1
|
Eckardt NA, Allahverdiyeva Y, Alvarez CE, Büchel C, Burlacot A, Cardona T, Chaloner E, Engel BD, Grossman AR, Harris D, Herrmann N, Hodges M, Kern J, Kim TD, Maurino VG, Mullineaux CW, Mustila H, Nikkanen L, Schlau-Cohen G, Tronconi MA, Wietrzynski W, Yachandra VK, Yano J. Lighting the way: Compelling open questions in photosynthesis research. THE PLANT CELL 2024; 36:3914-3943. [PMID: 39038210 PMCID: PMC11449116 DOI: 10.1093/plcell/koae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Photosynthesis-the conversion of energy from sunlight into chemical energy-is essential for life on Earth. Yet there is much we do not understand about photosynthetic energy conversion on a fundamental level: how it evolved and the extent of its diversity, its dynamics, and all the components and connections involved in its regulation. In this commentary, researchers working on fundamental aspects of photosynthesis including the light-dependent reactions, photorespiration, and C4 photosynthetic metabolism pose and discuss what they view as the most compelling open questions in their areas of research.
Collapse
Affiliation(s)
| | - Yagut Allahverdiyeva
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Adrien Burlacot
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tanai Cardona
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Emma Chaloner
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Benjamin D Engel
- Biozentrum, University of Basel, Sptialstrasse 41, 4056 Basel, Switzerland
| | - Arthur R Grossman
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Nicolas Herrmann
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hodges
- Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tom Dongmin Kim
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Veronica G Maurino
- Molecular Plant Physiology, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Henna Mustila
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Lauri Nikkanen
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Gabriela Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Marcos A Tronconi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | | | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Mallén-Ponce MJ, Florencio FJ, Huertas MJ. Thioredoxin A regulates protein synthesis to maintain carbon and nitrogen partitioning in cyanobacteria. PLANT PHYSIOLOGY 2024; 195:2921-2936. [PMID: 38386687 PMCID: PMC11288746 DOI: 10.1093/plphys/kiae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Thioredoxins play an essential role in regulating enzyme activity in response to environmental changes, especially in photosynthetic organisms. They are crucial for metabolic regulation in cyanobacteria, but the key redox-regulated central processes remain to be determined. Physiological, metabolic, and transcriptomic characterization of a conditional mutant of the essential Synechocystis sp. PCC 6803 thioredoxin trxA gene (STXA2) revealed that decreased TrxA levels alter cell morphology and induce a dormant-like state. Furthermore, TrxA depletion in the STXA2 strain inhibited protein synthesis and led to changes in amino acid pools and nitrogen/carbon reserve polymers, accompanied by oxidation of the elongation factor-Tu. Transcriptomic analysis of TrxA depletion in STXA2 revealed a robust transcriptional response. Downregulated genes formed a large cluster directly related to photosynthesis, ATP synthesis, and CO2 fixation. In contrast, upregulated genes were grouped into different clusters related to respiratory electron transport, carotenoid biosynthesis, amino acid metabolism, and protein degradation, among others. These findings highlight the complex regulatory mechanisms that govern cyanobacterial metabolism, where TrxA acts as a critical regulator that orchestrates the transition from anabolic to maintenance metabolism and regulates carbon and nitrogen balance.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), 41092 Sevilla, Spain
| | - Francisco Javier Florencio
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), 41092 Sevilla, Spain
| | - María José Huertas
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), 41092 Sevilla, Spain
| |
Collapse
|
3
|
Sarasa-Buisan C, Nieves-Morión M, Arévalo S, Helm RF, Sevilla E, Luque I, Fillat MF. FurC (PerR) contributes to the regulation of peptidoglycan remodeling and intercellular molecular transfer in the cyanobacterium Anabaena sp. strain PCC 7120. mBio 2024; 15:e0323123. [PMID: 38334377 PMCID: PMC10936207 DOI: 10.1128/mbio.03231-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Microbial extracellular proteins and metabolites provide valuable information concerning how microbes adapt to changing environments. In cyanobacteria, dynamic acclimation strategies involve a variety of regulatory mechanisms, being ferric uptake regulator proteins as key players in this process. In the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120, FurC (PerR) is a global regulator that modulates the peroxide response and several genes involved in photosynthesis and nitrogen metabolism. To investigate the possible role of FurC in shaping the extracellular environment of Anabaena, the analysis of the extracellular metabolites and proteins of a furC-overexpressing variant was compared to that of the wild-type strain. There were 96 differentially abundant proteins, 78 of which were found for the first time in the extracellular fraction of Anabaena. While these proteins belong to different functional categories, most of them are predicted to be secreted or have a peripheral location. Several stress-related proteins, including PrxA, flavodoxin, and the Dps homolog All1173, accumulated in the exoproteome of furC-overexpressing cells, while decreased levels of FurA and a subset of membrane proteins, including several export proteins and amiC gene products, responsible for nanopore formation, were detected. Direct repression by FurC of some of those genes, including amiC1 and amiC2, could account for odd septal nanopore formation and impaired intercellular molecular transfer observed in the furC-overexpressing variant. Assessment of the exometabolome from both strains revealed the release of two peptidoglycan fragments in furC-overexpressing cells, namely 1,6-anhydro-N-acetyl-β-D-muramic acid (anhydroMurNAc) and its associated disaccharide (β-D-GlcNAc-(1-4)-anhydroMurNAc), suggesting alterations in peptidoglycan breakdown and recycling.IMPORTANCECyanobacteria are ubiquitous photosynthetic prokaryotes that can adapt to environmental stresses by modulating their extracellular contents. Measurements of the organization and composition of the extracellular milieu provide useful information about cyanobacterial adaptive processes, which can potentially lead to biomimetic approaches to stabilizing biological systems to adverse conditions. Anabaena sp. strain PCC 7120 is a multicellular, nitrogen-fixing cyanobacterium whose intercellular molecular exchange is mediated by septal junctions that traverse the septal peptidoglycan through nanopores. FurC (PerR) is an essential transcriptional regulator in Anabaena, which modulates the response to several stresses. Here, we show that furC-overexpressing cells result in a modified exoproteome and the release of peptidoglycan fragments. Phenotypically, important alterations in nanopore formation and cell-to-cell communication were observed. Our results expand the roles of FurC to the modulation of cell-wall biogenesis and recycling, as well as in intercellular molecular transfer.
Collapse
Affiliation(s)
- Cristina Sarasa-Buisan
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos. Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Mercedes Nieves-Morión
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos. Universidad de Zaragoza, Zaragoza, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - María F. Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos. Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
Mejia‐Rodriguez D, Kim H, Sadler N, Li X, Bohutskyi P, Valiev M, Qian W, Cheung MS. PTM-Psi: A python package to facilitate the computational investigation of post-translational modification on protein structures and their impacts on dynamics and functions. Protein Sci 2023; 32:e4822. [PMID: 37902126 PMCID: PMC10659954 DOI: 10.1002/pro.4822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023]
Abstract
Post-translational modification (PTM) of a protein occurs after it has been synthesized from its genetic template, and involves chemical modifications of the protein's specific amino acid residues. Despite of the central role played by PTM in regulating molecular interactions, particularly those driven by reversible redox reactions, it remains challenging to interpret PTMs in terms of protein dynamics and function because there are numerous combinatorially enormous means for modifying amino acids in response to changes in the protein environment. In this study, we provide a workflow that allows users to interpret how perturbations caused by PTMs affect a protein's properties, dynamics, and interactions with its binding partners based on inferred or experimentally determined protein structure. This Python-based workflow, called PTM-Psi, integrates several established open-source software packages, thereby enabling the user to infer protein structure from sequence, develop force fields for non-standard amino acids using quantum mechanics, calculate free energy perturbations through molecular dynamics simulations, and score the bound complexes via docking algorithms. Using the S-nitrosylation of several cysteines on the GAP2 protein as an example, we demonstrated the utility of PTM-Psi for interpreting sequence-structure-function relationships derived from thiol redox proteomics data. We demonstrate that the S-nitrosylated cysteine that is exposed to the solvent indirectly affects the catalytic reaction of another buried cysteine over a distance in GAP2 protein through the movement of the two ligands. Our workflow tracks the PTMs on residues that are responsive to changes in the redox environment and lays the foundation for the automation of molecular and systems biology modeling.
Collapse
Affiliation(s)
- Daniel Mejia‐Rodriguez
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Hoshin Kim
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Natalie Sadler
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Xiaolu Li
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Pavlo Bohutskyi
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National LaboratoryRichlandWashingtonUSA
- Biological Systems EngineeringWashington State UniversityRichlandWashingtonUSA
| | - Marat Valiev
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Wei‐Jun Qian
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Margaret S. Cheung
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National LaboratoryRichlandWashingtonUSA
- Environmental Molecular Sciences LaboratoryRichlandWashingtonUSA
- University of WashingtonSeattleWashingtonUSA
| |
Collapse
|
5
|
Li X, Gluth A, Feng S, Qian WJ, Yang B. Harnessing redox proteomics to study metabolic regulation and stress response in lignin-fed Rhodococci. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:180. [PMID: 37986172 PMCID: PMC10662689 DOI: 10.1186/s13068-023-02424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Rhodococci are studied for their bacterial ligninolytic capabilities and proclivity to accumulate lipids. Lignin utilization is a resource intensive process requiring a variety of redox active enzymes and cofactors for degradation as well as defense against the resulting toxic byproducts and oxidative conditions. Studying enzyme expression and regulation between carbon sources will help decode the metabolic rewiring that stymies lignin to lipid conversion in these bacteria. Herein, a redox proteomics approach was applied to investigate a fundamental driver of carbon catabolism and lipid anabolism: redox balance. RESULTS A consortium of Rhodococcus strains was employed in this study given its higher capacity for lignin degradation compared to monocultures. This consortium was grown on glucose vs. lignin under nitrogen limitation to study the importance of redox balance as it relates to nutrient availability. A modified bottom-up proteomics workflow was harnessed to acquire a general relationship between protein abundance and protein redox states. Global proteomics results affirm differential expression of enzymes involved in sugar metabolism vs. those involved in lignin degradation and aromatics metabolism. As reported previously, several enzymes in the lipid biosynthetic pathways were downregulated, whereas many involved in β-oxidation were upregulated. Interestingly, proteins involved in oxidative stress response were also upregulated perhaps in response to lignin degradation and aromatics catabolism, which require oxygen and reactive oxygen species and generate toxic byproducts. Enzymes displaying little-to-no change in abundance but differences in redox state were observed in various pathways for carbon utilization (e.g., β‑ketoadipate pathway), lipid metabolism, as well as nitrogen metabolism (e.g., purine scavenging/synthesis), suggesting potential mechanisms of redox-dependent regulation of metabolism. CONCLUSIONS Efficient lipid production requires a steady carbon and energy flux while balancing fundamental requirements for enzyme production and cell maintenance. For lignin, we theorize that this balance is difficult to establish due to resource expenditure for enzyme production and stress response. This is supported by significant changes to protein abundances and protein cysteine oxidation in various metabolic pathways and redox processes.
Collapse
Affiliation(s)
- Xiaolu Li
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Austin Gluth
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA
| | - Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Bin Yang
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA.
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
6
|
Cobley JN. 50 shades of oxidative stress: A state-specific cysteine redox pattern hypothesis. Redox Biol 2023; 67:102936. [PMID: 37875063 PMCID: PMC10618833 DOI: 10.1016/j.redox.2023.102936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
Oxidative stress is biochemically complex. Like primary colours, specific reactive oxygen species (ROS) and antioxidant inputs can be mixed to create unique "shades" of oxidative stress. Even a minimal redox module comprised of just 12 (ROS & antioxidant) inputs and 3 outputs (oxidative damage, cysteine-dependent redox-regulation, or both) yields over half a million "shades" of oxidative stress. The present paper proposes the novel hypothesis that: state-specific shades of oxidative stress, such as a discrete disease, are associated with distinct tell-tale cysteine oxidation patterns. The patterns are encoded by many parameters, from the identity of the oxidised proteins, the cysteine oxidation type, and magnitude. The hypothesis is conceptually grounded in distinct ROS and antioxidant inputs coalescing to produce unique cysteine oxidation outputs. And considers the potential biological significance of the holistic cysteine oxidation outputs. The literature supports the existence of state-specific cysteine oxidation patterns. Measuring and manipulating these patterns offer promising avenues for advancing oxidative stress research. The pattern inspired hypothesis provides a framework for understanding the complex biochemical nature of state-specific oxidative stress.
Collapse
Affiliation(s)
- James N Cobley
- Cysteine redox technology Group, Life Science Innovation Centre, University of the Highlands and Islands, Inverness, IV2 5NA, Scotland, UK.
| |
Collapse
|
7
|
de Barros Dantas LL, Eldridge BM, Dorling J, Dekeya R, Lynch DA, Dodd AN. Circadian regulation of metabolism across photosynthetic organisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:650-668. [PMID: 37531328 PMCID: PMC10953457 DOI: 10.1111/tpj.16405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Circadian regulation produces a biological measure of time within cells. The daily cycle in the availability of light for photosynthesis causes dramatic changes in biochemical processes in photosynthetic organisms, with the circadian clock having crucial roles in adaptation to these fluctuating conditions. Correct alignment between the circadian clock and environmental day-night cycles maximizes plant productivity through its regulation of metabolism. Therefore, the processes that integrate circadian regulation with metabolism are key to understanding how the circadian clock contributes to plant productivity. This forms an important part of exploiting knowledge of circadian regulation to enhance sustainable crop production. Here, we examine the roles of circadian regulation in metabolic processes in source and sink organ structures of Arabidopsis. We also evaluate possible roles for circadian regulation in root exudation processes that deposit carbon into the soil, and the nature of the rhythmic interactions between plants and their associated microbial communities. Finally, we examine shared and differing aspects of the circadian regulation of metabolism between Arabidopsis and other model photosynthetic organisms, and between circadian control of metabolism in photosynthetic and non-photosynthetic organisms. This synthesis identifies a variety of future research topics, including a focus on metabolic processes that underlie biotic interactions within ecosystems.
Collapse
Affiliation(s)
| | - Bethany M. Eldridge
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Jack Dorling
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Richard Dekeya
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Deirdre A. Lynch
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Antony N. Dodd
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| |
Collapse
|
8
|
Sporre E, Karlsen J, Schriever K, Asplund-Samuelsson J, Janasch M, Strandberg L, Karlsson A, Kotol D, Zeckey L, Piazza I, Syrén PO, Edfors F, Hudson EP. Metabolite interactions in the bacterial Calvin cycle and implications for flux regulation. Commun Biol 2023; 6:947. [PMID: 37723200 PMCID: PMC10507043 DOI: 10.1038/s42003-023-05318-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023] Open
Abstract
Metabolite-level regulation of enzyme activity is important for microbes to cope with environmental shifts. Knowledge of such regulations can also guide strain engineering for biotechnology. Here we apply limited proteolysis-small molecule mapping (LiP-SMap) to identify and compare metabolite-protein interactions in the proteomes of two cyanobacteria and two lithoautotrophic bacteria that fix CO2 using the Calvin cycle. Clustering analysis of the hundreds of detected interactions shows that some metabolites interact in a species-specific manner. We estimate that approximately 35% of interacting metabolites affect enzyme activity in vitro, and the effect is often minor. Using LiP-SMap data as a guide, we find that the Calvin cycle intermediate glyceraldehyde-3-phosphate enhances activity of fructose-1,6/sedoheptulose-1,7-bisphosphatase (F/SBPase) from Synechocystis sp. PCC 6803 and Cupriavidus necator in reducing conditions, suggesting a convergent feed-forward activation of the cycle. In oxidizing conditions, glyceraldehyde-3-phosphate inhibits Synechocystis F/SBPase by promoting enzyme aggregation. In contrast, the glycolytic intermediate glucose-6-phosphate activates F/SBPase from Cupriavidus necator but not F/SBPase from Synechocystis. Thus, metabolite-level regulation of the Calvin cycle is more prevalent than previously appreciated.
Collapse
Affiliation(s)
- Emil Sporre
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jan Karlsen
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Karen Schriever
- Department of Fiber and Polymer Technology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Johannes Asplund-Samuelsson
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Markus Janasch
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465, Trondheim, Norway
| | - Linnéa Strandberg
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anna Karlsson
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - David Kotol
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Luise Zeckey
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Ilaria Piazza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Per-Olof Syrén
- Department of Fiber and Polymer Technology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Edfors
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Elton P Hudson
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
9
|
Li X, Gluth A, Zhang T, Qian WJ. Thiol redox proteomics: Characterization of thiol-based post-translational modifications. Proteomics 2023; 23:e2200194. [PMID: 37248656 PMCID: PMC10764013 DOI: 10.1002/pmic.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Redox post-translational modifications on cysteine thiols (redox PTMs) have profound effects on protein structure and function, thus enabling regulation of various biological processes. Redox proteomics approaches aim to characterize the landscape of redox PTMs at the systems level. These approaches facilitate studies of condition-specific, dynamic processes implicating redox PTMs and have furthered our understanding of redox signaling and regulation. Mass spectrometry (MS) is a powerful tool for such analyses which has been demonstrated by significant advances in redox proteomics during the last decade. A group of well-established approaches involves the initial blocking of free thiols followed by selective reduction of oxidized PTMs and subsequent enrichment for downstream detection. Alternatively, novel chemoselective probe-based approaches have been developed for various redox PTMs. Direct detection of redox PTMs without any enrichment has also been demonstrated given the sensitivity of contemporary MS instruments. This review discusses the general principles behind different analytical strategies and covers recent advances in redox proteomics. Several applications of redox proteomics are also highlighted to illustrate how large-scale redox proteomics data can lead to novel biological insights.
Collapse
Affiliation(s)
- Xiaolu Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Austin Gluth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| |
Collapse
|
10
|
Barone GD, Hubáček M, Malihan-Yap L, Grimm HC, Nikkanen L, Pacheco CC, Tamagnini P, Allahverdiyeva Y, Kourist R. Towards the rate limit of heterologous biotechnological reactions in recombinant cyanobacteria. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:4. [PMID: 36609316 PMCID: PMC9825001 DOI: 10.1186/s13068-022-02237-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/04/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cyanobacteria have emerged as highly efficient organisms for the production of chemicals and biofuels. Yet, the productivity of the cell has been low for commercial application. Cyanobacterial photobiotransformations utilize photosynthetic electrons to form reducing equivalents, such as NADPH-to-fuel biocatalytic reactions. These photobiotransformations are a measure to which extent photosynthetic electrons can be deviated toward heterologous biotechnological processes, such as the production of biofuels. By expressing oxidoreductases, such as YqjM from Bacillus subtilis in Synechocystis sp. PCC 6803, a high specific activity was obtained in the reduction of maleimides. Here, we investigated the possibility to accelerate the NAD(P)H-consuming redox reactions by addition of carbohydrates as exogenous carbon sources such as D-Glucose under light and darkness. RESULTS A 1.7-fold increase of activity (150 µmol min-1 gDCW-1) was observed upon addition of D-Glucose at an OD750 = 2.5 (DCW = 0.6 g L-1) in the biotransformation of 2-methylmaleimide. The stimulating effect of D-Glucose was also observed at higher cell densities in light and dark conditions as well as in the reduction of other substrates. No increase in both effective photosynthetic yields of Photosystem II and Photosystem I was found upon D-Glucose addition. However, we observed higher NAD(P)H fluorescence when D-Glucose was supplemented, suggesting increased glycolytic activity. Moreover, the system was scaled-up (working volume of 200 mL) in an internally illuminated Bubble Column Reactor exhibiting a 2.4-fold increase of specific activity under light-limited conditions. CONCLUSIONS Results show that under photoautotrophic conditions at a specific activity of 90 µmol min-1 gDCW-1, the ene-reductase YqjM in Synechocystis sp. PCC 6803 is not NAD(P)H saturated, which is an indicator that an increase of the rates of heterologous electron consuming processes for catalysis and biofuel production will require funnelling further reducing power from the photosynthetic chain toward heterologous processes.
Collapse
Affiliation(s)
- Giovanni Davide Barone
- grid.410413.30000 0001 2294 748XBiocatalysis and Protein Engineering, Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria ,grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Michal Hubáček
- grid.1374.10000 0001 2097 1371Laboratory of Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Lenny Malihan-Yap
- grid.410413.30000 0001 2294 748XBiocatalysis and Protein Engineering, Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Hanna C. Grimm
- grid.410413.30000 0001 2294 748XBiocatalysis and Protein Engineering, Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Lauri Nikkanen
- grid.1374.10000 0001 2097 1371Laboratory of Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Catarina C. Pacheco
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Paula Tamagnini
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Yagut Allahverdiyeva
- grid.1374.10000 0001 2097 1371Laboratory of Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Robert Kourist
- grid.410413.30000 0001 2294 748XBiocatalysis and Protein Engineering, Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
11
|
Li X, Zhang T, Day NJ, Feng S, Gaffrey MJ, Qian WJ. Defining the S-Glutathionylation Proteome by Biochemical and Mass Spectrometric Approaches. Antioxidants (Basel) 2022; 11:2272. [PMID: 36421458 PMCID: PMC9687251 DOI: 10.3390/antiox11112272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 08/27/2023] Open
Abstract
Protein S-glutathionylation (SSG) is a reversible post-translational modification (PTM) featuring the conjugation of glutathione to a protein cysteine thiol. SSG can alter protein structure, activity, subcellular localization, and interaction with small molecules and other proteins. Thus, it plays a critical role in redox signaling and regulation in various physiological activities and pathological events. In this review, we summarize current biochemical and analytical approaches for characterizing SSG at both the proteome level and at individual protein levels. To illustrate the mechanism underlying SSG-mediated redox regulation, we highlight recent examples of functional and structural consequences of SSG modifications. Finally, we discuss the analytical challenges in characterizing SSG and the thiol PTM landscape, future directions for understanding of the role of SSG in redox signaling and regulation and its interplay with other PTMs, and the potential role of computational approaches to accelerate functional discovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
12
|
Zhang T, Day NJ, Gaffrey M, Weitz KK, Attah K, Mimche PN, Paine R, Qian WJ, Helms MN. Regulation of hyperoxia-induced neonatal lung injury via post-translational cysteine redox modifications. Redox Biol 2022; 55:102405. [PMID: 35872399 PMCID: PMC9307955 DOI: 10.1016/j.redox.2022.102405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 12/17/2022] Open
Abstract
Preterm infants and patients with lung disease often have excess fluid in the lungs and are frequently treated with oxygen, however long-term exposure to hyperoxia results in irreversible lung injury. Although the adverse effects of hyperoxia are mediated by reactive oxygen species, the full extent of the impact of hyperoxia on redox-dependent regulation in the lung is unclear. In this study, neonatal mice overexpressing the beta-subunit of the epithelial sodium channel (β-ENaC) encoded by Scnn1b and their wild type (WT; C57Bl6) littermates were utilized to study the pathogenesis of high fraction inspired oxygen (FiO2)-induced lung injury. Results showed that O2-induced lung injury in transgenic Scnn1b mice is attenuated following chronic O2 exposure. To test the hypothesis that reversible cysteine-redox-modifications of proteins play an important role in O2-induced lung injury, we performed proteome-wide profiling of protein S-glutathionylation (SSG) in both WT and Scnn1b overexpressing mice maintained at 21% O2 (normoxia) or FiO2 85% (hyperoxia) from birth to 11-15 days postnatal. Over 7700 unique Cys sites with SSG modifications were identified and quantified, covering more than 3000 proteins in the lung. In both mouse models, hyperoxia resulted in a significant alteration of the SSG levels of Cys sites belonging to a diverse range of proteins. In addition, substantial SSG changes were observed in the Scnn1b overexpressing mice exposed to hyperoxia, suggesting that ENaC plays a critically important role in cellular regulation. Hyperoxia-induced SSG changes were further supported by the results observed for thiol total oxidation, the overall level of reversible oxidation on protein cysteine residues. Differential analyses reveal that Scnn1b overexpression may protect against hyperoxia-induced lung injury via modulation of specific processes such as cell adhesion, blood coagulation, and proteolysis. This study provides a landscape view of protein oxidation in the lung and highlights the importance of redox regulation in O2-induced lung injury.
Collapse
Affiliation(s)
- Tong Zhang
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nicholas J Day
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew Gaffrey
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kwame Attah
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Patrice N Mimche
- Division of Microbiology and Immunology, Department of Pathology, University of Utah Molecular Medicine Program, Salt Lake City, UT, USA
| | - Robert Paine
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Wei-Jun Qian
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - My N Helms
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
13
|
Zam Is a Redox-Regulated Member of the RNB-Family Required for Optimal Photosynthesis in Cyanobacteria. Microorganisms 2022; 10:microorganisms10051055. [PMID: 35630497 PMCID: PMC9145284 DOI: 10.3390/microorganisms10051055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
The zam gene mediating resistance to acetazolamide in cyanobacteria was discovered thirty years ago during a drug tolerance screen. We use phylogenetics to show that Zam proteins are distributed across cyanobacteria and that they form their own unique clade of the ribonuclease II/R (RNB) family. Despite being RNB family members, multiple sequence alignments reveal that Zam proteins lack conservation and exhibit extreme degeneracy in the canonical active site—raising questions about their cellular function(s). Several known phenotypes arise from the deletion of zam, including drug resistance, slower growth, and altered pigmentation. Using room-temperature and low-temperature fluorescence and absorption spectroscopy, we show that deletion of zam results in decreased phycocyanin synthesis rates, altered PSI:PSII ratios, and an increase in coupling between the phycobilisome and PSII. Conserved cysteines within Zam are identified and assayed for function using in vitro and in vivo methods. We show that these cysteines are essential for Zam function, with mutation of either residue to serine causing phenotypes identical to the deletion of Zam. Redox regulation of Zam activity based on the reversible oxidation-reduction of a disulfide bond involving these cysteine residues could provide a mechanism to integrate the ‘central dogma’ with photosynthesis in cyanobacteria.
Collapse
|
14
|
Che L, Meng H, Ruan J, Peng L, Zhang L. Rubredoxin 1 Is Required for Formation of the Functional Photosystem II Core Complex in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:824358. [PMID: 35283894 PMCID: PMC8905225 DOI: 10.3389/fpls.2022.824358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 05/03/2023]
Abstract
Chloroplast thylakoid protein rubredoxin 1 (RBD1) in Chlamydomonas and its cyanobacterial homolog RubA contain a rubredoxin domain. These proteins have been proposed to participate in the assembly of photosystem II (PSII) at early stages. However, the effects of inactivation of RBD1 on PSII assembly in higher plants are largely unclear. Here, we characterized an Arabidopsis rbd1 mutant in detail. A drastic reduction of intact PSII complex but relatively higher levels of assembly intermediates including PSII RC, pre-CP47, and pre-CP43 were found in rbd1. Polysome association and ribosome profiling revealed that ribosome recruitment of psbA mRNA is specifically reduced. Consistently, in vivo protein pulse-chase labeling showed that the rate of D1/pD1 synthesis is significantly reduced in rbd1 compared with WT. Moreover, newly synthesized mature D1 and pD1/D2 can assemble into the PSII reaction center (RC) complex but further formation of larger PSII complexes is nearly totally blocked in rbd1. Our data imply that RBD1 is not only required for the formation of a functional PSII core complex during the early stages of PSII assembly but may also be involved in the translation of D1 in higher plants.
Collapse
Affiliation(s)
- Liping Che
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, China
| | - Han Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Junxiang Ruan
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, China
| | - Lianwei Peng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lin Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- *Correspondence: Lin Zhang,
| |
Collapse
|
15
|
Mallén-Ponce MJ, Huertas MJ, Sánchez-Riego AM, Florencio FJ. Depletion of m-type thioredoxin impairs photosynthesis, carbon fixation, and oxidative stress in cyanobacteria. PLANT PHYSIOLOGY 2021; 187:1325-1340. [PMID: 34618018 PMCID: PMC8566235 DOI: 10.1093/plphys/kiab321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Thioredoxins (Trxs) are disulfide oxidoreductases that regulate many biological processes. The m-type thioredoxin (TrxA) is the only Trx present in all oxygenic photosynthetic organisms. Extensive biochemical and proteomic analyses have identified many TrxA target proteins in different photosynthetic organisms. However, the precise function of this essential protein in vivo is still poorly known. In this study, we generated a conditional Synechocystis sp. PCC 6803 mutant strain (STXA2) using an on-off promoter that is able to survive with only 2% of the TrxA level of the wild-type (WT) strain. STXA2 characterization revealed that TrxA depletion results in growth arrest and pronounced impairment of photosynthesis and the Calvin-Benson-Bassham (CBB) cycle. Analysis of the in vivo redox state of the bifunctional enzyme fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase showed higher levels of oxidation that affected enzyme activity in STXA2. This result implies that TrxA-mediated redox regulation of the CBB cycle is conserved in both cyanobacteria and chloroplasts, although the targets have different evolutionary origins. The STXA2 strain also accumulated more reactive oxygen species and was more sensitive to oxidative stress than the WT. Analysis of the in vivo redox state of 2-Cys peroxiredoxin revealed full oxidation, corresponding with TrxA depletion. Overall, these results indicate that depletion of TrxA in STXA2 greatly alters the cellular redox state, interfering with essential processes such as photosynthetic machinery operativity, carbon assimilation, and oxidative stress response. The TrxA regulatory role appears to be conserved along the evolution of oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| | - María José Huertas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Ana María Sánchez-Riego
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
16
|
Chen W, Zheng L, Dong J, Ge H, Huang X, Wang G, Huang C, Wang Y, Lu D, Xu W, Wang Y. A Systematic Survey of the Light/Dark-dependent Protein Degradation Events in a Model Cyanobacterium. Mol Cell Proteomics 2021; 20:100162. [PMID: 34655801 PMCID: PMC8603205 DOI: 10.1016/j.mcpro.2021.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 11/06/2022] Open
Abstract
Light is essential for photosynthetic organisms and is involved in the regulation of protein synthesis and degradation. The significance of light-regulated protein degradation is exemplified by the well-established light-induced degradation and repair of the photosystem II reaction center D1 protein in higher plants and cyanobacteria. However, systematic studies of light-regulated protein degradation events in photosynthetic organisms are lacking. Thus, we conducted a large-scale survey of protein degradation under light or dark conditions in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis) using the isobaric labeling-based quantitative proteomics technique. The results revealed that 79 proteins showed light-regulated degradation, including proteins involved in photosystem II structure or function, quinone binding, and NADH dehydrogenase. Among these, 25 proteins were strongly dependent on light for degradation. Moreover, the light-dependent degradation of several proteins was sensitive to photosynthetic electron transport inhibitors (DCMU and DBMIB), suggesting that they are influenced by the redox state of the plastoquinone (PQ) pool. Together, our study comprehensively cataloged light-regulated protein degradation events, and the results serve as an important resource for future studies aimed at understanding light-regulated processes and protein quality control mechanisms in cyanobacteria. Light-/dark-regulated protein degradation events in a model Cyanobacterium were identified. Seventy-nine proteins displayed light-regulated degradation. Thirty-one proteins displayed dark-regulated degradation. Multiple light-regulated protein degradation events were regulated by the redox state of the plastoquinone pool.
Collapse
Affiliation(s)
- Weiyang Chen
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Limin Zheng
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinghui Dong
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Gaojie Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Nikkanen L, Solymosi D, Jokel M, Allahverdiyeva Y. Regulatory electron transport pathways of photosynthesis in cyanobacteria and microalgae: Recent advances and biotechnological prospects. PHYSIOLOGIA PLANTARUM 2021; 173:514-525. [PMID: 33764547 DOI: 10.1111/ppl.13404] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacteria and microalgae perform oxygenic photosynthesis where light energy is harnessed to split water into oxygen and protons. This process releases electrons that are used by the photosynthetic electron transport chain to form reducing equivalents that provide energy for the cell metabolism. Constant changes in environmental conditions, such as light availability, temperature, and access to nutrients, create the need to balance the photochemical reactions and the metabolic demands of the cell. Thus, cyanobacteria and microalgae evolved several auxiliary electron transport (AET) pathways to disperse the potentially harmful over-supply of absorbed energy. AET pathways are comprised of electron sinks, e.g. flavodiiron proteins (FDPs) or other terminal oxidases, and pathways that recycle electrons around photosystem I, like NADPH-dehydrogenase-like complexes (NDH) or the ferredoxin-plastoquinone reductase (FQR). Under controlled conditions the need for these AET pathways is decreased and AET can even be energetically wasteful. Therefore, redirecting photosynthetic reducing equivalents to biotechnologically useful reactions, catalyzed by i.e. innate hydrogenases or heterologous enzymes, offers novel possibilities to apply photosynthesis research.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Daniel Solymosi
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Martina Jokel
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
18
|
Hamitouche F, Gaillard JC, Schmitt P, Armengaud J, Duport C, Dedieu L. Redox proteomic study of Bacillus cereus thiol proteome during fermentative anaerobic growth. BMC Genomics 2021; 22:648. [PMID: 34493209 PMCID: PMC8425097 DOI: 10.1186/s12864-021-07962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/05/2021] [Indexed: 11/15/2022] Open
Abstract
Background Bacillus cereus is a notorious foodborne pathogen, which can grow under anoxic conditions. Anoxic growth is supported by endogenous redox metabolism, for which the thiol redox proteome serves as an interface. Here, we studied the cysteine (Cys) proteome dynamics of B. cereus ATCC 14579 cells grown under fermentative anoxic conditions. We used a quantitative thiol trapping method combined with proteomics profiling. Results In total, we identified 153 reactive Cys residues in 117 proteins participating in various cellular processes and metabolic pathways, including translation, carbohydrate metabolism, and stress response. Of these reactive Cys, 72 were detected as reduced Cys. The B. cereus Cys proteome evolved during growth both in terms of the number of reduced Cys and the Cys-containing proteins identified, reflecting its growth-phase-dependence. Interestingly, the reduced status of the B. cereus thiol proteome increased during growth, concomitantly to the decrease of extracellular oxidoreduction potential. Conclusions Taken together, our data show that the B. cereus Cys proteome during unstressed fermentative anaerobic growth is a dynamic entity and provide an important foundation for future redox proteomic studies in B. cereus and other organisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07962-y.
Collapse
Affiliation(s)
- Fella Hamitouche
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France
| | - Jean-Charles Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Philippe Schmitt
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Catherine Duport
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France
| | - Luc Dedieu
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France.
| |
Collapse
|
19
|
Glucosidase Inhibitors Screening in Microalgae and Cyanobacteria Isolated from the Amazon and Proteomic Analysis of Inhibitor Producing Synechococcus sp. GFB01. Microorganisms 2021; 9:microorganisms9081593. [PMID: 34442672 PMCID: PMC8402191 DOI: 10.3390/microorganisms9081593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Microalgae and cyanobacteria are good sources for prospecting metabolites of biotechnological interest, including glucosidase inhibitors. These inhibitors act on enzymes related to various biochemical processes; they are involved in metabolic diseases, such as diabetes and Gaucher disease, tumors and viral infections, thus, they are interesting hubs for the development of new drugs and therapies. In this work, the screening of 63 environmental samples collected in the Brazilian Amazon found activity against β-glucosidase, of at least 60 min, in 13.85% of the tested extracts, with Synechococcus sp. GFB01 showing inhibitory activity of 90.2% for α-glucosidase and 96.9% against β-glucosidase. It was found that the nutritional limitation due to a reduction in the concentration of sodium nitrate, despite not being sufficient to cause changes in cell growth and photosynthetic apparatus, resulted in reduced production of α and β-glucosidase inhibitors and differential protein expression. The proteomic analysis of cyanobacteria isolated from the Amazon is unprecedented, with this being the first work to evaluate the protein expression of Synechococcus sp. GFB01 subjected to nutritional stress. This evaluation helps to better understand the metabolic responses of this organism, especially related to the production of inhibitors, adding knowledge to the industrial potential of these cyanobacterial compounds.
Collapse
|
20
|
Thioredoxin Dependent Changes in the Redox States of FurA from Anabaena sp. PCC 7120. Antioxidants (Basel) 2021; 10:antiox10060913. [PMID: 34199999 PMCID: PMC8229018 DOI: 10.3390/antiox10060913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
FurA is a multifunctional regulator in cyanobacteria that contains five cysteines, four of them arranged into two CXXC motifs. Lack of a structural zinc ion enables FurA to develop disulfide reductase activity. In vivo, FurA displays several redox isoforms, and the oxidation state of its cysteines determines its activity as regulator and its ability to bind different metabolites. Because of the relationship between FurA and the control of genes involved in oxidative stress defense and photosynthetic metabolism, we sought to investigate the role of type m thioredoxin TrxA as a potential redox partner mediating dithiol-disulfide exchange reactions necessary to facilitate the interaction of FurA with its different ligands. Both in vitro cross-linking assays and in vivo two-hybrid studies confirmed the interaction between FurA and TrxA. Light to dark transitions resulted in reversible oxidation of a fraction of the regulator present in Anabaena sp. PCC7120. Reconstitution of an electron transport chain using E. coli NADPH-thioredoxin-reductase followed by alkylation of FurA reduced cysteines evidenced the ability of TrxA to reduce FurA. Furthermore, the use of site-directed mutants allowed us to propose a plausible mechanism for FurA reduction. These results point to TrxA as one of the redox partners that modulates FurA performance.
Collapse
|
21
|
Stoichiometric Thiol Redox Proteomics for Quantifying Cellular Responses to Perturbations. Antioxidants (Basel) 2021; 10:antiox10030499. [PMID: 33807006 PMCID: PMC8004825 DOI: 10.3390/antiox10030499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications regulate the structure and function of proteins that can result in changes to the activity of different pathways. These include modifications altering the redox state of thiol groups on protein cysteine residues, which are sensitive to oxidative environments. While mass spectrometry has advanced the identification of protein thiol modifications and expanded our knowledge of redox-sensitive pathways, the quantitative aspect of this technique is critical for the field of redox proteomics. In this review, we describe how mass spectrometry-based redox proteomics has enabled researchers to accurately quantify the stoichiometry of reversible oxidative modifications on specific cysteine residues of proteins. We will describe advancements in the methodology that allow for the absolute quantitation of thiol modifications, as well as recent reports that have implemented this approach. We will also highlight the significance and application of such measurements and why they are informative for the field of redox biology.
Collapse
|
22
|
Zhang X, Zhang Z, Chen XL. The Redox Proteome of Thiol Proteins in the Rice Blast Fungus Magnaporthe oryzae. Front Microbiol 2021; 12:648894. [PMID: 33776980 PMCID: PMC7987659 DOI: 10.3389/fmicb.2021.648894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
Redox modification, a post-translational modification, has been demonstrated to be significant for many physiological pathways and biological processes in both eukaryotes and prokaryotes. However, little is known about the global profile of protein redox modification in fungi. To explore the roles of redox modification in the plant pathogenic fungi, a global thiol proteome survey was performed in the model fungal pathogen Magnaporthe oryzae. A total of 3713 redox modification sites from 1899 proteins were identified through a mix sample containing mycelia with or without oxidative stress, conidia, appressoria, and invasive hyphae of M. oryzae. The identified thiol-modified proteins were performed with protein domain, subcellular localization, functional classification, metabolic pathways, and protein–protein interaction network analyses, indicating that redox modification is associated with a wide range of biological and cellular functions. These results suggested that redox modification plays important roles in fungal growth, conidium formation, appressorium formation, as well as invasive growth. Interestingly, a large number of pathogenesis-related proteins were redox modification targets, suggesting the significant roles of redox modification in pathogenicity of M. oryzae. This work provides a global insight into the redox proteome of the pathogenic fungi, which built a groundwork and valuable resource for future studies of redox modification in fungi.
Collapse
Affiliation(s)
- Xinrong Zhang
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, China
| | - Zhenhua Zhang
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Rookyard AW, Paulech J, Thyssen S, Liddy KA, Puckeridge M, Li DK, White MY, Cordwell SJ. A Global Profile of Reversible and Irreversible Cysteine Redox Post-Translational Modifications During Myocardial Ischemia/Reperfusion Injury and Antioxidant Intervention. Antioxid Redox Signal 2021; 34:11-31. [PMID: 32729339 DOI: 10.1089/ars.2019.7765] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims: Cysteine (Cys) is a major target for redox post-translational modifications (PTMs) that occur in response to changes in the cellular redox environment. We describe multiplexed, peptide-based enrichment and quantitative mass spectrometry (MS) applied to globally profile reversible redox Cys PTM in rat hearts during ischemia/reperfusion (I/R) in the presence or absence of an aminothiol antioxidant, N-2-mercaptopropionylglycine (MPG). Parallel fractionation also allowed identification of irreversibly oxidized Cys peptides (Cys-SO2H/SO3H). Results: We identified 4505 reversibly oxidized Cys peptides of which 1372 were significantly regulated by ischemia and/or I/R. An additional 219 peptides (247 sites) contained Cys-SO2H/Cys-SO3H modifications, and these were predominantly identified from hearts subjected to I/R (n = 168 peptides). Parallel reaction monitoring MS (PRM-MS) enabled relative quantitation of 34 irreversibly oxidized Cys peptides. MPG attenuated a large cluster of I/R-associated reversibly oxidized Cys peptides and irreversible Cys oxidation to less than nonischemic controls (n = 24 and 34 peptides, respectively). PRM-MS showed that Cys sites oxidized during ischemia and/or I/R and "protected" by MPG were largely mitochondrial, and were associated with antioxidant functions (peroxiredoxins 5 and 6) and metabolic processes, including glycolysis. Metabolomics revealed I/R induced changes in glycolytic intermediates that were reversed in the presence of MPG, which were consistent with irreversible PTM of triose phosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), altered GAPDH enzyme activity, and reduced I/R glycolytic payoff as evidenced by adenosine triphosphate and NADH levels. Innovation: Novel enrichment and PRM-MS approaches developed here enabled large-scale relative quantitation of Cys redox sites modified by reversible and irreversible PTM during I/R and antioxidant remediation. Conclusions: Cys sites identified here are targets of reactive oxygen species that can contribute to protein dysfunction and the pathogenesis of I/R.
Collapse
Affiliation(s)
- Alexander W Rookyard
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Jana Paulech
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Stine Thyssen
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Kiersten A Liddy
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Max Puckeridge
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Desmond K Li
- Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Melanie Y White
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia
| |
Collapse
|
24
|
Zhang T, Gaffrey MJ, Li X, Qian WJ. Characterization of cellular oxidative stress response by stoichiometric redox proteomics. Am J Physiol Cell Physiol 2020; 320:C182-C194. [PMID: 33264075 DOI: 10.1152/ajpcell.00040.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The thiol redox proteome refers to all proteins whose cysteine thiols are subjected to various redox-dependent posttranslational modifications (PTMs) including S-glutathionylation (SSG), S-nitrosylation (SNO), S-sulfenylation (SOH), and S-sulfhydration (SSH). These modifications can impact various aspects of protein function such as activity, binding, conformation, localization, and interactions with other molecules. To identify novel redox proteins in signaling and regulation, it is highly desirable to have robust redox proteomics methods that can provide global, site-specific, and stoichiometric quantification of redox PTMs. Mass spectrometry (MS)-based redox proteomics has emerged as the primary platform for broad characterization of thiol PTMs in cells and tissues. Herein, we review recent advances in MS-based redox proteomics approaches for quantitative profiling of redox PTMs at physiological or oxidative stress conditions and highlight some recent applications. Considering the relative maturity of available methods, emphasis will be on two types of modifications: 1) total oxidation (i.e., all reversible thiol modifications), the level of which represents the overall redox state, and 2) S-glutathionylation, a major form of reversible thiol oxidation. We also discuss the significance of stoichiometric measurements of thiol PTMs as well as future perspectives toward a better understanding of cellular redox regulatory networks in cells and tissues.
Collapse
Affiliation(s)
- Tong Zhang
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Matthew J Gaffrey
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Xiaolu Li
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington.,Bioproducts Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, Washington
| | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
25
|
Xu W, Wang Y. Post-translational Modifications of Serine/Threonine and Histidine Kinases and Their Roles in Signal Transductions in Synechocystis Sp. PCC 6803. Appl Biochem Biotechnol 2020; 193:687-716. [PMID: 33159456 DOI: 10.1007/s12010-020-03435-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
Cyanobacterium Synechocystis sp. PCC 6803, a popular model organism for researches in photosynthesis and biofuel production, contains plant-like photosynthetic machineries which significantly contribute to global carbon fixation. There are 12 eukaryotic-type Ser/Thr kinases (SpkA-L) and 49 His kinases (Hik1-49) of two-component systems in the genome of Synechocystis sp. PCC 6803. They are the key regulators in sensing and transmitting stimuli including light- and glucose-mediate signal transduction. Proteomic studies were able to identify all the kinases. The majority of kinases no matter whether they have a predicted transmembrane domain were identified in the membrane fractions. Six Ser/Thr kinases (SpkA-D, F and G) and ten His kinases (Hik4, 12, 14, 21, 26-27, 29, 36, 43, and 46) were identified to have one or more of the three types of post-translational modifications: phosphorylation, acetylation, and thiol oxidation. Interestingly, SpkG has the phosphorylatable threonine residue that was aligned with the phosphorylated threonine residue in the activation loop of human CDK7, demonstrating conserved phosphorylation between cyanobacterial and human kinases. Transcriptomics and proteomics revealed differential expression of the kinases in heterotrophic and photoheterotrophic compared with photoautotrophic conditions, indicating their roles in regulating the growth modes of cyanobacteria. In summary, this review focuses on the discussions on post-transcriptional modifications, transcriptomic, and proteomic studies of Ser/Thr and His kinases. This together with our published review in 2019 present a complete story of an overview of sequences, domain architectures, and biochemical and physiological functions of cyanobacterial kinases with adequate details in the context of high throughput systems. We also emphasize the importance of discovering upstream molecules and substrates to understand the exact functions of the kinases in vivo. As an attempt, a model is proposed in which Hik31, His33, Sll1334, and IcfG are hypothesized to be critical for switching between autotrophic and heterotrophic modes based on the results from the phenotypes of the gene knockout strains combined with their post-translational modifications, and gene expression profiles.
Collapse
Affiliation(s)
- Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA.
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China.
| |
Collapse
|
26
|
Jaiswal D, Wangikar PP. Dynamic Inventory of Intermediate Metabolites of Cyanobacteria in a Diurnal Cycle. iScience 2020; 23:101704. [PMID: 33196027 PMCID: PMC7644974 DOI: 10.1016/j.isci.2020.101704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are gaining importance both as hosts for photoautotrophic production of chemicals and as model systems for studies of diurnal lifestyle. The proteome and transcriptome of cyanobacteria have been closely examined under diurnal growth, whereas the downstream effects on the intermediary metabolism have not received sufficient attention. The present study focuses on identifying the cellular metabolites whose inventories undergo dramatic changes in a fast-growing cyanobacterium, Synechococcus elongatus PCC 11801. We identified and quantified 67 polar metabolites, whose inventory changes significantly during diurnal growth, with some metabolites changing by 100-fold. The Calvin-Benson-Bassham cycle intermediates peak at midday to support fast growth. The hitherto unexplored γ-glutamyl peptides act as reservoirs of amino acids. Interestingly, several storage molecules or their precursors accumulate during the dark phase, dispelling the notion that all biosynthetic activity takes place in the light phase. Our results will guide metabolic modeling and strain engineering of cyanobacteria. We identify and quantify 67 polar intermediate metabolites in cyanobacteria via LC-MS A number of metabolites show large variations during the diurnal cycle Intermediates of the CBB cycle peak at midday, coinciding with peak in growth rate Gamma-glutamyl dipeptides identified as new storage compounds that peak at dawn
Collapse
Affiliation(s)
- Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
27
|
Nikkanen L, Santana Sánchez A, Ermakova M, Rögner M, Cournac L, Allahverdiyeva Y. Functional redundancy between flavodiiron proteins and NDH-1 in Synechocystis sp. PCC 6803. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1460-1476. [PMID: 32394539 DOI: 10.1111/tpj.14812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 05/09/2023]
Abstract
In oxygenic photosynthetic organisms, excluding angiosperms, flavodiiron proteins (FDPs) catalyze light-dependent reduction of O2 to H2 O. This alleviates electron pressure on the photosynthetic apparatus and protects it from photodamage. In Synechocystis sp. PCC 6803, four FDP isoforms function as hetero-oligomers of Flv1 and Flv3 and/or Flv2 and Flv4. An alternative electron transport pathway mediated by the NAD(P)H dehydrogenase-like complex (NDH-1) also contributes to redox hemostasis and the photoprotection of photosynthesis. Four NDH-1 types have been characterized in cyanobacteria: NDH-11 and NDH-12 , which function in respiration; and NDH-13 and NDH-14 , which function in CO2 uptake. All four types are involved in cyclic electron transport. Along with single FDP mutants (∆flv1 and Δflv3) and the double NDH-1 mutants (∆d1d2, which is deficient in NDH-11,2 and ∆d3d4, which is deficient in NDH-13,4 ), we studied triple mutants lacking one of Flv1 or Flv3, and NDH-11,2 or NDH-13,4 . We show that the presence of either Flv1/3 or NDH-11,2 , but not NDH-13,4 , is indispensable for survival during changes in growth conditions from high CO2 /moderate light to low CO2 /high light. Our results show functional redundancy between FDPs and NDH-11,2 under the studied conditions. We suggest that ferredoxin probably functions as a primary electron donor to both Flv1/3 and NDH-11,2 , allowing their functions to be dynamically coordinated for efficient oxidation of photosystem I and for photoprotection under variable CO2 and light availability.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Anita Santana Sánchez
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Maria Ermakova
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Matthias Rögner
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Laurent Cournac
- Eco&Sols, University of Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
28
|
Duan J, Zhang T, Gaffrey MJ, Weitz KK, Moore RJ, Li X, Xian M, Thrall BD, Qian WJ. Stochiometric quantification of the thiol redox proteome of macrophages reveals subcellular compartmentalization and susceptibility to oxidative perturbations. Redox Biol 2020; 36:101649. [PMID: 32750668 PMCID: PMC7397701 DOI: 10.1016/j.redox.2020.101649] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/24/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
Posttranslational modifications of protein cysteine thiols play a significant role in redox regulation and the pathogenesis of human diseases. Herein, we report the characterization of the cellular redox landscape in terms of quantitative, site-specific occupancies of both S-glutathionylation (SSG) and total reversible thiol oxidation (total oxidation) in RAW 264.7 macrophage cells under basal conditions. The occupancies of thiol modifications for ~4000 cysteine sites were quantified, revealing a mean site occupancy of 4.0% for SSG and 11.9% for total oxidation, respectively. Correlations between site occupancies and structural features such as pKa, relative residue surface accessibility, and hydrophobicity were observed. Proteome-wide site occupancy analysis revealed that the average occupancies of SSG and total oxidation in specific cellular compartments correlate well with the expected redox potentials of respective organelles in macrophages, consistent with the notion of redox compartmentalization. The lowest average occupancies were observed in more reducing organelles such as the mitochondria (non-membrane) and nucleus, while the highest average occupancies were found in more oxidizing organelles such as endoplasmic reticulum (ER) and lysosome. Furthermore, a pattern of subcellular susceptibility to redox changes was observed under oxidative stress induced by exposure to engineered metal oxide nanoparticles. Peroxisome, ER, and mitochondria (membrane) are the organelles which exhibit the most significant redox changes; while mitochondria (non-membrane) and Golgi were observed as the organelles being most resistant to oxidative stress. Finally, it was observed that Cys residues at enzymatic active sites generally had a higher level of occupancy compared to non-active Cys residues within the same proteins, suggesting site occupancy as a potential indicator of protein functional sites. The raw data are available via ProteomeXchange with identifier PXD019913.
Collapse
Affiliation(s)
- Jicheng Duan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Xiaolu Li
- Department of Biological Systems Engineering, Washington State University, Richland, WA, USA
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - Brian D Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
29
|
Veaudor T, Blanc-Garin V, Chenebault C, Diaz-Santos E, Sassi JF, Cassier-Chauvat C, Chauvat F. Recent Advances in the Photoautotrophic Metabolism of Cyanobacteria: Biotechnological Implications. Life (Basel) 2020; 10:E71. [PMID: 32438704 PMCID: PMC7281370 DOI: 10.3390/life10050071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Cyanobacteria constitute the only phylum of oxygen-evolving photosynthetic prokaryotes that shaped the oxygenic atmosphere of our planet. Over time, cyanobacteria have evolved as a widely diverse group of organisms that have colonized most aquatic and soil ecosystems of our planet and constitute a large proportion of the biomass that sustains the biosphere. Cyanobacteria synthesize a vast array of biologically active metabolites that are of great interest for human health and industry, and several model cyanobacteria can be genetically manipulated. Hence, cyanobacteria are regarded as promising microbial factories for the production of chemicals from highly abundant natural resources, e.g., solar energy, CO2, minerals, and waters, eventually coupled to wastewater treatment to save costs. In this review, we summarize new important discoveries on the plasticity of the photoautotrophic metabolism of cyanobacteria, emphasizing the coordinated partitioning of carbon and nitrogen towards growth or compound storage, and the importance of these processes for biotechnological perspectives. We also emphasize the importance of redox regulation (including glutathionylation) on these processes, a subject which has often been overlooked.
Collapse
Affiliation(s)
- Théo Veaudor
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Victoire Blanc-Garin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Célia Chenebault
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Encarnación Diaz-Santos
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Jean-François Sassi
- Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Centre de Cadarache St Paul Lez, 13108 Durance, France;
| | - Corinne Cassier-Chauvat
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Franck Chauvat
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| |
Collapse
|
30
|
Held JM. Redox Systems Biology: Harnessing the Sentinels of the Cysteine Redoxome. Antioxid Redox Signal 2020; 32:659-676. [PMID: 31368359 PMCID: PMC7047077 DOI: 10.1089/ars.2019.7725] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022]
Abstract
Significance: Cellular redox processes are highly interconnected, yet not in equilibrium, and governed by a wide range of biochemical parameters. Technological advances continue refining how specific redox processes are regulated, but broad understanding of the dynamic interconnectivity between cellular redox modules remains limited. Systems biology investigates multiple components in complex environments and can provide integrative insights into the multifaceted cellular redox state. This review describes the state of the art in redox systems biology as well as provides an updated perspective and practical guide for harnessing thousands of cysteine sensors in the redoxome for multiparameter characterization of cellular redox networks. Recent Advances: Redox systems biology has been applied to genome-scale models and large public datasets, challenged common conceptions, and provided new insights that complement reductionist approaches. Advances in public knowledge and user-friendly tools for proteome-wide annotation of cysteine sentinels can now leverage cysteine redox proteomics datasets to provide spatial, functional, and protein structural information. Critical Issues: Careful consideration of available analytical approaches is needed to broadly characterize the systems-level properties of redox signaling networks and be experimentally feasible. The cysteine redoxome is an informative focal point since it integrates many aspects of redox biology. The mechanisms and redox modules governing cysteine redox regulation, cysteine oxidation assays, proteome-wide annotation of the biophysical and biochemical properties of individual cysteines, and their clinical application are discussed. Future Directions: Investigating the cysteine redoxome at a systems level will uncover new insights into the mechanisms of selectivity and context dependence of redox signaling networks.
Collapse
Affiliation(s)
- Jason M. Held
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
31
|
Behring JB, van der Post S, Mooradian AD, Egan MJ, Zimmerman MI, Clements JL, Bowman GR, Held JM. Spatial and temporal alterations in protein structure by EGF regulate cryptic cysteine oxidation. Sci Signal 2020; 13:eaay7315. [PMID: 31964804 PMCID: PMC7263378 DOI: 10.1126/scisignal.aay7315] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stimulation of plasma membrane receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR), locally increases the abundance of reactive oxygen species (ROS). These ROS then oxidize cysteine residues in proteins to potentiate downstream signaling. Spatial confinement of ROS is an important regulatory mechanism of redox signaling that enables the stimulation of different RTKs to oxidize distinct sets of downstream proteins. To uncover additional mechanisms that specify cysteines that are redox regulated by EGF stimulation, we performed time-resolved quantification of the EGF-dependent oxidation of 4200 cysteine sites in A431 cells. Fifty-one percent of cysteines were statistically significantly oxidized by EGF stimulation. Furthermore, EGF induced three distinct spatiotemporal patterns of cysteine oxidation in functionally organized protein networks, consistent with the spatial confinement model. Unexpectedly, protein crystal structure analysis and molecular dynamics simulations indicated widespread redox regulation of cryptic cysteine residues that are solvent exposed only upon changes in protein conformation. Phosphorylation and increased flux of nucleotide substrates served as two distinct modes by which EGF specified the cryptic cysteine residues that became solvent exposed and redox regulated. Because proteins that are structurally regulated by different RTKs or cellular perturbations are largely unique, these findings suggest that solvent exposure and redox regulation of cryptic cysteine residues contextually delineate redox signaling networks.
Collapse
Affiliation(s)
- Jessica B Behring
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Sjoerd van der Post
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Arshag D Mooradian
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Matthew J Egan
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Maxwell I Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jenna L Clements
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jason M Held
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
32
|
Li H, Tian S, Qin G. NADPH Oxidase Is Crucial for the Cellular Redox Homeostasis in Fungal Pathogen Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1508-1516. [PMID: 31230563 DOI: 10.1094/mpmi-05-19-0124-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During interactions, both plants and pathogens produce reactive oxygen species (ROS). Plants generate ROS for defense induction, while pathogens synthesize ROS for growth, sporulation, and virulence. NADPH oxidase (NOX) complex in the plasma membrane represents a main protein complex for ROS production in pathogens. Although NOX plays a crucial role in pathogenicity of pathogens, the underlying molecular mechanisms of NOX, especially the proteins regulated by NOX, remain largely unknown. Here, we applied an iodoacetyl tandem mass tag-based redox proteomic assay to investigate the protein redox dynamics in deletion mutant of bcnoxR, which encodes a regulatory subunit of NOX in the fungal pathogen Botrytis cinerea. In total, 214 unique peptidyl cysteine (Cys) thiols from 168 proteins were identified and quantified in both the wild type and ∆bcnoxR mutant. The Cys thiols in the ∆bcnoxR mutant were generally more oxidized than those in the wild type, suggesting that BcNoxR is essential for maintaining the equilibrium of the redox state in B. cinerea. Site-specific thiol oxidation analysis indicated that 142 peptides containing the oxidized thiols changed abundance significantly in the ∆bcnoxR mutant. Proteins containing these differential peptides are classified into various functional categories. Functional analysis revealed that one of these proteins, 6-phosphate dehydrogenase, played roles in oxidative stress response and pathogenesis of B. cinerea. These results provide insight into the potential target proteins and the ROS signal transduction pathway regulated by NOX.
Collapse
Affiliation(s)
- Hua Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Hangzhou 310021, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Hangzhou 310021, China
| |
Collapse
|
33
|
Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites. Proc Natl Acad Sci U S A 2019; 116:21256-21261. [PMID: 31578252 DOI: 10.1073/pnas.1906768116] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important messenger molecule for diverse cellular processes. H2O2 oxidizes proteinaceous cysteinyl thiols to sulfenic acid, also known as S-sulfenylation, thereby affecting the protein conformation and functionality. Although many proteins have been identified as S-sulfenylation targets in plants, site-specific mapping and quantification remain largely unexplored. By means of a peptide-centric chemoproteomics approach, we mapped 1,537 S-sulfenylated sites on more than 1,000 proteins in Arabidopsis thaliana cells. Proteins involved in RNA homeostasis and metabolism were identified as hotspots for S-sulfenylation. Moreover, S-sulfenylation frequently occurred on cysteines located at catalytic sites of enzymes or on cysteines involved in metal binding, hinting at a direct mode of action for redox regulation. Comparison of human and Arabidopsis S-sulfenylation datasets provided 155 conserved S-sulfenylated cysteines, including Cys181 of the Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE4 (AtMAPK4) that corresponds to Cys161 in the human MAPK1, which has been identified previously as being S-sulfenylated. We show that, by replacing Cys181 of recombinant AtMAPK4 by a redox-insensitive serine residue, the kinase activity decreased, indicating the importance of this noncatalytic cysteine for the kinase mechanism. Altogether, we quantitatively mapped the S-sulfenylated cysteines in Arabidopsis cells under H2O2 stress and thereby generated a comprehensive view on the S-sulfenylation landscape that will facilitate downstream plant redox studies.
Collapse
|
34
|
Kiss É, Knoppová J, Aznar GP, Pilný J, Yu J, Halada P, Nixon PJ, Sobotka R, Komenda J. A Photosynthesis-Specific Rubredoxin-Like Protein Is Required for Efficient Association of the D1 and D2 Proteins during the Initial Steps of Photosystem II Assembly. THE PLANT CELL 2019; 31:2241-2258. [PMID: 31320483 PMCID: PMC6751121 DOI: 10.1105/tpc.19.00155] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/04/2019] [Accepted: 07/18/2019] [Indexed: 05/20/2023]
Abstract
Oxygenic photosynthesis relies on accessory factors to promote the assembly and maintenance of the photosynthetic apparatus in the thylakoid membranes. The highly conserved membrane-bound rubredoxin-like protein RubA has previously been implicated in the accumulation of both PSI and PSII, but its mode of action remains unclear. Here, we show that RubA in the cyanobacterium Synechocystis sp PCC 6803 is required for photoautotrophic growth in fluctuating light and acts early in PSII biogenesis by promoting the formation of the heterodimeric D1/D2 reaction center complex, the site of primary photochemistry. We find that RubA, like the accessory factor Ycf48, is a component of the initial D1 assembly module as well as larger PSII assembly intermediates and that the redox-responsive rubredoxin-like domain is located on the cytoplasmic surface of PSII complexes. Fusion of RubA to Ycf48 still permits normal PSII assembly, suggesting a spatiotemporal proximity of both proteins during their action. RubA is also important for the accumulation of PSI, but this is an indirect effect stemming from the downregulation of light-dependent chlorophyll biosynthesis induced by PSII deficiency. Overall, our data support the involvement of RubA in the redox control of PSII biogenesis.
Collapse
Affiliation(s)
- Éva Kiss
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czech Republic
| | - Jana Knoppová
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czech Republic
| | - Guillem Pascual Aznar
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Jan Pilný
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czech Republic
| | - Jianfeng Yu
- Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, 14220 Praha 4-Krc, Czech Republic
| | - Peter J Nixon
- Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Roman Sobotka
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Josef Komenda
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| |
Collapse
|
35
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Babele PK, Kumar J, Chaturvedi V. Proteomic De-Regulation in Cyanobacteria in Response to Abiotic Stresses. Front Microbiol 2019; 10:1315. [PMID: 31263458 PMCID: PMC6584798 DOI: 10.3389/fmicb.2019.01315] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/27/2019] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are oxygenic photoautotrophs, exhibiting a cosmopolitan distribution in almost all possible environments and are significantly responsible for half of the global net primary productivity. They are well adapted to the diverse environments including harsh conditions by evolving a range of fascinating repertoires of unique biomolecules and secondary metabolites to support their growth and survival. These phototrophs are proved as excellent models for unraveling the mysteries of basic biochemical and physiological processes taking place in higher plants. Several known species of cyanobacteria have tremendous biotechnological applications in diverse fields such as biofuels, biopolymers, secondary metabolites and much more. Due to their potential biotechnological and commercial applications in various fields, there is an imperative need to engineer robust cyanobacteria in such a way that they can tolerate and acclimatize to ever-changing environmental conditions. Adaptations to stress are mainly governed by a precise gene regulation pathways resulting in the expression of novel protein/enzymes and metabolites. Despite the demand, till date few proteins/enzymes have been identified which play a potential role in improving tolerance against abiotic stresses. Therefore, it is utmost important to study environmental stress responses related to post-genomic investigations, including proteomic changes employing advanced proteomics, synthetic and structural biology workflows. In this respect, the study of stress proteomics offers exclusive advantages to scientists working on these aspects. Advancements on these fields could be helpful in dissecting, characterization and manipulation of physiological and metabolic systems of cyanobacteria to understand the stress induced proteomic responses. Till date, it remains ambiguous how cyanobacteria perceive changes in the ambient environment that lead to the stress-induced proteins thus metabolic deregulation. This review briefly describes the current major findings in the fields of proteome research on the cyanobacteria under various abiotic stresses. These findings may improve and advance the information on the role of different class of proteins associated with the mechanism(s) of stress mitigation in cyanobacteria under harsh environmental conditions.
Collapse
Affiliation(s)
- Piyoosh Kumar Babele
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Jay Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Venkatesh Chaturvedi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
37
|
Maruyama M, Nishiguchi H, Toyoshima M, Okahashi N, Matsuda F, Shimizu H. Time-resolved analysis of short term metabolic adaptation at dark transition in Synechocystis sp. PCC 6803. J Biosci Bioeng 2019; 128:424-428. [PMID: 30979614 DOI: 10.1016/j.jbiosc.2019.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
Abstract
In photosynthetic organisms, such as cyanobacteria, ATP and NADPH are generated through the light reaction, and then are used for CO2 fixation in the dark reaction. As light intensity always fluctuates under natural conditions, balancing the cofactor regeneration and consumption is essential to maintain active CO2 fixation as well as for metabolic engineering of strains that produce biochemicals. In this study, a time-resolved metabolome analysis of Synechocystis sp. PCC 6803 (PCC6803) was conducted to investigate a metabolic adaptation at 0-15 min after a sudden shift from light to dark conditions. Rapid accumulation of sedoheptulose 7-phosphate, ribulose 5-phosphate, xylulose 5-phosphate, and 6-phosphogluconate suggested that the central metabolism of PCC6803 was regulated by inactivation of phosphoribulokinase and activation of glucose-6-phosphate dehydrogenase (G6PDH) probably via the redox regulation. The culture and metabolic profile of the Δzwf strain lacking G6PDH showed that the role of G6PDH in regeneration of NADPH could be complemented by the activation of isocitrate dehydrogenase in the TCA cycle, indicating the importance of the rapid regulation of NADPH regeneration after the shift to dark conditions. The mechanism underlying metabolic regulation is also useful for metabolic engineering of PCC6803, as the Δzwf strain produced higher amount of organic acids than wild type.
Collapse
Affiliation(s)
- Masaharu Maruyama
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroki Nishiguchi
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Masakazu Toyoshima
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Nobuyuki Okahashi
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Fumio Matsuda
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Shimizu
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
38
|
McConnell EW, Berg P, Westlake TJ, Wilson KM, Popescu GV, Hicks LM, Popescu SC. Proteome-Wide Analysis of Cysteine Reactivity during Effector-Triggered Immunity. PLANT PHYSIOLOGY 2019; 179:1248-1264. [PMID: 30510037 PMCID: PMC6446758 DOI: 10.1104/pp.18.01194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 05/08/2023]
Abstract
A surge in the accumulation of oxidants generates shifts in the cellular redox potential during early stages of plant infection with pathogens and activation of effector-triggered immunity (ETI). The redoxome, defined as the proteome-wide oxidative modifications of proteins caused by oxidants, has a well-known impact on stress responses in metazoans. However, the identity of proteins and the residues sensitive to oxidation during the plant immune response remain largely unknown. Previous studies of the thimet oligopeptidases TOP1 and TOP2 placed them in the salicylic acid dependent branch of ETI, with a current model wherein TOPs sustain interconnected organellar and cytosolic pathways that modulate the oxidative burst and development of cell death. Herein, we characterized the ETI redoxomes in Arabidopsis (Arabidopsis thaliana) wild-type Col-0 and top1top2 mutant plants using a differential alkylation-based enrichment technique coupled with label-free mass spectrometry-based quantification. We identified cysteines sensitive to oxidation in a wide range of protein families at multiple time points after pathogen infection. Differences were detected between Col-0 and top1top2 redoxomes regarding the identity and number of oxidized cysteines, and the amplitude of time-dependent fluctuations in protein oxidation. Our results support a determining role for TOPs in maintaining the proper level and dynamics of proteome oxidation during ETI. This study significantly expands the repertoire of oxidation-sensitive plant proteins and can guide future mechanistic studies.
Collapse
Affiliation(s)
- Evan W McConnell
- Department of Chemistry, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Philip Berg
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi 39762
| | - Timothy J Westlake
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14850
| | - Katherine M Wilson
- Department of Chemistry, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - George V Popescu
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi 39762
- The National Institute for Laser, Plasma & Radiation Physics, 077126 Măgurele, Ilfov, Romania
| | - Leslie M Hicks
- Department of Chemistry, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Sorina C Popescu
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi 39762
| |
Collapse
|
39
|
Bioinformatics analysis of four proteins of Leishmania donovani to guide epitopes vaccine design and drug targets selection. Acta Trop 2019; 191:50-59. [PMID: 30582920 DOI: 10.1016/j.actatropica.2018.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 01/20/2023]
Abstract
Visceral leishmaniasis (VL) is a serious and widespread parasitic disease caused by Leishmania donovani complex. The threat of this fatal disease continues due to the lack of ideal drugs or vaccines. In this study, we selected Amastin, CaNA2, Kmp-11 and PDI proteins of Leishmania donovani for study, which are VL vaccine candidates or possible drug targets. Eleven bioinformatics tools were used to analyze different aspects of these proteins, including amino acid composition, topology, signal peptide, secondary structure, surface properties, phosphorylation sites and kinases, protein binding sites, 3D homology modeling, B cell epitopes, MHC class Ⅰ and Ⅱ epitopes and protein-protein interactions. Finally, the functionally related amino acid sites and dominant epitopes of these proteins were founded. Some possible relationships between protein structure, phosphorylation sites, protein binding sites and epitopes were also discovered. High flexibility and random coils regions of protein have a tendency to be phosphorylated, bind proteins and present epitopes. Since some phosphorylation sites and their kinases are involved in Leishmania invasion and survival in host cells, they may be potential drug targets. Bioinformatics analysis helps us better understand protein function and find dominant epitopes to guide drug design and vaccine development.
Collapse
|
40
|
Welkie DG, Rubin BE, Diamond S, Hood RD, Savage DF, Golden SS. A Hard Day's Night: Cyanobacteria in Diel Cycles. Trends Microbiol 2019; 27:231-242. [PMID: 30527541 PMCID: PMC6377297 DOI: 10.1016/j.tim.2018.11.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022]
Abstract
Cyanobacteria are photosynthetic prokaryotes that are influential in global geochemistry and are promising candidates for industrial applications. Because the livelihood of cyanobacteria is directly dependent upon light, a comprehensive understanding of metabolism in these organisms requires taking into account the effects of day-night transitions and circadian regulation. These events synchronize intracellular processes with the solar day. Accordingly, metabolism is controlled and structured differently in cyanobacteria than in heterotrophic bacteria. Thus, the approaches applied to engineering heterotrophic bacteria will need to be revised for the cyanobacterial chassis. Here, we summarize important findings related to diurnal metabolism in cyanobacteria and present open questions in the field.
Collapse
Affiliation(s)
- David G Welkie
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin E Rubin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Spencer Diamond
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA 94720, USA
| | - Rachel D Hood
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - David F Savage
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Susan S Golden
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
41
|
Ito S, Osanai T. Single Amino Acid Change in 6-Phosphogluconate Dehydrogenase from Synechocystis Conveys Higher Affinity for NADP+ and Altered Mode of Inhibition by NADPH. PLANT & CELL PHYSIOLOGY 2018; 59:2452-2461. [PMID: 30107441 DOI: 10.1093/pcp/pcy165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
In the oxidative pentose phosphate pathway, 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) is one of the enzymes that catalyzes reactions generating NADPH. The model cyanobacterium Synechocystis sp. PCC 6803 is widely studied for numerous applications; however, biochemical knowledge of the NADPH production pathway in Synechocystis sp. PCC 6803 is limited. In this study, we conducted biochemical analysis of a 6-phosphogluconate dehydrogenase from Synechocystis sp. PCC 6803 (Sy6PGDH). We found that Sy6PGDH has unconventional characteristics, i.e. the highest kcat value and non-competitive inhibition by NADPH. Additionally, phylogenetic analysis of cyanobacterial 6PGDHs revealed that an amino acid residue at position 42 in Sy6PGDH is highly conserved for each order of cyanobacteria, but Sy6PGDH is phylogenetically unique. In Sy6PGDH, a single amino acid substitution at position 42 from serine to threonine enhanced the affinity for NADP+ and altered the mode of inhibition by NADPH. The amino acid substitution equivalent to Ser42 also altered the affinity for NADP+ and mode of inhibition by NADPH in Arthrospira platensis. These data suggested that an amino acid residue corresponding to position 42 in Sy6PGDH is one of the important residues that possibly determines the function of cyanobacterial 6PGDHs.
Collapse
Affiliation(s)
- Shoki Ito
- Department of Agricultural Chemistry School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku Kawasaki, Kanagawa, Japan
| | - Takashi Osanai
- Department of Agricultural Chemistry School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku Kawasaki, Kanagawa, Japan
| |
Collapse
|
42
|
Veaudor T, Ortega-Ramos M, Jittawuttipoka T, Bottin H, Cassier-Chauvat C, Chauvat F. Overproduction of the cyanobacterial hydrogenase and selection of a mutant thriving on urea, as a possible step towards the future production of hydrogen coupled with water treatment. PLoS One 2018; 13:e0198836. [PMID: 29879209 PMCID: PMC5991728 DOI: 10.1371/journal.pone.0198836] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
Using a combination of various types of genetic manipulations (promoter replacement and gene cloning in replicating plasmid expression vector), we have overproduced the complex hydrogenase enzyme in the model cyanobacterium Synechocystis PCC6803. This new strain overproduces all twelve following proteins: HoxEFUYH (hydrogen production), HoxW (maturation of the HoxH subunit of hydrogenase) and HypABCDEF (assembly of the [NiFe] redox center of HoxHY hydrogenase). This strain when grown in the presence of a suitable quantities of nickel and iron used here exhibits a strong (25-fold) increase in hydrogenase activity, as compared to the WT strain growing in the standard medium. Hence, this strain can be very useful for future analyses of the cyanobacterial [NiFe] hydrogenase to determine its structure and, in turn, improve its tolerance to oxygen with the future goal of increasing hydrogen production. We also report the counterintuitive notion that lowering the activity of the Synechocystis urease can increase the photoproduction of biomass from urea-polluted waters, without decreasing hydrogenase activity. Such cyanobacterial factories with high hydrogenase activity and a healthy growth on urea constitute an important step towards the future development of an economical industrial processes coupling H2 production from solar energy and CO2, with wastewater treatment (urea depollution).
Collapse
Affiliation(s)
- Théo Veaudor
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette, France
| | - Marcia Ortega-Ramos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette, France
| | - Thichakorn Jittawuttipoka
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette, France
| | - Hervé Bottin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette, France
| | - Corinne Cassier-Chauvat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette, France
| | - Franck Chauvat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette, France
- * E-mail:
| |
Collapse
|
43
|
Nagy AD, Reddy AB. Redox clocks: Time to rethink redox interventions. Free Radic Biol Med 2018; 119:3-7. [PMID: 29288069 DOI: 10.1016/j.freeradbiomed.2017.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 11/29/2022]
Abstract
Redox interventions have been controversial in the management of chronic disease. The key reason is believed to be a lack of clarity in our understanding of how endogenous dynamics unfold in biochemical redox mechanisms in live cells. Time-resolved, quantitative research strategies combined with high throughput analysis tools may result in realistic characterisation of related in vivo processes. Here we review new evidence about redox dynamics in live cells. We discuss a potential of this line of research to establish new and affordable ways of redox interventions which may efficiently decrease mortality related to largely preventable chronic diseases.
Collapse
Affiliation(s)
- Andras D Nagy
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; University of Pécs Medical School, Department of Anatomy, Szigeti út 12, Pécs H-7622, Hungary
| | - Akhilesh B Reddy
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
44
|
Thioredoxin regulates G6PDH activity by changing redox states of OpcA in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Biochem J 2018; 475:1091-1105. [DOI: 10.1042/bcj20170869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 01/03/2023]
Abstract
Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first reaction in the oxidative pentose phosphate pathway. In green plant chloroplasts, G6PDH is a unique redox-regulated enzyme, since it is inactivated under the reducing conditions. This regulation is accomplished using a redox-active cysteine pair, which is conserved in plant G6PDH. The inactivation of this enzyme under conditions of light must be beneficial to prevent release of CO2 from the photosynthetic carbon fixation cycle. In the filamentous, heterocyst-forming, nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 (Anabaena 7120), G6PDH plays a pivotal role in providing reducing power for nitrogenase, and its activity is also reported to be suppressed by reduction, though Anabaena G6PDH does not conserve the critical cysteines for regulation. Based on the thorough analyses of the redox regulation mechanisms of G6PDH from Anabaena 7120 and its activator protein OpcA, we found that m-type thioredoxin regulates G6PDH activity by changing the redox states of OpcA. Mass spectrometric analysis and mutagenesis studies indicate that Cys393 and Cys399 of OpcA are responsible for the redox regulation property of this protein. Moreover, in vivo analyses of the redox states of OpcA showed that more than half of the OpcA is present as an oxidized form, even under conditions of light, when cells are cultured under the nitrogen-fixing conditions. This redox regulation of OpcA might be necessary to provide reducing power for nitrogenase by G6PDH in heterocysts even during the day.
Collapse
|
45
|
De Porcellinis AJ, Nørgaard H, Brey LMF, Erstad SM, Jones PR, Heazlewood JL, Sakuragi Y. Overexpression of bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002. Metab Eng 2018; 47:170-183. [PMID: 29510212 DOI: 10.1016/j.ymben.2018.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/02/2018] [Accepted: 03/01/2018] [Indexed: 12/25/2022]
Abstract
Cyanobacteria fix atmospheric CO2 to biomass and through metabolic engineering can also act as photosynthetic factories for sustainable productions of fuels and chemicals. The Calvin Benson cycle is the primary pathway for CO2 fixation in cyanobacteria, algae and C3 plants. Previous studies have overexpressed the Calvin Benson cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and bifunctional sedoheptulose-1,7-bisphosphatase/fructose-1,6-bisphosphatase (hereafter BiBPase), in both plants and algae, although their impacts on cyanobacteria have not yet been rigorously studied. Here, we show that overexpression of BiBPase and RuBisCO have distinct impacts on carbon metabolism in the cyanobacterium Synechococcus sp. PCC 7002 through physiological, biochemical, and proteomic analyses. The former enhanced growth, cell size, and photosynthetic O2 evolution, and coordinately upregulated enzymes in the Calvin Benson cycle including RuBisCO and fructose-1,6-bisphosphate aldolase. At the same time it downregulated enzymes in respiratory carbon metabolism (glycolysis and the oxidative pentose phosphate pathway) including glucose-6-phosphate dehydrogenase (G6PDH). The content of glycogen was also significantly reduced while the soluble carbohydrate content increased. These results indicate that overexpression of BiBPase leads to global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002, promoting photosynthetic carbon fixation and carbon partitioning towards non-storage carbohydrates. In contrast, whilst overexpression of RuBisCO had no measurable impact on growth and photosynthetic O2 evolution, it led to coordinated increase in the abundance of proteins involved in pyruvate metabolism and fatty acid biosynthesis. Our results underpin that singular genetic modifications in the Calvin Benson cycle can have far broader cellular impact than previously expected. These features could be exploited to more efficiently direct carbons towards desired bioproducts.
Collapse
Affiliation(s)
- Alice Jara De Porcellinis
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Carlsberg Research Laboratory, 100 Ny Carlsberg Vej, 1799 Copenhagen V, Denmark
| | - Hanne Nørgaard
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Novo Nordisk, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Laura Maria Furelos Brey
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark
| | - Simon Matthé Erstad
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark
| | - Patrik R Jones
- Department Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Joshua L Heazlewood
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark.
| |
Collapse
|
46
|
Sievers S, Dittmann S, Jordt T, Otto A, Hochgräfe F, Riedel K. Comprehensive Redox Profiling of the Thiol Proteome of Clostridium difficile. Mol Cell Proteomics 2018; 17:1035-1046. [PMID: 29496906 DOI: 10.1074/mcp.tir118.000671] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 11/06/2022] Open
Abstract
The strictly anaerobic bacterium C. difficile has become one of the most problematic hospital acquired pathogens and a major burden for health care systems. Although antibiotics work effectively in most C. difficile infections (CDIs), their detrimental effect on the intestinal microbiome paves the way for recurrent episodes of CDI. To develop alternative, non-antibiotics-based treatment strategies, deeper knowledge on the physiology of C. difficile, stress adaptation mechanisms and regulation of virulence factors is mandatory. The focus of this work was to tackle the thiol proteome of C. difficile and its stress-induced alterations, because recent research has reported that the amino acid cysteine plays a central role in the metabolism of this pathogen. We have developed a novel cysteine labeling approach to determine the redox state of protein thiols on a global scale. Applicability of this technique was demonstrated by inducing disulfide stress using the chemical diamide. The method can be transferred to any kind of redox challenge and was applied in this work to assess the effect of bile acids on the thiol proteome of C. difficile We present redox-quantification for more than 1,500 thiol peptides and discuss the general difficulty of redox analyses of peptides possessing more than a single cysteine residue. The presented method will be especially useful not only when determining redox status, but also for providing information on protein quantity. Additionally, our comprehensive data set reveals protein cysteine sites particularly susceptible to oxidation and builds a groundwork for redox proteomics studies in C. difficile.
Collapse
Affiliation(s)
- Susanne Sievers
- From the ‡Department of Microbial Physiology & Molecular Biology;
| | - Silvia Dittmann
- From the ‡Department of Microbial Physiology & Molecular Biology
| | - Tim Jordt
- From the ‡Department of Microbial Physiology & Molecular Biology
| | | | - Falko Hochgräfe
- ¶Junior Research Group Pathoproteomics, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Katharina Riedel
- From the ‡Department of Microbial Physiology & Molecular Biology
| |
Collapse
|
47
|
Ueda K, Nakajima T, Yoshikawa K, Toya Y, Matsuda F, Shimizu H. Metabolic flux of the oxidative pentose phosphate pathway under low light conditions in Synechocystis sp. PCC 6803. J Biosci Bioeng 2018; 126:38-43. [PMID: 29499995 DOI: 10.1016/j.jbiosc.2018.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/15/2018] [Accepted: 01/30/2018] [Indexed: 10/17/2022]
Abstract
The role of the oxidative pentose phosphate pathway (oxPPP) in Synechocystis sp. PCC 6803 under mixotrophic conditions was investigated by 13C metabolic flux analysis. Cells were cultured under low (10 μmol m-2 s-1) and high light intensities (100 μmol m-2 s-1) in the presence of glucose. The flux of CO2 fixation by ribulose bisphosphate carboxylase/oxygenase under the high light condition was approximately 3-fold higher than that under the low light condition. Although no flux of the oxPPP was observed under the high light condition, flux of 0.08-0.19 mmol gDCW-1 h-1 in the oxPPP was observed under the low light condition. The balance between the consumption and production of NADPH suggested that approximately 10% of the total NADPH production was generated by the oxPPP under the low light condition. The growth phenotype of a mutant with deleted zwf, which encodes glucose-6-phosphate dehydrogenase in the oxPPP, was compared to that of the parental strain under low and high light conditions. Growth of the Δzwf mutant nearly stopped during the late growth phase under the low light condition, whereas the growth rates of the two strains were identical under the high light condition. These results indicate that NADPH production in the oxPPP is essential for anabolism under low light conditions. The oxPPP appears to play an important role in producing NADPH from glucose and ATP to compensate for NADPH shortage under low light conditions.
Collapse
Affiliation(s)
- Kentaro Ueda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tsubasa Nakajima
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Katsunori Yoshikawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
48
|
Fu L, Liu K, Sun M, Tian C, Sun R, Morales Betanzos C, Tallman KA, Porter NA, Yang Y, Guo D, Liebler DC, Yang J. Systematic and Quantitative Assessment of Hydrogen Peroxide Reactivity With Cysteines Across Human Proteomes. Mol Cell Proteomics 2017; 16:1815-1828. [PMID: 28827280 DOI: 10.1074/mcp.ra117.000108] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 01/23/2023] Open
Abstract
Protein cysteinyl residues are the mediators of hydrogen peroxide (H2O2)-dependent redox signaling. However, site-specific mapping of the selectivity and dynamics of these redox reactions in cells poses a major analytical challenge. Here we describe a chemoproteomic platform to systematically and quantitatively analyze the reactivity of thousands of cysteines toward H2O2 in human cells. We identified >900 H2O2-sensitive cysteines, which are defined as the H2O2-dependent redoxome. Although redox sites associated with antioxidative and metabolic functions are consistent, most of the H2O2-dependent redoxome varies dramatically between different cells. Structural analyses reveal that H2O2-sensitive cysteines are less conserved than their redox-insensitive counterparts and display distinct sequence motifs, structural features, and potential for crosstalk with lysine modifications. Notably, our chemoproteomic platform also provides an opportunity to predict oxidation-triggered protein conformational changes. The data are freely accessible as a resource at http://redox.ncpsb.org/OXID/.
Collapse
Affiliation(s)
- Ling Fu
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Keke Liu
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Mingan Sun
- §State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, China
| | - Caiping Tian
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Rui Sun
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China.,¶State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Carlos Morales Betanzos
- ‖Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Keri A Tallman
- **Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Ned A Porter
- **Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Yong Yang
- ¶State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Dianjing Guo
- §State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, China
| | - Daniel C Liebler
- ‖Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jing Yang
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China;
| |
Collapse
|
49
|
Woehle C, Dagan T, Landan G, Vardi A, Rosenwasser S. Expansion of the redox-sensitive proteome coincides with the plastid endosymbiosis. NATURE PLANTS 2017; 3:17066. [PMID: 28504699 PMCID: PMC5438061 DOI: 10.1038/nplants.2017.66] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/07/2017] [Indexed: 05/19/2023]
Abstract
The redox-sensitive proteome (RSP) consists of protein thiols that undergo redox reactions, playing an important role in coordinating cellular processes. Here, we applied a large-scale phylogenomic reconstruction approach in the model diatom Phaeodactylum tricornutum to map the evolutionary origins of the eukaryotic RSP. The majority of P. tricornutum redox-sensitive cysteines (76%) is specific to eukaryotes, yet these are encoded in genes that are mostly of a prokaryotic origin (57%). Furthermore, we find a threefold enrichment in redox-sensitive cysteines in genes that were gained by endosymbiotic gene transfer during the primary plastid acquisition. The secondary endosymbiosis event coincides with frequent introduction of reactive cysteines into existing proteins. While the plastid acquisition imposed an increase in the production of reactive oxygen species, our results suggest that it was accompanied by significant expansion of the RSP, providing redox regulatory networks the ability to cope with fluctuating environmental conditions.
Collapse
Affiliation(s)
| | - Tal Dagan
- Institute of Microbiology, Kiel University, 24118 Kiel, Germany
| | - Giddy Landan
- Institute of Microbiology, Kiel University, 24118 Kiel, Germany
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shilo Rosenwasser
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
50
|
Duan J, Gaffrey MJ, Qian WJ. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. MOLECULAR BIOSYSTEMS 2017; 13:816-829. [PMID: 28357434 PMCID: PMC5493446 DOI: 10.1039/c6mb00861e] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein thiols play a crucial role in redox signaling, in the regulation of enzymatic activity and protein function, and in maintaining redox homeostasis in living systems. The unique chemical reactivity of the thiol group makes protein cysteines susceptible to reactions with reactive oxygen and nitrogen species that form various reversible and irreversible post-translational modifications (PTMs). The reversible PTMs in particular are major components of redox signaling and are involved in the regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in both healthy and disease states has been increasingly recognized. Herein, we review recent advances in quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including general considerations of sample processing, chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for specific biological applications. Although technical limitations remain, redox proteomics is paving the way to a better understanding of redox signaling and regulation in both healthy and disease states.
Collapse
Affiliation(s)
- Jicheng Duan
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | |
Collapse
|