1
|
Buchanan CDC, Ashraf R, Hillyer LM, Tu W, Kang JX, Subedi S, Ma DWL. RNA-Seq Analysis of Pubertal Mammary Epithelial Cells Reveals Novel n-3 Polyunsaturated Fatty Acid Transcriptomic Changes in the fat-1 Mouse Model. Nutrients 2024; 16:3925. [PMID: 39599711 PMCID: PMC11597760 DOI: 10.3390/nu16223925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The early exposure of nutrients during pubertal mammary gland development may reduce the risk of developing breast cancer later in life. Anticancer n-3 polyunsaturated fatty acids (n-3 PUFA) are shown to modulate pubertal mammary gland development; however, the mechanisms of action remain unclear. Prior work focused on effects at the whole tissue level, and little is known at the cellular level, such as at the level of mammary epithelial cells (MECs), which are implicated in cancer development. METHODS This pilot study examined the effects of lifelong n-3 PUFA exposure on the transcriptome by RNA-Seq in the isolated MECs of pubertal (6-8-week-old) female fat-1 transgenic mice capable of de novo n-3 PUFA synthesis. edgeR and DESeq2 were used separately for the differential expression analysis of RNA sequencing data followed by the Benjamani-Hochberg procedure for multiple testing correction. RESULTS Nine genes were found concordant and significantly different (p ≤ 0.05) by both the DESeq2 and edgeR methods. These genes were associated with multiple pathways, suggesting that n-3 PUFA stimulates estrogen-related signaling (Mlltl0, Galr3, and Nrip1) and a glycolytic profile (Soga1, Pdpr, and Uso1) while offering protective effects for immune and DNA damage responses (Glpd1, Garre1, and Rpa1) in MECs during puberty. CONCLUSIONS This pilot study highlights the utility of RNA-Seq to better understanding the mechanistic effects of specific nutrients such as n-3 PUFA in a cell-specific manner. Thus, further studies are warranted to investigate the cell-specific mechanisms by which n-3 PUFA influences pubertal mammary gland development and breast cancer risk later in life.
Collapse
Affiliation(s)
- Connor D. C. Buchanan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.D.C.B.); (R.A.); (L.M.H.)
| | - Rahbika Ashraf
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.D.C.B.); (R.A.); (L.M.H.)
| | - Lyn M. Hillyer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.D.C.B.); (R.A.); (L.M.H.)
| | - Wangshu Tu
- School of Mathematics and Statistics, Carleton University, Ottawa, ON K1S 5B6, Canada; (W.T.); (S.S.)
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA;
- Omega-3 and Global Health Institute, Boston, MA 02129, USA
| | - Sanjeena Subedi
- School of Mathematics and Statistics, Carleton University, Ottawa, ON K1S 5B6, Canada; (W.T.); (S.S.)
| | - David W. L. Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.D.C.B.); (R.A.); (L.M.H.)
| |
Collapse
|
2
|
Miller KL, Liu X, McSwain MG, Jauregui EJ, Langlais PR, Craig ZR. Quantitative label-free proteomic analysis of mouse ovarian antral follicles following oral exposure to a human-relevant mixture of three phthalates. Toxicol Sci 2024; 201:226-239. [PMID: 38995844 PMCID: PMC11424887 DOI: 10.1093/toxsci/kfae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Dibutyl phthalate (DBP), di-2-ethylhexyl phthalate (DEHP), and benzyl butyl phthalate (BBP) are used in personal and medical care products. In the ovary, antral follicles are essential for steroidogenesis and ovulation. DBP, BBP, and DEHP are known to inhibit mouse antral follicle growth and ovulation in vitro, and associate with decreased antral follicle counts in women. Given that the in vivo effects of a three-phthalate mixture on antral follicles are unknown, we evaluated the effects of a human-relevant mixture of DBP, BBP, and DEHP on ovarian follicles through proteome profiling analysis. Adult CD-1 female mice were fed corn oil (vehicle), or two dose levels of a phthalate mixture based on estimated exposures in general (32 µg/kg/d; PHT 32) and occupationally exposed (500 µg/kg/d; PHT 500) populations for 10 d. Antral follicles (>250 µm) were isolated and subjected to proteome profiling via label-free tandem mass spectrometry. A total of 5,417 antral follicle proteins were detected, of which 194 were differentially abundant between vehicle and PHT 32, and 136 between vehicle and PHT 500. Bioinformatic analysis revealed significantly different responses between the two phthalate doses. Protein abundance differences in the PHT 32 exposure mapped to cytoplasm, mitochondria, and lipid metabolism; whereas those in the PHT 500 exposure mapped to cytoplasm, nucleus, and phosphorylation. When both doses altered proteins mapped to common processes, the associated predicted transcription factors were different. These findings provide novel mechanistic insight into phthalate-associated, ovary-driven reproductive outcomes in women.
Collapse
Affiliation(s)
- Kara L Miller
- Department of Pharmacology & Toxicology, The University of Arizona, Tucson, AZ 85721, United States
| | - Xiaosong Liu
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, United States
| | - Maile G McSwain
- Environmental Health Transformative Research Undergraduate Experience, The University of Arizona, Tucson, AZ 85721, United States
| | - Estela J Jauregui
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, United States
| | - Paul R Langlais
- Department of Medicine, The University of Arizona, Tucson, AZ 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States
| | - Zelieann R Craig
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
3
|
Reed BL, Tavoian D, Bailey EF, Funk JL, Coletta DK. Inspiratory muscle strength training to improve cardiometabolic health in patients with type 2 diabetes mellitus: protocol for the diabetes inspiratory training clinical trial. Front Endocrinol (Lausanne) 2024; 15:1383131. [PMID: 39345888 PMCID: PMC11427269 DOI: 10.3389/fendo.2024.1383131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex, chronic metabolic disease that carries with it a high prevalence of comorbid conditions, making T2DM one of the leading causes of death in the U.S. Traditional lifestyle interventions (e.g., diet, exercise) can counter some adverse effects of T2DM, however, participation in these activities is low with reasons ranging from physical discomfort to lack of time. Thus, there is a critical need to develop novel management strategies that effectively reduce cardiometabolic disease risk and address barriers to adherence. High-resistance inspiratory muscle strength training (IMST) is a time-efficient and simple breathing exercise that significantly reduces systolic and diastolic BP and improves vascular endothelial function in adults with above-normal blood pressure. Herein we describe the study protocol for a randomized clinical trial to determine the effects of a 6-week IMST regimen on glycemic control and insulin sensitivity in adults with T2DM. Our primary outcome measures include fasting plasma glucose, fasting serum insulin, and insulin resistance utilizing homeostatic model assessment for insulin resistance (HOMA-IR). Secondary outcome measures include resting systolic BP and endothelium-dependent dilation. Further, we will collect plasma for exploratory proteomic analyses. This trial seeks to establish the cardiometabolic effects of 6 weeks of high-resistance IMST in patients with T2DM.
Collapse
Affiliation(s)
- Baylee L Reed
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Dallin Tavoian
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - E Fiona Bailey
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Janet L Funk
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, United States
| | - Dawn K Coletta
- Department of Physiology, University of Arizona, Tucson, AZ, United States
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
4
|
van den Berg M, Shi Z, Claassen WJ, Hooijman P, Lewis CTA, Andersen JL, van der Pijl RJ, Bogaards SJP, Conijn S, Peters EL, Begthel LPL, Uijterwijk B, Lindqvist J, Langlais PR, Girbes ARJ, Stapel S, Granzier H, Campbell KS, Ma W, Irving T, Hwee DT, Hartman JJ, Malik FI, Paul M, Beishuizen A, Ochala J, Heunks L, Ottenheijm CAC. Super-relaxed myosins contribute to respiratory muscle hibernation in mechanically ventilated patients. Sci Transl Med 2024; 16:eadg3894. [PMID: 39083588 PMCID: PMC11586073 DOI: 10.1126/scitranslmed.adg3894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/12/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Patients receiving mechanical ventilation in the intensive care unit (ICU) frequently develop contractile weakness of the diaphragm. Consequently, they may experience difficulty weaning from mechanical ventilation, which increases mortality and poses a high economic burden. Because of a lack of knowledge regarding the molecular changes in the diaphragm, no treatment is currently available to improve diaphragm contractility. We compared diaphragm biopsies from ventilated ICU patients (N = 54) to those of non-ICU patients undergoing thoracic surgery (N = 27). By integrating data from myofiber force measurements, x-ray diffraction experiments, and biochemical assays with clinical data, we found that in myofibers isolated from the diaphragm of ventilated ICU patients, myosin is trapped in an energy-sparing, super-relaxed state, which impairs the binding of myosin to actin during diaphragm contraction. Studies on quadriceps biopsies of ICU patients and on the diaphragm of previously healthy mechanically ventilated rats suggested that the super-relaxed myosins are specific to the diaphragm and not a result of critical illness. Exposing slow- and fast-twitch myofibers isolated from the diaphragm biopsies to small-molecule compounds activating troponin restored contractile force in vitro. These findings support the continued development of drugs that target sarcomere proteins to increase the calcium sensitivity of myofibers for the treatment of ICU-acquired diaphragm weakness.
Collapse
Affiliation(s)
- Marloes van den Berg
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
- Bispebjerg Hospital, Institute of Sports Medicine, Copenhagen 2400, Denmark
| | - Zhonghua Shi
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
- Amsterdam UMC, Location VUmc, Department of Intensive Care Medicine, Amsterdam 1081, HV, Netherlands
- Sanbo Brain Hospital, Capital Medical University, Intensive Care Medicine, Beijing 100093, China
| | - Wout J. Claassen
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Pleuni Hooijman
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Christopher T. A. Lewis
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen 2200, Denmark
- Research and Early Development, Novo Nordisk A/S, Måløv 2760, Denmark
| | - Jesper L. Andersen
- Bispebjerg Hospital, Institute of Sports Medicine, Copenhagen 2400, Denmark
| | | | - Sylvia J. P. Bogaards
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Stefan Conijn
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Eva L. Peters
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| | - Leon P. L. Begthel
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Bas Uijterwijk
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Johan Lindqvist
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| | - Paul R. Langlais
- Department of Endocrinology, University of Arizona, Tucson, AZ 85721, USA
| | - Armand R. J. Girbes
- Amsterdam UMC, Location VUmc, Department of Intensive Care Medicine, Amsterdam 1081, HV, Netherlands
| | - Sandra Stapel
- Amsterdam UMC, Location VUmc, Department of Intensive Care Medicine, Amsterdam 1081, HV, Netherlands
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Weikang Ma
- BioCAT, Illinois Institute of Technology, Lemont, IL 60439, USA
| | - Thomas Irving
- BioCAT, Illinois Institute of Technology, Lemont, IL 60439, USA
| | - Darren T. Hwee
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - James J. Hartman
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - Fady I. Malik
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - Marinus Paul
- Amsterdam UMC, Location VUmc, Department of Cardiothoracic Surgery, Amsterdam 1081, HV, Netherlands
| | - Albertus Beishuizen
- Medisch Spectrum Twente, Intensive Care Center, Enschede 7511, HN, Netherlands
| | - Julien Ochala
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen 2200, Denmark
| | - Leo Heunks
- Radboud UMC, Department of Intensive Care, Nijmegen 6525, GA, Netherlands
| | - Coen A. C. Ottenheijm
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| |
Collapse
|
5
|
Chang M, Gao F, Gnawali G, Xu H, Dong Y, Meng X, Li W, Wang Z, Lopez B, Carew JS, Nawrocki ST, Lu J, Zhang QY, Wang W. Selective Elimination of Senescent Cancer Cells by Galacto-Modified PROTACs. J Med Chem 2024; 67:7301-7311. [PMID: 38635879 PMCID: PMC11227109 DOI: 10.1021/acs.jmedchem.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Although the selective and effective clearance of senescent cancer cells can improve cancer treatment, their development is confronted by many challenges. As part of efforts designed to overcome these problems, prodrugs, whose design is based on senescence-associated β-galactosidase (SA-β-gal), have been developed to selectively eliminate senescent cells. However, chemotherapies relying on targeted molecular inhibitors as senolytic drugs can induce drug resistance. In the current investigation, we devised a new strategy for selective degradation of target proteins in senescent cancer cells that utilizes a prodrug composed of the SA-β-gal substrate galactose (galacto) and the proteolysis-targeting chimeras (PROTACs) as senolytic agents. Prodrugs Gal-ARV-771 and Gal-MS99 were found to display senolytic indexes higher than those of ARV-771 and MS99. Significantly, results of in vivo studies utilizing a human lung A549 xenograft mouse model demonstrated that concomitant treatment with etoposide and Gal-ARV-771 leads to a significant inhibition of tumor growth without eliciting significant toxicity.
Collapse
Affiliation(s)
- Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Feng Gao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Hang Xu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Yue Dong
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Xiang Meng
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Wenpan Li
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Zhiren Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Byrdie Lopez
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jennifer S. Carew
- Department of Medicine, University of Arizona, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721, United States
| | - Steffan T. Nawrocki
- Department of Medicine, University of Arizona, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721, United States
| | - Jianqin Lu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
6
|
Li J, Yang F, Wang Z, Zheng S, Zhang S, Wang C, He B, Wang J, Wang H. METTL16-mediated N6-methyladenosine modification of Soga1 enables proper chromosome segregation and chromosomal stability in colorectal cancer. Cell Prolif 2024; 57:e13590. [PMID: 38084791 PMCID: PMC11056707 DOI: 10.1111/cpr.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 04/30/2024] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification in mammalian messenger RNAs and is associated with numerous biological processes. However, its role in chromosomal instability remains to be established. Here, we report that an RNA m6A methyltransferase, METTL16, plays an indispensable role in the progression of chromosome segregation and is required to preserve chromosome stability in colorectal cancer (CRC) cells. Depletion or inhibition of the methyltransferase activity of METTL16 results in abnormal kinetochore-microtubule attachment during mitosis, leading to delayed mitosis, lagging chromosomes, chromosome mis-segregation and chromosomal instability. Mechanistically, METTL16 exerts its oncogenic effects by enhancing the expression of suppressor of glucose by autophagy 1 (Soga1) in an m6A-dependent manner. CDK1 phosphorylates Soga1, thereby triggering its direct interaction with the polo box domain of PLK1. This interaction facilitates PLK1 activation and promotes mitotic progression. Therefore, targeting the METTL16-Soga1 pathway may provide a potential treatment strategy against CRC because of its essential role in maintaining chromosomal stability.
Collapse
Affiliation(s)
- Jimin Li
- Department of Laboratory MedicineThe Affiliated Anhui Provincial Hospital of Anhui Medical UniversityHefeiChina
| | - Fang Yang
- Department of Clinical LaboratoryThe First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College)WuhuChina
| | - Zeyu Wang
- Graduate School, Bengbu Medical CollegeBengbuChina
| | - Siqing Zheng
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Shuang Zhang
- Department of Laboratory MedicineThe Affiliated Anhui Provincial Hospital of Anhui Medical UniversityHefeiChina
| | - Chen Wang
- Department of Laboratory MedicineThe Affiliated Anhui Provincial Hospital of Anhui Medical UniversityHefeiChina
| | - Bing He
- Department of Laboratory MedicineThe Affiliated Anhui Provincial Hospital of Anhui Medical UniversityHefeiChina
| | - Jia‐Bei Wang
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHeifeiChina
| | - Hao Wang
- Department of Laboratory MedicineThe Affiliated Anhui Provincial Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
7
|
Iannuzo N, Welfley H, Li NC, Johnson MDL, Rojas-Quintero J, Polverino F, Guerra S, Li X, Cusanovich DA, Langlais PR, Ledford JG. CC16 drives VLA-2-dependent SPLUNC1 expression. Front Immunol 2023; 14:1277582. [PMID: 38053993 PMCID: PMC10694244 DOI: 10.3389/fimmu.2023.1277582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Rationale CC16 (Club Cell Secretory Protein) is a protein produced by club cells and other non-ciliated epithelial cells within the lungs. CC16 has been shown to protect against the development of obstructive lung diseases and attenuate pulmonary pathogen burden. Despite recent advances in understanding CC16 effects in circulation, the biological mechanisms of CC16 in pulmonary epithelial responses have not been elucidated. Objectives We sought to determine if CC16 deficiency impairs epithelial-driven host responses and identify novel receptors expressed within the pulmonary epithelium through which CC16 imparts activity. Methods We utilized mass spectrometry and quantitative proteomics to investigate how CC16 deficiency impacts apically secreted pulmonary epithelial proteins. Mouse tracheal epithelial cells (MTECS), human nasal epithelial cells (HNECs) and mice were studied in naïve conditions and after Mp challenge. Measurements and main results We identified 8 antimicrobial proteins significantly decreased by CC16-/- MTECS, 6 of which were validated by mRNA expression in Severe Asthma Research Program (SARP) cohorts. Short Palate Lung and Nasal Epithelial Clone 1 (SPLUNC1) was the most differentially expressed protein (66-fold) and was the focus of this study. Using a combination of MTECs and HNECs, we found that CC16 enhances pulmonary epithelial-driven SPLUNC1 expression via signaling through the receptor complex Very Late Antigen-2 (VLA-2) and that rCC16 given to mice enhances pulmonary SPLUNC1 production and decreases Mycoplasma pneumoniae (Mp) burden. Likewise, rSPLUNC1 results in decreased Mp burden in mice lacking CC16 mice. The VLA-2 integrin binding site within rCC16 is necessary for induction of SPLUNC1 and the reduction in Mp burden. Conclusion Our findings demonstrate a novel role for CC16 in epithelial-driven host defense by up-regulating antimicrobials and define a novel epithelial receptor for CC16, VLA-2, through which signaling is necessary for enhanced SPLUNC1 production.
Collapse
Affiliation(s)
- Natalie Iannuzo
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Holly Welfley
- Asthma and Airway Disease Research Center, Tucson, AZ, United States
| | | | | | | | | | - Stefano Guerra
- Asthma and Airway Disease Research Center, Tucson, AZ, United States
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona, Tucson, AZ, United States
| | - Xingnan Li
- Department of Medicine, Division of Genetics, Genomics, and Precision Medicine, University of Arizona, Tucson, AZ, United States
| | - Darren A. Cusanovich
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
- Asthma and Airway Disease Research Center, Tucson, AZ, United States
| | - Paul R. Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, United States
| | - Julie G. Ledford
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
- Asthma and Airway Disease Research Center, Tucson, AZ, United States
| |
Collapse
|
8
|
Wei W, Zhang ZY, Shi B, Cai Y, Zhang HS, Sun CL, Fei YF, Zhong W, Zhang S, Wang C, He B, Jiang GM, Wang H. METTL16 promotes glycolytic metabolism reprogramming and colorectal cancer progression. J Exp Clin Cancer Res 2023; 42:151. [PMID: 37340443 PMCID: PMC10280857 DOI: 10.1186/s13046-023-02732-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Glycolysis is the key hallmark of cancer and maintains malignant tumor initiation and progression. The role of N6-methyladenosine (m6A) modification in glycolysis is largely unknown. This study explored the biological function of m6A methyltransferase METTL16 in glycolytic metabolism and revealed a new mechanism for the progression of Colorectal cancer (CRC). METHODS The expression and prognostic value of METTL16 was evaluated using bioinformatics and immunohistochemistry (IHC) assays. The biological functions of METTL16 in CRC progression was analyzed in vivo and in vitro. Glycolytic metabolism assays were used to verify the biological function of METTL16 and Suppressor of glucose by autophagy (SOGA1). The protein/RNA stability, RNA immunoprecipitation (RIP), Co-immunoprecipitation (Co-IP) and RNA pull-down assays were used to explore the potential molecular mechanisms. RESULTS SOGA1 is a direct downstream target of METTL16 and involved in METTL16 mediated glycolysis and CRC progression. METTL16 significantly enhances SOGA1 expression and mRNA stability via binding the "reader" protein insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1). Subsequently, SOGA1 promotes AMP-activated protein kinase (AMPK) complex ubiquitination, inhibits its expression and phosphorylation, thus upregulates pyruvate dehydrogenase kinase 4 (PDK4), a crucial protein controlling glucose metabolism. Moreover, Yin Yang 1 (YY1) can transcriptionally inhibit the expression of METTL16 in CRC cells by directly binding to its promoter. Clinical data showed that METTL16 expression is positively correlated to SOGA1 and PDK4, and is associated with poor prognosis of CRC patients. CONCLUSIONS Our findings suggest that METTL16/SOGA1/PDK4 axis might be promising therapeutic targets for CRC.
Collapse
Affiliation(s)
- Wei Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Zhong-Yuan Zhang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bin Shi
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yike Cai
- Center for Certification and Evaluation, Guangdong Drug Administration, Guangzhou, China
| | - Hou-Shun Zhang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chun-Lei Sun
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yun-Fei Fei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Wen Zhong
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Chen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Bing He
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
9
|
Ahmed T, Ramonett A, Kwak EA, Kumar S, Flores PC, Ortiz HR, Langlais PR, Hund TJ, Mythreye K, Lee NY. Endothelial tip/stalk cell selection requires BMP9-induced β IV-spectrin expression during sprouting angiogenesis. Mol Biol Cell 2023; 34:ar72. [PMID: 37126382 PMCID: PMC10295478 DOI: 10.1091/mbc.e23-02-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023] Open
Abstract
βIV-Spectrin is a membrane cytoskeletal protein with specialized roles in the nervous system and heart. Recent evidence also indicates a fundamental role for βIV-spectrin in angiogenesis as its endothelial-specific gene deletion in mice enhances embryonic lethality due to hypervascularization and hemorrhagic defects. During early vascular sprouting, βIV-spectrin is believed to inhibit tip cell sprouting in favor of the stalk cell phenotype by mediating VEGFR2 internalization and degradation. Despite these essential roles, mechanisms governing βIV-spectrin expression remain unknown. Here we identify bone morphogenetic protein 9 (BMP9) as a major inducer of βIV-spectrin gene expression in the vascular system. We show that BMP9 signals through the ALK1/Smad1 pathway to induce βIV-spectrin expression, which then recruits CaMKII to the cell membrane to induce phosphorylation-dependent VEGFR2 turnover. Although BMP9 signaling promotes stalk cell behavior through activation of hallmark stalk cell genes ID-1/3 and Hes-1 and Notch signaling cross-talk, we find that βIV-spectrin acts upstream of these pathways as loss of βIV-spectrin in neonate mice leads to retinal hypervascularization due to excessive VEGFR2 levels, increased tip cell populations, and strong Notch inhibition irrespective of BMP9 treatment. These findings demonstrate βIV-spectrin as a BMP9 gene target critical for tip/stalk cell selection during nascent vessel sprouting.
Collapse
Affiliation(s)
- Tasmia Ahmed
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724
| | - Aaron Ramonett
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | - Eun-A Kwak
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research, Tirupati 517507, India
| | - Paola Cruz Flores
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724
| | - Hannah R. Ortiz
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | | | - Thomas J. Hund
- Department of Biomedical Engineering, Ohio State University, Columbus, OH 43210
| | - Karthikeyan Mythreye
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Nam Y. Lee
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
- Comprehensive Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
10
|
Parker SS, Ly KT, Grant AD, Sweetland J, Wang AM, Parker JD, Roman MR, Saboda K, Roe DJ, Padi M, Wolgemuth CW, Langlais P, Mouneimne G. EVL and MIM/MTSS1 regulate actin cytoskeletal remodeling to promote dendritic filopodia in neurons. J Cell Biol 2023; 222:e202106081. [PMID: 36828364 PMCID: PMC9998662 DOI: 10.1083/jcb.202106081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/22/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023] Open
Abstract
Dendritic spines are the postsynaptic compartment of a neuronal synapse and are critical for synaptic connectivity and plasticity. A developmental precursor to dendritic spines, dendritic filopodia (DF), facilitate synapse formation by sampling the environment for suitable axon partners during neurodevelopment and learning. Despite the significance of the actin cytoskeleton in driving these dynamic protrusions, the actin elongation factors involved are not well characterized. We identified the Ena/VASP protein EVL as uniquely required for the morphogenesis and dynamics of DF. Using a combination of genetic and optogenetic manipulations, we demonstrated that EVL promotes protrusive motility through membrane-direct actin polymerization at DF tips. EVL forms a complex at nascent protrusions and DF tips with MIM/MTSS1, an I-BAR protein important for the initiation of DF. We proposed a model in which EVL cooperates with MIM to coalesce and elongate branched actin filaments, establishing the dynamic lamellipodia-like architecture of DF.
Collapse
Affiliation(s)
- Sara S. Parker
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Kenneth Tran Ly
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Adam D. Grant
- Cancer Biology Program, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Jillian Sweetland
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Ashley M. Wang
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - James D. Parker
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Mackenzie R. Roman
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Kathylynn Saboda
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Denise J. Roe
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Megha Padi
- Cancer Biology Program, University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Molecular and Cellular Biology, College of Science, University of Arizona, Tucson, AZ, USA
| | - Charles W. Wolgemuth
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
- Department of Molecular and Cellular Biology, College of Science, University of Arizona, Tucson, AZ, USA
- Department of Physics, College of Science, University of Arizona, Tucson, AZ, USA
- Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD, USA
| | - Paul Langlais
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Ghassan Mouneimne
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
- Cancer Biology Program, University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
11
|
Vizcarra VS, Barber KR, Franca-Solomon G, Majuta L, Smith A, Langlais PR, Largent-Milnes TM, Vanderah TW, Riegel AC. Targeting 5-HT 2A receptors and Kv7 channels in PFC to attenuate chronic neuropathic pain in rats using a spared nerve injury model. Neurosci Lett 2022; 789:136864. [PMID: 36063980 PMCID: PMC10088904 DOI: 10.1016/j.neulet.2022.136864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Chronic pain remains a disabling disease with limited therapeutic options. Pyramidal neurons in the prefrontal cortex (PFC) express excitatory Gq-coupled 5-HT2A receptors (5-HT2AR) and their effector system, the inhibitory Kv7 ion channel. While recent publications show these cells innervate brainstem regions important for regulating pain, the cellular mechanisms underlying the transition to chronic pain are not well understood. The present study examined whether local blockade of 5-HT2AR or enhanced Kv7 ion channel activity in the PFC would attenuate mechanical allodynia associated with spared nerve injury (SNI) in rats. Following SNI, we show that inhibition of PFC 5-HT2ARs with M100907 or opening of PFC Kv7 channels with retigabine reduced mechanical allodynia. Parallel proteomic and RNAScope experiments evaluated 5-HT2AR/Kv7 channel protein and mRNA. Our results support the role of 5-HT2ARs and Kv7 channels in the PFC in the maintenance of chronic pain.
Collapse
Affiliation(s)
- Velia S Vizcarra
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Translational Biomedical Sciences Graduate Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box URNI, Rochester, NY, 14642, USA
| | - Kara R Barber
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA
| | - Gabriela Franca-Solomon
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA
| | - Lisa Majuta
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA
| | - Angela Smith
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 52242, USA
| | - Paul R Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona, 85721, USA
| | - Tally M Largent-Milnes
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA; Comprehensive Pain and Addiction-Center (CPA-C), University of Arizona Health Sciences, 85721, USA; The Center of Excellence in Addiction Studies (CEAS), University of Arizona, Tucson, Arizona, 85721, USA
| | - Todd W Vanderah
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA; Comprehensive Pain and Addiction-Center (CPA-C), University of Arizona Health Sciences, 85721, USA; The Center of Excellence in Addiction Studies (CEAS), University of Arizona, Tucson, Arizona, 85721, USA
| | - Arthur C Riegel
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA; Comprehensive Pain and Addiction-Center (CPA-C), University of Arizona Health Sciences, 85721, USA; The Center of Excellence in Addiction Studies (CEAS), University of Arizona, Tucson, Arizona, 85721, USA; Department of Neuroscience, College of Science, University of Arizona, Tucson, Arizona, 85721, USA; James C. Wyant College of Optical Sciences, the University of Arizona, Tucson, Arizona, 85721, USA.
| |
Collapse
|
12
|
Palomino SM, Levine AA, Wahl J, Liktor-Busa E, Streicher JM, Largent-Milnes TM. Inhibition of HSP90 Preserves Blood-Brain Barrier Integrity after Cortical Spreading Depression. Pharmaceutics 2022; 14:1665. [PMID: 36015292 PMCID: PMC9416719 DOI: 10.3390/pharmaceutics14081665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Cortical spreading depression (CSD) is a pathophysiological mechanism underlying headache disorders, including migraine. Blood-brain barrier (BBB) permeability is increased during CSD. Recent papers have suggested that heat shock proteins (HSP) contribute to the integrity of the blood-brain barrier. In this study, the possible role of HSP90 in CSD-associated blood-brain barrier leak at the endothelial cell was investigated using an in vitro model, for the blood-endothelial barrier (BEB), and an in vivo model with an intact BBB. We measured barrier integrity using trans endothelial electric resistance (TEER) across a monolayer of rodent brain endothelial cells (bEnd.3), a sucrose uptake assay, and in situ brain perfusion using female Sprague Dawley rats. CSD was induced by application of 60 mM KCl for 5 min in in vitro experiments or cortical injection of KCl (1 M, 0.5 µL) through a dural cannula in vivo. HSP90 was selectively blocked by 17-AAG. Our data showed that preincubation with 17-AAG (1 µM) prevented the reduction of TEER values caused by the KCl pulse on the monolayer of bEnd.3 cells. The elevated uptake of 14C-sucrose across the same endothelial monolayer induced by the KCl pulse was significantly reduced after preincubation with HSP90 inhibitor. Pre-exposure to 17-AAG significantly mitigated the transient BBB leak after CSD induced by cortical KCl injection as determined by in situ brain perfusion in female rats. Our results demonstrated that inhibition of HSP90 with the selective agent 17-AAG reduced CSD-associated BEB/BBB paracellular leak. Overall, this novel observation supports HSP90 inhibition mitigates KCl-induced BBB permeability and suggests the development of new therapeutic approaches targeting HSP90 in headache disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Tally M. Largent-Milnes
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85719, USA
| |
Collapse
|
13
|
Ahmed T, Flores PC, Pan CC, Ortiz HR, Lee YS, Langlais PR, Mythreye K, Lee NY. EPDR1 is a noncanonical effector of insulin-mediated angiogenesis regulated by an endothelial-specific TGF-β receptor complex. J Biol Chem 2022; 298:102297. [PMID: 35872017 PMCID: PMC9396412 DOI: 10.1016/j.jbc.2022.102297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
Insulin signaling in blood vessels primarily functions to stimulate angiogenesis and maintain vascular homeostasis through the canonical PI3K and MAPK signaling pathways. However, angiogenesis is a complex process coordinated by multiple other signaling events. Here, we report a distinct crosstalk between the insulin receptor and endoglin/activin receptor-like kinase 1 (ALK1), an endothelial cell-specific TGF-β receptor complex essential for angiogenesis. While the endoglin-ALK1 complex normally binds to TGF-β or bone morphogenetic protein 9 (BMP9) to promote gene regulation via transcription factors Smad1/5, we show that insulin drives insulin receptor oligomerization with endoglin-ALK1 at the cell surface to trigger rapid Smad1/5 activation. Through quantitative proteomic analysis, we identify ependymin-related protein 1 (EPDR1) as a major Smad1/5 gene target induced by insulin but not by TGF-β or BMP9. We found endothelial EPDR1 expression is minimal at the basal state but is markedly enhanced upon prolonged insulin treatment to promote cell migration and formation of capillary tubules. Conversely, we demonstrate EPDR1 depletion strongly abrogates these angiogenic effects, indicating that EPDR1 is a crucial mediator of insulin-induced angiogenesis. Taken together, these results suggest important therapeutic implications for EPDR1 and the TGF-β pathways in pathologic angiogenesis during hyperinsulinemia and insulin resistance.
Collapse
Affiliation(s)
- Tasmia Ahmed
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Paola Cruz Flores
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Christopher C. Pan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Hannah R. Ortiz
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Yeon S. Lee
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Paul R. Langlais
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Karthikeyan Mythreye
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA,For correspondence: Nam Y. Lee; Karthikeyan Mythreye
| | - Nam Y. Lee
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona, USA,Department of Pharmacology, University of Arizona, Tucson, Arizona, USA,Comprehensive Cancer Center, University of Arizona, Tucson, Arizona, USA,For correspondence: Nam Y. Lee; Karthikeyan Mythreye
| |
Collapse
|
14
|
Extracellular Alterations in pH and K+ Modify the Murine Brain Endothelial Cell Total and Phospho-Proteome. Pharmaceutics 2022; 14:pharmaceutics14071469. [PMID: 35890365 PMCID: PMC9324801 DOI: 10.3390/pharmaceutics14071469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Pathologies of the blood-brain barrier (BBB) have been linked to a multitude of central nervous system (CNS) disorders whose pathology is poorly understood. Cortical spreading depression (CSD) has long been postulated to be involved in the underlying mechanisms of these disease states, yet a complete understanding remains elusive. This study seeks to utilize an in vitro model of the blood-brain barrier (BBB) with brain endothelial cell (b.End3) murine endothelioma cells to investigate the role of CSD in BBB pathology by characterizing effects of the release of major pronociceptive substances into the extracellular space of the CNS. The application of trans-endothelial electrical resistance (TEER) screening, transcellular uptake, and immunoreactive methods were used in concert with global proteome and phospho-proteomic approaches to assess the effect of modeled CSD events on the modeled BBB in vitro. The findings demonstrate relocalization and functional alteration to proteins associated with the actin cytoskeleton and endothelial tight junctions. Additionally, unique pathologic mechanisms induced by individual substances released during CSD were found to have unique phosphorylation signatures in phospho-proteome analysis, identifying Zona Occludins 1 (ZO-1) as a possible pathologic "checkpoint" of the BBB. By utilizing these phosphorylation signatures, possible novel diagnostic methods may be developed for CSD and warrants further investigation.
Collapse
|
15
|
Matsuoka R, Miki M, Mizuno S, Ito Y, Yamada C, Suzuki A. MTCL2 promotes asymmetric microtubule organization by crosslinking microtubules on the Golgi membrane. J Cell Sci 2022; 135:275616. [PMID: 35543016 DOI: 10.1242/jcs.259374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
The Golgi complex plays an active role in organizing asymmetric microtubule arrays essential for polarized vesicle transport. The coiled-coil protein MTCL1 stabilizes microtubules nucleated from the Golgi membrane. Here, we report an MTCL1 paralog, MTCL2, which preferentially acts on the perinuclear microtubules accumulated around the Golgi. MTCL2 associates with the Golgi membrane through the N-terminal coiled-coil region and directly binds microtubules through the conserved C-terminal domain without promoting microtubule stabilization. Knockdown of MTCL2 significantly impaired microtubule accumulation around the Golgi as well as the compactness of the Golgi ribbon assembly structure. Given that MTCL2 forms parallel oligomers through homo-interaction of the central coiled-coil motifs, our results indicate that MTCL2 promotes asymmetric microtubule organization by crosslinking microtubules on the Golgi membrane. Results of in vitro wound healing assays further suggest that this function of MTCL2 enables integration of the centrosomal and Golgi-associated microtubules on the Golgi membrane, supporting directional migration. Additionally, the results demonstrated the involvement of CLASPs and giantin in mediating the Golgi association of MTCL2.
Collapse
Affiliation(s)
- Risa Matsuoka
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masateru Miki
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Sonoko Mizuno
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yurina Ito
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Chihiro Yamada
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Atsushi Suzuki
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
16
|
βIV-spectrin as a stalk cell-intrinsic regulator of VEGF signaling. Nat Commun 2022; 13:1326. [PMID: 35288568 PMCID: PMC8921520 DOI: 10.1038/s41467-022-28933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Defective angiogenesis underlies over 50 malignant, ischemic and inflammatory disorders yet long-term therapeutic applications inevitably fail, thus highlighting the need for greater understanding of the vast crosstalk and compensatory mechanisms. Based on proteomic profiling of angiogenic endothelial components, here we report βIV-spectrin, a non-erythrocytic cytoskeletal protein, as a critical regulator of sprouting angiogenesis. Early loss of endothelial-specific βIV-spectrin promotes embryonic lethality in mice due to hypervascularization and hemorrhagic defects whereas neonatal depletion yields higher vascular density and tip cell populations in developing retina. During sprouting, βIV-spectrin expresses in stalk cells to inhibit their tip cell potential by enhancing VEGFR2 turnover in a manner independent of most cell-fate determining mechanisms. Rather, βIV-spectrin recruits CaMKII to the plasma membrane to directly phosphorylate VEGFR2 at Ser984, a previously undefined phosphoregulatory site that strongly induces VEGFR2 internalization and degradation. These findings support a distinct spectrin-based mechanism of tip-stalk cell specification during vascular development. Defective angiogenesis remains a high source of morbidity in multiple disorders. Here they show that βIV-spectrin, a membrane-associated cytoskeletal protein, is essential for regulation of endothelial tip cell populations and VEGF signaling during sprouting angiogenesis.
Collapse
|
17
|
Fazakerley DJ, Koumanov F, Holman GD. GLUT4 On the move. Biochem J 2022; 479:445-462. [PMID: 35147164 PMCID: PMC8883492 DOI: 10.1042/bcj20210073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/16/2022]
Abstract
Insulin rapidly stimulates GLUT4 translocation and glucose transport in fat and muscle cells. Signals from the occupied insulin receptor are translated into downstream signalling changes in serine/threonine kinases within timescales of seconds, and this is followed by delivery and accumulation of the glucose transporter GLUT4 at the plasma membrane. Kinetic studies have led to realisation that there are distinct phases of this stimulation by insulin. There is a rapid initial burst of GLUT4 delivered to the cell surface from a subcellular reservoir compartment and this is followed by a steady-state level of continuing stimulation in which GLUT4 recycles through a large itinerary of subcellular locations. Here, we provide an overview of the phases of insulin stimulation of GLUT4 translocation and the molecules that are currently considered to activate these trafficking steps. Furthermore, we suggest how use of new experimental approaches together with phospho-proteomic data may help to further identify mechanisms for activation of these trafficking processes.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, U.K
| | - Francoise Koumanov
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset BA2 7AY, U.K
| | - Geoffrey D Holman
- Department of Biology and Biochemistry, University of Bath, Bath, Somerset BA2 7AY, U.K
| |
Collapse
|
18
|
Mahserejian SM, Scripture JP, Mauro AJ, Lawrence EJ, Jonasson EM, Murray KS, Li J, Gardner M, Alber M, Zanic M, Goodson HV. Quantification of Microtubule Stutters: Dynamic Instability Behaviors that are Strongly Associated with Catastrophe. Mol Biol Cell 2022; 33:ar22. [PMID: 35108073 PMCID: PMC9250389 DOI: 10.1091/mbc.e20-06-0348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microtubules (MTs) are cytoskeletal fibers that undergo dynamic instability (DI), a remarkable process involving phases of growth and shortening separated by stochastic transitions called catastrophe and rescue. Dissecting DI mechanism(s) requires first characterizing and quantifying these dynamics, a subjective process that often ignores complexity in MT behavior. We present a Statistical Tool for Automated Dynamic Instability Analysis (STADIA) that identifies and quantifies not only growth and shortening, but also a category of intermediate behaviors that we term “stutters.” During stutters, the rate of MT length change tends to be smaller in magnitude than during typical growth or shortening phases. Quantifying stutters and other behaviors with STADIA demonstrates that stutters precede most catastrophes in our in vitro experiments and dimer-scale MT simulations, suggesting that stutters are mechanistically involved in catastrophes. Related to this idea, we show that the anticatastrophe factor CLASP2γ works by promoting the return of stuttering MTs to growth. STADIA enables more comprehensive and data-driven analysis of MT dynamics compared with previous methods. The treatment of stutters as distinct and quantifiable DI behaviors provides new opportunities for analyzing mechanisms of MT dynamics and their regulation by binding proteins.
Collapse
Affiliation(s)
- Shant M Mahserejian
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, IN 46556.,Pacific Northwest National Laboratory, Richland, WA 99352
| | - Jared P Scripture
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556
| | - Ava J Mauro
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556.,Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst MA, 01003
| | - Elizabeth J Lawrence
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Erin M Jonasson
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556.,Department of Natural Sciences, Saint Martin's University, Lacey, WA 98503
| | - Kristopher S Murray
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, IN 46556
| | - Melissa Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Mark Alber
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, IN 46556.,Department of Mathematics, University of California Riverside, Riverside, CA 92521
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235.,Department of Biochemistry, Vanderbilt University, Nashville, TN 37205
| | - Holly V Goodson
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556
| |
Collapse
|
19
|
Dy ABC, Langlais PR, Barker NK, Addison KJ, Tanyaratsrisakul S, Boitano S, Christenson SA, Kraft M, Meyers D, Bleecker ER, Li X, Ledford JG. Myeloid-associated differentiation marker is a novel SP-A-associated transmembrane protein whose expression on airway epithelial cells correlates with asthma severity. Sci Rep 2021; 11:23392. [PMID: 34862427 PMCID: PMC8642528 DOI: 10.1038/s41598-021-02869-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Surfactant protein A (SP-A) is well-known for its protective role in pulmonary immunity. Previous studies from our group have shown that SP-A mediates eosinophil activities, including degranulation and apoptosis. In order to identify potential binding partners on eosinophils for SP-A, eosinophil lysates were subjected to SP-A pull-down and tandem mass spectrometry (MS/MS) analysis. We identified one membrane-bound protein, myeloid-associated differentiation marker (MYADM), as a candidate SP-A binding partner. Blocking MYADM on mouse and human eosinophils ex vivo prevented SP-A from inducing apoptosis; blocking MYADM in vivo led to increased persistence of eosinophilia and airway hyper-responsiveness in an ovalbumin (OVA) allergy model and increased airways resistance and mucus production in a house dust mite (HDM) asthma model. Examination of a subset of participants in the Severe Asthma Research Program (SARP) cohort revealed a significant association between epithelial expression of MYADM in asthma patients and parameters of airway inflammation, including: peripheral blood eosinophilia, exhaled nitric oxide (FeNO) and the number of exacerbations in the past 12 months. Taken together, our studies provide the first evidence of MYADM as a novel SP-A-associated protein that is necessary for SP-A to induce eosinophil apoptosis and we bring to light the potential importance of this previously unrecognized transmembrane protein in patients with asthma.
Collapse
Affiliation(s)
- Alane Blythe C Dy
- Clinical Translational Sciences, University of Arizona Health Sciences, Tucson, AZ, 85721, USA
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, 85724, USA
| | - Paul R Langlais
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Natalie K Barker
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Kenneth J Addison
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Scott Boitano
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, 85724, USA
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| | - Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, 94117, USA
| | - Monica Kraft
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, 85724, USA
- Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Deborah Meyers
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, 85724, USA
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Eugene R Bleecker
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, 85724, USA
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Xingnan Li
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, 85724, USA
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Julie G Ledford
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, 85724, USA.
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85724, USA.
- , 1230 N Cherry Avenue, BSRL Building, Tucson, AZ, 85719, USA.
| |
Collapse
|
20
|
Levine A, Liktor-Busa E, Lipinski AA, Couture S, Balasubramanian S, Aicher SA, Langlais PR, Vanderah TW, Largent-Milnes TM. Sex differences in the expression of the endocannabinoid system within V1M cortex and PAG of Sprague Dawley rats. Biol Sex Differ 2021; 12:60. [PMID: 34749819 PMCID: PMC8577021 DOI: 10.1186/s13293-021-00402-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/25/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Several chronic pain disorders, such as migraine and fibromyalgia, have an increased prevalence in the female population. The underlying mechanisms of this sex-biased prevalence have yet to be thoroughly documented, but could be related to endogenous differences in neuromodulators in pain networks, including the endocannabinoid system. The cellular endocannabinoid system comprises the endogenous lipid signals 2-AG (2-arachidonoylglycerol) and AEA (anandamide); the enzymes that synthesize and degrade them; and the cannabinoid receptors. The relative prevalence of different components of the endocannabinoid system in specific brain regions may alter responses to endogenous and exogenous ligands. METHODS Brain tissue from naïve male and estrous staged female Sprague Dawley rats was harvested from V1M cortex, periaqueductal gray, trigeminal nerve, and trigeminal nucleus caudalis. Tissue was analyzed for relative levels of endocannabinoid enzymes, ligands, and receptors via mass spectrometry, unlabeled quantitative proteomic analysis, and immunohistochemistry. RESULTS Mass spectrometry revealed significant differences in 2-AG and AEA concentrations between males and females, as well as between female estrous cycle stages. Specifically, 2-AG concentration was lower within female PAG as compared to male PAG (*p = 0.0077); female 2-AG concentration within the PAG did not demonstrate estrous stage dependence. Immunohistochemistry followed by proteomics confirmed the prevalence of 2-AG-endocannabinoid system enzymes in the female PAG. CONCLUSIONS Our results suggest that sex differences exist in the endocannabinoid system in two CNS regions relevant to cortical spreading depression (V1M cortex) and descending modulatory networks in pain/anxiety (PAG). These basal differences in endogenous endocannabinoid mechanisms may facilitate the development of chronic pain conditions and may also underlie sex differences in response to therapeutic intervention.
Collapse
Affiliation(s)
- Aidan Levine
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Erika Liktor-Busa
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Austin A Lipinski
- Endocrinology Division, Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Sarah Couture
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Shreya Balasubramanian
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Paul R Langlais
- Endocrinology Division, Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Tally M Largent-Milnes
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA.
| |
Collapse
|
21
|
Batty SR, Langlais PR. Microtubules in insulin action: what's on the tube? Trends Endocrinol Metab 2021; 32:776-789. [PMID: 34462181 PMCID: PMC8446328 DOI: 10.1016/j.tem.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Microtubules (MT) have a role in the intracellular response to insulin stimulation and subsequent glucose transport by glucose transporter 4 (GLUT4), which resides in specialized storage vesicles that travel through the cell. Before GLUT4 is inserted into the plasma membrane for glucose transport, it undergoes complex trafficking through the cell via the integration of cytoskeletal networks. In this review, we highlight the importance of MT elements in insulin action in adipocytes through a summary of MT depolymerization studies, MT-based GLUT4 movement, molecular motor proteins involved in GLUT4 trafficking, as well as MT-related phenomena in response to insulin and links between insulin action and MT-associated proteins.
Collapse
Affiliation(s)
- Skylar R Batty
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Paul R Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
22
|
Pandya NJ, Wang C, Costa V, Lopatta P, Meier S, Zampeta FI, Punt AM, Mientjes E, Grossen P, Distler T, Tzouros M, Martí Y, Banfai B, Patsch C, Rasmussen S, Hoener M, Berrera M, Kremer T, Dunkley T, Ebeling M, Distel B, Elgersma Y, Jagasia R. Secreted retrovirus-like GAG-domain-containing protein PEG10 is regulated by UBE3A and is involved in Angelman syndrome pathophysiology. Cell Rep Med 2021; 2:100360. [PMID: 34467244 PMCID: PMC8385294 DOI: 10.1016/j.xcrm.2021.100360] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 03/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of maternal UBE3A, a ubiquitin protein ligase E3A. Here, we study neurons derived from patients with AS and neurotypical individuals, and reciprocally modulate UBE3A using antisense oligonucleotides. Unbiased proteomics reveal proteins that are regulated by UBE3A in a disease-specific manner, including PEG10, a retrotransposon-derived GAG protein. PEG10 protein increase, but not RNA, is dependent on UBE3A and proteasome function. PEG10 binds to both RNA and ataxia-associated proteins (ATXN2 and ATXN10), localizes to stress granules, and is secreted in extracellular vesicles, modulating vesicle content. Rescue of AS patient-derived neurons by UBE3A reinstatement or PEG10 reduction reveals similarity in transcriptome changes. Overexpression of PEG10 during mouse brain development alters neuronal migration, suggesting that it can affect brain development. These findings imply that PEG10 is a secreted human UBE3A target involved in AS pathophysiology.
Collapse
Affiliation(s)
- Nikhil J. Pandya
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Congwei Wang
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Veronica Costa
- Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Paul Lopatta
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sonja Meier
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - F. Isabella Zampeta
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - A. Mattijs Punt
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Edwin Mientjes
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Philip Grossen
- Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tania Distler
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Manuel Tzouros
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Yasmina Martí
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Balazs Banfai
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christoph Patsch
- Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Soren Rasmussen
- Therapeutic Modalities, Roche Innovation Center Copenhagen, F. Hoffmann-La Roche, Copenhagen, Denmark
| | - Marius Hoener
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Marco Berrera
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Thomas Kremer
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tom Dunkley
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Martin Ebeling
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Ben Distel
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ype Elgersma
- Departments of Neuroscience and Clinical Genetics, The ENCORE Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ravi Jagasia
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
23
|
Blawn KT, Kellohen KL, Galloway EA, Wahl J, Vivek A, Verkhovsky VG, Barker NK, Cottier KE, Vallecillo TG, Langlais PR, Liktor-Busa E, Vanderah TW, Largent-Milnes TM. Sex hormones regulate NHE1 functional expression and brain endothelial proteome to control paracellular integrity of the blood endothelial barrier. Brain Res 2021; 1763:147448. [PMID: 33771519 PMCID: PMC10494867 DOI: 10.1016/j.brainres.2021.147448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Sex hormones have been implicated in pH regulation of numerous physiological systems. One consistent factor of these studies is the sodium-hydrogen exchanger 1 (NHE1). NHE1 has been associated with pH homeostasis at epithelial barriers. Hormone fluctuations have been implicated in protection and risk for breaches in blood brain barrier (BBB)/blood endothelial barrier (BEB) integrity. Few studies, however, have investigated BBB/BEB integrity in neurological disorders in the context of sex-hormone regulation of pH homeostasis. METHODS//RESULTS Physiologically relevant concentrations of 17-β-estradiol (E2, 294 pM), progesterone (P, 100 nM), and testosterone (T,3.12 nM) were independently applied to cultured immortalized bEnd.3 brain endothelial cells to study the BEB. Individual gonadal hormones showed preferential effects on extracellular pH (E2), 14C-sucrose uptake (T), stimulated paracellular breaches (P) with dependence on functional NHE1 expression without impacting transendothelial resistance (TEER) or total protein expression. While total NHE1 expression was not changed as determined via whole cell lysate and subcellular fractionation experiment, biotinylation of NHE1 for surface membrane expression showed E2 reduced functional expression. Quantitative proteomic analysis revealed divergent effects of 17-β-estradiol and testosterone on changes in protein abundance in bEnd.3 endothelial cells as compared to untreated controls. CONCLUSIONS These data suggest that circulating levels of sex hormones may independently control BEB integrity by 1) regulating pH homeostasis through NHE1 functional expression and 2) modifying the endothelial proteome.
Collapse
Affiliation(s)
- Kiera T Blawn
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | | | - Emily A Galloway
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | - Jared Wahl
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | - Anjali Vivek
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | | | - Natalie K Barker
- University of Arizona, Department of Medicine, Division of Endocrinology, College of Medicine, Tucson, AZ, USA
| | | | | | - Paul R Langlais
- University of Arizona, Department of Medicine, Division of Endocrinology, College of Medicine, Tucson, AZ, USA
| | | | - Todd W Vanderah
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | | |
Collapse
|
24
|
van der Pijl RJ, van den Berg M, van de Locht M, Shen S, Bogaards SJP, Conijn S, Langlais P, Hooijman PE, Labeit S, Heunks LMA, Granzier H, Ottenheijm CAC. Muscle ankyrin repeat protein 1 (MARP1) locks titin to the sarcomeric thin filament and is a passive force regulator. J Gen Physiol 2021; 153:212403. [PMID: 34152365 PMCID: PMC8222902 DOI: 10.1085/jgp.202112925] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Muscle ankyrin repeat protein 1 (MARP1) is frequently up-regulated in stressed muscle, but its effect on skeletal muscle function is poorly understood. Here, we focused on its interaction with the titin–N2A element, found in titin’s molecular spring region. We show that MARP1 binds to F-actin, and that this interaction is stronger when MARP1 forms a complex with titin–N2A. Mechanics and super-resolution microscopy revealed that MARP1 “locks” titin–N2A to the sarcomeric thin filament, causing increased extension of titin’s elastic PEVK element and, importantly, increased passive force. In support of this mechanism, removal of thin filaments abolished the effect of MARP1 on passive force. The clinical relevance of this mechanism was established in diaphragm myofibers of mechanically ventilated rats and of critically ill patients. Thus, MARP1 regulates passive force by locking titin to the thin filament. We propose that in stressed muscle, this mechanism protects the sarcomere from mechanical damage.
Collapse
Affiliation(s)
- Robbert J van der Pijl
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| | - Marloes van den Berg
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| | - Martijn van de Locht
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Shengyi Shen
- Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| | - Sylvia J P Bogaards
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Stefan Conijn
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Paul Langlais
- Division of Endocrinology, University of Arizona, Tucson, AZ
| | - Pleuni E Hooijman
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Leo M A Heunks
- Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| |
Collapse
|
25
|
Zhang H, Lipinski AA, Liktor-Busa E, Smith AF, Moutal A, Khanna R, Langlais PR, Largent-Milnes TM, Vanderah TW. The Effects of Repeated Morphine Treatment on the Endogenous Cannabinoid System in the Ventral Tegmental Area. Front Pharmacol 2021; 12:632757. [PMID: 33953672 PMCID: PMC8090348 DOI: 10.3389/fphar.2021.632757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
The therapeutic utility of opioids is diminished by their ability to induce rewarding behaviors that may lead to opioid use disorder. Recently, the endogenous cannabinoid system has emerged as a hot topic in the study of opioid reward but relatively little is known about how repeated opioid exposure may affect the endogenous cannabinoid system in the mesolimbic reward circuitry. In the present study, we investigated how sustained morphine may modulate the endogenous cannabinoid system in the ventral tegmental area (VTA) of Sprague Dawley rats, a critical region in the mesolimbic reward circuitry. Studies here using proteomic analysis and quantitative real-time PCR (qRT-PCR) found that the VTA expresses 32 different proteins or genes related to the endogenous cannabinoid system; three of these proteins or genes (PLCγ2, ABHD6, and CB2R) were significantly affected after repeated morphine exposure (CB2R was only detected by qRT-PCR but not proteomics). We also identified that repeated morphine treatment does not alter either anandamide (AEA) or 2-arachidonoylglycerol (2-AG) levels in the VTA compared to saline treatment; however, there may be diminished levels of anandamide (AEA) production in the VTA 4 h after a single morphine injection in both chronic saline and morphine pretreated cohorts. Treating the animals with an inhibitor of 2-AG degradation significantly decreased repeated opioid rewarding behavior. Taken together, our studies reveal a potential influence of sustained opioids on the endocannabinoid system in the VTA, suggesting that the endogenous cannabinoid system may participate in the opioid-induced reward.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Austin A. Lipinski
- Department of Medicine, Division of Endocrinology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Erika Liktor-Busa
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Angela F. Smith
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Paul R. Langlais
- Department of Medicine, Division of Endocrinology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
26
|
SOGA1 and SOGA2/MTCL1 are CLASP-interacting proteins required for faithful chromosome segregation in human cells. Chromosome Res 2021; 29:159-173. [PMID: 33587225 DOI: 10.1007/s10577-021-09651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
CLASPs are key modulators of microtubule dynamics throughout the cell cycle. During mitosis, CLASPs independently associate with growing microtubule plus-ends and kinetochores and play essential roles in chromosome segregation. In a proteomic survey for human CLASP1-interacting proteins during mitosis, we have previously identified SOGA1 and SOGA2/MTCL1, whose mitotic roles remained uncharacterized. Here we performed an initial functional characterization of human SOGA1 and SOGA2/MTCL1 during mitosis. Using specific polyclonal antibodies raised against SOGA proteins, we confirmed their expression and reciprocal interaction with CLASP1 and CLASP2 during mitosis. In addition, we found that both SOGA1 and SOGA2/MTCL1 are phospho-regulated during mitosis by CDK1. Immunofluorescence analysis revealed that SOGA2/MTCL1 co-localizes with mitotic spindle microtubules and spindle poles throughout mitosis and both SOGA proteins are enriched at the midbody during mitotic exit/cytokinesis. GFP-tagging of SOGA2/MTCL1 further revealed a microtubule-independent localization at kinetochores. Live-cell imaging after siRNA-mediated knockdown of SOGA1 and SOGA2/MTCL1 showed that they are independently required for distinct aspects of chromosome segregation. Thus, SOGA1 and SOGA2/MTCL1 are bona fide CLASP-interacting proteins during mitosis required for faithful chromosome segregation in human cells.
Collapse
|
27
|
James J, Zemskova M, Eccles CA, Varghese MV, Niihori M, Barker NK, Luo M, Mandarino LJ, Langlais PR, Rafikova O, Rafikov R. Single Mutation in the NFU1 Gene Metabolically Reprograms Pulmonary Artery Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2021; 41:734-754. [PMID: 33297749 PMCID: PMC7837686 DOI: 10.1161/atvbaha.120.314655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE NFU1 is a mitochondrial iron-sulfur scaffold protein, involved in iron-sulfur assembly and transfer to complex II and LAS (lipoic acid synthase). Patients with the point mutation NFU1G208C and CRISPR/CAS9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9)-generated rats develop mitochondrial dysfunction leading to pulmonary arterial hypertension. However, the mechanistic understanding of pulmonary vascular proliferation due to a single mutation in NFU1 remains unresolved. Approach and Results: Quantitative proteomics of isolated mitochondria showed the entire phenotypic transformation of NFU1G206C rats with a disturbed mitochondrial proteomic landscape, involving significant changes in the expression of 208 mitochondrial proteins. The NFU1 mutation deranged the expression pattern of electron transport proteins, resulting in a significant decrease in mitochondrial respiration. Reduced reliance on mitochondrial respiration amplified glycolysis in pulmonary artery smooth muscle cell (PASMC) and activated GPD (glycerol-3-phosphate dehydrogenase), linking glycolysis to oxidative phosphorylation and lipid metabolism. Decreased PDH (pyruvate dehydrogenase) activity due to the lipoic acid shortage is compensated by increased fatty acid metabolism and oxidation. PASMC became dependent on extracellular fatty acid sources due to upregulated transporters such as CD36 (cluster of differentiation 36) and CPT (carnitine palmitoyltransferase)-1. Finally, the NFU1 mutation produced a dysregulated antioxidant system in the mitochondria, leading to increased reactive oxygen species levels. PASMC from NFU1 rats showed apoptosis resistance, increased anaplerosis, and attained a highly proliferative phenotype. Attenuation of mitochondrial reactive oxygen species by mitochondrial-targeted antioxidant significantly decreased PASMC proliferation. CONCLUSIONS The alteration in iron-sulfur metabolism completely transforms the proteomic landscape of the mitochondria, leading toward metabolic plasticity and redistribution of energy sources to the acquisition of a proliferative phenotype by the PASMC.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Proliferation
- Cells, Cultured
- Cellular Reprogramming
- Energy Metabolism
- Fatty Acids/metabolism
- Female
- Mitochondria, Liver/genetics
- Mitochondria, Liver/metabolism
- Mitochondria, Liver/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Point Mutation
- Proteome
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Rats
Collapse
Affiliation(s)
- Joel James
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Marina Zemskova
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Cody A. Eccles
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Mathews V. Varghese
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Maki Niihori
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Natalie K. Barker
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Moulun Luo
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Lawrence J. Mandarino
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Paul R. Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Olga Rafikova
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Ruslan Rafikov
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| |
Collapse
|
28
|
Uhlorn JA, Husband NA, Romero‐Aleshire MJ, Moffett C, Lindsey ML, Langlais PR, Brooks HL. CD4 + T Cell-Specific Proteomic Pathways Identified in Progression of Hypertension Across Postmenopausal Transition. J Am Heart Assoc 2021; 10:e018038. [PMID: 33410333 PMCID: PMC7955317 DOI: 10.1161/jaha.120.018038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Background Menopause is associated with an increase in the prevalence and severity of hypertension in women. Although premenopausal females are protected against T cell-dependent immune activation and development of angiotensin II (Ang II) hypertension, this protection is lost in postmenopausal females. Therefore, the current study hypothesized that specific CD4+ T cell pathways are regulated by sex hormones and Ang II to mediate progression from premenopausal protection to postmenopausal hypertension. Methods and Results Menopause was induced in C57BL/6 mice via repeated 4-vinylcyclohexene diepoxide injections, while premenopausal females received sesame oil vehicle. A subset of premenopausal mice and all menopausal mice were infused with Ang II for 14 days (Control, Ang II, Meno/Ang II). Proteomic and phosphoproteomic profiles of CD4+ T cells isolated from spleens were examined. Ang II markedly increased CD4+ T cell protein abundance and phosphorylation associated with DNA and histone methylation in both premenopausal and postmenopausal females. Compared with premenopausal T cells, Ang II infusion in menopausal mice increased T cell phosphorylation of MP2K2, an upstream regulator of ERK, and was associated with upregulated phosphorylation at ERK targeted sites. Additionally, Ang II infusion in menopausal mice decreased T cell phosphorylation of TLN1, a key regulator of IL-2Rα and FOXP3 expression. Conclusions These findings identify novel, distinct T cell pathways that influence T cell-mediated inflammation during postmenopausal hypertension.
Collapse
Affiliation(s)
- Joshua A. Uhlorn
- Department of PhysiologyCollege of MedicineUniversity of ArizonaTucsonAZ
| | | | | | - Caitlin Moffett
- Department of PhysiologyCollege of MedicineUniversity of ArizonaTucsonAZ
| | - Merry L. Lindsey
- Department of Cellular and Integrative PhysiologyCenter for Heart and Vascular ResearchNebraska‐Western Iowa Health Care SystemUniversity of Nebraska Medical Center and Research ServiceOmahaNE
| | - Paul R. Langlais
- Department of MedicineCollege of MedicineUniversity of ArizonaTucsonAZ
| | - Heddwen L. Brooks
- Department of PhysiologyCollege of MedicineUniversity of ArizonaTucsonAZ
| |
Collapse
|
29
|
James J, Valuparampil Varghese M, Vasilyev M, Langlais PR, Tofovic SP, Rafikova O, Rafikov R. Complex III Inhibition-Induced Pulmonary Hypertension Affects the Mitochondrial Proteomic Landscape. Int J Mol Sci 2020; 21:ijms21165683. [PMID: 32784406 PMCID: PMC7461049 DOI: 10.3390/ijms21165683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
The mitochondria play a vital role in controlling cell metabolism and regulating crucial cellular outcomes. We previously demonstrated that chronic inhibition of the mitochondrial complex III in rats by Antimycin A (AA) induced sustained pulmonary vasoconstriction. On the metabolic level, AA-induced mitochondrial dysfunction resulted in a glycolytic shift that was reported as the primary contributor to pulmonary hypertension pathogenesis. However, the regulatory proteins driving this metabolic shift with complex III inhibition are yet to be explored. Therefore, to delineate the mechanisms, we followed changes in the rat lung mitochondrial proteome throughout AA treatment. Rats treated with AA for up to 24 days showed a disturbed mitochondrial proteome with significant changes in 28 proteins (p < 0.05). We observed a time-dependent decrease in the expression of key proteins that regulate fatty acid oxidation, the tricarboxylic acid cycle, the electron transport chain, and amino acid metabolism, indicating a correlation with diminished mitochondrial function. We also found a significant dysregulation in proteins that controls the protein import machinery and the clearance and detoxification of oxidatively damaged peptides via proteolysis and mitophagy. This could potentially lead to the onset of mitochondrial toxicity due to misfolded protein stress. We propose that chronic inhibition of mitochondrial complex III attenuates mitochondrial function by disruption of the global mitochondrial metabolism. This potentially aggravates cellular proliferation by initiating a glycolytic switch and thereby leads to pulmonary hypertension.
Collapse
Affiliation(s)
- Joel James
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ 85721, USA; (J.J.); (M.V.V.); (M.V.); (P.R.L.); (O.R.)
| | - Mathews Valuparampil Varghese
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ 85721, USA; (J.J.); (M.V.V.); (M.V.); (P.R.L.); (O.R.)
| | - Mikhail Vasilyev
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ 85721, USA; (J.J.); (M.V.V.); (M.V.); (P.R.L.); (O.R.)
| | - Paul R. Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ 85721, USA; (J.J.); (M.V.V.); (M.V.); (P.R.L.); (O.R.)
| | - Stevan P. Tofovic
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213; USA;
| | - Olga Rafikova
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ 85721, USA; (J.J.); (M.V.V.); (M.V.); (P.R.L.); (O.R.)
| | - Ruslan Rafikov
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ 85721, USA; (J.J.); (M.V.V.); (M.V.); (P.R.L.); (O.R.)
- Correspondence:
| |
Collapse
|
30
|
Taylor SSZ, Jacobsen NL, Pontifex TK, Langlais P, Burt JM. Serine 319 phosphorylation is necessary and sufficient to induce a Cx37 conformation that leads to arrested cell cycling. J Cell Sci 2020; 133:jcs240721. [PMID: 32350069 PMCID: PMC7328134 DOI: 10.1242/jcs.240721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/14/2020] [Indexed: 11/20/2022] Open
Abstract
Connexin 37 (Cx37; protein product of GJA4) expression profoundly suppresses proliferation of rat insulinoma (Rin) cells in a manner dependent on gap junction channel (GJCh) functionality and the presence and phosphorylation status of its C-terminus (CT). In Rin cells, growth is arrested upon induced Cx37 expression and serine 319 (S319) is frequently phosphorylated. Here, we show that preventing phosphorylation at this site (alanine substitution; S319A) relieved Cx37 of its growth-suppressive effect whereas mimicking phosphorylation at this site (aspartate substitution; S319D) enhanced the growth-suppressive properties of Cx37. Like wild-type Cx37 (Cx37-WT), Cx37-S319D GJChs and hemichannels (HChs) preferred the closed state, rarely opening fully, and gated slowly. In contrast, Cx37-S319A channels preferred open states, opened fully and gated rapidly. These data indicate that phosphorylation-dependent conformational differences in Cx37 protein and channel function underlie Cx37-induced growth arrest versus growth-permissive phenotypes. That the closed state of Cx37-WT and Cx37-S319D GJChs and HChs favors growth arrest suggests that rather than specific permeants mediating cell cycle arrest, the closed conformation instead supports interaction of Cx37 with growth regulatory proteins that result in growth arrest.
Collapse
Affiliation(s)
| | - Nicole L Jacobsen
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Tasha K Pontifex
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Paul Langlais
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Janis M Burt
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
31
|
Li Y, Luo Y, Li B, Niu L, Liu J, Duan X. miRNA-182/Deptor/mTOR axis regulates autophagy to reduce intestinal ischaemia/reperfusion injury. J Cell Mol Med 2020; 24:7873-7883. [PMID: 32510855 PMCID: PMC7348187 DOI: 10.1111/jcmm.15420] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
It had been reported miR‐182 was down‐regulated after intestinal ischaemia/reperfusion (I/R) damage. However, its role and potential mechanisms are still unknown. This study was aimed to elucidate the function of miR‐182 in intestinal I/R injury and the underlying mechanisms. The model of intestinal injury was constructed in wild‐type and Deptor knockout (KO) mice. Haematoxylin‐eosin staining, Chiu's score and diamine oxidase were utilized to detect intestinal damage. RT‐qPCR assay was used to detected miR‐182 expression. Electronic microscopy was used to detect autophagosome. Western blot was applied to detect the expression of Deptor, S6/pS6, LC3‐II/LC3‐I and p62. Dual‐luciferase reporter assay was used to verify the relationship between miR‐182 and Deptor. The results showed miR‐182 was down‐regulated following intestinal I/R. Up‐regulation of miR‐182 reduced intestinal damage, autophagy, Deptor expression and enhanced mTOR activity following intestinal I/R. Moreover, suppression of autophagy reduced intestinal damage and inhibition of mTOR by rapamycin aggravated intestinal damage following intestinal I/R. Besides, damage of intestine was reduced and mTOR activity was enhanced in Deptor KO mice. In addition, Deptor was the target gene of miR‐182 and was indispensable for the protection of miR‐182 on intestine under I/R condition. Together, our research implicated up‐regulation of miR‐182 inhibited autophagy to alleviate intestinal I/R injury via mTOR by targeting Deptor.
Collapse
Affiliation(s)
- Yunsheng Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanhua Luo
- Department of Anesthesiology, Zhongshan Ophthalmic Center of Sun Yat-sen University, Guangzhou, China
| | - Baochuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lijun Niu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaxin Liu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Duan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Duron DI, Lei W, Barker NK, Stine C, Mishra S, Blagg BSJ, Langlais PR, Streicher JM. Inhibition of Hsp90 in the spinal cord enhances the antinociceptive effects of morphine by activating an ERK-RSK pathway. Sci Signal 2020; 13:13/630/eaaz1854. [PMID: 32371496 DOI: 10.1126/scisignal.aaz1854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Morphine and other opioids are commonly used to treat pain despite their numerous adverse side effects. Modulating μ-opioid receptor (MOR) signaling is one way to potentially improve opioid therapy. In mice, the chaperone protein Hsp90 mediates MOR signaling within the brain. Here, we found that inhibiting Hsp90 specifically in the spinal cord enhanced the antinociceptive effects of morphine in mice. Intrathecal, but not systemic, administration of the Hsp90 inhibitors 17-AAG or KU-32 amplified the effects of morphine in suppressing sensitivity to both thermal and mechanical stimuli in mice. Hsp90 inhibition enabled opioid-induced phosphorylation of the kinase ERK and increased abundance of the kinase RSK in the dorsal horns of the spinal cord, which are heavily populated with primary afferent sensory neurons. The additive effects of Hsp90 inhibition were abolished upon intrathecal inhibition of ERK, RSK, or protein synthesis. This mechanism downstream of MOR, localized to the spinal cord and repressed by Hsp90, may potentially be used to enhance the efficacy and presumably decrease the side effects of opioid therapy.
Collapse
Affiliation(s)
- David I Duron
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Wei Lei
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Natalie K Barker
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Carrie Stine
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Sanket Mishra
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul R Langlais
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
33
|
Saenz-de-Juano MD, Ivanova E, Billooye K, Herta AC, Smitz J, Kelsey G, Anckaert E. Genome-wide assessment of DNA methylation in mouse oocytes reveals effects associated with in vitro growth, superovulation, and sexual maturity. Clin Epigenetics 2019; 11:197. [PMID: 31856890 PMCID: PMC6923880 DOI: 10.1186/s13148-019-0794-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022] Open
Abstract
Background In vitro follicle culture (IFC), as applied in the mouse system, allows the growth and maturation of a large number of immature preantral follicles to become mature and competent oocytes. In the human oncofertility clinic, there is increasing interest in developing this technique as an alternative to ovarian cortical tissue transplantation and to preserve the fertility of prepubertal cancer patients. However, the effect of IFC and hormonal stimulation on DNA methylation in the oocyte is not fully known, and there is legitimate concern over epigenetic abnormalities that could be induced by procedures applied during assisted reproductive technology (ART). Results In this study, we present the first genome-wide analysis of DNA methylation in MII oocytes obtained after natural ovulation, after IFC and after superovulation. We also performed a comparison between prepubertal and adult hormonally stimulated oocytes. Globally, the distinctive methylation landscape of oocytes, comprising alternating hyper- and hypomethylated domains, is preserved irrespective of the procedure. The conservation of methylation extends to the germline differential methylated regions (DMRs) of imprinted genes, necessary for their monoallelic expression in the embryo. However, we do detect specific, consistent, and coherent differences in DNA methylation in IFC oocytes, and between oocytes obtained after superovulation from prepubertal compared with sexually mature females. Several methylation differences span entire transcription units. Among these, we found alterations in Tcf4, Sox5, Zfp521, and other genes related to nervous system development. Conclusions Our observations show that IFC is associated with altered methylation at specific set of loci. DNA methylation of superovulated prepubertal oocytes differs from that of superovulated adult oocytes, whereas oocytes from superovulated adult females differ very little from naturally ovulated oocytes. Importantly, we show that regions other than imprinted gDMRs are susceptible to methylation changes associated with superovulation, IFC, and/or sexual immaturity in mouse oocytes. Our results provide an important reference for the use of in vitro growth and maturation of oocytes, particularly from prepubertal females, in assisted reproductive treatments or fertility preservation.
Collapse
Affiliation(s)
- Maria Desemparats Saenz-de-Juano
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan, Brussels, Belgium.,Present Address: Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Elena Ivanova
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Katy Billooye
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan, Brussels, Belgium
| | - Anamaria-Cristina Herta
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan, Brussels, Belgium
| | - Johan Smitz
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan, Brussels, Belgium
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Ellen Anckaert
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan, Brussels, Belgium.
| |
Collapse
|
34
|
Pandey R, Zhou M, Islam S, Chen B, Barker NK, Langlais P, Srivastava A, Luo M, Cooke LS, Weterings E, Mahadevan D. Carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) in Pancreatic Ductal Adenocarcinoma (PDA): An integrative analysis of a novel therapeutic target. Sci Rep 2019; 9:18347. [PMID: 31797958 PMCID: PMC6893022 DOI: 10.1038/s41598-019-54545-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
We investigated biomarker CEACAM6, a highly abundant cell surface adhesion receptor that modulates the extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDA). The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) RNA-Seq data from PDA patients were analyzed for CEACAM6 expression and evaluated for overall survival, association, enrichment and correlations. A CRISPR/Cas9 Knockout (KO) of CEACAM6 in PDA cell line for quantitative proteomics, mitochondrial bioenergetics and tumor growth in mice were conducted. We found CEACAM6 is over-expressed in primary and metastatic basal and classical PDA subtypes. Highest levels are in classical activated stroma subtype. CEACAM6 over-expression is universally a poor prognostic marker in KRAS mutant and wild type PDA. High CEACAM6 expression is associated with low cytolytic T-cell activity in both basal and classical PDA subtypes and correlates with low levels of T-REG markers. In HPAF-II cells knockout of CEACAM6 alters ECM-cell adhesion, catabolism, immune environment, transmembrane transport and autophagy. CEACAM6 loss increases mitochondrial basal and maximal respiratory capacity. HPAF-II CEACAM6−/− cells are growth suppressed by >65% vs. wild type in mice bearing tumors. CEACAM6, a key regulator affects several hallmarks of PDA including the fibrotic reaction, immune regulation, energy metabolism and is a novel therapeutic target in PDA.
Collapse
Affiliation(s)
- Ritu Pandey
- University of Arizona Cancer Center, University of Arizona, Tucson, USA. .,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, USA.
| | - Muhan Zhou
- University of Arizona Cancer Center, University of Arizona, Tucson, USA
| | - Shariful Islam
- University of Arizona Cancer Center, University of Arizona, Tucson, USA
| | - Baowei Chen
- University of Arizona Cancer Center, University of Arizona, Tucson, USA
| | - Natalie K Barker
- Department of Medicine, College of Medicine, University of Arizona, Tucson, USA
| | - Paul Langlais
- Department of Medicine, College of Medicine, University of Arizona, Tucson, USA
| | - Anup Srivastava
- Department of Medicine, College of Medicine, University of Arizona, Tucson, USA
| | - Moulun Luo
- Department of Medicine, College of Medicine, University of Arizona, Tucson, USA
| | - Laurence S Cooke
- University of Arizona Cancer Center, University of Arizona, Tucson, USA
| | - Eric Weterings
- University of Arizona Cancer Center, University of Arizona, Tucson, USA.,Department of Medicine, College of Medicine, University of Arizona, Tucson, USA.,Department of Radiation Oncology, College of Medicine, University of Arizona, Tucson, USA
| | - Daruka Mahadevan
- University of Arizona Cancer Center, University of Arizona, Tucson, USA. .,Department of Medicine, College of Medicine, University of Arizona, Tucson, USA.
| |
Collapse
|
35
|
Sonntag T, Moresco JJ, Yates JR, Montminy M. The KLDpT activation loop motif is critical for MARK kinase activity. PLoS One 2019; 14:e0225727. [PMID: 31794565 PMCID: PMC6890249 DOI: 10.1371/journal.pone.0225727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 11/19/2022] Open
Abstract
MAP/microtubule-affinity regulating kinases (MARK1-4) are members of the AMPK family of Ser/Thr-specific kinases, which phosphorylate substrates at consensus LXRXXSXXXL motifs. Within microtubule-associated proteins, MARKs also mediate phosphorylation of variant KXGS or ζXKXGSXXNΨ motifs, interfering with the ability of tau and MAP2/4 to bind to microtubules. Here we show that, although MARKs and the closely related salt-inducible kinases (SIKs) phosphorylate substrates with consensus AMPK motifs comparably, MARKs are more potent in recognizing variant ζXKXGSXXNΨ motifs on cellular tau. In studies to identify regions of MARKs that confer catalytic activity towards variant sites, we found that the C-terminal kinase associated-1 (KA1) domain in MARK1-3 mediates binding to microtubule-associated proteins CLASP1/2; but this interaction is dispensable for ζXKXGSXXNΨ phosphorylation. Mutational analysis of MARK2 revealed that the N-terminal kinase domain of MARK2 is sufficient for phosphorylation of both consensus and variant ζXKXGSXXNΨ sites. Within this domain, the KLDpT activation loop motif promotes MARK2 activity both intracellularly and in vitro, but has no effect on SIK2 activity. As KLDpT is conserved in all vertebrates MARKs, we conclude that this sequence is crucial for MARK-dependent regulation of cellular polarity.
Collapse
Affiliation(s)
- Tim Sonntag
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - James J. Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Marc Montminy
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Parker SS, Krantz J, Kwak EA, Barker NK, Deer CG, Lee NY, Mouneimne G, Langlais PR. Insulin Induces Microtubule Stabilization and Regulates the Microtubule Plus-end Tracking Protein Network in Adipocytes. Mol Cell Proteomics 2019; 18:1363-1381. [PMID: 31018989 PMCID: PMC6601206 DOI: 10.1074/mcp.ra119.001450] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Insulin-stimulated glucose uptake is known to involve microtubules, although the function of microtubules and the microtubule-regulating proteins involved in insulin action are poorly understood. CLASP2, a plus-end tracking microtubule-associated protein (+TIP) that controls microtubule dynamics, was recently implicated as the first +TIP associated with insulin-regulated glucose uptake. Here, using protein-specific targeted quantitative phosphoproteomics within 3T3-L1 adipocytes, we discovered that insulin regulates phosphorylation of the CLASP2 network members G2L1, MARK2, CLIP2, AGAP3, and CKAP5 as well as EB1, revealing the existence of a previously unknown microtubule-associated protein system that responds to insulin. To further investigate, G2L1 interactome studies within 3T3-L1 adipocytes revealed that G2L1 coimmunoprecipitates CLASP2 and CLIP2 as well as the master integrators of +TIP assembly, the end binding (EB) proteins. Live-cell total internal reflection fluorescence microscopy in adipocytes revealed G2L1 and CLASP2 colocalize on microtubule plus-ends. We found that although insulin increases the number of CLASP2-containing plus-ends, insulin treatment simultaneously decreases CLASP2-containing plus-end velocity. In addition, we discovered that insulin stimulates redistribution of CLASP2 and G2L1 from exclusive plus-end tracking to "trailing" behind the growing tip of the microtubule. Insulin treatment increases α-tubulin Lysine 40 acetylation, a mechanism that was observed to be regulated by a counterbalance between GSK3 and mTOR, and led to microtubule stabilization. Our studies introduce insulin-stimulated microtubule stabilization and plus-end trailing of +TIPs as new modes of insulin action and reveal the likelihood that a network of microtubule-associated proteins synergize to coordinate insulin-regulated microtubule dynamics.
Collapse
Affiliation(s)
- Sara S Parker
- From the ‡Department of Cellular & Molecular Medicine
| | - James Krantz
- §Department of Medicine, Division of Endocrinology
| | | | | | - Chris G Deer
- University of Arizona Research Computing, University of Arizona, Tucson, Arizona 85721
| | - Nam Y Lee
- ¶Department of Pharmacology,; ‖Department of Chemistry & Biochemistry, University of Arizona College of Medicine, Tucson, Arizona 85721
| | | | | |
Collapse
|
37
|
Habieb A, Matboli M, El-Tayeb H, El-Asmar F. Potential role of lncRNA-TSIX, miR-548-a-3p, and SOGA1 mRNA in the diagnosis of hepatocellular carcinoma. Mol Biol Rep 2019; 46:4581-4590. [PMID: 31004302 DOI: 10.1007/s11033-019-04810-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Recent trends are moving towards the use of the circulating transcriptome as a potential diagnostic and therapeutic tool for hepatocellular carcinoma (HCC). The aim of this study is to identify circulatory RNA based biomarker panel, in addition to their relationship to the outcome in HCC. First, utilizing bioinformatics tools, we selected an HCC-specific RNA-based biomarker panel that depended on the integration of suppressor of glucose autophagy-associated (SOGA1) gene expression with the chosen panel of epigenetic regulators of this gene [long non-coding RNA antisense for X-inactive-specific transcript (lncRNA-TSIX) and microRNA-548-a-3p (miR-548-a-3p)]. Second, we attempted to validate these biomarkers using the sera of 65 patients with HCC, 34 patients with chronic hepatitis C virus (CHC) infection and 32 healthy volunteers. Finally, the expression levels of the chosen RNA-based biomarker panel were assessed in the serum samples using qRT-PCR assays. The panel of 3 RNA-based biomarkers (lncRNA-TSIX, miR-548-a-3p, and SOGA1) exhibited high sensitivity and specificity in differentiating HCC patients from CHC patients and healthy controls. Among these 3 RNAs, serum lncRNA-TSIX and SOGA1 were independent prognostic factor. The chosen circulatory RNA-based biomarker panel may serve as a diagnostic and prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Alaa Habieb
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt.
| | - Hanaa El-Tayeb
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt
| | - Farid El-Asmar
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt
| |
Collapse
|
38
|
Phosphorylation-Dependent Intra-Domain Interaction of the Cx37 Carboxyl-Terminus Controls Cell Survival. Cancers (Basel) 2019; 11:cancers11020188. [PMID: 30736283 PMCID: PMC6406260 DOI: 10.3390/cancers11020188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 02/07/2023] Open
Abstract
Differential phosphorylation of the carboxyl-terminus of connexin 37 (Cx37-CT) regulates phenotypic switching between cell growth phenotypes (cell death, cell cycle arrest, proliferation). The specific phosphorylation events in the Cx37-CT that are necessary for these growth regulatory effects are currently unknown. Through the combined use of deletion and site specific (de)phospho-mimetic Cx37-CT mutants, our data suggest a phosphorylation-dependent interaction between the mid-tail (aa 273⁻317) and end-tail (aa 318⁻333) portions of the Cx37-CT that regulates cell survival. As detected by mass spectrometry, Cx37 was phosphorylated at serines 275, 321, and 328; phosphomimetic mutations of these sites resulted in cell death when expressed in rat insulinoma cells. Alanine substitution at S328, but not at S275 or S321, also triggered cell death. Cx37-S275D uniquely induced the death of only low density, non-contact forming cells, but neither hemichannel open probability nor channel conductance distinguished death-inducing mutants. As channel function is necessary for cell death, together the data suggest that the phosphorylation state of the Cx37-CT controls an intra-domain interaction within the CT that modifies channel function and induces cell death.
Collapse
|
39
|
Rafikov R, McBride ML, Zemskova M, Kurdyukov S, McClain N, Niihori M, Langlais PR, Rafikova O. Inositol monophosphatase 1 as a novel interacting partner of RAGE in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2019; 316:L428-L444. [PMID: 30604625 DOI: 10.1152/ajplung.00393.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a lethal disease characterized by progressive pulmonary vascular remodeling. The receptor for advanced glycation end products (RAGE) plays an important role in PAH by promoting proliferation of pulmonary vascular cells. RAGE is also known to mediate activation of Akt signaling, although the particular molecular mechanism remains unknown. This study aimed to identify the interacting partner of RAGE that could facilitate RAGE-mediated Akt activation and vascular remodeling in PAH. The progressive angioproliferative PAH was induced in 24 female Sprague-Dawley rats ( n = 8/group) that were randomly assigned to develop PAH for 1, 2, or 5 wk [right ventricle systolic pressure (RVSP) 56.5 ± 3.2, 63.6 ± 1.6, and 111.1 ± 4.5 mmHg, respectively, vs. 22.9 ± 1.1 mmHg in controls]. PAH triggered early and late episodes of apoptosis in rat lungs accompanied by RAGE activation. Mass spectrometry analysis has identified IMPA1 as a novel PAH-specific interacting partner of RAGE. The proximity ligation assay (PLA) confirmed the formation of RAGE/IMPA1 complex in the pulmonary artery wall. Activation of IMPA1 in response to increased glucose 6-phosphate (G6P) is known to play a critical role in inositol synthesis and recycling. Indeed, we confirmed a threefold increase in G6P ( P = 0.0005) levels in lungs of PAH rats starting from week 1 that correlated with accumulation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), membrane translocation of PI3K, and a threefold increase in membrane Akt levels ( P = 0.02) and Akt phosphorylation. We conclude that the formation of the newly discovered RAGE-IMPA1 complex could be responsible for the stimulation of inositol pathways and activation of Akt signaling in PAH.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Matthew L McBride
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Marina Zemskova
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Sergey Kurdyukov
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Nolan McClain
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Maki Niihori
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Paul R Langlais
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|