc is a post-translational modification responsible for nutrient sensing that modulates protein function. Although PR is heavily post-translationally modified, through phosphorylation and O-GlcNAcylation, specific sites of O-GlcNAcylation on PR and how they regulate PR action, have not been investigated. Using established PR-expressing breast cancer cell lines, we mapped several sites of O-GlcNAcylation on PR. RNA-sequencing after PR O-GlcNAc site mutagenesis revealed site-specific O-GlcNAcylation of PR is critical for ligand-independent suppression of interferon signaling, a regulatory function of PR in breast cancer. Furthermore, O-GlcNAcylation of PR enhances PR-driven tumor growth in vivo. We have delineated one contributing mechanism to PR function in breast cancer that impacts tumor growth, and provided additional insight into the mechanism through which PR attenuates interferon signaling.
Collapse
Affiliation(s)
- Harmony Saunders
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sean Holloran
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Gloria Trinca
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Maite Villar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Julio Tinoco
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Wagner Barbosa Dias
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160; Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Lauryn Werner
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Eilidh Chowanec
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Amanda Heard
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS 66160
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160.
| | - Christy Hagan
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160.
| |
Collapse
|
6
|
Thomas MJ, Xu H, Wang A, Beg MA, Sorci-Thomas MG. PCPE2: Expression of multifunctional extracellular glycoprotein associated with diverse cellular functions. J Lipid Res 2024; 65:100664. [PMID: 39374805 DOI: 10.1016/j.jlr.2024.100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024] Open
Abstract
Procollagen C-endopeptidase enhancer 2, known as PCPE2 or PCOC2 (gene name, PCOLCE2) is a glycoprotein that resides in the extracellular matrix, and is similar in domain organization to PCPE1/PCPE, PCOC1 (PCOLCE1/PCOLCE). Due to the many similarities between the two related proteins, PCPE2 has been assumed to have biological functions similar to PCPE. PCPE is a well-established enhancer of procollagen processing activating the enzyme, BMP-1. However, reports show that PCPE2 has a strikingly different tissue expression profile compared to PCPE. With that in mind and given the paucity of published studies on PCPE2, this review examines the current literature citing PCPE2 and its association with specific cell types and signaling pathways. Additionally, this review will present a brief history of PCPE2's discovery, highlighting structural and functional similarities and differences compared to PCPE. Considering the widespread use of RNA sequencing techniques to examine associations between cell-specific gene expression and disease states, we will show that PCPE2 is repeatedly found as a differentially regulated gene (DEG) significantly associated with a number of cellular processes, well beyond the scope of procollagen fibril processing.
Collapse
Affiliation(s)
- Michael J Thomas
- Division of Endocrinology and Molecular Medicine, Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hao Xu
- Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Angela Wang
- Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mirza Ahmar Beg
- Division of Endocrinology and Molecular Medicine, Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mary G Sorci-Thomas
- Division of Endocrinology and Molecular Medicine, Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
7
|
von der Heyde S, Raman N, Gabelia N, Matias-Guiu X, Yoshino T, Tsukada Y, Melino G, Marshall JL, Wellstein A, Juhl H, Landgrebe J. Tumor specimen cold ischemia time impacts molecular cancer drug target discovery. Cell Death Dis 2024; 15:691. [PMID: 39327466 PMCID: PMC11427669 DOI: 10.1038/s41419-024-07090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Tumor tissue collections are used to uncover pathways associated with disease outcomes that can also serve as targets for cancer treatment, ideally by comparing the molecular properties of cancer tissues to matching normal tissues. The quality of such collections determines the value of the data and information generated from their analyses including expression and modifications of nucleic acids and proteins. These biomolecules are dysregulated upon ischemia and decompose once the living cells start to decay into inanimate matter. Therefore, ischemia time before final tissue preservation is the most important determinant of the quality of a tissue collection. Here we show the impact of ischemia time on tumor and matching adjacent normal tissue samples for mRNAs in 1664, proteins in 1818, and phosphosites in 1800 cases (tumor and matching normal samples) of four solid tumor types (CRC, HCC, LUAD, and LUSC NSCLC subtypes). In CRC, ischemia times exceeding 15 min impacted 12.5% (mRNA), 25% (protein), and 50% (phosphosites) of differentially expressed molecules in tumor versus normal tissues. This hypoxia- and decay-induced dysregulation increased with longer ischemia times and was observed across tumor types. Interestingly, the proteomics analysis revealed that specimen ischemia time above 15 min is mostly associated with a dysregulation of proteins in the immune-response pathway and less so with metabolic processes. We conclude that ischemia time is a crucial quality parameter for tissue collections used for target discovery and validation in cancer research.
Collapse
Affiliation(s)
| | | | | | - Xavier Matias-Guiu
- Department of Pathology, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLLEIDA, Lleida, Spain
| | - Takayuki Yoshino
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East (NCCE), Kashiwa, Japan
| | - Yuichiro Tsukada
- Department of Colorectal Surgery, National Cancer Center Hospital East (NCCE), Kashiwa, Japan
| | - Gerry Melino
- Department of Experimental Medicine, University Tor Vergata, Rome, Italy
| | - John L Marshall
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University, Washington, DC, USA
| | - Anton Wellstein
- Department Oncology & Pharmacology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | | | | |
Collapse
|
8
|
McClendon LK, Lanz RB, Panigrahi A, Gomez K, Bolt MJ, Liu M, Stossi F, Mancini MA, Dacso CC, Lonard DM, O'Malley BW. Transcriptional coactivation of NRF2 signaling in cardiac fibroblasts promotes resistance to oxidative stress. J Mol Cell Cardiol 2024; 194:70-84. [PMID: 38969334 DOI: 10.1016/j.yjmcc.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
We recently discovered that steroid receptor coactivators (SRCs) SRCs-1, 2 and 3, are abundantly expressed in cardiac fibroblasts (CFs) and their activation with the SRC small molecule stimulator MCB-613 improves cardiac function and dramatically lowers pro-fibrotic signaling in CFs post-myocardial infarction. These findings suggest that CF-derived SRC activation could be beneficial in the mitigation of chronic heart failure after ischemic insult. However, the cardioprotective mechanisms by which CFs contribute to cardiac pathological remodeling are unclear. Here we present studies designed to identify the molecular and cellular circuitry that governs the anti-fibrotic effects of an MCB-613 derivative, MCB-613-10-1, in CFs. We performed cytokine profiling and whole transcriptome and proteome analyses of CF-derived signals in response to MCB-613-10-1. We identified the NRF2 pathway as a direct MCB-613-10-1 therapeutic target for promoting resistance to oxidative stress in CFs. We show that MCB-613-10-1 promotes cell survival of anti-fibrotic CFs exposed to oxidative stress by suppressing apoptosis. We demonstrate that an increase in HMOX1 expression contributes to CF resistance to oxidative stress-mediated apoptosis via a mechanism involving SRC co-activation of NRF2, hence reducing inflammation and fibrosis. We provide evidence that MCB-613-10-1 acts as a protectant against oxidative stress-induced mitochondrial damage. Our data reveal that SRC stimulation of the NRF2 transcriptional network promotes resistance to oxidative stress and highlights a mechanistic approach toward addressing pathologic cardiac remodeling.
Collapse
Affiliation(s)
- Lisa K McClendon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Anil Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Kristan Gomez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Michael J Bolt
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Min Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Clifford C Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| |
Collapse
|
9
|
Velasco‐Carneros L, Bernardo‐Seisdedos G, Maréchal J, Millet O, Moro F, Muga A. Pseudophosphorylation of single residues of the J-domain of DNAJA2 regulates the holding/folding balance of the Hsc70 system. Protein Sci 2024; 33:e5105. [PMID: 39012012 PMCID: PMC11249846 DOI: 10.1002/pro.5105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024]
Abstract
The Hsp70 system is essential for maintaining protein homeostasis and comprises a central Hsp70 and two accessory proteins that belong to the J-domain protein (JDP) and nucleotide exchange factor families. Posttranslational modifications offer a means to tune the activity of the system. We explore how phosphorylation of specific residues of the J-domain of DNAJA2, a class A JDP, regulates Hsc70 activity using biochemical and structural approaches. Among these residues, we find that pseudophosphorylation of Y10 and S51 enhances the holding/folding balance of the Hsp70 system, reducing cochaperone collaboration with Hsc70 while maintaining the holding capacity. Truly phosphorylated J domains corroborate phosphomimetic variant effects. Notably, distinct mechanisms underlie functional impacts of these DNAJA2 variants. Pseudophosphorylation of Y10 induces partial disordering of the J domain, whereas the S51E substitution weakens essential DNAJA2-Hsc70 interactions without a large structural reorganization of the protein. S51 phosphorylation might be class-specific, as all cytosolic class A human JDPs harbor a phosphorylatable residue at this position.
Collapse
Affiliation(s)
- Lorea Velasco‐Carneros
- Instituto Biofisika (UPV/EHU, CSIC)University of Basque CountryLeioaSpain
- Department of Biochemistry and Molecular Biology, Faculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Ganeko Bernardo‐Seisdedos
- Precision Medicine and Metabolism LabCIC bioGUNEDerioSpain
- Department of Medicine, Faculty of Health SciencesUniversity of DeustoBilbaoSpain
| | - Jean‐Didier Maréchal
- Insilichem, Departament de QuímicaUniversitat Autònoma de Barcelona (UAB)Bellaterra (Barcelona)Spain
| | - Oscar Millet
- Precision Medicine and Metabolism LabCIC bioGUNEDerioSpain
| | - Fernando Moro
- Instituto Biofisika (UPV/EHU, CSIC)University of Basque CountryLeioaSpain
- Department of Biochemistry and Molecular Biology, Faculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Arturo Muga
- Instituto Biofisika (UPV/EHU, CSIC)University of Basque CountryLeioaSpain
- Department of Biochemistry and Molecular Biology, Faculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| |
Collapse
|
10
|
Salamon S, Kuzmenkina E, Fried C, Matthes J. CaM-dependent modulation of human Ca V1.3 whole-cell and single-channel currents by C-terminal CaMKII phosphorylation site S1475. J Physiol 2024; 602:3955-3973. [PMID: 39037941 DOI: 10.1113/jp284972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
Phosphorylation enables rapid modulation of voltage-gated calcium channels (VGCC) in physiological and pathophysiological conditions. How phosphorylation modulates human CaV1.3 VGCC, however, is largely unexplored. We characterized modulation of CaV1.3 gating via S1475, the human equivalent of a phosphorylation site identified in the rat. S1475 is highly conserved in CaV1.3 but absent from all other high-voltage activating calcium channel types co-expressed with CaV1.3 in similar tissues. Further, it is located in the C-terminal EF-hand motif, which binds calmodulin (CaM). This is involved in calcium-dependent channel inactivation (CDI). We used amino acid exchanges that mimic either sustained phosphorylation (S1475D) or phosphorylation resistance (S1475A). Whole-cell and single-channel recordings of phosphorylation state imitating CaV1.3 variants in transiently transfected HEK-293 cells revealed functional relevance of S1475 in human CaV1.3. We obtained three main findings: (1) CaV1.3_S1475D, imitating sustained phosphorylation, displayed decreased current density, reduced CDI and (in-) activation kinetics shifted to more depolarized voltages compared with both wildtype CaV1.3 and the phosphorylation-resistant CaV1.3_S1475A variant. Corresponding to the decreased current density, we find a reduced open probability of CaV1.3_S1475D at the single-channel level. (2) Using CaM overexpression or depletion, we find that CaM is necessary for modulating CaV1.3 through S1475. (3) CaMKII activation led to CaV1.3_WT-current properties similar to those of CaV1.3_S1475D, but did not affect CaV1.3_S1475A, confirming that CaMKII modulates human CaV1.3 via S1475. Given the physiological and pathophysiological importance of CaV1.3, our findings on the S1475-mediated interplay of phosphorylation, CaM interaction and CDI provide hints for approaches on specific CaV1.3 modulation under physiological and pathophysiological conditions. KEY POINTS: Phosphorylation modulates activity of voltage-gated L-type calcium channels for specific cellular needs but is largely unexplored for human CaV1.3 channels. Here we report that S1475, a CaMKII phosphorylation site identified in rats, is functionally relevant in human CaV1.3. Imitating phosphorylation states at S1475 alters current density and inactivation in a calmodulin-dependent manner. In wildtype CaV1.3 but not in the phosphorylation-resistant variant S1475A, CaMKII activation elicits effects similar to constitutively mimicking phosphorylation at S1475. Our findings provide novel insights on the interplay of modulatory mechanisms of human CaV1.3 channels, and present a possible target for CaV1.3-specific gating modulation in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Sarah Salamon
- Center of Pharmacology, Institute II, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Elza Kuzmenkina
- Center of Pharmacology, Institute II, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Cora Fried
- Center of Pharmacology, Institute II, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jan Matthes
- Center of Pharmacology, Institute II, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Kandoor A, Martinez G, Hitchcock JM, Angel S, Campbell L, Rizvi S, Naegle KM. CoDIAC: A comprehensive approach for interaction analysis reveals novel insights into SH2 domain function and regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604100. [PMID: 39091881 PMCID: PMC11291013 DOI: 10.1101/2024.07.18.604100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Protein domains are conserved structural and functional units and are the functional building blocks of proteins. Evolutionary expansion means that domain families are often represented by many members in a species, which are found in various configurations with other domains, which have evolved new specificity for interacting partners. Here, we develop a structure-based interface analysis to comprehensively map domain interfaces from available experimental and predicted structures, including interfaces with other macromolecules and intraprotein interfaces (such as might exist between domains in a protein). We hypothesized that a comprehensive approach to contact mapping of domains could yield new insights. Specifically, we use it to gain information about how domains selectivity interact with ligands, whether domain-domain interfaces of repeated domain partnerships are conserved across diverse proteins, and identify regions of conserved post-translational modifications, using relationship to interaction interfaces as a method to hypothesize the effect of post-translational modifications (and mutations). We applied this approach to the human SH2 domain family, an extensive modular unit that is the foundation of phosphotyrosine-mediated signaling, where we identified a novel approach to understanding the binding selectivity of SH2 domains and evidence that there is coordinated and conserved regulation of multiple SH2 domain binding interfaces by tyrosine and serine/threonine phosphorylation and acetylation, suggesting that multiple signaling systems can regulate protein activity and SH2 domain interactions in a regulated manner. We provide the extensive features of the human SH2 domain family and this modular approach, as an open source Python package for COmprehensive Domain Interface Analysis of Contacts (CoDIAC).
Collapse
Affiliation(s)
- Alekhya Kandoor
- Department of Biomedical Engineering and the Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Gabrielle Martinez
- Department of Biomedical Engineering and the Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Julianna M Hitchcock
- Department of Biomedical Engineering and the Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Savannah Angel
- Department of Biomedical Engineering and the Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Logan Campbell
- Department of Biomedical Engineering and the Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Saqib Rizvi
- Department of Biomedical Engineering and the Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kristen M Naegle
- Department of Biomedical Engineering and the Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
12
|
Beccari S, Mohamed E, Voong V, Hilz S, Lafontaine M, Shai A, Lim Y, Martinez J, Switzman B, Yu RL, Lupo JM, Chang EF, Hervey-Jumper SL, Berger MS, Costello JF, Phillips JJ. Quantitative Assessment of Preanalytic Variables on Clinical Evaluation of PI3/AKT/mTOR Signaling Activity in Diffuse Glioma. Mod Pathol 2024; 37:100488. [PMID: 38588881 DOI: 10.1016/j.modpat.2024.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024]
Abstract
Biomarker-driven therapeutic clinical trials require the implementation of standardized, evidence-based practices for sample collection. In diffuse glioma, phosphatidylinositol 3 (PI3)-kinase/AKT/mTOR (PI3/AKT/mTOR) signaling is an attractive therapeutic target for which window-of-opportunity clinical trials could facilitate the identification of promising new agents. Yet, the relevant preanalytic variables and optimal tumor sampling methods necessary to measure pathway activity are unknown. To address this, we used a murine model for isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) and human tumor tissue, including IDH-wildtype GBM and IDH-mutant diffuse glioma. First, we determined the impact of delayed time-to-formalin fixation, or cold ischemia time (CIT), on the quantitative assessment of cellular expression of 6 phosphoproteins that are readouts of PI3K/AK/mTOR activity (phosphorylated-proline-rich Akt substrate of 40 kDa (p-PRAS40, T246), -mechanistic target of rapamycin (p-mTOR; S2448); -AKT (p-AKT, S473); -ribosomal protein S6 (p-RPS6, S240/244 and S235/236), and -eukaryotic initiation factor 4E-binding protein 1 (p-4EBP1, T37/46). With CITs ≥ 2 hours, typical of routine clinical handling, all had reduced or altered expression with p-RPS6 (S240/244) exhibiting relatively greater stability. A similar pattern was observed using patient tumor samples from the operating room with p-4EBP1 more sensitive to delayed fixation than p-RPS6 (S240/244). Many clinical trials utilize unstained slides for biomarker evaluation. Thus, we evaluated the impact of slide storage conditions on the detection of p-RPS6 (S240/244), p-4EBP1, and p-AKT. After 5 months, storage at -80°C was required to preserve the expression of p-4EBP1 and p-AKT, whereas p-RPS6 (240/244) expression was not stable regardless of storage temperature. Biomarker heterogeneity impacts optimal tumor sampling. Quantification of p-RPS6 (240/244) expression in multiple regionally distinct human tumor samples from 8 patients revealed significant intratumoral heterogeneity. Thus, the accurate assessment of PI3K/AKT/mTOR signaling in diffuse glioma must overcome intratumoral heterogeneity and multiple preanalytic factors, including time-to-formalin fixation, slide storage conditions, and phosphoprotein of interest.
Collapse
Affiliation(s)
- Sol Beccari
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Esraa Mohamed
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Viva Voong
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Marisa Lafontaine
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Anny Shai
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Yunita Lim
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Jerry Martinez
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Benjamin Switzman
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Ryon L Yu
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, California; Neuropathology Division, Department of Pathology, University of California, San Francisco, California.
| |
Collapse
|
13
|
Pandey R, Roberts ML, Wang J, Pereckas M, Jensen D, Greene AS, Widlansky ME, Liang M. Proteomic Profiles of Human Arterioles Isolated From Fresh Adipose Tissue or Following Overnight Storage. J Transl Med 2024; 104:102036. [PMID: 38408704 PMCID: PMC11098693 DOI: 10.1016/j.labinv.2024.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/20/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
Arterioles are key determinants of the total peripheral vascular resistance, which, in turn, is a key determinant of arterial blood pressure. However, the amount of protein available from one isolated human arteriole may be less than 5 μg, making proteomic analysis challenging. In addition, obtaining human arterioles requires manual dissection of unfrozen clinical specimens. This limits its feasibility, especially for powerful multicenter clinical studies in which clinical specimens need to be shipped overnight to a research laboratory for arteriole isolation. We performed a study to address low-input, test overnight tissue storage and develop a reference human arteriolar proteomic profile. In tandem mass tag proteomics, use of a booster channel consisting of human induced pluripotent stem cell-derived endothelial and vascular smooth muscle cells (1:5 ratio) increased the number of proteins detected in a human arteriole segment with a false discovery rate of <0.01 from 1051 to more than 3000. The correlation coefficient of proteomic profile was similar between replicate arterioles isolated freshly, following cold storage, or before and after the cold storage (1-way analysis of variance; P = .60). We built a human arteriolar proteomic profile consisting of 3832 proteins based on the analysis of 12 arteriole samples from 3 subjects. Of 1945 blood pressure-relevant proteins that we curated, 476 (12.5%) were detected in the arteriolar proteome, which was a significant overrepresentation (χ2 test; P < .05). These findings demonstrate that proteomic analysis is feasible with arterioles isolated from human adipose tissue following cold overnight storage and provide a reference human arteriolar proteome profile highly valuable for studies of arteriole-related traits.
Collapse
Affiliation(s)
- Rajan Pandey
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, University of Arizona College of Medicine-Tucson, Tucson, Arizona
| | - Michelle L Roberts
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jingli Wang
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michaela Pereckas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David Jensen
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Michael E Widlansky
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, University of Arizona College of Medicine-Tucson, Tucson, Arizona.
| |
Collapse
|
14
|
Zhang W, Liu Y, Liao Y, Zhu C, Zou Z. GPX4, ferroptosis, and diseases. Biomed Pharmacother 2024; 174:116512. [PMID: 38574617 DOI: 10.1016/j.biopha.2024.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
GPX4 (Glutathione peroxidase 4) serves as a crucial intracellular regulatory factor, participating in various physiological processes and playing a significant role in maintaining the redox homeostasis within the body. Ferroptosis, a form of iron-dependent non-apoptotic cell death, has gained considerable attention in recent years due to its involvement in multiple pathological processes. GPX4 is closely associated with ferroptosis and functions as the primary inhibitor of this process. Together, GPX4 and ferroptosis contribute to the pathophysiology of several diseases, including sepsis, nervous system diseases, ischemia reperfusion injury, cardiovascular diseases, and cancer. This review comprehensively explores the regulatory roles and impacts of GPX4 and ferroptosis in the development and progression of these diseases, with the aim of providing insights for identifying potential therapeutic strategies in the future.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yang Liu
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
15
|
Liu L, Lei I, Tian S, Gao W, Guo Y, Li Z, Sabry Z, Tang P, Chen YE, Wang Z. 14-3-3 binding motif phosphorylation disrupts Hdac4-organized condensates to stimulate cardiac reprogramming. Cell Rep 2024; 43:114054. [PMID: 38578832 PMCID: PMC11081035 DOI: 10.1016/j.celrep.2024.114054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/15/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
Cell fate conversion is associated with extensive post-translational modifications (PTMs) and architectural changes of sub-organelles, yet how these events are interconnected remains unknown. We report here the identification of a phosphorylation code in 14-3-3 binding motifs (PC14-3-3) that greatly stimulates induced cardiomyocyte (iCM) formation from fibroblasts. PC14-3-3 is identified in pivotal functional proteins for iCM reprogramming, including transcription factors and chromatin modifiers. Akt1 kinase and protein phosphatase 2A are the key writer and key eraser of the PC14-3-3 code, respectively. PC14-3-3 activation induces iCM formation with the presence of only Tbx5. In contrast, PC14-3-3 inhibition by mutagenesis or inhibitor-mediated code removal abolishes reprogramming. We discover that key PC14-3-3-embedded factors, such as histone deacetylase 4 (Hdac4), Mef2c, and Foxo1, form Hdac4-organized inhibitory nuclear condensates. PC14-3-3 activation disrupts Hdac4 condensates to promote cardiac gene expression. Our study suggests that sub-organelle dynamics regulated by a PTM code could be a general mechanism for stimulating cell reprogramming.
Collapse
Affiliation(s)
- Liu Liu
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Ienglam Lei
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Shuo Tian
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenbin Gao
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Yijing Guo
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhaokai Li
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Ziad Sabry
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul Tang
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Warner H, Franciosa G, van der Borg G, Coenen B, Faas F, Koenig C, de Boer R, Classens R, Maassen S, Baranov MV, Mahajan S, Dabral D, Bianchi F, van Hilten N, Risselada HJ, Roos WH, Olsen JV, Cano LQ, van den Bogaart G. Atypical cofilin signaling drives dendritic cell migration through the extracellular matrix via nuclear deformation. Cell Rep 2024; 43:113866. [PMID: 38416638 DOI: 10.1016/j.celrep.2024.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
To mount an adaptive immune response, dendritic cells must migrate to lymph nodes to present antigens to T cells. Critical to 3D migration is the nucleus, which is the size-limiting barrier for migration through the extracellular matrix. Here, we show that inflammatory activation of dendritic cells leads to the nucleus becoming spherically deformed and enables dendritic cells to overcome the typical 2- to 3-μm diameter limit for 3D migration through gaps in the extracellular matrix. We show that the nuclear shape change is partially attained through reduced cell adhesion, whereas improved 3D migration is achieved through reprogramming of the actin cytoskeleton. Specifically, our data point to a model whereby the phosphorylation of cofilin-1 at serine 41 drives the assembly of a cofilin-actomyosin ring proximal to the nucleus and enhances migration through 3D collagen gels. In summary, these data describe signaling events through which dendritic cells deform their nucleus and enhance their migratory capacity.
Collapse
Affiliation(s)
- Harry Warner
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Giulia Franciosa
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Guus van der Borg
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Britt Coenen
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Felix Faas
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Claire Koenig
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rinse de Boer
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - René Classens
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sjors Maassen
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Maksim V Baranov
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Shweta Mahajan
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Deepti Dabral
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Niek van Hilten
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Herre Jelger Risselada
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands; Department of Physics, TU Dortmund, Dortmund, Germany
| | - Wouter H Roos
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Jesper Velgaard Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laia Querol Cano
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
17
|
Sanjeev D, George M, John L, Gopalakrishnan AP, Priyanka P, Mendon S, Yandigeri T, Nisar M, Nisar M, Kanekar S, Balaya RDA, Raju R. Tyr352 as a Predominant Phosphosite in the Understudied Kinase and Molecular Target, HIPK1: Implications for Cancer Therapy. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:111-124. [PMID: 38498023 DOI: 10.1089/omi.2023.0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Homeodomain-interacting protein kinase 1 (HIPK1) is majorly found in the nucleoplasm. HIPK1 is associated with cell proliferation, tumor necrosis factor-mediated cellular apoptosis, transcription regulation, and DNA damage response, and thought to play significant roles in health and common diseases such as cancer. Despite this, HIPK1 remains an understudied molecular target. In the present study, based on a systematic screening and mapping approach, we assembled 424 qualitative and 44 quantitative phosphoproteome datasets with 15 phosphosites in HIPK1 reported across multiple studies. These HIPK1 phosphosites were not currently attributed to any functions. Among them, Tyr352 within the kinase domain was identified as the predominant phosphosite modulated in 22 differential datasets. To analyze the functional association of HIPK1 Tyr352, we first employed a stringent criterion to derive its positively and negatively correlated protein phosphosites. Subsequently, we categorized the correlated phosphosites in known interactors, known/predicted kinases, and substrates of HIPK1, for their prioritized validation. Bioinformatics analysis identified their significant association with biological processes such as the regulation of RNA splicing, DNA-templated transcription, and cellular metabolic processes. HIPK1 Tyr352 was also identified to be upregulated in Her2+ cell lines and a subset of pancreatic and cholangiocarcinoma tissues. These data and the systems biology approach undertaken in the present study serve as a platform to explore the functional role of other phosphosites in HIPK1, and by extension, inform cancer drug discovery and oncotherapy innovation. In all, this study highlights the comprehensive phosphosite map of HIPK1 kinase and the first of its kind phosphosite-centric analysis of HIPK1 kinase based on global-level phosphoproteomics datasets derived from human cellular differential experiments across distinct experimental conditions.
Collapse
Affiliation(s)
- Diya Sanjeev
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | - Mejo George
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | | | - Pahal Priyanka
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | - Spoorthi Mendon
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | - Tanuja Yandigeri
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | - Mahammad Nisar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | - Muhammad Nisar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | - Saptami Kanekar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| | | | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed-to-be University), Mangalore, Karnataka, India
| |
Collapse
|
18
|
Hees JT, Wanderoy S, Lindner J, Helms M, Murali Mahadevan H, Harbauer AB. Insulin signalling regulates Pink1 mRNA localization via modulation of AMPK activity to support PINK1 function in neurons. Nat Metab 2024; 6:514-530. [PMID: 38504131 PMCID: PMC10963278 DOI: 10.1038/s42255-024-01007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Mitochondrial quality control failure is frequently observed in neurodegenerative diseases. The detection of damaged mitochondria by stabilization of PTEN-induced kinase 1 (PINK1) requires transport of Pink1 messenger RNA (mRNA) by tethering it to the mitochondrial surface. Here, we report that inhibition of AMP-activated protein kinase (AMPK) by activation of the insulin signalling cascade prevents Pink1 mRNA binding to mitochondria. Mechanistically, AMPK phosphorylates the RNA anchor complex subunit SYNJ2BP within its PDZ domain, a phosphorylation site that is necessary for its interaction with the RNA-binding protein SYNJ2. Notably, loss of mitochondrial Pink1 mRNA association upon insulin addition is required for PINK1 protein activation and its function as a ubiquitin kinase in the mitophagy pathway, thus placing PINK1 function under metabolic control. Induction of insulin resistance in vitro by the key genetic Alzheimer risk factor apolipoprotein E4 retains Pink1 mRNA at the mitochondria and prevents proper PINK1 activity, especially in neurites. Our results thus identify a metabolic switch controlling Pink1 mRNA localization and PINK1 activity via insulin and AMPK signalling in neurons and propose a mechanistic connection between insulin resistance and mitochondrial dysfunction.
Collapse
Affiliation(s)
- J Tabitha Hees
- TUM Medical Graduate Center, Technical University of Munich, Munich, Germany
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Simone Wanderoy
- TUM Medical Graduate Center, Technical University of Munich, Munich, Germany
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Jana Lindner
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Marlena Helms
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Hariharan Murali Mahadevan
- TUM Medical Graduate Center, Technical University of Munich, Munich, Germany
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Angelika B Harbauer
- Max Planck Institute for Biological Intelligence, Martinsried, Germany.
- Technical University of Munich, Institute of Neuronal Cell Biology, Munich, Germany.
- Munich Cluster for Systems Neurology, Munich, Germany.
| |
Collapse
|
19
|
Jing Z, Yuan W, Wang J, Ni R, Qin Y, Mao Z, Wei F, Song C, Zheng Y, Cai H, Liu Z. Simvastatin/hydrogel-loaded 3D-printed titanium alloy scaffolds suppress osteosarcoma via TF/NOX2-associated ferroptosis while repairing bone defects. Bioact Mater 2024; 33:223-241. [PMID: 38045570 PMCID: PMC10689208 DOI: 10.1016/j.bioactmat.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Postoperative anatomical reconstruction and prevention of local recurrence after tumor resection are two vital clinical challenges in osteosarcoma treatment. A three-dimensional (3D)-printed porous Ti6Al4V scaffold (3DTi) is an ideal material for reconstructing critical bone defects with numerous advantages over traditional implants, including a lower elasticity modulus, stronger bone-implant interlock, and larger drug-loading space. Simvastatin is a multitarget drug with anti-tumor and osteogenic potential; however, its efficiency is unsatisfactory when delivered systematically. Here, simvastatin was loaded into a 3DTi using a thermosensitive poly (lactic-co-glycolic) acid (PLGA)-polyethylene glycol (PEG)-PLGA hydrogel as a carrier to exert anti-osteosarcoma and osteogenic effects. Newly constructed simvastatin/hydrogel-loaded 3DTi (Sim-3DTi) was comprehensively appraised, and its newfound anti-osteosarcoma mechanism was explained. Specifically, in a bone defect model of rabbit condyles, Sim-3DTi exhibited enhanced osteogenesis, bone in-growth, and osseointegration compared with 3DTi alone, with greater bone morphogenetic protein 2 expression. In our nude mice model, simvastatin loading reduced tumor volume by 59%-77 % without organic damage, implying good anti-osteosarcoma activity and biosafety. Furthermore, Sim-3DTi induced ferroptosis by upregulating transferrin and nicotinamide adenine dinucleotide phosphate oxidase 2 levels in osteosarcoma both in vivo and in vitro. Sim-3DTi is a promising osteogenic bone substitute for osteosarcoma-related bone defects, with a ferroptosis-mediated anti-osteosarcoma effect.
Collapse
Affiliation(s)
- Zehao Jing
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Jiedong Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Renhua Ni
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Yu Qin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Zhinan Mao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Feng Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Hong Cai
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| |
Collapse
|
20
|
Nadel G, Yao Z, Hacohen-Lev-Ran A, Wainstein E, Maik-Rachline G, Ziv T, Naor Z, Admon A, Seger R. Phosphorylation of PP2Ac by PKC is a key regulatory step in the PP2A-switch-dependent AKT dephosphorylation that leads to apoptosis. Cell Commun Signal 2024; 22:154. [PMID: 38419089 PMCID: PMC10900696 DOI: 10.1186/s12964-024-01536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Although GqPCR activation often leads to cell survival by activating the PI3K/AKT pathway, it was previously shown that in several cell types AKT activity is reduced and leads to JNK activation and apoptosis. The mechanism of AKT inactivation in these cells involves an IGBP1-coupled PP2Ac switch that induces the dephosphorylation and inactivation of both PI3K and AKT. However, the machinery involved in the initiation of PP2A switch is not known. METHODS We used phospho-mass spectrometry to identify the phosphorylation site of PP2Ac, and raised specific antibodies to follow the regulation of this phosphorylation. Other phosphorylations were monitored by commercial antibodies. In addition, we used coimmunoprecipitation and proximity ligation assays to follow protein-protein interactions. Apoptosis was detected by a TUNEL assay as well as PARP1 cleavage using SDS-PAGE and Western blotting. RESULTS We identified Ser24 as a phosphorylation site in PP2Ac. The phosphorylation is mediated mainly by classical PKCs (PKCα and PKCβ) but not by novel PKCs (PKCδ and PKCε). By replacing the phosphorylated residue with either unphosphorylatable or phosphomimetic residues (S24A and S24E), we found that this phosphorylation event is necessary and sufficient to mediate the PP2A switch, which ultimately induces AKT inactivation, and a robust JNK-dependent apoptosis. CONCLUSION Our results show that the PP2A switch is induced by PKC-mediated phosphorylation of Ser24-PP2Ac and that this phosphorylation leads to apoptosis upon GqPCR induction of various cells. We propose that this mechanism may provide an unexpected way to treat some cancer types or problems in the endocrine machinery.
Collapse
Affiliation(s)
- Guy Nadel
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Zhong Yao
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Avital Hacohen-Lev-Ran
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Wainstein
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Galia Maik-Rachline
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Ziv
- Smoler Proteomic Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rony Seger
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Schutt KL, Queen KA, Fisher K, Budington O, Mao W, Liu W, Gu X, Xiao Y, Aswad F, Joseph J, Stumpff J. Identification of the KIF18A alpha-4 helix as a therapeutic target for chromosomally unstable tumor cells. Front Mol Biosci 2024; 11:1328077. [PMID: 38410188 PMCID: PMC10896213 DOI: 10.3389/fmolb.2024.1328077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Background: The mitotic kinesin, KIF18A, is required for proliferation of cancer cells that exhibit chromosome instability (CIN), implicating it as a promising target for treatment of a subset of aggressive tumor types. Determining regions of the KIF18A protein to target for inhibition will be important for the design and optimization of effective small molecule inhibitors. Methods: In this study, we used cultured cell models to investigate the effects of mutating S284 within the alpha-4 helix of KIF18A, which was previously identified as a phosphorylated residue. Results: Mutations in S284 cause relocalization of KIF18A from the plus-ends of spindle microtubules to the spindle poles. Furthermore, KIF18A S284 mutants display loss of KIF18A function and fail to support proliferation in CIN tumor cells. Interestingly, similar effects on KIF18A localization and function were seen after treatment of CIN cells with KIF18A inhibitory compounds that are predicted to interact with residues within the alpha-4 helix. Conclusion: These data implicate the KIF18A alpha-4 helix as an effective target for inhibition and demonstrate that small molecules targeting KIF18A selectively limit CIN tumor cell proliferation and result in phenotypically similar effects on mitosis at the single cell level compared to genetic perturbations.
Collapse
Affiliation(s)
- Katherine L Schutt
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| | - Katelyn A Queen
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| | - Kira Fisher
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| | - Olivia Budington
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| | | | - Wei Liu
- Apeiron Therapeutics, Shanghai, China
| | | | | | - Fred Aswad
- Apeiron Therapeutics, Burlingame, CA, United States
| | - James Joseph
- Apeiron Therapeutics, Burlingame, CA, United States
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| |
Collapse
|
22
|
Mercado-Evans V, Chew C, Serchejian C, Saltzman A, Mejia ME, Zulk JJ, Cornax I, Nizet V, Patras KA. Tamm-Horsfall protein augments neutrophil NETosis during urinary tract infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578501. [PMID: 38370726 PMCID: PMC10871275 DOI: 10.1101/2024.02.01.578501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Urinary neutrophils are a hallmark of urinary tract infection (UTI), yet the mechanisms governing their activation, function, and efficacy in controlling infection remain incompletely understood. Tamm-Horsfall glycoprotein (THP), the most abundant protein in urine, uses terminal sialic acids to bind an inhibitory receptor and dampen neutrophil inflammatory responses. We hypothesized that neutrophil modulation is an integral part of THP-mediated host protection. In a UTI model, THP-deficient mice showed elevated urinary tract bacterial burdens, increased neutrophil recruitment, and more severe tissue histopathological changes compared to WT mice. Furthermore, THP-deficient mice displayed impaired urinary NETosis during UTI. To investigate the impact of THP on NETosis, we coupled in vitro fluorescence-based NET assays, proteomic analyses, and standard and imaging flow cytometry with peripheral human neutrophils. We found that THP increases proteins involved in respiratory chain, neutrophil granules, and chromatin remodeling pathways, enhances NETosis in an ROS-dependent manner, and drives NET-associated morphologic features including nuclear decondensation. These effects were observed only in the presence of a NETosis stimulus and could not be solely replicated with equivalent levels of sialic acid alone. We conclude that THP is a critical regulator of NETosis in the urinary tract, playing a key role in host defense against UTI.
Collapse
Affiliation(s)
- Vicki Mercado-Evans
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Claude Chew
- Cytometry and Cell Sorting Core, Baylor College of Medicine, Houston, Texas, USA
| | - Camille Serchejian
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Alexander Saltzman
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - Marlyd E. Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob J. Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ingrid Cornax
- Department of Pediatrics, UC San Diego, La Jolla, California, USA
| | - Victor Nizet
- Department of Pediatrics, UC San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
23
|
Udupa P, Ghosh DK. The emerging functions of intraflagellar transport 52 in ciliary transport and ciliopathies. Traffic 2024; 25:e12929. [PMID: 38272449 DOI: 10.1111/tra.12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Ciliary transport in eukaryotic cells is an intricate and conserved process involving the coordinated assembly and functioning of a multiprotein intraflagellar transport (IFT) complex. Among the various IFT proteins, intraflagellar transport 52 (IFT52) plays a crucial role in ciliary transport and is implicated in various ciliopathies. IFT52 is a core component of the IFT-B complex that facilitates movement of cargoes along the ciliary axoneme. Stable binding of the IFT-B1 and IFT-B2 subcomplexes by IFT52 in the IFT-B complex regulates recycling of ciliary components and maintenance of ciliary functions such as signal transduction and molecular movement. Mutations in the IFT52 gene can disrupt ciliary trafficking, resulting in dysfunctional cilia and affecting cellular processes in ciliopathies. Such ciliopathies caused by IFT52 mutations exhibit a wide range of clinical features, including skeletal developmental abnormalities, retinal degeneration, respiratory failure and neurological abnormalities in affected individuals. Therefore, IFT52 serves as a promising biomarker for the diagnosis of various ciliopathies, including short-rib thoracic dysplasia 16 with or without polydactyly. Here, we provide an overview of the IFT52-mediated molecular mechanisms underlying ciliary transport and describe the IFT52 mutations that cause different disorders associated with cilia dysfunction.
Collapse
Affiliation(s)
- Prajna Udupa
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Debasish Kumar Ghosh
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
24
|
Minisini M, Cricchi E, Brancolini C. Acetylation and Phosphorylation in the Regulation of Hypoxia-Inducible Factor Activities: Additional Options to Modulate Adaptations to Changes in Oxygen Levels. Life (Basel) 2023; 14:20. [PMID: 38276269 PMCID: PMC10821055 DOI: 10.3390/life14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
O2 is essential for the life of eukaryotic cells. The ability to sense oxygen availability and initiate a response to adapt the cell to changes in O2 levels is a fundamental achievement of evolution. The key switch for adaptation consists of the transcription factors HIF1A, HIF2A and HIF3A. Their levels are tightly controlled by O2 through the involvement of the oxygen-dependent prolyl hydroxylase domain-containing enzymes (PHDs/EGNLs), the von Hippel-Lindau tumour suppressor protein (pVHL) and the ubiquitin-proteasome system. Furthermore, HIF1A and HIF2A are also under the control of additional post-translational modifications (PTMs) that positively or negatively regulate the activities of these transcription factors. This review focuses mainly on two PTMs of HIF1A and HIF2A: phosphorylation and acetylation.
Collapse
Affiliation(s)
| | | | - Claudio Brancolini
- Lab of Epigenomics, Department of Medicine, Università degli Studi di Udine, 33100 Udine, Italy; (M.M.); (E.C.)
| |
Collapse
|
25
|
Manousakis E, Miralles CM, Esquerda MG, Wright RHG. CDKN1A/p21 in Breast Cancer: Part of the Problem, or Part of the Solution? Int J Mol Sci 2023; 24:17488. [PMID: 38139316 PMCID: PMC10743848 DOI: 10.3390/ijms242417488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cyclin-dependent kinase inhibitor 1A (Cip1/Waf1/CDKN1A/p21) is a well-established protein, primarily recognised for its pivotal role in the cell cycle, where it induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases (CDKs). Over the years, extensive research has shed light on various additional mechanisms involving CDKN1A/p21, implicating it in processes such as apoptosis, DNA damage response (DDR), and the regulation of stem cell fate. Interestingly, p21 can function either as an oncogene or as a tumour suppressor in these contexts. Complicating matters further, the expression of CDKN1A/p21 is elevated in certain tumour types while downregulated in others. In this comprehensive review, we provide an overview of the multifaceted functions of CDKN1A/p21, present clinical data pertaining to cancer patients, and delve into potential strategies for targeting CDKN1A/p21 as a therapeutic approach to cancer. Manipulating CDKN1A/p21 shows great promise for therapy given its involvement in multiple cancer hallmarks, such as sustained cell proliferation, the renewal of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cell migration, and resistance to chemotherapy. Given the dual role of CDKN1A/p21 in these processes, a more in-depth understanding of its specific mechanisms of action and its regulatory network is imperative to establishing successful therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Roni H. G. Wright
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
26
|
Gao C, Zhu H, Gong P, Wu C, Xu X, Zhu X. The functions of FOXP transcription factors and their regulation by post-translational modifications. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194992. [PMID: 37797785 DOI: 10.1016/j.bbagrm.2023.194992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
The forkhead box subfamily P (FOXP) of transcription factors, consisting of FOXP1, FOXP2, FOXP3, and FOXP4, is involved in the regulation of multisystemic functioning. Disruption of the transcriptional activity of FOXP proteins leads to neurodevelopmental disorders and immunological diseases, as well as the suppression or promotion of carcinogenesis. The transcriptional activities of FOXP proteins are directly or indirectly regulated by diverse post-translational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, O-GlcNAcylation, and methylation. Here, we discuss how post-translational modifications modulate the multiple functions of FOXP proteins and examine the implications for tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Congwen Gao
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China; College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Honglin Zhu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China
| | - Peng Gong
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors & Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China
| | - Chen Wu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China.
| | - Xuefei Zhu
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors & Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China.
| |
Collapse
|
27
|
Liu L, Lei I, Tian S, Gao W, Guo Y, Li Z, Sabry Z, Tang P, Chen YE, Wang Z. 14-3-3 binding motif phosphorylation disrupts Hdac4 organized condensates to stimulate cardiac reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567913. [PMID: 38045244 PMCID: PMC10690191 DOI: 10.1101/2023.11.20.567913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cell fate conversion is associated with extensive epigenetic and post translational modifications (PTMs) and architectural changes of sub-organelles and organelles, yet how these events are interconnected remains unknown. We report here the identification of a phosphorylation code in 14-3-3 binding motifs (PC14-3-3) that greatly stimulates induced cardiomyocyte (iCM) formation from fibroblasts. PC14-3-3 was identified in pivotal functional proteins for iCM reprogramming, including transcription factors and epigenetic factors. Akt1 kinase and PP2A phosphatase were a key writer and eraser of the PC14-3-3 code, respectively. PC14-3-3 activation induces iCM formation with the presence of only Tbx5. In contrast, PC14-3-3 inhibition by mutagenesis or inhibitor-mediated code removal abolished reprogramming. We discovered that key PC14-3-3 embedded factors, such as Hdac4, Mef2c, Nrip1, and Foxo1, formed Hdac4 organized inhibitory nuclear condensates. Notably, PC14-3-3 activation disrupted Hdac4 condensates to promote cardiac gene expression. Our study suggests that sub-organelle dynamics regulated by a post-translational modification code could be a general mechanism for stimulating cell reprogramming and organ regeneration. Highlights A PC14-3-3 (phosphorylation code in 14-3-3 binding motifs) is identified in pivotal functional proteins, such as HDAC4 and Mef2c, that stimulates iCM formation.Akt1 kinase and PP2A phosphatase are a key writer and a key eraser of the PC14-3-3 code, respectively, and PC14-3-3 code activation can replace Mef2c and Gata4 in cardiac reprogramming.PC14-3-3 activation disrupts Hdac4 organized condensates which results in releasing multiple 14-3-3 motif embedded proteins from the condensates to stimulate cardiac reprogramming.Sub-organelle dynamics and function regulated by a post-translational modification code could be a general mechanism in stimulating cell reprogramming and organ regeneration. Graphic abstract
Collapse
|
28
|
van der Wijngaart H, Beekhof R, Knol JC, Henneman AA, de Goeij-de Haas R, Piersma SR, Pham TV, Jimenez CR, Verheul HMW, Labots M. Candidate biomarkers for treatment benefit from sunitinib in patients with advanced renal cell carcinoma using mass spectrometry-based (phospho)proteomics. Clin Proteomics 2023; 20:49. [PMID: 37940875 PMCID: PMC10631096 DOI: 10.1186/s12014-023-09437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
The tyrosine kinase inhibitor sunitinib is an effective first-line treatment for patients with advanced renal cell carcinoma (RCC). Hypothesizing that a functional read-out by mass spectrometry-based (phospho, p-)proteomics will identify predictive biomarkers for treatment outcome of sunitinib, tumor tissues of 26 RCC patients were analyzed. Eight patients had primary resistant (RES) and 18 sensitive (SENS) RCC. A 78 phosphosite signature (p < 0.05, fold-change > 2) was identified; 22 p-sites were upregulated in RES (unique in RES: BCAR3, NOP58, EIF4A2, GDI1) and 56 in SENS (35 unique). EIF4A1/EIF4A2 were differentially expressed in RES at the (p-)proteome and, in an independent cohort, transcriptome level. Inferred kinase activity of MAPK3 (p = 0.026) and EGFR (p = 0.045) as determined by INKA was higher in SENS. Posttranslational modifications signature enrichment analysis showed that different p-site-centric signatures were enriched (p < 0.05), of which FGF1 and prolactin pathways in RES and, in SENS, vanadate and thrombin treatment pathways, were most significant. In conclusion, the RCC (phospho)proteome revealed differential p-sites and kinase activities associated with sunitinib resistance and sensitivity. Independent validation is warranted to develop an assay for upfront identification of patients who are intrinsically resistant to sunitinib.
Collapse
Affiliation(s)
- Hanneke van der Wijngaart
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Robin Beekhof
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jaco C Knol
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Alex A Henneman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Richard de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Schutt K, Queen KA, Fisher K, Budington O, Mao W, Liu W, Xiao Y, Aswad F, Joseph J, Stumpff J. Identification of the KIF18A alpha-4 helix as a therapeutic target for chromosomally unstable tumor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562576. [PMID: 37905069 PMCID: PMC10614886 DOI: 10.1101/2023.10.16.562576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The mitotic kinesin, KIF18A, is required for proliferation of cancer cells that exhibit chromosome instability (CIN), implicating it as a promising target for treatment of a subset of aggressive tumor types. Determining regions of the KIF18A protein to target for inhibition will be important for the design and optimization of effective small molecule inhibitors. In this study, we investigated the effects of mutating S284 within the alpha-4 helix of KIF18A, which was previously identified as a phosphorylated residue. Mutations in S284 cause relocalization of KIF18A from the plus-ends of spindle microtubules to the spindle poles. Furthermore, KIF18A S284 mutants display loss of KIF18A function and fail to support proliferation in CIN tumor cells. Interestingly, similar effects on KIF18A localization and function were seen after treatment of CIN cells with KIF18A inhibitory compounds that are predicted to interact with residues within the alpha-4 helix. These data implicate the KIF18A alpha-4 helix as an effective target for inhibition and demonstrate that small molecules targeting KIF18A selectively limit CIN tumor cell proliferation and result in phenotypically similar effects on mitosis at the single cell level compared to genetic perturbations.
Collapse
Affiliation(s)
- Katherine Schutt
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | - Katelyn A Queen
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | - Kira Fisher
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | - Olivia Budington
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | | | - Wei Liu
- Apeiron Therapeutics, Shanghai, CN
| | | | | | | | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| |
Collapse
|
30
|
Lei JT, Jaehnig EJ, Smith H, Holt MV, Li X, Anurag M, Ellis MJ, Mills GB, Zhang B, Labrie M. The Breast Cancer Proteome and Precision Oncology. Cold Spring Harb Perspect Med 2023; 13:a041323. [PMID: 37137501 PMCID: PMC10547392 DOI: 10.1101/cshperspect.a041323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The goal of precision oncology is to translate the molecular features of cancer into predictive and prognostic tests that can be used to individualize treatment leading to improved outcomes and decreased toxicity. Success for this strategy in breast cancer is exemplified by efficacy of trastuzumab in tumors overexpressing ERBB2 and endocrine therapy for tumors that are estrogen receptor positive. However, other effective treatments, including chemotherapy, immune checkpoint inhibitors, and CDK4/6 inhibitors are not associated with strong predictive biomarkers. Proteomics promises another tier of information that, when added to genomic and transcriptomic features (proteogenomics), may create new opportunities to improve both treatment precision and therapeutic hypotheses. Here, we review both mass spectrometry-based and antibody-dependent proteomics as complementary approaches. We highlight how these methods have contributed toward a more complete understanding of breast cancer and describe the potential to guide diagnosis and treatment more accurately.
Collapse
Affiliation(s)
- Jonathan T Lei
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hannah Smith
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Matthew V Holt
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xi Li
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Marilyne Labrie
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
31
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
32
|
Hu H, van Roon AMM, Ghanim GE, Ahsan B, Oluwole AO, Peak-Chew SY, Robinson CV, Nguyen THD. Structural basis of telomeric nucleosome recognition by shelterin factor TRF1. SCIENCE ADVANCES 2023; 9:eadi4148. [PMID: 37624885 PMCID: PMC10456876 DOI: 10.1126/sciadv.adi4148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Shelterin and nucleosomes are the key players that organize mammalian chromosome ends into the protective telomere caps. However, how they interact with each other at telomeres remains unknown. We report cryo-electron microscopy structures of a human telomeric nucleosome both unbound and bound to the shelterin factor TRF1. Our structures reveal that TRF1 binds unwrapped nucleosomal DNA ends by engaging both the nucleosomal DNA and the histone octamer. Unexpectedly, TRF1 binding shifts the register of the nucleosomal DNA by 1 bp. We discovered that phosphorylation of the TRF1 C terminus and a noncanomical DNA binding surface on TRF1 are critical for its association with telomeric nucleosomes. These insights into shelterin-chromatin interactions have crucial implications for understanding telomeric chromatin organization and other roles of shelterin at telomeres including replication and transcription.
Collapse
Affiliation(s)
- Hongmiao Hu
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | | | - Bilal Ahsan
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Abraham O. Oluwole
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
| | | | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
| | | |
Collapse
|
33
|
Park SY, Jeong KJ, Poire A, Zhang D, Tsang YH, Blucher AS, Mills GB. Irreversible HER2 inhibitors overcome resistance to the RSL3 ferroptosis inducer in non-HER2 amplified luminal breast cancer. Cell Death Dis 2023; 14:532. [PMID: 37596261 PMCID: PMC10439209 DOI: 10.1038/s41419-023-06042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Ferroptosis, a form of programed cell death, can be promoted by inhibitors of the xCT transporter (erastin) or GPX4 (RSL3). We found that GPX4, but not the xCT transporter, is selectively elevated in luminal breast cancer. Consistent with this observation, the majority of luminal breast cancer cell lines are exquisitely sensitive to RSL3 with limited sensitivity to erastin. In RSL3-resistant, but not sensitive, luminal breast cancer cell lines, RSL3 induces HER2 pathway activation. Irreversible HER2 inhibitors including neratinib reversed RSL3 resistance in constitutively RSL3-resistant cell lines. Combination treatment with RSL3 and neratinib increases ferroptosis through mitochondrial iron-dependent reactive oxygen species production and lipid peroxidation. RSL3 also activated replication stress and concomitant S phase and G2/M blockade leading to sensitivity to targeting the DNA damage checkpoint. Together, our data support the exploration of RSL3 combined with irreversible HER2 inhibitors in clinical trials.
Collapse
Affiliation(s)
- Soon Young Park
- Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA.
| | - Kang Jin Jeong
- Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| | - Alfonso Poire
- Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| | - Dong Zhang
- Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| | - Yiu Huen Tsang
- Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| | - Aurora S Blucher
- Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| | - Gordon B Mills
- Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| |
Collapse
|
34
|
Li Y, Dou Y, Da Veiga Leprevost F, Geffen Y, Calinawan AP, Aguet F, Akiyama Y, Anand S, Birger C, Cao S, Chaudhary R, Chilappagari P, Cieslik M, Colaprico A, Zhou DC, Day C, Domagalski MJ, Esai Selvan M, Fenyö D, Foltz SM, Francis A, Gonzalez-Robles T, Gümüş ZH, Heiman D, Holck M, Hong R, Hu Y, Jaehnig EJ, Ji J, Jiang W, Katsnelson L, Ketchum KA, Klein RJ, Lei JT, Liang WW, Liao Y, Lindgren CM, Ma W, Ma L, MacCoss MJ, Martins Rodrigues F, McKerrow W, Nguyen N, Oldroyd R, Pilozzi A, Pugliese P, Reva B, Rudnick P, Ruggles KV, Rykunov D, Savage SR, Schnaubelt M, Schraink T, Shi Z, Singhal D, Song X, Storrs E, Terekhanova NV, Thangudu RR, Thiagarajan M, Wang LB, Wang JM, Wang Y, Wen B, Wu Y, Wyczalkowski MA, Xin Y, Yao L, Yi X, Zhang H, Zhang Q, Zuhl M, Getz G, Ding L, Nesvizhskii AI, Wang P, Robles AI, Zhang B, Payne SH. Proteogenomic data and resources for pan-cancer analysis. Cancer Cell 2023; 41:1397-1406. [PMID: 37582339 PMCID: PMC10506762 DOI: 10.1016/j.ccell.2023.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/15/2022] [Accepted: 06/27/2023] [Indexed: 08/17/2023]
Abstract
The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigates tumors from a proteogenomic perspective, creating rich multi-omics datasets connecting genomic aberrations to cancer phenotypes. To facilitate pan-cancer investigations, we have generated harmonized genomic, transcriptomic, proteomic, and clinical data for >1000 tumors in 10 cohorts to create a cohesive and powerful dataset for scientific discovery. We outline efforts by the CPTAC pan-cancer working group in data harmonization, data dissemination, and computational resources for aiding biological discoveries. We also discuss challenges for multi-omics data integration and analysis, specifically the unique challenges of working with both nucleotide sequencing and mass spectrometry proteomics data.
Collapse
Affiliation(s)
- Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Yifat Geffen
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Anna P Calinawan
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - François Aguet
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Yo Akiyama
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Shankara Anand
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Chet Birger
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Song Cao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | - Marcin Cieslik
- Department of Computational Medicine & Bioinformatics, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Cui Zhou
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Corbin Day
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | | | - Myvizhi Esai Selvan
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Steven M Foltz
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Tania Gonzalez-Robles
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zeynep H Gümüş
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Heiman
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | | | - Runyu Hong
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiayi Ji
- Tisch Cancer Institute and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wen Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lizabeth Katsnelson
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Robert J Klein
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wen-Wei Liang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Caleb M Lindgren
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Weiping Ma
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lei Ma
- ICF, Rockville, MD 20850, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Fernanda Martins Rodrigues
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Robert Oldroyd
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | | | - Pietro Pugliese
- Department of Sciences and Technologies, University of Sannio, Benevento 82100, Italy
| | - Boris Reva
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul Rudnick
- Spectragen Informatics, Bainbridge Island, WA 98110, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dmitry Rykunov
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Tobias Schraink
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Xiaoyu Song
- Tisch Cancer Institute and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erik Storrs
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Nadezhda V Terekhanova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | - Liang-Bo Wang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Joshua M Wang
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ying Wang
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yige Wu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yi Xin
- ICF, Rockville, MD 20850, USA
| | - Lijun Yao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xinpei Yi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Qing Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | | | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA; Cancer Center and Department of Pathology, Mass. General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Pei Wang
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
35
|
Chowdhury S, Kennedy JJ, Ivey RG, Murillo OD, Hosseini N, Song X, Petralia F, Calinawan A, Savage SR, Berry AB, Reva B, Ozbek U, Krek A, Ma W, da Veiga Leprevost F, Ji J, Yoo S, Lin C, Voytovich UJ, Huang Y, Lee SH, Bergan L, Lorentzen TD, Mesri M, Rodriguez H, Hoofnagle AN, Herbert ZT, Nesvizhskii AI, Zhang B, Whiteaker JR, Fenyo D, McKerrow W, Wang J, Schürer SC, Stathias V, Chen XS, Barcellos-Hoff MH, Starr TK, Winterhoff BJ, Nelson AC, Mok SC, Kaufmann SH, Drescher C, Cieslik M, Wang P, Birrer MJ, Paulovich AG. Proteogenomic analysis of chemo-refractory high-grade serous ovarian cancer. Cell 2023; 186:3476-3498.e35. [PMID: 37541199 PMCID: PMC10414761 DOI: 10.1016/j.cell.2023.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/23/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacob J Kennedy
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Richard G Ivey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Oscar D Murillo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Noshad Hosseini
- Department of Computational Medicine and Bioinformatics, Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Xiaoyu Song
- Tisch Cancer Institute, Department of Population Health Science and Policy, Institute for Health Care Delivery Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Umut Ozbek
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Jiayi Ji
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Chenwei Lin
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Uliana J Voytovich
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Yajue Huang
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sun-Hee Lee
- Departments of Oncology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Lindsay Bergan
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Travis D Lorentzen
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, Department of Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey R Whiteaker
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David Fenyo
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Joshua Wang
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Stephan C Schürer
- Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, and Institute for Data Science & Computing, University of Miami, Miami, FL 33136, USA
| | - Vasileios Stathias
- Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, and Institute for Data Science & Computing, University of Miami, Miami, FL 33136, USA
| | - X Steven Chen
- Department of Public Health Sciences, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Mary Helen Barcellos-Hoff
- Helen Diller Family Comprehensive Cancer Center, Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Timothy K Starr
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Boris J Winterhoff
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott H Kaufmann
- Departments of Oncology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles Drescher
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Marcin Cieslik
- Department of Pathology, Department of Computational Medicine and Bioinformatics, Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Michael J Birrer
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Amanda G Paulovich
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
36
|
Arrazola Sastre A, Luque Montoro M, Llavero F, Zugaza JL. Amyloid β 1-42 Oligomers Induce Galectin-1 S8 O-GlcNAcylation Leading to Microglia Migration. Cells 2023; 12:1876. [PMID: 37508540 PMCID: PMC10378097 DOI: 10.3390/cells12141876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Protein O-GlcNAcylation has been associated with neurodegenerative diseases such as Alzheimer's disease (AD). The O-GlcNAcylation of the Amyloid Precursor Protein (APP) regulates both the trafficking and the processing of the APP through the amyloidogenic pathway, resulting in the release and aggregation of the Aβ1-42 peptide. Microglia clears Aβ aggregates and dead cells to maintain brain homeostasis. Here, using LC-MS/MS, we revealed that the Aβ1-42 oligomers modify the microglia O-GlcNAcome. We identified 55 proteins, focusing our research on Galectin-1 protein since it is a very versatile protein from a functional point of view. Combining biochemical with genetic approaches, we demonstrated that Aβ1-42 oligomers specifically target Galectin-1S8 O-GlcNAcylation via OGT. In addition to this, the Gal-1-O-GlcNAcylated form, in turn, controls human microglia migration. Given the importance of microglia migration in the progression of AD, this study reports the relationship between the Aβ1-42 oligomers and Serine 8-O-GlcNAcylation of Galectin-1 to drive microglial migration.
Collapse
Affiliation(s)
- Alazne Arrazola Sastre
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Sede Building, 3rd Floor, Barrio de Sarriena s/n, 48940 Leioa, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, Barrio de Sarriena s/n, 48940 Leioa, Spain
| | - Miriam Luque Montoro
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Sede Building, 3rd Floor, Barrio de Sarriena s/n, 48940 Leioa, Spain
| | - Francisco Llavero
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Sede Building, 3rd Floor, Barrio de Sarriena s/n, 48940 Leioa, Spain
| | - José L Zugaza
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Sede Building, 3rd Floor, Barrio de Sarriena s/n, 48940 Leioa, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, Barrio de Sarriena s/n, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
37
|
Dufault B, LeDuc RD, Zahedi RP. How to maximize power for differential expression analysis in discovery omics through experimental design. Expert Rev Proteomics 2023; 20:299-301. [PMID: 37990821 DOI: 10.1080/14789450.2023.2287054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Affiliation(s)
- Brenden Dufault
- George & Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, MB, Canada
| | - Richard D LeDuc
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - René P Zahedi
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB, Canada
- Paul Albrechtsen Research Institute, Cancer Care Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
38
|
Jensen CC, Clements AN, Liou H, Ball LE, Bethard JR, Langlais PR, Toth RK, Chauhan SS, Casillas AL, Daulat SR, Kraft AS, Cress AE, Miranti CK, Mouneimne G, Rogers GC, Warfel NA. PIM1 phosphorylates ABI2 to enhance actin dynamics and promote tumor invasion. J Cell Biol 2023; 222:e202208136. [PMID: 37042842 PMCID: PMC10103708 DOI: 10.1083/jcb.202208136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 04/13/2023] Open
Abstract
Distinguishing key factors that drive the switch from indolent to invasive disease will make a significant impact on guiding the treatment of prostate cancer (PCa) patients. Here, we identify a novel signaling pathway linking hypoxia and PIM1 kinase to the actin cytoskeleton and cell motility. An unbiased proteomic screen identified Abl-interactor 2 (ABI2), an integral member of the wave regulatory complex (WRC), as a PIM1 substrate. Phosphorylation of ABI2 at Ser183 by PIM1 increased ABI2 protein levels and enhanced WRC formation, resulting in increased protrusive activity and cell motility. Cell protrusion induced by hypoxia and/or PIM1 was dependent on ABI2. In vivo smooth muscle invasion assays showed that overexpression of PIM1 significantly increased the depth of tumor cell invasion, and treatment with PIM inhibitors significantly reduced intramuscular PCa invasion. This research uncovers a HIF-1-independent signaling axis that is critical for hypoxia-induced invasion and establishes a novel role for PIM1 as a key regulator of the actin cytoskeleton.
Collapse
Affiliation(s)
- Corbin C. Jensen
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ, USA
| | - Amber N. Clements
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ, USA
| | - Hope Liou
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ, USA
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Jennifer R. Bethard
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | | | | | - Shailender S. Chauhan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | | | | | | | - Anne E. Cress
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Cindy K. Miranti
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Ghassan Mouneimne
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Greg C. Rogers
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Noel A. Warfel
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
39
|
Gutiérrez-Galindo E, Yilmaz ZH, Hausser A. Membrane trafficking in breast cancer progression: protein kinase D comes into play. Front Cell Dev Biol 2023; 11:1173387. [PMID: 37293129 PMCID: PMC10246754 DOI: 10.3389/fcell.2023.1173387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Protein kinase D (PKD) is a serine/threonine kinase family that controls important cellular functions, most notably playing a key role in the secretory pathway at the trans-Golgi network. Aberrant expression of PKD isoforms has been found mainly in breast cancer, where it promotes various cellular processes such as growth, invasion, survival and stem cell maintenance. In this review, we discuss the isoform-specific functions of PKD in breast cancer progression, with a particular focus on how the PKD controlled cellular processes might be linked to deregulated membrane trafficking and secretion. We further highlight the challenges of a therapeutic approach targeting PKD to prevent breast cancer progression.
Collapse
Affiliation(s)
| | - Zeynep Hazal Yilmaz
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
40
|
Swietlik JJ, Bärthel S, Falcomatà C, Fink D, Sinha A, Cheng J, Ebner S, Landgraf P, Dieterich DC, Daub H, Saur D, Meissner F. Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation. Nat Commun 2023; 14:2642. [PMID: 37156840 PMCID: PMC10167354 DOI: 10.1038/s41467-023-38171-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Cell-selective proteomics is a powerful emerging concept to study heterocellular processes in tissues. However, its high potential to identify non-cell-autonomous disease mechanisms and biomarkers has been hindered by low proteome coverage. Here, we address this limitation and devise a comprehensive azidonorleucine labeling, click chemistry enrichment, and mass spectrometry-based proteomics and secretomics strategy to dissect aberrant signals in pancreatic ductal adenocarcinoma (PDAC). Our in-depth co-culture and in vivo analyses cover more than 10,000 cancer cell-derived proteins and reveal systematic differences between molecular PDAC subtypes. Secreted proteins, such as chemokines and EMT-promoting matrisome proteins, associated with distinct macrophage polarization and tumor stromal composition, differentiate classical and mesenchymal PDAC. Intriguingly, more than 1,600 cancer cell-derived proteins including cytokines and pre-metastatic niche formation-associated factors in mouse serum reflect tumor activity in circulation. Our findings highlight how cell-selective proteomics can accelerate the discovery of diagnostic markers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Jonathan J Swietlik
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Diana Fink
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ankit Sinha
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jingyuan Cheng
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stefan Ebner
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Henrik Daub
- NEOsphere Biotechnologies GmbH, Martinsried, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
41
|
Li Y, Zhu J, Yu Z, Li H, Jin X. The role of Lamin B2 in human diseases. Gene 2023; 870:147423. [PMID: 37044185 DOI: 10.1016/j.gene.2023.147423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Lamin B2 (LMNB2), on the inner side of the nuclear envelope, constitutes the nuclear skeleton by connecting with other nuclear proteins. LMNB2 is involved in a wide range of nuclear functions, including DNA replication and stability, regulation of chromatin, and nuclear stiffness. Moreover, LMNB2 regulates several cellular processes, such as tissue development, cell cycle, cellular proliferation and apoptosis, chromatin localization and stability, and DNA methylation. Besides, the influence of abnormal expression and mutations of LMNB2 has been gradually discovered in cancers and laminopathies. Therefore, this review summarizes the recent advances of LMNB2-associated biological roles in physiological or pathological conditions, with a particular emphasis on cancers and laminopathies, as well as the potential mechanism of LMNB2 in related cancers.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China.
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China.
| |
Collapse
|
42
|
van der Wijngaart H, Jagga S, Dekker H, de Goeij R, Piersma SR, Pham TV, Knol JC, Zonderhuis BM, Holland HJ, Jiménez CR, Verheul HMW, Vanapalli S, Labots M. Advancing wide implementation of precision oncology: A liquid nitrogen-free snap freezer preserves molecular profiles of biological samples. Cancer Med 2023; 12:10979-10989. [PMID: 36916528 DOI: 10.1002/cam4.5781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
PURPOSE In precision oncology, tumor molecular profiles guide selection of therapy. Standardized snap freezing of tissue biospecimens is necessary to ensure reproducible, high-quality samples that preserve tumor biology for adequate molecular profiling. Quenching in liquid nitrogen (LN2 ) is the golden standard method, but LN2 has several limitations. We developed a LN2 -independent snap freezer with adjustable cold sink temperature. To benchmark this device against the golden standard, we compared molecular profiles of biospecimens. METHODS Cancer cell lines and core needle normal tissue biopsies from five patients' liver resection specimens were used to compare mass spectrometry (MS)-based global phosphoproteomic and RNA sequencing profiles and RNA integrity obtained by both freezing methods. RESULTS Unsupervised cluster analysis of phosphoproteomic and transcriptomic profiles of snap freezer versus LN2 -frozen K562 samples and liver biopsies showed no separation based on freezing method (with Pearson's r 0.96 (range 0.92-0.98) and >0.99 for K562 profiles, respectively), while samples with +2 h bench-time formed a separate cluster. RNA integrity was also similar for both snap freezing methods. Molecular profiles of liver biopsies were clearly identified per individual patient regardless of the applied freezing method. Two to 25 s freezing time variations did not induce profiling differences in HCT116 samples. CONCLUSION The novel snap freezer preserves high-quality biospecimen and allows identification of individual patients' molecular profiles, while overcoming important limitations of the use of LN2 . This snap freezer may provide a useful tool in clinical cancer research and practice, enabling a wider implementation of (multi-)omics analyses for precision oncology.
Collapse
Affiliation(s)
- Hanneke van der Wijngaart
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sahil Jagga
- Applied Thermal Sciences, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Henk Dekker
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Richard de Goeij
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jaco C Knol
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Babs M Zonderhuis
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harry J Holland
- Applied Thermal Sciences, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Connie R Jiménez
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Srinivas Vanapalli
- Applied Thermal Sciences, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Liu Y, Wan Y, Yi J, Zhang L, Cheng W. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer 2023; 1878:188890. [PMID: 37001616 DOI: 10.1016/j.bbcan.2023.188890] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Glutathione peroxidase 4 (GPx4) moonlights as structural protein and antioxidase that powerfully inhibits lipid oxidation. In the past years, it is considered as a key regulator of ferroptosis, which takes role in the lipid and amine acid metabolism and influences the cell aging, oncogenesis, and cell death. More and more evidences show that targeting GPX4-induced ferroptosis is a promising strategy for disease therapy, especially cancer treatment. In view of these, we generalize the function of GPX4 and regulatory mechanism between GPX4 and ferroptosis, discuss its roles in the disease pathology, and focus on the recent advances of disease therapeutic potential.
Collapse
|
44
|
Targeted Quantification of Protein Phosphorylation and Its Contributions towards Mathematical Modeling of Signaling Pathways. Molecules 2023; 28:molecules28031143. [PMID: 36770810 PMCID: PMC9919559 DOI: 10.3390/molecules28031143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Post-translational modifications (PTMs) are key regulatory mechanisms that can control protein function. Of these, phosphorylation is the most common and widely studied. Because of its importance in regulating cell signaling, precise and accurate measurements of protein phosphorylation across wide dynamic ranges are crucial to understanding how signaling pathways function. Although immunological assays are commonly used to detect phosphoproteins, their lack of sensitivity, specificity, and selectivity often make them unreliable for quantitative measurements of complex biological samples. Recent advances in Mass Spectrometry (MS)-based targeted proteomics have made it a more useful approach than immunoassays for studying the dynamics of protein phosphorylation. Selected reaction monitoring (SRM)-also known as multiple reaction monitoring (MRM)-and parallel reaction monitoring (PRM) can quantify relative and absolute abundances of protein phosphorylation in multiplexed fashions targeting specific pathways. In addition, the refinement of these tools by enrichment and fractionation strategies has improved measurement of phosphorylation of low-abundance proteins. The quantitative data generated are particularly useful for building and parameterizing mathematical models of complex phospho-signaling pathways. Potentially, these models can provide a framework for linking analytical measurements of clinical samples to better diagnosis and treatment of disease.
Collapse
|
45
|
Lee Y, Kim H, Barker D, Vijayvargia R, Atwal RS, Specht H, Keshishian H, Carr SA, Lee R, Kwak S, Hyun KG, Loupe J, MacDonald ME, Song JJ, Seong IS. Huntingtin turnover: modulation of huntingtin degradation by cAMP-dependent protein kinase A (PKA) phosphorylation of C-HEAT domain Ser2550. Hum Mol Genet 2023; 32:30-45. [PMID: 35908190 DOI: 10.1093/hmg/ddac165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/25/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by an inherited unstable HTT CAG repeat that expands further, thereby eliciting a disease process that may be initiated by polyglutamine-expanded huntingtin or a short polyglutamine-product. Phosphorylation of selected candidate residues is reported to mediate polyglutamine-fragment degradation and toxicity. Here to support the discovery of phosphosites involved in the life-cycle of (full-length) huntingtin, we employed mass spectrometry-based phosphoproteomics to systematically identify sites in purified huntingtin and in the endogenous protein by proteomic and phosphoproteomic analyses of members of an HD neuronal progenitor cell panel. Our results bring total huntingtin phosphosites to 95, with more located in the N-HEAT domain relative to numbers in the Bridge and C-HEAT domains. Moreover, phosphorylation of C-HEAT Ser2550 by cAMP-dependent protein kinase (PKA), the top hit in kinase activity screens, was found to hasten huntingtin degradation, such that levels of the catalytic subunit (PRKACA) were inversely related to huntingtin levels. Taken together, these findings highlight categories of phosphosites that merit further study and provide a phosphosite kinase pair (pSer2550-PKA) with which to investigate the biological processes that regulate huntingtin degradation and thereby influence the steady state levels of huntingtin in HD cells.
Collapse
Affiliation(s)
- Yejin Lee
- Department of Biological Sciences, KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Hyeongju Kim
- Department of Biological Sciences, KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Douglas Barker
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Ravi Vijayvargia
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Ranjit Singh Atwal
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Harrison Specht
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Hasmik Keshishian
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Ramee Lee
- CHDI Management/CHDI Foundation, Princeton, NJ 08540, USA
| | - Seung Kwak
- CHDI Management/CHDI Foundation, Princeton, NJ 08540, USA
| | - Kyung-Gi Hyun
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Jacob Loupe
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Ji-Joon Song
- Department of Biological Sciences, KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ihn Sik Seong
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
46
|
Koc EC, Hunter CA, Koc H. Phosphorylation of mammalian mitochondrial EF-Tu by Fyn and c-Src kinases. Cell Signal 2023; 101:110524. [PMID: 36379377 DOI: 10.1016/j.cellsig.2022.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
Src Family Kinases (SFKs) are tyrosine kinases known to regulate glucose and fatty acid metabolism as well as oxidative phosphorylation (OXPHOS) in mammalian mitochondria. We and others discovered the association of the SFK kinases Fyn and c-Src with mitochondrial translation components. This translational system is responsible for the synthesis of 13 mitochondrial (mt)-encoded subunits of the OXPHOS complexes and is, thus, essential for energy generation. Mitochondrial ribosomal proteins and various translation elongation factors including Tu (EF-Tumt) have been identified as possible Fyn and c-Src kinase targets. However, the phosphorylation of specific residues in EF-Tumt by these kinases and their roles in the regulation of protein synthesis are yet to be explored. In this study, we report the association of EF-Tumt with cSrc kinase and mapping of phosphorylated Tyr (pTyr) residues by these kinases. We determined that a specific Tyr residue in EF-Tumt at position 266 (EF-Tumt-Y266), located in a highly conserved c-Src consensus motif is one of the major phosphorylation sites. The potential role of EF-Tumt-Y266 phosphorylation in regulation of mitochondrial translation investigated by site-directed mutagenesis. Its phosphomimetic to Glu residue (EF-Tumt-E266) inhibited ternary complex (EF-Tumt•GTP•aatRNA) formation and translation in vitro. Our findings along with data mining analysis of the c-Src knock out (KO) mice proteome suggest that the SFKs have possible roles for regulation of mitochondrial protein synthesis and oxidative energy metabolism in animals.
Collapse
Affiliation(s)
- Emine C Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States of America.
| | - Caroline A Hunter
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States of America
| | - Hasan Koc
- Department of Pharmacological Science, School of Pharmacy, Marshall University, Huntington, WV 25755, United States of America.
| |
Collapse
|
47
|
Abstract
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) continues to be one of the most versatile and widely used techniques to study the proteome of a biological system, particularly in the separation of intact proteins. A modified version of 2D-PAGE, two-dimensional difference gel electrophoresis (2D-DIGE), which uses differential labeling of protein samples with up to three fluorescent tags, offers greater sensitivity and reproducibility over conventional 2D-PAGE gels for differential quantitative analysis of protein expression between experimental groups. Both these methods have distinct advantages in the separation and identification of thousands of individual protein species including protein isoforms and post-translational modifications. This chapter discusses the principles of 2D-PAGE and 2D-DIGE including limitations to the methods. 2D-PAGE and 2D-DIGE continue to be popular methods in bioprocessing-related research, particularly on recombinant Chinese hamster ovary cells, which are also discussed in this chapter.
Collapse
Affiliation(s)
- Paula Meleady
- School of Biotechnology, National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland.
| |
Collapse
|
48
|
Ando K, Nagaraj S, Küçükali F, de Fisenne MA, Kosa AC, Doeraene E, Lopez Gutierrez L, Brion JP, Leroy K. PICALM and Alzheimer's Disease: An Update and Perspectives. Cells 2022; 11:3994. [PMID: 36552756 PMCID: PMC9776874 DOI: 10.3390/cells11243994] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified the PICALM (Phosphatidylinositol binding clathrin-assembly protein) gene as the most significant genetic susceptibility locus after APOE and BIN1. PICALM is a clathrin-adaptor protein that plays a critical role in clathrin-mediated endocytosis and autophagy. Since the effects of genetic variants of PICALM as AD-susceptibility loci have been confirmed by independent genetic studies in several distinct cohorts, there has been a number of in vitro and in vivo studies attempting to elucidate the underlying mechanism by which PICALM modulates AD risk. While differential modulation of APP processing and Aβ transcytosis by PICALM has been reported, significant effects of PICALM modulation of tau pathology progression have also been evidenced in Alzheimer's disease models. In this review, we summarize the current knowledge about PICALM, its physiological functions, genetic variants, post-translational modifications and relevance to AD pathogenesis.
Collapse
Affiliation(s)
- Kunie Ando
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Siranjeevi Nagaraj
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Fahri Küçükali
- Complex Genetics of Alzheimer’s Disease Group, VIB Center for Molecular Neurology, VIB Antwerp, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Marie-Ange de Fisenne
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Andreea-Claudia Kosa
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Emilie Doeraene
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Lidia Lopez Gutierrez
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Karelle Leroy
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
49
|
Mouron S, Bueno MJ, Lluch A, Manso L, Calvo I, Cortes J, Garcia-Saenz JA, Gil-Gil M, Martinez-Janez N, Apala JV, Caleiras E, Ximénez-Embún P, Muñoz J, Gonzalez-Cortijo L, Murillo R, Sánchez-Bayona R, Cejalvo JM, Gómez-López G, Fustero-Torre C, Sabroso-Lasa S, Malats N, Martinez M, Moreno A, Megias D, Malumbres M, Colomer R, Quintela-Fandino M. Phosphoproteomic analysis of neoadjuvant breast cancer suggests that increased sensitivity to paclitaxel is driven by CDK4 and filamin A. Nat Commun 2022; 13:7529. [PMID: 36477027 PMCID: PMC9729295 DOI: 10.1038/s41467-022-35065-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Precision oncology research is challenging outside the contexts of oncogenic addiction and/or targeted therapies. We previously showed that phosphoproteomics is a powerful approach to reveal patient subsets of interest characterized by the activity of a few kinases where the underlying genomics is complex. Here, we conduct a phosphoproteomic screening of samples from HER2-negative female breast cancer receiving neoadjuvant paclitaxel (N = 130), aiming to find candidate biomarkers of paclitaxel sensitivity. Filtering 11 candidate biomarkers through 2 independent patient sets (N = 218) allowed the identification of a subgroup of patients characterized by high levels of CDK4 and filamin-A who had a 90% chance of achieving a pCR in response to paclitaxel. Mechanistically, CDK4 regulates filamin-A transcription, which in turn forms a complex with tubulin and CLIP-170, which elicits increased binding of paclitaxel to microtubules, microtubule acetylation and stabilization, and mitotic catastrophe. Thus, phosphoproteomics allows the identification of explainable factors for predicting response to paclitaxel.
Collapse
Affiliation(s)
- S Mouron
- Breast Cancer Clinical Research Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - M J Bueno
- Breast Cancer Clinical Research Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - A Lluch
- Medical Oncology Department, Hospital Clínico Universitario, Valencia, Spain
| | - L Manso
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - I Calvo
- Medical Oncology Department MD, Anderson Cancer Center Madrid, Madrid, Spain
| | - J Cortes
- International Breast Cancer Center Quiron Group, Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Vall d'Hebron Hospital, Barcelona, Spain
| | - J A Garcia-Saenz
- Medical Oncology Department, Hospital Clinico San Carlos, Madrid, Spain
| | - M Gil-Gil
- Medical Oncoogy Department Institut, Catala d'Oncologia-IDIBELL L'Hospitalet de, Llobregat, Spain
| | - N Martinez-Janez
- Medical Oncology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - J V Apala
- Breast Cancer Clinical Research Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - E Caleiras
- Histopathology Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - J Muñoz
- Proteomics Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - L Gonzalez-Cortijo
- Medical Oncology Department, Hospital Universitario Quironsalud, Madrid, Spain
| | - R Murillo
- Pathology Department, Hospital Universitario Quironsalud, Madrid, Spain
| | - R Sánchez-Bayona
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - J M Cejalvo
- Medical Oncology Department, Hospital Clínico Universitario, Valencia, Spain
| | - G Gómez-López
- Bioinformatics Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - C Fustero-Torre
- Bioinformatics Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - S Sabroso-Lasa
- Genetic & Molecular Epidemiology Group Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - N Malats
- Genetic & Molecular Epidemiology Group Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - M Martinez
- Pathology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - A Moreno
- Pathology Department, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - D Megias
- Confocal Microscopy Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - M Malumbres
- Cell Division and Cancer Group Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - R Colomer
- Medical Oncology Department, Hospital Universitario La Princesa, Madrid, Spain
- Endowed Chair of Personalized Precision Medicine Universidad Autonoma de Madrid (UAM) - Fundacion Instituto Roche, Madrid, Spain
| | - M Quintela-Fandino
- Breast Cancer Clinical Research Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain.
- Endowed Chair of Personalized Precision Medicine Universidad Autonoma de Madrid (UAM) - Fundacion Instituto Roche, Madrid, Spain.
| |
Collapse
|
50
|
Hall R, Yuan S, Wood K, Katona M, Straub AC. Cytochrome b5 reductases: Redox regulators of cell homeostasis. J Biol Chem 2022; 298:102654. [PMID: 36441026 PMCID: PMC9706631 DOI: 10.1016/j.jbc.2022.102654] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The cytochrome-b5 reductase (CYB5R) family of flavoproteins is known to regulate reduction-oxidation (redox) balance in cells. The five enzyme members are highly compartmentalized at the subcellular level and function as "redox switches" enabling the reduction of several substrates, such as heme and coenzyme Q. Critical insight into the physiological and pathophysiological significance of CYB5R enzymes has been gleaned from several human genetic variants that cause congenital disease and a broad spectrum of chronic human diseases. Among the CYB5R genetic variants, CYB5R3 is well-characterized and deficiency in expression and activity is associated with type II methemoglobinemia, cancer, neurodegenerative disorders, diabetes, and cardiovascular disease. Importantly, pharmacological and genetic-based strategies are underway to target CYB5R3 to circumvent disease onset and mitigate severity. Despite our knowledge of CYB5R3 in human health and disease, the other reductases in the CYB5R family have been understudied, providing an opportunity to unravel critical function(s) for these enzymes in physiology and disease. In this review, we aim to provide the broad scientific community an up-to-date overview of the molecular, cellular, physiological, and pathophysiological roles of CYB5R proteins.
Collapse
Affiliation(s)
- Robert Hall
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mate Katona
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Microvascular Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|