1
|
Dowling A, Lawrence KE, Scott I, Howe L, Pomroy WE. The use of a Bayesian latent class model to estimate the test characteristics of three liver fluke diagnostic tests under New Zealand field conditions. Vet Parasitol 2024; 332:110305. [PMID: 39293340 DOI: 10.1016/j.vetpar.2024.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
The liver fluke Fasciola hepatica is a trematode parasite of farmed livestock with worldwide distribution, causing chronic production losses and possible death from hepatobiliary damage. The effective management of liver fluke infection requires diagnostic tests which can accurately identify infected animals at both the individual and herd level. However, the accuracy of liver fluke diagnostic tests performed on individual New Zealand cattle is currently unknown. The aim of this study was to use a Bayesian latent class model (LCM) to estimate the test characteristics of three liver fluke diagnostic tests, the coproantigen ELISA, the IDEXX antibody ELISA and the faecal egg count. One hundred and twenty dairy cows each from two dairy farms were blood and faecal sampled in April 2021. The samples were transported to Massey University, Palmerston North, and the three diagnostic tests completed following the respective manufacturer instructions. A Bayesian LCM model, adapted from the original Hui and Walter 2 tests 2 populations model, was built to estimate the test characteristics of the three diagnostic tests in the two dairy herds. The model was implemented in JAGS using Markov chain Monte Carlo sampling. The first 30,000 iterations were discarded as burn-in, and the next 200,000 iterations were used to construct the posterior distributions. Uninformed priors, beta (1,1), were used as the prior distributions for the prevalence estimation and informed beta priors, based on published results, were used as the prior distributions for estimating the sensitivity and specificity of each diagnostic test. Model convergence was confirmed by inspection of trace plots and examination of the results of the Gelman and Rubin test. The results found that the coproantigen ELISA test was the most accurate for diagnosing liver fluke infection in individual animals with a sensitivity = 0.98 (95 % CI 0.95-1.00) and specificity = 0.95 (95 % CI 0.81-1.00) compared to the IDEXX antibody ELISA test, sensitivity = 0.39 (95 % CI 0.32-0.47) and specificity = 0.86 (95 % CI 0.75-0.96) or the FEC, sensitivity = 0.23 (95 % CI 0.17-0.30) and specificity = 0.92 (95 % CI 0.86-0.97). Based on these results clinicians should be encouraged to use the coproantigen ELISA test to diagnose liver fluke infection in individual cattle.
Collapse
Affiliation(s)
- A Dowling
- PGG Wrightson Limited, 1 Robin Mann Place, Christchurch, New Zealand.
| | - K E Lawrence
- School of Veterinary Science, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - I Scott
- School of Veterinary Science, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - L Howe
- School of Veterinary Science, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - W E Pomroy
- School of Veterinary Science, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
2
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Naidich A, Gutierrez AM, Camicia F. Molecular characterization of EcCLP1, a new putative cathepsin L protease from Echinococcus canadensis. Parasite 2024; 31:39. [PMID: 38995112 PMCID: PMC11242924 DOI: 10.1051/parasite/2024036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Echinococcus granulosus sensu lato is a platyhelminth parasite and the etiological cause of cystic echinococcosis (CE), a zoonotic and neglected disease that infects animals and humans worldwide. As a part of the biological arsenal of the parasite, cathepsin L proteases are a group of proteins that are believed to be essential for parasite penetration, immune evasion, and establishment in the tissues of the host. In this work, we have cloned and sequenced a new putative cathepsin L protease from Echinococcus canadensis (EcCLP1). The bioinformatic analysis suggests that EcCLP1 could be synthesized as a zymogen and activated after proteolytic cleavage. The multiple sequence alignment with other cathepsin proteases reveals important functional conserved features like a conserved active site, an N-linked glycosylation residue, a catalytic triad, an oxyanion hole, and three putative disulfide bonds. The phylogenetic analysis suggests that EcCLP1 could indeed be a cathepsin L cysteine protease from clade 1 as it grouped with cathepsins from other species in this clade. Modeling studies suggest that EcCLP1 has two domains forming a cleft where the active site is located and an occluding role for the propeptide. The transcriptomic analysis reveals different levels of cathepsin transcript expression along the different stages of the parasite life cycle. The whole-mount immunohistochemistry shows an interesting superficial punctate pattern of staining which suggests a secretory pattern of expression. The putative cathepsin L protease characterized here may represent an interesting tool for diagnostic purposes, vaccine design, or a new pharmacological target for antiparasitic intervention.
Collapse
Affiliation(s)
- Ariel Naidich
- Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr Carlos G. Malbrán", Av. Vélez Sársfield 563, 1282 Buenos Aires, Argentina
| | - Ariana M Gutierrez
- Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr Carlos G. Malbrán", Av. Vélez Sársfield 563, 1282 Buenos Aires, Argentina
| | - Federico Camicia
- Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr Carlos G. Malbrán", Av. Vélez Sársfield 563, 1282 Buenos Aires, Argentina - Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires (UBA), José E. Uriburu 950, 5to piso, 1114 Buenos Aires, Argentina
| |
Collapse
|
4
|
Villa-Mancera A, Maldonado-Hidalgo J, Robles-Robles M, Olivares-Pérez J, Olmedo-Juárez A, Rodríguez-Castillo J, Pérez-Mendoza N, Utrera-Quintana F, Pérez J, Ortega-Vargas S. Evaluation of Reproductive Histology Response of Adult Fasciola hepatica in Goats Vaccinated with Cathepsin L Phage-Exposed Mimotopes. Int J Mol Sci 2024; 25:7225. [PMID: 39000332 PMCID: PMC11241617 DOI: 10.3390/ijms25137225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Fasciolosis, a globally re-emerging zoonotic disease, is mostly caused by the parasitic infection with Fasciola hepatica, often known as the liver fluke. This disease has a considerable impact on livestock productivity. This study aimed to evaluate the fluke burdens and faecal egg counts in goats that were administered phage clones of cathepsin L mimotopes and then infected with F. hepatica metacercariae. Additionally, the impact of vaccination on the histology of the reproductive system, specifically related to egg generation in adult parasites, was examined. A total of twenty-four goats, which were raised in sheds, were divided into four groups consisting of six animals each. These groups were randomly assigned. The goats were then subjected to two rounds of vaccination. Each vaccination involved the administration of 1 × 1013 phage particles containing specific mimotopes for cathepsin L2 (group 1: PPIRNGK), cathepsin L1 (group 2: DPWWLKQ), and cathepsin L1 (group 3: SGTFLFS). The immunisations were carried out on weeks 0 and 4, and the Quil A adjuvant was used in combination with the mimotopes. The control group was administered phosphate-buffered saline (PBS) (group 4). At week 6, all groups were orally infected with 200 metacercariae of F. hepatica. At week 22 following the initial immunisation, the subjects were euthanised, and adult F. hepatica specimens were retrieved from the bile ducts and liver tissue, and subsequently quantified. The specimens underwent whole-mount histology for the examination of the reproductive system, including the testis, ovary, vitellaria, Mehlis' gland, and uterus. The mean fluke burdens following the challenge were seen to decrease by 50.4%, 62.2%, and 75.3% (p < 0.05) in goats that received vaccinations containing cathepsin L2 PPIRNGK, cathepsin L1 DPWWLKQ, and cathepsin L1 SGTFLFS, respectively. Animals that received vaccination exhibited a significant reduction in the production of parasite eggs. The levels of IgG1 and IgG2 isotypes in vaccinated goats were significantly higher than in the control group, indicating that protection is associated with the induction of a mixed Th1/Th2 immune response. The administration of cathepsin L to goats exhibits a modest level of efficacy in inducing histological impairment in the reproductive organs of liver flukes, resulting in a reduction in egg output.
Collapse
Affiliation(s)
- Abel Villa-Mancera
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla 75460, Mexico
| | - Javier Maldonado-Hidalgo
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla 75460, Mexico
| | - Manuel Robles-Robles
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla 75460, Mexico
| | - Jaime Olivares-Pérez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Ciudad Altamirano 39640, Mexico
| | - Agustín Olmedo-Juárez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID SAI-INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534, Colonia Progreso, Jiutepec 62550, Mexico
| | - José Rodríguez-Castillo
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla 75460, Mexico
| | - Noemi Pérez-Mendoza
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla 75460, Mexico
| | - Fernando Utrera-Quintana
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla 75460, Mexico
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Excelencia ENZOEM, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Samuel Ortega-Vargas
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla 75460, Mexico
| |
Collapse
|
5
|
Ubeira FM, González-Warleta M, Martínez-Sernández V, Castro-Hermida JA, Paniagua E, Romarís F, Mezo M. Increased specificity of Fasciola hepatica excretory-secretory antigens combining negative selection on hydroxyapatite and salt precipitation. Sci Rep 2024; 14:3897. [PMID: 38365880 PMCID: PMC10873304 DOI: 10.1038/s41598-024-54290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/10/2024] [Indexed: 02/18/2024] Open
Abstract
A single and rapid method to obtain an antigenic fraction of excretory-secretory antigens (ESAs) from Fasciola hepatica suitable for serodiagnosis of fascioliasis is reported. The procedure consists in the negative selection of F. hepatica ESAs by hydroxyapatite (HA) chromatography (HAC; fraction HAC-NR) followed by antigen precipitation with 50% ammonium sulphate (AS) and subsequent recovery by means of a Millex-GV or equivalent filter (Fi-SOLE fraction). Tested in indirect ELISA, the Fi-SOLE antigens detected natural infections by F. hepatica with 100% sensitivity and 98.9% specificity in sheep, and 97.7% sensitivity and 97.7% specificity in cattle, as determined by ROC analysis. The SDS-PAGE and proteomic nano-UHPLC-Tims-QTOF MS/MS analysis of fractions showed that the relative abundance of L-cathepsins and fragments thereof was 57% in fraction HAC-NR and 93.8% in fraction Fi-SOLE. The second most abundant proteins in fraction HAC-NR were fatty-acid binding proteins (11.9%). In contrast, free heme, and heme:MF6p/FhHDM-1 complexes remained strongly bond to the HA particles during HAC. Interestingly, phosphorylcholine (PC)-bearing antigens, which are a frequent source of cross-reactivity, were detected with an anti-PC mAb (BH8) in ESAs and fraction HAC-NR but were almost absent in fraction Fi-SOLE.
Collapse
Affiliation(s)
- Florencio M Ubeira
- Laboratorio de Parasitología, Facultad de Farmacia, 15782, Santiago de Compostela, Spain.
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - Marta González-Warleta
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, AGACAL, 15318, Abegondo (A Coruña), Spain
| | - Victoria Martínez-Sernández
- Laboratorio de Parasitología, Facultad de Farmacia, 15782, Santiago de Compostela, Spain
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15705, Santiago de Compostela, Spain
- Servicio de Dermatología Médico-Quirúrgica y Venereología, Complejo Hospitalario Universitario de Pontevedra (CHUP), 36071, Pontevedra, Spain
| | - José Antonio Castro-Hermida
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, AGACAL, 15318, Abegondo (A Coruña), Spain
| | - Esperanza Paniagua
- Laboratorio de Parasitología, Facultad de Farmacia, 15782, Santiago de Compostela, Spain
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Fernanda Romarís
- Laboratorio de Parasitología, Facultad de Farmacia, 15782, Santiago de Compostela, Spain
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Mercedes Mezo
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, AGACAL, 15318, Abegondo (A Coruña), Spain
| |
Collapse
|
6
|
Artía Z, Ferraro F, Sánchez C, Cerecetto H, Gil J, Pareja L, Alonzo MN, Freire T, Cabrera M, Corvo I. In vitro and in vivo studies on a group of chalcones find promising results as potential drugs against fascioliasis. Exp Parasitol 2023; 255:108628. [PMID: 37776969 DOI: 10.1016/j.exppara.2023.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
About a third of the world population is infected by helminth parasites implicated in foodborne trematodiasis. Fascioliasis is a worldwide disease caused by trematodes of the genus Fasciola spp. It generates huge economic losses to the agri-food industry and is currently considered an emerging zoonosis by the World Health Organization (WHO). The only available treatment relies on anthelmintic drugs, being triclabendazole (TCBZ) the drug of choice to control human infections. The emergence of TCBZ resistance in several countries and the lack of an effective vaccine to prevent infection highlights the need to develop new drugs to control this parasitosis. We have previously identified a group of benzochalcones as inhibitors of cathepsins, which have fasciolicidal activity in vitro and are potential new drugs for the control of fascioliasis. We selected the four most active compounds of this group to perform further preclinical studies. The compound's stability was determined against a liver microsomal enzyme fraction, obtaining half-lives of 34-169 min and low intrinsic clearance values (<13 μL/min/mg), as desirable for potential new drugs. None of the compounds were mutagenic or genotoxic and no in vitro cytotoxic effects were seen. Compounds C31 and C34 showed the highest selectivity index against liver fluke cathepsins when compared to human cathepsin L. They were selected for in vivo efficacy studies observing a protective effect, similar to TCBZ, in a mouse model of infection. Our findings strongly encourage us to continue the drug development pipeline for these molecules.
Collapse
Affiliation(s)
- Zoraima Artía
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, 60000, Uruguay
| | - Florencia Ferraro
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, 60000, Uruguay
| | - Carina Sánchez
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica & Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| | - Hugo Cerecetto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica & Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| | - Jorge Gil
- Laboratorio de Reproducción Animal, Producción y Reproducción de Rumiantes, Departamento de Ciencias Biológicas, CENUR Litoral Norte-Facultad de Veterinaria, Universidad de la República, Paysandú, 60000, Uruguay
| | - Lucía Pareja
- Departamento de Química del Litoral, CENUR Litoral Norte, Sede Paysandú, Universidad de la República, Paysandú, 60000, Uruguay
| | - María Noel Alonzo
- Departamento de Química del Litoral, CENUR Litoral Norte, Sede Paysandú, Universidad de la República, Paysandú, 60000, Uruguay
| | - Teresa Freire
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Mauricio Cabrera
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, 60000, Uruguay.
| | - Ileana Corvo
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, 60000, Uruguay.
| |
Collapse
|
7
|
Gong JZ, Fan YM, Yuan W, Pan M, Liu D, Tao JP, Huang SY. Development of a novel method for diagnosis of fasciolosis based on cathepsin L7 in ruminants. Vet Parasitol 2023; 322:110021. [PMID: 37657153 DOI: 10.1016/j.vetpar.2023.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Fasciolosis is a widely distributed zoonosis reported over 81 countries around the world. Good and early diagnostic method is critical in controlling this disease and prevention of injury to the liver and bile ducts. In this study, we identified a novel member (cathepsin L7) of cathepsin family from Fasciola spp.. Firstly, the biological character of CL7 was analyzed according to the information of cathepsin L family, and then rCL7 was expressed and purified, a new iELISA based on CL7 was developed. The results exhibited CL7 iELISA had 100% sensitivity 100% specificity in sheep (cut-off 1.329) and 100% sensitivity 93.75% specificity in cattle (cut-off 0.756). Moreover, anti-Fasciola CL7 antibodies could be detected in early Fasciola gigantica infected buffaloes, as early as 3 week-post-infection (WPI). In conclusion, it is suggested that CL7 with low cost, early detection, good specificity and sensitivity could be used as a candidate antigen for detection of ruminant fasciolosis.
Collapse
Affiliation(s)
- Jing-Zhi Gong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Yi-Min Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China
| | - Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Dandan Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jian-Ping Tao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
8
|
Fereig RM, Metwally S, El-Alfy ES, Abdelbaky HH, Shanab O, Omar MA, Alsayeqh AF. High relatedness of bioinformatic data and realistic experimental works on the potentials of Fasciola hepatica and F. gigantica cathepsin L1 as a diagnostic and vaccine antigen. Front Public Health 2022; 10:1054502. [PMID: 36568750 PMCID: PMC9768368 DOI: 10.3389/fpubh.2022.1054502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Fascioliasis is a parasitic foodborne disease caused by the liver flukes, Fasciola hepatica and F. gigantica. Such parasites cause serious illness in numerous domestic animals and also in humans. Following infection, the parasite secretes a variety of molecules that immediately interact with the host immunity to establish successful infection. These molecules include cathepsin L peptidase 1 (CatL1); the highly investigated diagnostic and vaccine antigens using various animal models. However, a few studies have analyzed the potentials of FhCatL1 as a diagnostic or vaccine antigen using bioinformatic tools and much less for FgCatL1. The present study provides inclusive and exclusive information on the physico-chemical, antigenic and immunogenic properties of F. hepatica cathepsin L1 (FhCatL1) protein using multiple bioinformatic analysis tools and several online web servers. Also, the validation of our employed available online servers was conducted against a huge collection of previously published studies focusing on the properties of FhCatL1as a diagnostic and vaccine antigen. Methods For this purpose, the secondary, tertiary, and quaternary structure of FhCatL1 protein were also predicted and analyzed using the SWISS-MODEL server. Validation of the modeled structures was performed by Ramachandran plots. The antigenic epitopes of the protein were predicted by IEDB server. Results and discussion Our findings revealed the low similarity of FhCatL1 with mammalian CatL1, lacking signal peptides or transmembrane domain, and the presence of 33 phosphorylation sites. Also, the containment of FhCatL1 for many topological, physico-chemical, immunological properties that favored its function of solubility and interaction with the immune components were reported. In addition, the earlier worldwide reports documented the high efficacy of FhCatL1 as a diagnostic and vaccine antigen in different animals. Altogether, FhCatL1 is considered an excellent candidate for using in commercialized diagnostic assays or vaccine products against fascioliasis in different animal species. Our assessment also included FgCatL1 and reported very similar findings and outputs to those of FhCatL1.
Collapse
Affiliation(s)
- Ragab M. Fereig
- Division of Internal Medicine, Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Samy Metwally
- Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - El-Sayed El-Alfy
- Department of Parasitology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hanan H. Abdelbaky
- Doctor of Veterinary Sciences, Veterinary Clinic, Veterinary Directorate, Qena, Egypt
| | - Obeid Shanab
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mosaab A. Omar
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt,Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah F. Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia,*Correspondence: Abdullah F. Alsayeqh
| |
Collapse
|
9
|
Caña-Bozada V, Morales-Serna FN, Fajer-Ávila EJ, Llera-Herrera R. De novo transcriptome assembly and identification of G-Protein-Coupled-Receptors (GPCRs) in two species of monogenean parasites of fish. Parasite 2022; 29:51. [PMID: 36350193 PMCID: PMC9645230 DOI: 10.1051/parasite/2022052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Genomic resources for Platyhelminthes of the class Monogenea are scarce, despite the diversity of these parasites, some species of which are highly pathogenic to their fish hosts. This work aimed to generate de novo-assembled transcriptomes of two monogenean species, Scutogyrus longicornis (Dactylogyridae) and Rhabdosynochus viridisi (Diplectanidae), providing a protocol for cDNA library preparation with low input samples used in single cell transcriptomics. This allowed us to work with sub-microgram amounts of total RNA with success. These transcriptomes consist of 25,696 and 47,187 putative proteins, respectively, which were further annotated according to the Swiss-Prot, Pfam, GO, KEGG, and COG databases. The completeness values of these transcriptomes evaluated with BUSCO against Metazoa databases were 54.1% and 73%, respectively, which is in the range of other monogenean species. Among the annotations, a large number of terms related to G-protein-coupled receptors (GPCRs) were found. We identified 109 GPCR-like sequences in R. viridisi, and 102 in S. longicornis, including family members specific for Platyhelminthes. Rhodopsin was the largest family according to GRAFS classification. Two putative melatonin receptors found in S. longicornis represent the first record of this group of proteins in parasitic Platyhelminthes. Forty GPCRs of R. viridisi and 32 of S. longicornis that were absent in Vertebrata might be potential drug targets. The present study provides the first publicly available transcriptomes for monogeneans of the subclass Monopisthocotylea, which can serve as useful genomic datasets for functional genomic research of this important group of parasites.
Collapse
Affiliation(s)
- Víctor Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental Mazatlán Sinaloa 82112 Mexico
| | - F. Neptalí Morales-Serna
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México Mazatlán Sinaloa 82040 Mexico
| | - Emma J. Fajer-Ávila
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental Mazatlán Sinaloa 82112 Mexico
| | - Raúl Llera-Herrera
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México Mazatlán Sinaloa 82040 Mexico
| |
Collapse
|
10
|
Collett CF, Phillips HC, Fisher M, Smith S, Fenn C, Goodwin P, Morphew RM, Brophy PM. Fasciola hepatica Cathepsin L Zymogens: Immuno-Proteomic Evidence for Highly Immunogenic Zymogen-Specific Conformational Epitopes to Support Diagnostics Development. J Proteome Res 2022; 21:1997-2010. [PMID: 35849550 PMCID: PMC9361350 DOI: 10.1021/acs.jproteome.2c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fasciola hepatica, the common liver fluke and causative agent of zoonotic fasciolosis, impacts on food security with global economic losses of over $3.2 BN per annum through deterioration of animal health, productivity losses, and livestock death and is also re-emerging as a foodborne human disease. Cathepsin proteases present a major vaccine and diagnostic target of the F. hepatica excretory/secretory (ES) proteome, but utilization in diagnostics of the highly antigenic zymogen stage of these proteins is surprisingly yet to be fully exploited. Following an immuno-proteomic investigation of recombinant and native procathepsins ((r)FhpCL1), including mass spectrometric analyses (DOI: 10.6019/PXD030293), and using counterpart polyclonal antibodies to a recombinant mutant procathepsin L (anti-rFhΔpCL1), we have confirmed recombinant and native cathepsin L zymogens contain conserved, highly antigenic epitopes that are conformationally dependent. Furthermore, using diagnostic platforms, including pilot serum and fecal antigen capture enzyme-linked immunosorbent assay (ELISA) tests, the diagnostic capacities of cathepsin L zymogens were assessed and validated, offering promising efficacy as markers of infection and for monitoring treatment efficacy.
Collapse
Affiliation(s)
- Clare F Collett
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, U.K
| | - Helen C Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, U.K
| | - Maggie Fisher
- Ridgeway Research Ltd., Park Farm Buildings, Park Lane, St. Briavels, Gloucestershire GL15 6QX, U.K
| | - Sian Smith
- Ridgeway Research Ltd., Park Farm Buildings, Park Lane, St. Briavels, Gloucestershire GL15 6QX, U.K
| | - Caroline Fenn
- Ridgeway Research Ltd., Park Farm Buildings, Park Lane, St. Briavels, Gloucestershire GL15 6QX, U.K
| | - Phil Goodwin
- Bio-Check UK, Spectrum House, Llys Edmund Prys, St. Asaph Business Park, St. Asaph, Denbighshire LL17 0LJ, U.K
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, U.K
| | - Peter M Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, U.K
| |
Collapse
|
11
|
Transcriptomic and proteomic profiling of peptidase expression in Fasciola hepatica eggs developing at host's body temperature. Sci Rep 2022; 12:10308. [PMID: 35725898 PMCID: PMC9209485 DOI: 10.1038/s41598-022-14419-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 05/03/2022] [Indexed: 12/28/2022] Open
Abstract
Fasciola hepatica is a global parasite of livestock which also causes a neglected zoonosis in humans. The parasite’s communication with the host during its complicated lifecycle is based on an ingenious enzymatic apparatus which includes a variety of peptidases. These enzymes are implicated in parasite migration, pathogenesis of the disease, and modification of host immune response. Although the dynamics of proteolytic machinery produced by intra-mammalian F. hepatica life stages has been previously investigated in great detail, peptidases of the eggs so far received little scientific attention. In this study, we performed a comparative RNA-seq analysis aimed at identification of peptidases expressed in F. hepatica eggs, cultured at 37 °C to represent gall bladder retained eggs, for different time periods and employed mass spectrometry in order to identify and quantify peptidases translated in F. hepatica egg lysates. We demonstrated that F. hepatica eggs undergo significant molecular changes when cultured at the physiological temperature of the definitive host. Egg transcriptome is subject to numerous subtle changes while their proteome is even more variable. The peptidase profile is considerably modified on both transcriptome and proteome level. Finally, we measured and classified proteolytic activities in extracts from F. hepatica eggs using a library of fluorogenic substrates and peptidase class-selective inhibitors. Activities of threonine peptidases were detected constantly, while the cysteine peptidases prevailing in freshly laid eggs are substituted by aspartic peptidase and metallopeptidase activities in the later stages of egg development.
Collapse
|
12
|
Bennett APS, de la Torre-Escudero E, Dermott SSE, Threadgold LT, Hanna REB, Robinson MW. Fasciola hepatica Gastrodermal Cells Selectively Release Extracellular Vesicles via a Novel Atypical Secretory Mechanism. Int J Mol Sci 2022; 23:ijms23105525. [PMID: 35628335 PMCID: PMC9143473 DOI: 10.3390/ijms23105525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The liver fluke, Fasciola hepatica, is an obligate blood-feeder, and the gastrodermal cells of the parasite form the interface with the host’s blood. Despite their importance in the host–parasite interaction, in-depth proteomic analysis of the gastrodermal cells is lacking. Here, we used laser microdissection of F. hepatica tissue sections to generate unique and biologically exclusive tissue fractions of the gastrodermal cells and tegument for analysis by mass spectrometry. A total of 226 gastrodermal cell proteins were identified, with proteases that degrade haemoglobin being the most abundant. Other detected proteins included those such as proton pumps and anticoagulants which maintain a microenvironment that facilitates digestion. By comparing the gastrodermal cell proteome and the 102 proteins identified in the laser microdissected tegument with previously published tegument proteomic datasets, we showed that one-quarter of proteins (removed by freeze–thaw extraction) or one-third of proteins (removed by detergent extraction) previously identified as tegumental were instead derived from the gastrodermal cells. Comparative analysis of the laser microdissected gastrodermal cells, tegument, and F. hepatica secretome revealed that the gastrodermal cells are the principal source of secreted proteins, as well as showed that both the gastrodermal cells and the tegument are likely to release subpopulations of extracellular vesicles (EVs). Microscopical examination of the gut caeca from flukes fixed immediately after their removal from the host bile ducts showed that selected gastrodermal cells underwent a progressive thinning of the apical plasma membrane which ruptured to release secretory vesicles en masse into the gut lumen. Our findings suggest that gut-derived EVs are released via a novel atypical secretory route and highlight the importance of the gastrodermal cells in nutrient acquisition and possible immunomodulation by the parasite.
Collapse
Affiliation(s)
- Adam P. S. Bennett
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
| | - Eduardo de la Torre-Escudero
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
| | - Susan S. E. Dermott
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
| | - Lawrence T. Threadgold
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
| | - Robert E. B. Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast BT4 3SD, UK;
| | - Mark W. Robinson
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
- Correspondence: ; Tel.: +44-(0)28-9097-2120
| |
Collapse
|
13
|
Carson JP, Robinson MW, Ramm GA, Gobert GN. Synthetic peptides derived from the Schistosoma mansoni secretory protein Sm16 induce contrasting responses in hepatic stellate cells. Exp Parasitol 2022; 236-237:108255. [DOI: 10.1016/j.exppara.2022.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
|
14
|
Bai Y, Ma KN, Sun XY, Dan Liu R, Long SR, Jiang P, Wang ZQ, Cui J. Molecular characterization of a novel cathepsin L from Trichinella spiralis and its participation in invasion, development and reproduction. Acta Trop 2021; 224:106112. [PMID: 34453915 DOI: 10.1016/j.actatropica.2021.106112] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Cathepsin L is one member of cysteine protease superfamily and widely distributed in parasitic organisms, it plays the important roles in worm invasion, migration, nutrient intake, molting and immune evasion. The objective of this study was to investigate the biological characteristics of a novel cathepsin L from Trichinella spiralis (TsCL) and its role in larval invasion, development and reproduction. TsCL has a functional domain of C1 peptidase, which belongs to cathepsin L family. The complete TsCL sequence was cloned and expressed in Escherichia coli BL21. The rTsCL has good immunogenicity. RT-PCR and Western blotting analysis showed that TsCL was transcribed and expressed at different T. spiralis phases (e.g., muscle larvae, intestinal infectious larvae, adult worms and newborn larvae). Immunofluorescence test revealed that TsCL was principally localized in the cuticle, stichosome, midgut and female intrauterine embryos of the nematode. rTsCL has the capacity to specially bind with intestinal epithelial cells (IECs) and the binding sites was located in the cytoplasm. rTsCL promoted larval penetration into IEC, while anti-rTsCL antibodies inhibited the invasion. The silencing of TsCL gene by specific dsRNA significantly reduced the TsCL expression and enzyme activity, and also reduced larval invasive ability, development and female reproduction. The results showed that TsCL is an obligatory protease in T. spiralis lifecycle. TsCL participates in worm invasion, development and reproduction, and may be regarded as a potential candidate vaccine/drug target against T. spiralis infection.
Collapse
|
15
|
López Corrales J, Cwiklinski K, De Marco Verissimo C, Dorey A, Lalor R, Jewhurst H, McEvoy A, Diskin M, Duffy C, Cosby SL, Keane OM, Dalton JP. Diagnosis of sheep fasciolosis caused by Fasciola hepatica using cathepsin L enzyme-linked immunosorbent assays (ELISA). Vet Parasitol 2021; 298:109517. [PMID: 34271318 DOI: 10.1016/j.vetpar.2021.109517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 02/01/2023]
Abstract
Fasciolosis, a global parasitic disease of agricultural livestock, is caused by the liver fluke Fasciola hepatica. Management and strategic control of fasciolosis on farms depends on early assessment of the extent of disease so that control measures can be implemented quickly. Traditionally, this has relied on the detection of eggs in the faeces of animals, a laborious method that lacks sensitivity, especially for sub-clinical infections, and identifies chronic infections only. Enzyme linked immunosorbent assays (ELISA) offer a quicker and more sensitive serological means of diagnosis that could detect early acute infection before significant liver damage occurs. The performance of three functionally-active recombinant forms of the major F. hepatica secreted cathepsins L, rFhCL1, rFhCL2, rFhCL3, and a cathepsin B, rFhCB3, were evaluated as antigens in an indirect ELISA to serologically diagnose liver fluke infection in experimentally and naturally infected sheep. rFhCL1 and rFhCL3 were the most effective of the four antigens detecting fasciolosis in sheep as early as three weeks after experimental infection, at least five weeks earlier than both coproantigen and faecal egg tests. In addition, the rFhCL1 and rFhCL3 ELISAs had a very low detection limit for liver fluke in lambs exposed to natural infection on pastures and thus could play a major role in the surveillance of farms and a 'test and treat' approach to disease management. Finally, antibodies to all three cathepsin L proteases remain high throughout chronic infection but decline rapidly after drug treatment with the flukicide, triclabendazole, implying that the test may be adapted to trace the effectiveness of drug treatment.
Collapse
Affiliation(s)
- Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amber Dorey
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amanda McEvoy
- Animal & Bioscience Department, Teagasc Mellows Campus, Athenry, Co., Galway, Ireland
| | - Michael Diskin
- Animal & Bioscience Department, Teagasc Mellows Campus, Athenry, Co., Galway, Ireland
| | - Catherine Duffy
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, BT4 3SD, UK
| | - S Louise Cosby
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, BT4 3SD, UK
| | - Orla M Keane
- Animal & Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
16
|
Recognition Pattern of the Fasciola hepatica Excretome/Secretome during the Course of an Experimental Infection in Sheep by 2D Immunoproteomics. Pathogens 2021; 10:pathogens10060725. [PMID: 34207550 PMCID: PMC8228785 DOI: 10.3390/pathogens10060725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 01/01/2023] Open
Abstract
Excretory/secretory products released by helminth parasites have been widely studied for their diagnostic utility, immunomodulatory properties, as well as for their use as vaccines. Due to their location at the host/parasite interface, the characterization of parasite secretions is important to unravel the molecular interactions governing the relationships between helminth parasites and their hosts. In this study, the excretory/secretory products from adult worms of the trematode Fasciola hepatica (FhES) were employed in a combination of two-dimensional electrophoresis, immunoblot and mass spectrometry, to analyze the immune response elicited in sheep during the course of an experimental infection. Ten different immunogenic proteins from FhES recognized by serum samples from infected sheep at 4, 8, and/or 12 weeks post-infection were identified. Among these, different isoforms of cathepsin L and B, peroxiredoxin, calmodulin, or glutathione S-transferase were recognized from the beginning to the end of the experimental infection, suggesting their potential role as immunomodulatory antigens. Furthermore, four FhES proteins (C2H2-type domain-containing protein, ferritin, superoxide dismutase, and globin-3) were identified for the first time as non-immunogenic proteins. These results may help to further understand host/parasite relationships in fasciolosis, and to identify potential diagnostic molecules and drug target candidates of F. hepatica.
Collapse
|
17
|
Caña-Bozada V, Chapa-López M, Díaz-Martín RD, García-Gasca A, Huerta-Ocampo JÁ, de Anda-Jáuregui G, Morales-Serna FN. In silico identification of excretory/secretory proteins and drug targets in monogenean parasites. INFECTION GENETICS AND EVOLUTION 2021; 93:104931. [PMID: 34023509 DOI: 10.1016/j.meegid.2021.104931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
The Excretory/Secretory (ES) proteins of parasites are involved in invasion and colonization of their hosts. In addition, since ES proteins circulate in the extracellular space, they can be more accessible to drugs than other proteins, which makes ES proteins optimal targets for the development of new and better pharmacological strategies. Monogeneans are a group of parasitic Platyhelminthes that includes some pathogenic species problematic for finfish aquaculture. In the present study, 8297 putative ES proteins from four monogenean species which genomic resources are publicly available were identified and functionally annotated by bioinformatic tools. Additionally, for comparative purposes, ES proteins in other parasitic and free-living platyhelminths were identified. Based on data from the monogenean Gyrodactylus salaris, 15 ES proteins are considered potential drug targets. One of them showed homology to 10 cathepsins with known 3D structure. A docking molecular analysis uncovered that the anthelmintic emodepside shows good affinity to these cathepsins suggesting that emodepside can be experimentally tested as a monogenean's cathepsin inhibitor.
Collapse
Affiliation(s)
- Víctor Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico
| | - Martha Chapa-López
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico
| | - Rubén D Díaz-Martín
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico
| | | | - José Ángel Huerta-Ocampo
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Sonora, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico
| | - F Neptalí Morales-Serna
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico; Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Sinaloa, Mexico.
| |
Collapse
|
18
|
Villa-Mancera A, Alcalá-Canto Y, Reynoso-Palomar A, Olmedo-Juárez A, Olivares-Pérez J. Vaccination with cathepsin L phage-exposed mimotopes, single or in combination, reduce size, fluke burden, egg production and viability in sheep experimentally infected with Fasciola hepatica. Parasitol Int 2021; 83:102355. [PMID: 33872793 DOI: 10.1016/j.parint.2021.102355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/25/2022]
Abstract
Fascioliasis is a worldwide emergent zoonotic disease that significantly constrains the productivity of livestock. In this study, fluke burdens, liver fluke size and biomass, faecal eggs counts, serum levels of hepatic enzymes and immune response were assessed in sheep vaccinated with peptide mimotopes of cathepsin L and infected with metacercariae. A total of 25 sheep were allocated randomly into five groups of five animals each, and experimental groups were immunised with 1 × 1013 filamentous phage particles of cathepsin L1 (CL1) (TPWKDKQ), CL2 (YGSCFLR) and mixtures of CL1 + CL2 mimotopes, in combination with Quil A adjuvant, and wild-type M13KE phage in a two-vaccination scheme on weeks 0 and 4. The control group received phosphate-buffered saline. All groups were challenged with 300 metacercariae two weeks after the last immunisation and euthanised 16 weeks later. The CL1 vaccine was estimated to provide 57.58% protection compared with the control group; no effect was observed in animals immunised with CL2 and CL1 + CL2 (33.14% and 11.63%, respectively). However, animals receiving CL2 had a significant reduction in parasite egg output. Vaccinated animals showed a significant reduction in fluke length and width and wet weights. In the CL1 group, there was a significant reduction in the total biomass of parasites recovered. Egg development was divided into seven stages: dead, empty, unembryonated, cell division, eyespot, hatched and hatching. The highest percentage of developmental stages was detected for vaccinated sheep administered CL1 + CL2 with cell division, and the lowest percentage was observed in the hatching stage. Furthermore, a significant difference in all developmental stages was observed between vaccinated animals and the control group (P < 0.01). The levels of anti-phage total IgG in immune sera increased significantly at four weeks after immunisation and were always significantly higher for cathepsin L vaccine group than in the challenged control group. Total IgG was inversely and significantly correlated with worm burden in the CL1 group.
Collapse
Affiliation(s)
- Abel Villa-Mancera
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla, Mexico.
| | - Yazmín Alcalá-Canto
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad 3000, Alcaldía Coyoacán, Ciudad de México C.P. 04510, Mexico
| | - Alejandro Reynoso-Palomar
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla, Mexico
| | - Agustín Olmedo-Juárez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID SAI-INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534 / Col. Progreso, A.P. 206-CIVAC, C.P. 62550 Jiutepec, Morelos, Mexico
| | - Jaime Olivares-Pérez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Ciudad Altamirano, Guerrero, Mexico
| |
Collapse
|
19
|
Alba A, Vazquez AA, Hurtrez-Boussès S. Towards the comprehension of fasciolosis (re-)emergence: an integrative overview. Parasitology 2021; 148:385-407. [PMID: 33261674 PMCID: PMC11010171 DOI: 10.1017/s0031182020002255] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
The increasing distribution and prevalence of fasciolosis in both human and livestock are concerning. Here, we examine the various types of factors influencing fasciolosis transmission and burden and the interrelations that may exist between them. We present the arsenal of molecules, 'adjusting' capabilities and parasitic strategies of Fasciola to infect. Such features define the high adaptability of Fasciola species for parasitism that facilitate their transmission. We discuss current environmental perturbations (increase of livestock and land use, climate change, introduction of alien species and biodiversity loss) in relation to fasciolosis dynamics. As Fasciola infection is directly and ultimately linked to livestock management, living conditions and cultural habits, which are also changing under the pressure of globalization and climate change, the social component of transmission is also discussed. Lastly, we examine the implication of increasing scientific and political awareness in highlighting the current circulation of fasciolosis and boosting epidemiological surveys and novel diagnostic techniques. From a joint perspective, it becomes clear that factors weight differently at each place and moment, depending on the biological, environmental, social and political interrelating contexts. Therefore, the analyses of a disease as complex as fasciolosis should be as integrative as possible to dissect the realities featuring each epidemiological scenario. Such a comprehensive appraisal is presented in this review and constitutes its main asset to serve as a fresh integrative understanding of fasciolosis.
Collapse
Affiliation(s)
- Annia Alba
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical ‘Pedro Kourí’, Havana, Cuba
| | - Antonio A. Vazquez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical ‘Pedro Kourí’, Havana, Cuba
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
20
|
Enzyme-linked immunosorbent assay (ELISA) using recombinant Fasciola cathepsin L1 for the diagnosis of human fasciolosis caused by Fasciola hepatica/gigantica hybrid type. Parasitol Int 2021; 82:102311. [PMID: 33621657 DOI: 10.1016/j.parint.2021.102311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/14/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022]
Abstract
Recombinant Fasciola cathepsin L-1 (rCatL1) was evaluated in enzyme-linked immunosorbent assay (ELISA) for the serodiagnosis of human fasciolosis in Japan. Quality characteristics of the test were accessed by receiver operating characteristic (ROC) analysis, with sera from fasciolosis patients (n = 10), patients with no evidence of parasitic infections (n = 29), and patients with other helminth infections (n = 119). Both the sensitivity and specificity of the test achieved 100% with the control samples. To test the performance of the assay in an authentic situation, 311 serum samples, which had been sent to our laboratory for the diagnosis of parasitic infections from January 2018 to February 2019, were re-assessed using the rCatL1 ELISA. In this case, the sensitivity of the rCatL1 ELISA was 100%, giving positive results to all fasciolosis sera (n = 7), and the specificity was 99.0%, in which three of the 304 non-fasciolosis samples were judged positive. Careful re-examination of the laboratory data and medical imaging of these three patients revealed that one of the patients, who had been diagnosed as having larva migrans syndrome, was judged to be infected with Fasciola, in addition to ascarid nematodes. Thus the true specificity of the assay in the authentic reached 99.3% (302/304). As the rCatL1 ELISA exhibited a highly significant positive likelihood ratio (152.0) and negative likelihood ratio (0.0), calculated from the 311 sample data, this rCatL1 ELISA can be used for routine screening and definitive diagnosis test for fasciolosis in reference laboratories.
Collapse
|
21
|
Huson KM, Atcheson E, Oliver NAM, Best P, Barley JP, Hanna REB, McNeilly TN, Fang Y, Haldenby S, Paterson S, Robinson MW. Transcriptome and Secretome Analysis of Intra-Mammalian Life-Stages of Calicophoron daubneyi Reveals Adaptation to a Unique Host Environment. Mol Cell Proteomics 2021; 20:100055. [PMID: 33581320 PMCID: PMC7973311 DOI: 10.1074/mcp.ra120.002175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Paramphistomosis, caused by the rumen fluke, Calicophoron daubneyi, is a parasitic infection of ruminant livestock, which has seen a rapid rise in prevalence throughout Western Europe in recent years. After ingestion of metacercariae (parasite cysts) by the mammalian host, newly excysted juveniles (NEJs) emerge and invade the duodenal submucosa, which causes significant pathology in heavy infections. The immature flukes then migrate upward, along the gastrointestinal tract, and enter the rumen where they mature and begin to produce eggs. Despite their emergence, and sporadic outbreaks of acute disease, we know little about the molecular mechanisms used by C. daubneyi to establish infection, acquire nutrients, and avoid the host immune response. Here, transcriptome analysis of four intramammalian life-cycle stages, integrated with secretome analysis of the NEJ and adult parasites (responsible for acute and chronic diseases, respectively), revealed how the expression and secretion of selected families of virulence factors and immunomodulators are regulated in accordance with fluke development and migration. Our data show that while a family of cathepsins B with varying S2 subsite residues (indicating distinct substrate specificities) is differentially secreted by NEJs and adult flukes, cathepsins L and F are secreted in low abundance by NEJs only. We found that C. daubneyi has an expanded family of aspartic peptidases, which is upregulated in adult worms, although they are under-represented in the secretome. The most abundant proteins in adult fluke secretions were helminth defense molecules that likely establish an immune environment permissive to fluke survival and/or neutralize pathogen-associated molecular patterns such as bacterial lipopolysaccharide in the microbiome-rich rumen. The distinct collection of molecules secreted by C. daubneyi allowed the development of the first coproantigen-based ELISA for paramphistomosis which, importantly, did not recognize antigens from other helminths commonly found as coinfections with rumen fluke.
Collapse
Affiliation(s)
- Kathryn M Huson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Erwan Atcheson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Nicola A M Oliver
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Philip Best
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Jason P Barley
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland
| | - Robert E B Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland
| | - Tom N McNeilly
- Disease Control Department, Moredun Research Institute, Edinburgh, Scotland
| | - Yongxiang Fang
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Sam Haldenby
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Steve Paterson
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
22
|
An atypical and functionally diverse family of Kunitz-type cysteine/serine proteinase inhibitors secreted by the helminth parasite Fasciola hepatica. Sci Rep 2020; 10:20657. [PMID: 33244035 PMCID: PMC7692546 DOI: 10.1038/s41598-020-77687-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/13/2020] [Indexed: 01/25/2023] Open
Abstract
Fasciola hepatica is a global parasite of humans and their livestock. Regulation of parasite-secreted cathepsin L-like cysteine proteases associated with virulence is important to fine-tune parasite-host interaction. We uncovered a family of seven Kunitz-type (FhKT) inhibitors dispersed into five phylogenetic groups. The most highly expressed FhKT genes (group FhKT1) are secreted by the newly excysted juveniles (NEJs), the stage responsible for host infection. The FhKT1 inhibitors do not inhibit serine proteases but are potent inhibitors of parasite cathepsins L and host lysosomal cathepsin L, S and K cysteine proteases (inhibition constants < 10 nM). Their unusual inhibitory properties are due to (a) Leu15 in the reactive site loop P1 position that sits at the water-exposed interface of the S1 and S1' subsites of the cathepsin protease, and (b) Arg19 which forms cation-π interactions with Trp291 of the S1' subsite and electrostatic interactions with Asp125 of the S2' subsite. FhKT1.3 is exceptional, however, as it also inhibits the serine protease trypsin due to replacement of the P1 Leu15 in the reactive loop with Arg15. The atypical Kunitz-type inhibitor family likely regulate parasite cathepsin L proteases and/or impairs host immune cell activation by blocking lysosomal cathepsin proteases involved in antigen processing and presentation.
Collapse
|
23
|
Walsh TR, Ainsworth S, Armstrong S, Hodgkinson J, Williams D. Differences in the antibody response to adult Fasciola hepatica excretory/secretory products in experimentally and naturally infected cattle and sheep. Vet Parasitol 2020; 289:109321. [PMID: 33276290 PMCID: PMC7840588 DOI: 10.1016/j.vetpar.2020.109321] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 01/25/2023]
Abstract
Antibody response is different in animals experimentally and naturally infected with F. hepatica. Experimentally infected animals specifically recognised cathepsin proteins. Naturally infected animals showed poor recognition of a recombinant cathepsin L1. Antibody response of naturally infected animals is against multiple antigens. Diagnostic tests based on a single antigen may not be suitable for use in field.
Fasciola hepatica (the liver fluke) is a common, global parasite of livestock. It can be highly pathogenic and has health and welfare implications for infected individuals. Typically, in ruminants, infections are sub-clinical, but if undiagnosed, they can lead to significant production losses. Accurate diagnosis is crucial to identify infection. Antibody detection ELISAs are commonly used to diagnose infection due to their high sensitivity and specificity and are typically based on native fluke excretory/secretory (ES) products or cathepsin L1 (CL1), the immunodominant antigen within ES products. These tests have been developed based on the antibody response of experimentally infected animals; however, this response has not been well characterised in naturally infected animals. We compared the antibody recognition of a recombinant CL1 (rCL1) antigen and native adult fluke ES products. Whilst samples from experimentally infected animals showed strong recognition of rCL1, serum antibodies from naturally infected animals did not. These results were confirmed by peptide array. Immunoblotting sera against ES products showed that experimentally infected animals had a strong, specific response to CL1/CL2 proteins whilst antibodies from naturally infected animals recognised multiple proteins and had a variable response to CL1/CL2. Mass spectrometry of proteins separated by 2D SDS PAGE, identified several antigens recognised by serum antibodies from a naturally infected cow, including cathepsins L1, L2 and L5, glutathione S-transferase and a dihydrolipoyl dehydrogenase. Overall, these results show that the antibody response in naturally infected animals to adult fluke ES products is qualitatively different to experimentally infected animals. This suggests that a diagnostic test based on CL1 alone may not be appropriate for diagnosis of natural F. hepatica infections in sheep and cattle.
Collapse
Affiliation(s)
- Tessa R Walsh
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZX, UK.
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZX, UK
| | - Stuart Armstrong
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZX, UK
| | - Jane Hodgkinson
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZX, UK
| | - Diana Williams
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZX, UK
| |
Collapse
|
24
|
González-Miguel J, Becerro-Recio D, Siles-Lucas M. Insights into Fasciola hepatica Juveniles: Crossing the Fasciolosis Rubicon. Trends Parasitol 2020; 37:35-47. [PMID: 33067132 DOI: 10.1016/j.pt.2020.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Unraveling the molecular interactions governing the first contact between parasite and host tissues is of paramount importance to the development of effective control strategies against parasites. In fasciolosis, a foodborne trematodiasis caused mainly by Fasciola hepatica, these early interactions occur between the juvenile worm and the host intestinal wall a few hours after ingestion of metacercariae, the infectious stage of the parasite. However, research on these early events is still scarce and the majority of studies have focused on the adult worm. Here, we review current knowledge on the biology and biochemistry of F. hepatica juveniles and their molecular relationships with the host tissues and identify the research needs and gaps to be covered in the future.
Collapse
Affiliation(s)
- Javier González-Miguel
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - David Becerro-Recio
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Mar Siles-Lucas
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| |
Collapse
|
25
|
Stryiński R, Łopieńska-Biernat E, Carrera M. Proteomic Insights into the Biology of the Most Important Foodborne Parasites in Europe. Foods 2020; 9:E1403. [PMID: 33022912 PMCID: PMC7601233 DOI: 10.3390/foods9101403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Foodborne parasitoses compared with bacterial and viral-caused diseases seem to be neglected, and their unrecognition is a serious issue. Parasitic diseases transmitted by food are currently becoming more common. Constantly changing eating habits, new culinary trends, and easier access to food make foodborne parasites' transmission effortless, and the increase in the diagnosis of foodborne parasitic diseases in noted worldwide. This work presents the applications of numerous proteomic methods into the studies on foodborne parasites and their possible use in targeted diagnostics. Potential directions for the future are also provided.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36-208 Vigo, Spain
| |
Collapse
|
26
|
Mokhtarian K, Falak R, Heidari Z. Evaluation of Gelatinolytic and Collagenolytic Activity of Fasciola hepatica Recombinant Cathepsin-L1. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 18:e2357. [PMID: 32884958 PMCID: PMC7461709 DOI: 10.30498/ijb.2020.143160.2357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: Cysteine proteases of the liver fluke, Fasciola hepatica, participate in catabolism of proteins, migration of the fluke through host tissues and combat host immune system Objectives: In this study, we evaluated proteolytic activity of F. hepatica recombinant cathepsin L1 (rCL1) against gelatin and collagen as common substrates Material and Methods: The coding sequences of F. hepatica CL1 were cloned and expressed in E. coli, in our previous study. The rCL1 was purified by nickel affinity chromatography
with a HisTrap Column. The protein concentrations of the purified fractions were determined by Bradford assay. Rat collagen type-1 was treated with distinct amounts of rCL1
at 37 °C, overnight, and the byproduct was analyzed by SDS-PAGE. Furthermore, we used bovine skin gelatin as zymography substrate to evaluate the gelatinolytic activity of the purified rCL1. Results: Recombinant CL1 was capable to digest intact type-1 collagen within 24 h and the gelatinlytic activity of rCL1 was visible at approximately 37 kDa region,
with optimal activity at acidified conditions (pH 4) Conclusion: Findings provide a possible mechanism by which a major secretory molecule of F. hepatica could be involved in parasite survival as well as its pathogenesis.
Collapse
Affiliation(s)
- Kobra Mokhtarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Heidari
- Department of Medical Parasitology, School of Medicine, Ardabil University of Medical Sciences
| |
Collapse
|
27
|
Ryan S, Shiels J, Taggart CC, Dalton JP, Weldon S. Fasciola hepatica-Derived Molecules as Regulators of the Host Immune Response. Front Immunol 2020; 11:2182. [PMID: 32983184 PMCID: PMC7492538 DOI: 10.3389/fimmu.2020.02182] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Helminths (worms) are one of the most successful organisms in nature given their ability to infect millions of humans and animals worldwide. Their success can be attributed to their ability to modulate the host immune response for their own benefit by releasing excretory-secretory (ES) products. Accordingly, ES products have been lauded as a potential source of immunomodulators/biotherapeutics for an array of inflammatory diseases. However, there is a significant lack of knowledge regarding the specific interactions between these products and cells of the immune response. Many different compounds have been identified within the helminth "secretome," including antioxidants, proteases, mucin-like peptides, as well as helminth defense molecules (HDMs), each with unique influences on the host inflammatory response. HDMs are a conserved group of proteins initially discovered in the secretome of the liver fluke, Fasciola hepatica. HDMs interact with cell membranes without cytotoxic effects and do not exert antimicrobial activity, suggesting that these peptides evolved specifically for immunomodulatory purposes. A peptide generated from the HDM sequence, termed FhHDM-1, has shown extensive anti-inflammatory abilities in clinically relevant models of diseases such as diabetes, multiple sclerosis, asthma, and acute lung injury, offering hope for the development of a new class of therapeutics. In this review, the current knowledge of host immunomodulation by a range of F. hepatica ES products, particularly FhHDM-1, will be discussed. Immune regulators, including HDMs, have been identified from other helminths and will also be outlined to broaden our understanding of the variety of effects these potent molecules exert on immune cells.
Collapse
Affiliation(s)
- Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jenna Shiels
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - John P Dalton
- Centre of One Health (COH), Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, United Kingdom
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
28
|
Xu J, Wu L, Sun Y, Wei Y, Zheng L, Zhang J, Pang Z, Yang Y, Lu Y. Proteomics and bioinformatics analysis of Fasciola hepatica somatic proteome in different growth phases. Parasitol Res 2020; 119:2837-2850. [PMID: 32757109 PMCID: PMC7403185 DOI: 10.1007/s00436-020-06833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/26/2020] [Indexed: 11/30/2022]
Abstract
Fasciola hepatica (F. hepatica) is a well-known zoonotic parasite that is crucial for economic and public health worldwide. Quantitative proteomics studies have been performed on proteins expressed by F. hepatica to investigate the differential expression of proteomes in different growth phases. And the screening of several marker proteins for use as early diagnostic antigens is essential. In this study, high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was conducted to analyze the differences in the expression of F. hepatica somatic proteins in different growth phases. Furthermore, gene ontology (GO) functional annotation, KEGG metabolic pathway, and clustering analyses were also performed. LC-MS/MS identified 629, 2286, 2254, and 2192 proteins in metacercariae, juvenile flukes 28dpi, immature flukes 59dpi, and adult phases, respectively. GO analysis revealed that differentially expressed proteins (DEPs) were mainly involved in transport, localization, metabolism, enzyme regulation, protein folding and binding, and nucleoside and nucleotide binding. The DEPs were enriched in cells, intracellular components, organelles, cytoplasm, vesicles, and membranes. KEGG pathway annotation results showed that the DEPs were involved in metabolism, genetic information processing, environmental information processing, cellular processes, organismal systems, and other processes. These findings provide a theoretical basis for vaccine development and establishing early diagnostic methods in the future.
Collapse
Affiliation(s)
- Jingyun Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Lijia Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Yichun Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Yating Wei
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Lushan Zheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Jinpeng Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Zixuan Pang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Ying Yang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Yixin Lu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China.
| |
Collapse
|
29
|
Drug Targets: Screening for Small Molecules that Inhibit Fasciola hepatica Enzymes. Methods Mol Biol 2020. [PMID: 32399933 DOI: 10.1007/978-1-0716-0475-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The in vitro screening of small molecules for enzymatic inhibition provides an efficient means of finding new compounds for developing drug candidates. This strategy has the advantage of being rapid and inexpensive to perform. Enzymes are suitable targets for screening when simple methods to obtain them and measure their activities are available and there is evidence of their essential role in the parasite's life cycle. Here, we describe the screening of small molecules as inhibitors of two Fasciola hepatica enzyme targets (cathepsin L and triose phosphate isomerase), an initial step to find new potential compounds for drug development strategies.
Collapse
|
30
|
Fairweather I, Brennan GP, Hanna REB, Robinson MW, Skuce PJ. Drug resistance in liver flukes. Int J Parasitol Drugs Drug Resist 2020; 12:39-59. [PMID: 32179499 PMCID: PMC7078123 DOI: 10.1016/j.ijpddr.2019.11.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Liver flukes include Fasciola hepatica, Fasciola gigantica, Clonorchis sinensis, Opisthorchis spp., Fascioloides magna, Gigantocotyle explanatum and Dicrocoelium spp. The two main species, F. hepatica and F. gigantica, are major parasites of livestock and infections result in huge economic losses. As with C. sinensis, Opisthorchis spp. and Dicrocoelium spp., they affect millions of people worldwide, causing severe health problems. Collectively, the group is referred to as the Food-Borne Trematodes and their true significance is now being more widely recognised. However, reports of resistance to triclabendazole (TCBZ), the most widely used anti-Fasciola drug, and to other current drugs are increasing. This is a worrying scenario. In this review, progress in understanding the mechanism(s) of resistance to TCBZ is discussed, focusing on tubulin mutations, altered drug uptake and changes in drug metabolism. There is much interest in the development of new drugs and drug combinations, the re-purposing of non-flukicidal drugs, and the development of new drug formulations and delivery systems; all this work will be reviewed. Sound farm management practices also need to be put in place, with effective treatment programmes, so that drugs can be used wisely and their efficacy conserved as much as is possible. This depends on reliable advice being given by veterinarians and other advisors. Accurate diagnosis and identification of drug-resistant fluke populations is central to effective control: to determine the actual extent of the problem and to determine how well or otherwise a treatment has worked; for research on establishing the mechanism of resistance (and identifying molecular markers of resistance); for informing treatment options; and for testing the efficacy of new drug candidates. Several diagnostic methods are available, but there are no recommended guidelines or standardised protocols in place and this is an issue that needs to be addressed.
Collapse
Affiliation(s)
- I Fairweather
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| | - G P Brennan
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - R E B Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast, BT4 3SD, UK
| | - M W Robinson
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - P J Skuce
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, UK
| |
Collapse
|
31
|
Choi YJ, Fontenla S, Fischer PU, Le TH, Costábile A, Blair D, Brindley PJ, Tort JF, Cabada MM, Mitreva M. Adaptive Radiation of the Flukes of the Family Fasciolidae Inferred from Genome-Wide Comparisons of Key Species. Mol Biol Evol 2020; 37:84-99. [PMID: 31501870 DOI: 10.1093/molbev/msz204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver and intestinal flukes of the family Fasciolidae cause zoonotic food-borne infections that impact both agriculture and human health throughout the world. Their evolutionary history and the genetic basis underlying their phenotypic and ecological diversity are not well understood. To close that knowledge gap, we compared the whole genomes of Fasciola hepatica, Fasciola gigantica, and Fasciolopsis buski and determined that the split between Fasciolopsis and Fasciola took place ∼90 Ma in the late Cretaceous period, and that between 65 and 50 Ma an intermediate host switch and a shift from intestinal to hepatic habitats occurred in the Fasciola lineage. The rapid climatic and ecological changes occurring during this period may have contributed to the adaptive radiation of these flukes. Expansion of cathepsins, fatty-acid-binding proteins, protein disulfide-isomerases, and molecular chaperones in the genus Fasciola highlights the significance of excretory-secretory proteins in these liver-dwelling flukes. Fasciola hepatica and Fasciola gigantica diverged ∼5 Ma near the Miocene-Pliocene boundary that coincides with reduced faunal exchange between Africa and Eurasia. Severe decrease in the effective population size ∼10 ka in Fasciola is consistent with a founder effect associated with its recent global spread through ruminant domestication. G-protein-coupled receptors may have key roles in adaptation of physiology and behavior to new ecological niches. This study has provided novel insights about the genome evolution of these important pathogens, has generated genomic resources to enable development of improved interventions and diagnosis, and has laid a solid foundation for genomic epidemiology to trace drug resistance and to aid surveillance.
Collapse
Affiliation(s)
- Young-Jun Choi
- McDonnell Genome Institute at Washington University in St. Louis, St. Louis, MO
| | - Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Peter U Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Thanh Hoa Le
- Immunology Department, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Alicia Costábile
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - David Blair
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC
| | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Miguel M Cabada
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX
| | - Makedonka Mitreva
- McDonnell Genome Institute at Washington University in St. Louis, St. Louis, MO.,Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
32
|
González-Miguel J, Becerro-Recio D, Sotillo J, Simón F, Siles-Lucas M. Set up of an in vitro model to study early host-parasite interactions between newly excysted juveniles of Fasciola hepatica and host intestinal cells using a quantitative proteomics approach. Vet Parasitol 2020; 278:109028. [PMID: 31986420 DOI: 10.1016/j.vetpar.2020.109028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Fasciola hepatica is the causative agent of fasciolosis, a parasitic zoonosis of global distribution causing significant economic losses in animal production and a human public health problem in low-income countries. Hosts are infected by ingestion of aquatic plants carrying metacercariae. Once ingested, the juvenile parasites excyst in the small intestine and, after crossing it, they follow a complex migratory route that lead the parasites to their definitive location in the bile ducts. Despite being a critical event in the progression of the infection, the available data on the cross-talk relationships between the parasite and the host at an early stage of the infection are scarce. The objective of the present work is to characterize the proteomic changes occurring in both the parasite and the host, through the development of a novel in vitro model, to shed light on the molecular pathways of communication between the newly excysted juveniles (NEJ) from F. hepatica and the host's intestinal epithelium. For this, in vitro excystation of F. hepatica metacercariae was carried out and NEJ were obtained. Additionally, optimal conditions of growth and expansion of mouse primary small intestinal epithelial cells (MPSIEC) in culture were fine-tuned. Tegumentary and somatic parasite antigens (NEJ-Teg and NEJ-Som), as well as host cell protein lysate (MPSIEC-Lys) were obtained before and after 24 h co-culture of NEJ with MPSIEC. We used an isobaric tags for relative and absolute quantitation (iTRAQ)-based strategy to detect 191 and 62 up-regulated, and 112 and 57 down-regulated proteins in the NEJ-Teg and NEJ-Som extracts, respectively. Similarly, 87 up-regulated and 73 down-regulated proteins in the MPSIEC-Lys extract were identified. Taking into account the biological processes in which these proteins were involved, interesting mechanisms related to parasite development, invasion and evasion, as well as manipulation of the host intestinal epithelial cell adhesion, immunity and apoptosis pathways, among others, could be inferred, taking place at the host-parasite interface. The further understanding of these processes could constitute promising therapeutic targets in the future against fasciolosis.
Collapse
Affiliation(s)
- Javier González-Miguel
- Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Sustainable Development Department, C/Cordel de Merinas, 52, 37008, Salamanca, Spain; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| | - David Becerro-Recio
- Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Sustainable Development Department, C/Cordel de Merinas, 52, 37008, Salamanca, Spain
| | - Javier Sotillo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| | - Mar Siles-Lucas
- Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Sustainable Development Department, C/Cordel de Merinas, 52, 37008, Salamanca, Spain
| |
Collapse
|
33
|
Cortés A, Mikeš L, Muñoz-Antolí C, Álvarez-Izquierdo M, Esteban JG, Horák P, Toledo R. Secreted cathepsin L-like peptidases are involved in the degradation of trapped antibodies on the surface of Echinostoma caproni. Parasitol Res 2019; 118:3377-3386. [PMID: 31720841 DOI: 10.1007/s00436-019-06487-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Antibody trapping is a recently described strategy for immune evasion observed in the intestinal trematode Echinostoma caproni, which may aid to avoiding the host humoral response, thus facilitating parasite survival in the presence of high levels of local-specific antibodies. Parasite-derived peptidases carry out the degradation of trapped antibodies, being essential for this mechanism. Herein, we show that cathepsin-like cysteine endopeptidases are active in the excretory/secretory products (ESPs) of E. caproni and play an important role in the context of antibody trapping. Cysteine endopeptidase activity was detected in the ESPs of E. caproni adults. The affinity probe DCG-04 distinguished a cysteine peptidase band in ESPs, which was specifically recognized by an anti-cathepsin L heterologous antibody. The same antibody localized this protein in the gut and syncytial tegument of adult worms. Studies with cultured parasites showed that in vivo-bound antibodies are removed from the parasite surface in the absence of peptidase inhibitors, while addition of cathepsin L inhibitor prevented their degradation. These results indicate that cathepsin L-like peptidases are involved in the degradation of surface-trapped antibodies and suggest that cysteine peptidases are not only crucial for tissue-invading trematodes, but they can be equally relevant at the parasite-host interface in gut-dwelling flukes.
Collapse
Affiliation(s)
- Alba Cortés
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Carla Muñoz-Antolí
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - María Álvarez-Izquierdo
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Rafael Toledo
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
34
|
Ferraro F, Merlino A, Gil J, Cerecetto H, Corvo I, Cabrera M. Cathepsin L Inhibitors with Activity against the Liver Fluke Identified From a Focus Library of Quinoxaline 1,4-di- N-Oxide Derivatives. Molecules 2019; 24:molecules24132348. [PMID: 31247891 PMCID: PMC6651555 DOI: 10.3390/molecules24132348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Infections caused by Fasciola species are widely distributed in cattle and sheep causing significant economic losses, and are emerging as human zoonosis with increasing reports of human cases, especially in children in endemic areas. The current treatment is chemotherapeutic, triclabendazole being the drug of preference since it is active against all parasite stages. Due to the emergence of resistance in several countries, the discovery of new chemical entities with fasciolicidal activity is urgently needed. In our continuous search for new fasciolicide compounds, we identified and characterized six quinoxaline 1,4-di-N-oxide derivatives from our in-house library. We selected them from a screening of novel inhibitors against FhCL1 and FhCL3 proteases, two essential enzymes secreted by juvenile and adult flukes. We report compounds C7, C17, C18, C19, C23, and C24 with an IC50 of less than 10 µM in at least one cathepsin. We studied their binding kinetics in vitro and their enzyme-ligand interactions in silico by molecular docking and molecular dynamic (MD) simulations. These compounds readily kill newly excysted juveniles in vitro and have low cytotoxicity in a Hep-G2 cell line and bovine spermatozoa. Our findings are valuable for the development of new chemotherapeutic approaches against fascioliasis, and other pathologies involving cysteine proteases.
Collapse
Affiliation(s)
- Florencia Ferraro
- Laboratorio de I + D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
- Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Alicia Merlino
- Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Jorge Gil
- Laboratorio de Reproducción Animal, Producción y Reproducción de Rumiantes, Departamento de Ciencias Biológicas, CENUR Litoral Norte-Facultad de Veterinaria, Universidad de la República, Paysandú 60000, Uruguay
| | - Hugo Cerecetto
- Grupo de Química Medicinal, Laboratorio de Química Orgánica & Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Ileana Corvo
- Laboratorio de I + D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay.
| | - Mauricio Cabrera
- Laboratorio de I + D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay.
| |
Collapse
|
35
|
Construction of a novel phage display antibody library against Fasciola hepatica, and generation of a single-chain variable fragment specific for F. hepatica cathepsin L1. Exp Parasitol 2019; 198:87-94. [DOI: 10.1016/j.exppara.2019.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/02/2018] [Accepted: 02/10/2019] [Indexed: 12/30/2022]
|
36
|
Cwiklinski K, Donnelly S, Drysdale O, Jewhurst H, Smith D, De Marco Verissimo C, Pritsch IC, O'Neill S, Dalton JP, Robinson MW. The cathepsin-like cysteine peptidases of trematodes of the genus Fasciola. ADVANCES IN PARASITOLOGY 2019; 104:113-164. [PMID: 31030768 DOI: 10.1016/bs.apar.2019.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fasciolosis caused by trematode parasites of the genus Fasciola is a global disease of livestock, particularly cattle, sheep, water buffalo and goats. It is also a major human zoonosis with reports suggesting that 2.4-17 million people are infected worldwide, and 91.1 million people currently living at risk of infection. A unique feature of these worms is their reliance on a family of developmentally-regulated papain-like cysteine peptidases, termed cathepsins. These proteolytic enzymes play central roles in virulence, infection, tissue migration and modulation of host innate and adaptive immune responses. The availability of a Fasciola hepatica genome, and the exploitation of transcriptomic and proteomic technologies to probe parasite growth and development, has enlightened our understanding of the cathepsin-like cysteine peptidases. Here, we clarify the structure of the cathepsin-like cysteine peptidase families and, in this context, review the phylogenetics, structure, biochemistry and function of these enzymes in the host-parasite relationship.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sheila Donnelly
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; The School of Life Sciences, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
| | - Orla Drysdale
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Heather Jewhurst
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - David Smith
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | | | - Izanara C Pritsch
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
| | - Sandra O'Neill
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | - John P Dalton
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
37
|
Orbegozo-Medina RA, Martínez-Sernández V, Folgueira I, Mezo M, González-Warleta M, Perteguer MJ, Romarís F, Leiro JM, Ubeira FM. Antibody responses to chimeric peptides derived from parasite antigens in mice and other animal species. Mol Immunol 2018; 106:1-11. [PMID: 30572282 DOI: 10.1016/j.molimm.2018.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/13/2018] [Accepted: 11/30/2018] [Indexed: 11/28/2022]
Abstract
Peptide vaccines constitute an interesting alternative to classical vaccines due to the possibility of selecting specific epitopes, easy of production and safety. However, an inadequate design may render these peptides poorly immunogenic or lead to undesirable outcomes (e.g., formation of B neoepitopes). As an approach to vaccine development, we evaluated the antibody response to chimeras composed of two or three known B epitopes from Trichinella and Fasciola, and several linkers (GSGSG, GPGPG and KK) in species as different as mice, sheep and turbot. All these species could mount an effective immune response to the short chimeric peptides. Nevertheless, this response depended on several factors including a favorable orientation of B-cell epitopes, adequateness of linkers and/or probability of formation of T neoepitopes. We also observed that, at least in mice, the inclusion of a decoy epitope may have favorable consequences on the antibody response to other epitopes in the chimera.
Collapse
Affiliation(s)
- R A Orbegozo-Medina
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - V Martínez-Sernández
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - I Folgueira
- Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Mezo
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, INGACAL, Abegondo (A Coruña), Spain
| | - M González-Warleta
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, INGACAL, Abegondo (A Coruña), Spain
| | - M J Perteguer
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - F Romarís
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J M Leiro
- Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - F M Ubeira
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
38
|
Grote A, Caffrey CR, Rebello KM, Smith D, Dalton JP, Lustigman S. Cysteine proteases during larval migration and development of helminths in their final host. PLoS Negl Trop Dis 2018; 12:e0005919. [PMID: 30138448 PMCID: PMC6107106 DOI: 10.1371/journal.pntd.0005919] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neglected tropical diseases caused by metazoan parasites are major public health concerns, and therefore, new methods for their control and elimination are needed. Research over the last 25 years has revealed the vital contribution of cysteine proteases to invasion of and migration by (larval) helminth parasites through host tissues, in addition to their roles in embryogenesis, molting, egg hatching, and yolk degradation. Their central function to maintaining parasite survival in the host has made them prime intervention targets for novel drugs and vaccines. This review focuses on those helminth cysteine proteases that have been functionally characterized during the varied early stages of development in the human host and embryogenesis.
Collapse
Affiliation(s)
- Alexandra Grote
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Karina M. Rebello
- Laboratório de Toxinologia and Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - David Smith
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
- Department of Microbiology and Immunology, School of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John P. Dalton
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sara Lustigman
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
Corvo I, Ferraro F, Merlino A, Zuberbühler K, O'Donoghue AJ, Pastro L, Pi-Denis N, Basika T, Roche L, McKerrow JH, Craik CS, Caffrey CR, Tort JF. Substrate Specificity of Cysteine Proteases Beyond the S 2 Pocket: Mutagenesis and Molecular Dynamics Investigation of Fasciola hepatica Cathepsins L. Front Mol Biosci 2018; 5:40. [PMID: 29725596 PMCID: PMC5917446 DOI: 10.3389/fmolb.2018.00040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Cysteine proteases are widespread in all life kingdoms, being central to diverse physiological processes based on a broad range of substrate specificity. Paralogous Fasciola hepatica cathepsin L proteases are essential to parasite invasion, tissue migration and reproduction. In spite of similarities in their overall sequence and structure, these enzymes often exhibit different substrate specificity. These preferences are principally determined by the amino acid composition of the active site's S2 subsite (pocket) of the enzyme that interacts with the substrate P2 residue (Schetcher and Berger nomenclature). Although secreted FhCL1 accommodates aliphatic residues in the S2 pocket, FhCL2 is also efficient in cleaving proline in that position. To understand these differences, we engineered the FhCL1 S2 subsite at three amino acid positions to render it identical to that present in FhCL2. The substitutions did not produce the expected increment in proline accommodation in P2. Rather, they decreased the enzyme's catalytic efficiency toward synthetic peptides. Nonetheless, a change in the P3 specificity was associated with the mutation of Leu67 to Tyr, a hinge residue between the S2 and S3 subsites that contributes to the accommodation of Gly in S3. Molecular dynamic simulations highlighted changes in the spatial distribution and secondary structure of the S2 and S3 pockets of the mutant FhCL1 enzymes. The reduced affinity and catalytic efficiency of the mutant enzymes may be due to a narrowing of the active site cleft that hinders the accommodation of substrates. Because the variations in the enzymatic activity measured could not be exclusively allocated to those residues lining the active site, other more external positions might modulate enzyme conformation, and, therefore, catalytic activity.
Collapse
Affiliation(s)
- Ileana Corvo
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Florencia Ferraro
- Laboratorio de Química Teórica y Computacional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alicia Merlino
- Laboratorio de Química Teórica y Computacional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Kathrin Zuberbühler
- Department of Pharmaceutical Chemistry, Pharmacology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
| | - Lucía Pastro
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Pi-Denis
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Tatiana Basika
- Departamento de Biología Celular y Molecular, Unidad de Biología Parasitaria, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Leda Roche
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - James H McKerrow
- Department of Pathology, Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, Pharmacology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Conor R Caffrey
- Department of Pathology, Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - José F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
40
|
Motran CC, Silvane L, Chiapello LS, Theumer MG, Ambrosio LF, Volpini X, Celias DP, Cervi L. Helminth Infections: Recognition and Modulation of the Immune Response by Innate Immune Cells. Front Immunol 2018; 9:664. [PMID: 29670630 PMCID: PMC5893867 DOI: 10.3389/fimmu.2018.00664] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/19/2018] [Indexed: 01/06/2023] Open
Abstract
The survival of helminths in the host over long periods of time is the result of a process of adaptation or dynamic co-evolution between the host and the parasite. However, infection with helminth parasites causes damage to the host tissues producing the release of danger signals that induce the recruitment of various cells, including innate immune cells such as macrophages (Mo), dendritic cells (DCs), eosinophils, basophils, and mast cells. In this scenario, these cells are able to secrete soluble factors, which orchestrate immune effector mechanisms that depend on the different niches these parasites inhabit. Here, we focus on recent advances in the knowledge of excretory-secretory products (ESP), resulting from helminth recognition by DCs and Mo. Phagocytes and other cells types such as innate lymphocyte T cells 2 (ILC2), when activated by ESP, participate in an intricate cytokine network to generate innate and adaptive Th2 responses. In this review, we also discuss the mechanisms of innate immune cell-induced parasite killing and the tissue repair necessary to assure helminth survival over long periods of time.
Collapse
Affiliation(s)
- Claudia Cristina Motran
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Leonardo Silvane
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Laura Silvina Chiapello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Martin Gustavo Theumer
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Laura Fernanda Ambrosio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Ximena Volpini
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Daiana Pamela Celias
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| |
Collapse
|
41
|
Martínez-Sernández V, Perteguer MJ, Hernández-González A, Mezo M, González-Warleta M, Orbegozo-Medina RA, Romarís F, Paniagua E, Gárate T, Ubeira FM. Comparison of recombinant cathepsins L1, L2, and L5 as ELISA targets for serodiagnosis of bovine and ovine fascioliasis. Parasitol Res 2018; 117:1521-1534. [PMID: 29564626 PMCID: PMC7088297 DOI: 10.1007/s00436-018-5809-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
Infections caused by Fasciola hepatica are of great importance in the veterinary field, as they cause important economic losses to livestock producers. Serodiagnostic methods, typically ELISA (with either native or recombinant antigens), are often used for early diagnosis. The use of native antigens, as in the MM3-SERO ELISA (commercialized as BIO K 211, BIO-X Diagnostics), continues to be beneficial in terms of sensitivity and specificity; however, there is interest in developing ELISA tests based on recombinant antigens to avoid the need to culture parasites. Of the antigens secreted by adult flukes, recombinant procathepsin L1 (rFhpCL1) is the most commonly tested in ELISA to date. However, although adult flukes produce three different clades of CLs (FhCL1, FhCL2, and FhCL5), to our knowledge, the diagnostic value of recombinant FhCL2 and FhCL5 has not yet been investigated. In the present study, we developed and tested three indirect ELISAs using rFhpCL1, rFhpCL2, and rFhpCL5 and evaluated their recognition by sera from sheep and cattle naturally infected with F. hepatica. Although the overall antibody response to these three rFhpCLs was similar, some animals displayed preferential recognition for particular rFhpCLs. Moreover, for cattle sera, the highest sensitivity was obtained using rFhpCL2 (97%), being equal for both rFhpCL1 and rFhpCL5 (87.9%), after adjusting cut-offs for maximum specificity. By contrast, for sheep sera, the sensitivity was 100% for the three rFhpCLs. Finally, the presence of truncated and/or partially unfolded molecules in antigen preparations is postulated as a possible source of cross-reactivity.
Collapse
Affiliation(s)
- Victoria Martínez-Sernández
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - María J Perteguer
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Ana Hernández-González
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Mercedes Mezo
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, INGACAL, 15318, Abegondo, (A Coruña), Spain
| | - Marta González-Warleta
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, INGACAL, 15318, Abegondo, (A Coruña), Spain
| | - Ricardo A Orbegozo-Medina
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fernanda Romarís
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Esperanza Paniagua
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Teresa Gárate
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Florencio M Ubeira
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
42
|
Cwiklinski K, Dalton JP. Advances in Fasciola hepatica research using 'omics' technologies. Int J Parasitol 2018; 48:321-331. [PMID: 29476869 DOI: 10.1016/j.ijpara.2017.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/05/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
The liver fluke Fasciola hepatica is an economically important pathogen of livestock worldwide, as well as being an important neglected zoonosis. Parasite control is reliant on the use of drugs, particularly triclabendazole, which is effective against multiple parasite stages. However, the spread of parasites resistant to triclabendazole has intensified the pursuit for novel control strategies. Emerging 'omics' technologies are helping advance our understanding of liver fluke biology, specifically the molecules that act at the host-parasite interface and are central to infection, virulence and long-term survival within the definitive host. This review discusses the technological sequencing advances that have facilitated the unbiased analysis of liver fluke biology, resulting in an extensive range of 'omics' datasets. In addition, we highlight the 'omics' studies of host responses to F. hepatica infection that, when combined with the parasite datasets, provide the opportunity for integrated analyses of host-parasite interactions. These extensive datasets will form the foundation for future in-depth analysis of F. hepatica biology and development, and the search for new drug or vaccine interventions.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.
| | - John P Dalton
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK; Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
43
|
Cwiklinski K, Jewhurst H, McVeigh P, Barbour T, Maule AG, Tort J, O'Neill SM, Robinson MW, Donnelly S, Dalton JP. Infection by the Helminth Parasite Fasciola hepatica Requires Rapid Regulation of Metabolic, Virulence, and Invasive Factors to Adjust to Its Mammalian Host. Mol Cell Proteomics 2018; 17:792-809. [PMID: 29321187 PMCID: PMC5880117 DOI: 10.1074/mcp.ra117.000445] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
The parasite Fasciola hepatica infects a broad range of mammals with
impunity. Following ingestion of parasites (metacercariae) by the host, newly
excysted juveniles (NEJ) emerge from their cysts, rapidly penetrate the duodenal wall
and migrate to the liver. Successful infection takes just a few hours and involves
negotiating hurdles presented by host macromolecules, tissues and micro-environments,
as well as the immune system. Here, transcriptome and proteome analysis of ex
vivo F. hepatica metacercariae and NEJ reveal the rapidity and multitude
of metabolic and developmental alterations that take place in order for the parasite
to establish infection. We found that metacercariae despite being encased in a cyst
are metabolically active, and primed for infection. Following excystment, NEJ expend
vital energy stores and rapidly adjust their metabolic pathways to cope with their
new and increasingly anaerobic environment. Temperature increases induce neoblast
proliferation and the remarkable up-regulation of genes associated with growth and
development. Cysteine proteases synthesized by gastrodermal cells are secreted to
facilitate invasion and tissue degradation, and tegumental transporters, such as
aquaporins, are varied to deal with osmotic/salinity changes. Major proteins of the
total NEJ secretome include proteases, protease inhibitors and anti-oxidants, and an
array of immunomodulators that likely disarm host innate immune effector cells. Thus,
the challenges of infection by F. hepatica parasites are met by
rapid metabolic and physiological adjustments that expedite tissue invasion and
immune evasion; these changes facilitate parasite growth, development and maturation.
Our molecular analysis of the critical processes involved in host invasion has
identified key targets for future drug and vaccine strategies directed at preventing
parasite infection.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK;
| | - Heather Jewhurst
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Paul McVeigh
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.,§Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Tara Barbour
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Aaron G Maule
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.,§Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jose Tort
- ¶Departamento de Genética, Facultad de Medicina, Universidad de la República, Uruguay
| | | | - Mark W Robinson
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.,§Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sheila Donnelly
- **The i3 Institute and School of Medical and Molecular Biosciences, University of Technology, Sydney, Australia
| | - John P Dalton
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.,§Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
44
|
Hemici A, Benerbaiha RS, Bendjeddou D. Purification and biochemical characterization of a 22-kDa stable cysteine- like protease from the excretory-secretory product of the liver fluke Fasciola hepatica by using conventional techniques. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:268-276. [DOI: 10.1016/j.jchromb.2017.10.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 11/16/2022]
|
45
|
Functional characterization of single-domain cystatin-like cysteine proteinase inhibitors expressed by the trematode Fasciola hepatica. Parasitology 2017; 144:1695-1707. [PMID: 28697819 DOI: 10.1017/s0031182017001093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cystatins are small, phylogenetically conserved proteins that are tight-binding inhibitors of cysteine proteinases. The liver fluke Fasciola hepatica uses a diverse set of cysteine proteinases of the papain superfamily for host invasion, immune evasion and nutrition, but little is known about the regulation of these enzymes. The aim of this work is to characterize the cystatin repertoire of F. hepatica. For this purpose, we first surveyed the available sequence databases, identifying three different F. hepatica single-domain cystatins. In agreement with the in silico predictions, at least three small proteins with cysteine proteinase binding activity were identified. Phylogenetic analyses showed that the three cystatins (named FhStf-1, -2 and -3) are members of the I25A subfamily (stefins). Whereas FhStf-1 grouped with classical stefins, FhStf-2 and 3 fell in a divergent stefin subgroup unusually featuring signal peptides. Recombinant rFhStf-1, -2 and -3 had potent inhibitory activity against F. hepatica cathepsin L cysteine proteinases but differed in their capacity to inhibit mammalian cathepsin B, L and C. FhStf-1 was localized in the F. hepatica reproductive organs (testes and ovary), and at the surface lamella of the adult gut, where it may regulate cysteine proteinases related with reproduction and digestion, respectively. FhStf-1 was also detected among F. hepatica excretion-secretion (E/S) products of adult flukes. This suggests that it is secreted by non-classical secretory pathway and that it may interact with host lysosomal cysteine proteinases.
Collapse
|
46
|
Cameron TC, Cooke I, Faou P, Toet H, Piedrafita D, Young N, Rathinasamy V, Beddoe T, Anderson G, Dempster R, Spithill TW. A novel ex vivo immunoproteomic approach characterising Fasciola hepatica tegumental antigens identified using immune antibody from resistant sheep. Int J Parasitol 2017; 47:555-567. [PMID: 28455238 DOI: 10.1016/j.ijpara.2017.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/19/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022]
Abstract
A more thorough understanding of the immunological interactions between Fasciola spp. and their hosts is required if we are to develop new immunotherapies to control fasciolosis. Deeper knowledge of the antigens that are the target of the acquired immune responses of definitive hosts against both Fasciola hepatica and Fasciola gigantica will potentially identify candidate vaccine antigens. Indonesian Thin Tail sheep express a high level of acquired immunity to infection by F. gigantica within 4weeks of infection and antibodies in Indonesian Thin Tail sera can promote antibody-dependent cell-mediated cytotoxicity against the surface tegument of juvenile F. gigantica in vitro. Given the high protein sequence similarity between F. hepatica and F. gigantica, we hypothesised that antibody from F. gigantica-infected sheep could be used to identify the orthologous proteins in the tegument of F. hepatica. Purified IgG from the sera of F. gigantica-infected Indonesian Thin Tail sheep collected pre-infection and 4weeks p.i. were incubated with live adult F. hepatica ex vivo and the immunosloughate (immunoprecipitate) formed was isolated and analysed via liquid chromatography-electrospray ionisation-tandem mass spectrometry to identify proteins involved in the immune response. A total of 38 proteins were identified at a significantly higher abundance in the immunosloughate using week 4 IgG, including eight predicted membrane proteins, 20 secreted proteins, nine proteins predicted to be associated with either the lysosomes, the cytoplasm or the cytoskeleton and one protein with an unknown cellular localization. Three of the membrane proteins are transporters including a multidrug resistance protein, an amino acid permease and a glucose transporter. Interestingly, a total of 21 of the 38 proteins matched with proteins recently reported to be associated with the proposed small exosome-like extracellular vesicles of adult F. hepatica, suggesting that the Indonesian Thin Tail week 4 IgG is either recognising individual proteins released from extracellular vesicles or is immunoprecipitating intact exosome-like extracellular vesicles. Five extracellular vesicle membrane proteins were identified including two proteins predicted to be associated with vesicle transport/ exocytosis (VPS4, vacuolar protein sorting-associated protein 4b and the Niemann-Pick C1 protein). RNAseq analysis of the developmental transcription of the 38 immunosloughate proteins showed that the sequences are expressed over a wide abundance range with 21/38 transcripts expressed at a relatively high level from metacercariae to the adult life cycle stage. A notable feature of the immunosloughates was the absence of cytosolic proteins which have been reported to be secreted markers for damage to adult flukes incubated in vitro, suggesting that the proteins observed are not inadvertent contaminants leaking from damaged flukes ex vivo. The identification of tegument protein antigens shared between F. gigantica and F. hepatica is beneficial in terms of the possible development of a dual purpose vaccine effective against both fluke species.
Collapse
Affiliation(s)
- Timothy C Cameron
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Ira Cooke
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia; Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia
| | - Pierre Faou
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Hayley Toet
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - David Piedrafita
- School of Applied and Biomedical Sciences, Federation University, Churchill, Victoria, Australia
| | - Neil Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Vignesh Rathinasamy
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Glenn Anderson
- Virbac (Australia) Pty Ltd, Milperra, New South Wales, Australia
| | - Robert Dempster
- Virbac (Australia) Pty Ltd, Milperra, New South Wales, Australia
| | - Terry W Spithill
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
47
|
McNulty SN, Tort JF, Rinaldi G, Fischer K, Rosa BA, Smircich P, Fontenla S, Choi YJ, Tyagi R, Hallsworth-Pepin K, Mann VH, Kammili L, Latham PS, Dell’Oca N, Dominguez F, Carmona C, Fischer PU, Brindley PJ, Mitreva M. Genomes of Fasciola hepatica from the Americas Reveal Colonization with Neorickettsia Endobacteria Related to the Agents of Potomac Horse and Human Sennetsu Fevers. PLoS Genet 2017; 13:e1006537. [PMID: 28060841 PMCID: PMC5257007 DOI: 10.1371/journal.pgen.1006537] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 01/23/2017] [Accepted: 12/15/2016] [Indexed: 12/30/2022] Open
Abstract
Food borne trematodes (FBTs) are an assemblage of platyhelminth parasites transmitted through the food chain, four of which are recognized as neglected tropical diseases (NTDs). Fascioliasis stands out among the other NTDs due to its broad and significant impact on both human and animal health, as Fasciola sp., are also considered major pathogens of domesticated ruminants. Here we present a reference genome sequence of the common liver fluke, Fasciola hepatica isolated from sheep, complementing previously reported isolate from cattle. A total of 14,642 genes were predicted from the 1.14 GB genome of the liver fluke. Comparative genomics indicated that F. hepatica Oregon and related food-borne trematodes are metabolically less constrained than schistosomes and cestodes, taking advantage of the richer millieux offered by the hepatobiliary organs. Protease families differentially expanded between diverse trematodes may facilitate migration and survival within the heterogeneous environments and niches within the mammalian host. Surprisingly, the sequencing of Oregon and Uruguay F. hepatica isolates led to the first discovery of an endobacteria in this species. Two contigs from the F. hepatica Oregon assembly were joined to complete the 859,205 bp genome of a novel Neorickettsia endobacterium (nFh) closely related to the etiological agents of human Sennetsu and Potomac horse fevers. Immunohistochemical studies targeting a Neorickettsia surface protein found nFh in specific organs and tissues of the adult trematode including the female reproductive tract, eggs, the Mehlis' gland, seminal vesicle, and oral suckers, suggesting putative routes for fluke-to-fluke and fluke-to-host transmission. The genomes of F. hepatica and nFh will serve as a resource for further exploration of the biology of F. hepatica, and specifically its newly discovered trans-kingdom interaction with nFh and the impact of both species on disease in ruminants and humans.
Collapse
Affiliation(s)
- Samantha N. McNulty
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Jose F. Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Gabriel Rinaldi
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Kerstin Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruce A. Rosa
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Pablo Smircich
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Young-Jun Choi
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Rahul Tyagi
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | | | - Victoria H. Mann
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Lakshmi Kammili
- Department of Pathology, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Patricia S. Latham
- Department of Pathology, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Nicolas Dell’Oca
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Fernanda Dominguez
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Carlos Carmona
- Unidad de Biología Parasitaria, Instituto de Biología, Facultad de Ciencias, Instituto de Higiene, Montevideo, Uruguay
| | - Peter U. Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Makedonka Mitreva
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
48
|
Stimulating Neoblast-Like Cell Proliferation in Juvenile Fasciola hepatica Supports Growth and Progression towards the Adult Phenotype In Vitro. PLoS Negl Trop Dis 2016; 10:e0004994. [PMID: 27622752 PMCID: PMC5021332 DOI: 10.1371/journal.pntd.0004994] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 08/19/2016] [Indexed: 01/08/2023] Open
Abstract
Fascioliasis (or fasciolosis) is a socioeconomically important parasitic disease caused by liver flukes of the genus Fasciola. Flukicide resistance has exposed the need for new drugs and/or a vaccine for liver fluke control. A rapidly improving ‘molecular toolbox’ for liver fluke encompasses quality genomic/transcriptomic datasets and an RNA interference platform that facilitates functional genomics approaches to drug/vaccine target validation. The exploitation of these resources is undermined by the absence of effective culture/maintenance systems that would support in vitro studies on juvenile fluke development/biology. Here we report markedly improved in vitro maintenance methods for Fasciola hepatica that achieved 65% survival of juvenile fluke after 6 months in standard cell culture medium supplemented with 50% chicken serum. We discovered that this long-term maintenance was dependent upon fluke growth, which was supported by increased proliferation of cells resembling the “neoblast” stem cells described in other flatworms. Growth led to dramatic morphological changes in juveniles, including the development of the digestive tract, reproductive organs and the tegument, towards more adult-like forms. The inhibition of DNA synthesis prevented neoblast-like cell proliferation and inhibited growth/development. Supporting our assertion that we have triggered the development of juveniles towards adult-like fluke, mass spectrometric analyses showed that growing fluke have an excretory/secretory protein profile that is distinct from that of newly-excysted juveniles and more closely resembles that of ex vivo immature and adult fluke. Further, in vitro maintained fluke displayed a transition in their movement from the probing behaviour associated with migrating stage worms to a slower wave-like motility seen in adults. Our ability to stimulate neoblast-like cell proliferation and growth in F. hepatica underpins the first simple platform for their long-term in vitro study, complementing the recent expansion in liver fluke resources and facilitating in vitro target validation studies of the developmental biology of liver fluke. Parasitic worms require a host organism in order to survive and reproduce. As such, it is difficult to study them outside of a host. Some parasites can be maintained in vitro using cell culture methods; in the case of F. hepatica, previously-reported methods are unsatisfactory because they are difficult to reproduce and unable to support long term growth and development. Here we have developed a new set of methods for maintaining F. hepatica juveniles in vitro. These methods use simple, commonly available reagents and techniques, enabling us to keep fluke alive in vitro for at least 6 months, as well as stimulating the development of characteristics that resemble adult parasites. Over time, our in vitro fluke show changes in the structure and complexity of individual tissues, and the proteins they produce, such that they are more reminiscent of adult, than juvenile fluke. Additionally, we demonstrate that fluke growth is supported by the division of cells resembling stem cells, which have not been reported previously for F. hepatica. This work will support the study of liver fluke, enabling the development of new drugs and vaccines for the treatment of liver fluke infections of humans and animals.
Collapse
|
49
|
Di Maggio LS, Tirloni L, Pinto AFM, Diedrich JK, Yates Iii JR, Benavides U, Carmona C, da Silva Vaz I, Berasain P. Across intra-mammalian stages of the liver f luke Fasciola hepatica: a proteomic study. Sci Rep 2016; 6:32796. [PMID: 27600774 PMCID: PMC5013449 DOI: 10.1038/srep32796] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
Fasciola hepatica is the agent of fasciolosis, a foodborne zoonosis that affects livestock production and human health. Although flukicidal drugs are available, re-infection and expanding resistance to triclabendazole demand new control strategies. Understanding the molecular mechanisms underlying the complex interaction with the mammalian host could provide relevant clues, aiding the search for novel targets in diagnosis and control of fasciolosis. Parasite survival in the mammalian host is mediated by parasite compounds released during infection, known as excretory/secretory (E/S) products. E/S products are thought to protect parasites from host responses, allowing them to survive for a long period in the vertebrate host. This work provides in-depth proteomic analysis of F. hepatica intra-mammalian stages, and represents the largest number of proteins identified to date for this species. Functional classification revealed the presence of proteins involved in different biological processes, many of which represent original findings for this organism and are important for parasite survival within the host. These results could lead to a better comprehension of host-parasite relationships, and contribute to the development of drugs or vaccines against this parasite.
Collapse
Affiliation(s)
- Lucía Sánchez Di Maggio
- Unidad de Biología Parasitaria, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Antonio F M Pinto
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Chemical Physiology, The Scripps Research Institute, CA, Unites States of America
| | - Jolene K Diedrich
- Department of Chemical Physiology, The Scripps Research Institute, CA, Unites States of America
| | - John R Yates Iii
- Department of Chemical Physiology, The Scripps Research Institute, CA, Unites States of America
| | - Uruguaysito Benavides
- Departamento de Inmunología, Facultad de Veterinaria, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Carlos Carmona
- Unidad de Biología Parasitaria, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patricia Berasain
- Unidad de Biología Parasitaria, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| |
Collapse
|
50
|
Alba A, Sánchez J, Hernández H, Mosqueda M, Rodríguez SY, Capó V, Otero O, Alfonso C, Marcet R, Sarracent J. Insights into the biological features of the antigenic determinants recognized by four monoclonal antibodies in redia and adult stages of the liver fluke Fasciola hepatica. Exp Parasitol 2016; 168:39-44. [DOI: 10.1016/j.exppara.2016.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 05/26/2016] [Accepted: 06/27/2016] [Indexed: 11/16/2022]
|