1
|
Abdulkhakov S, Markelova M, Safina D, Siniagina M, Khusnutdinova D, Abdulkhakov R, Grigoryeva T. Butyric Acid Supplementation Reduces Changes in the Taxonomic and Functional Composition of Gut Microbiota Caused by H. pylori Eradication Therapy. Microorganisms 2024; 12:319. [PMID: 38399723 PMCID: PMC10892928 DOI: 10.3390/microorganisms12020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
H. pylori eradication therapy leads to significant changes in the gut microbiome, including influence on the gut microbiome's functional potential. Probiotics are one of the most studied potential methods for reducing the microbiota-related consequences of antibiotics. However, the beneficial effects of probiotics are still under discussion. In addition, there are some concerns about the safety of probiotics, emphasizing the need for research of other therapeutic interventions. The aim of our study was to evaluate the influence of butyric acid+inulin supplements on gut microbiota changes (the gut microbiota composition, abundance of metabolic pathways, and gut resistome) caused by H. pylori eradication therapy. MATERIALS AND METHODS Twenty two H. pylori-positive patients, aged 19 to 64 years, were enrolled in the study and randomized into two treatment groups, as follows: (1) ECAB-14 (n = 11), with esomeprazole 20 mg, clarithromycin 500 mg, amoxicillin 1000 mg, and bismuthate tripotassium dicitrate 240 mg, twice daily, per os, for 14 days, and (2), ECAB-Z-14 (n = 11), with esomeprazole 20 mg, clarithromycin 500 mg, amoxicillin 1000 mg, and bismuthate tripotassium dicitrate 240 mg, twice daily, along with butyric acid+inulin (Zacofalk), two tablets daily, each containing 250 mg of butyric acid, and 250 mg of inulin, per os, for 14 days. Fecal samples were collected from each subject prior to eradication therapy (time point I), after the end of eradication therapy (time point II), and a month after the end of eradication therapy (time point III). The total DNA from the fecal samples was isolated for whole genome sequencing using the Illumina NextSeq 500 platform. Qualitative and quantitative changes in gut microbiota were assessed, including alpha and beta diversity, functional potential and antibiotic resistance gene profiling. RESULTS Gut microbiota alpha diversity significantly decreased compared with the baseline immediately after eradication therapy in both treatment groups (ECAB-14 and ECAB-Z-14). This diversity reached its baseline in the ECAB-Z-14 treatment group a month after the end of eradication therapy. However, in the ECAB-14 treatment arm, a reduction in the Shannon index was observed up to a month after the end of H. pylori eradication therapy. Fewer alterations in the gut microbiota functional potential were observed in the ECAB-Z-14 treatment group. The abundance of genes responsible for the metabolic pathway associated with butyrate production decreased only in the ECAB-14 treatment group. The prevalence of antibiotic-resistant genes in the gut microbiota increased significantly in both treatment groups by the end of treatment. However, more severe alterations were noted in the ECAB-14 treatment group. CONCLUSIONS H. pylori eradication therapy leads to taxonomic changes, a reduction in the alpha diversity index, and alterations in the functional potential of the gut microbiota and gut resistome. Taking butyric acid+inulin supplements during H. pylori eradication therapy could help maintain the gut microbiota in its initial state and facilitate its recovery after H. pylori eradication.
Collapse
Affiliation(s)
- Sayar Abdulkhakov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
- Department of Outpatient Therapy and General Medical Practice, Kazan State Medical University, 420012 Kazan, Russia
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
| | - Dilyara Safina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
| | - Maria Siniagina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
| | - Dilyara Khusnutdinova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
| | - Rustam Abdulkhakov
- Department of Hospital Therapy, Kazan State Medical University, 420012 Kazan, Russia;
| | - Tatiana Grigoryeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
| |
Collapse
|
2
|
Akram W, Pandey V, Sharma R, Joshi R, Mishra N, Garud N, Haider T. Inulin: Unveiling its potential as a multifaceted biopolymer in prebiotics, drug delivery, and therapeutics. Int J Biol Macromol 2024; 259:129131. [PMID: 38181920 DOI: 10.1016/j.ijbiomac.2023.129131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
In recent years, inulin has gained much attention as a promising multifunctional natural biopolymer with numerous applications in drug delivery, prebiotics, and therapeutics. It reveals a multifaceted biopolymer with transformative implications by elucidating the intricate interplay between inulin and the host, microbiome, and therapeutic agents. Their flexible structure, exceptional targetability, biocompatibility, inherent ability to control release behavior, tunable degradation kinetics, and protective ability make them outstanding carriers in healthcare and biomedicine. USFDA has approved Inulin as a nutritional dietary supplement for infants. The possible applications of inulin in biomedicine research inspired by nature are presented. The therapeutic potential of inulin goes beyond its role in prebiotics and drug delivery. Recently, significant research efforts have been made towards inulin's anti-inflammatory, antioxidant, and immunomodulatory properties for their potential applications in treating various chronic diseases. Moreover, its ability to reduce inflammation and modulate immune responses opens new avenues for treating conditions such as autoimmune disorders and gastrointestinal ailments. This review will attempt to illustrate the inulin's numerous and interconnected roles, shedding light on its critical contributions to the advancement of healthcare and biomedicine and its recent advancement in therapeutics, and conclude by taking valuable insights into the prospects and opportunities of inulin.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Vikas Pandey
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Rajeev Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Ramakant Joshi
- Department of Pharmaceutics, ShriRam college of Pharmacy, Banmore 476444, India
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Navneet Garud
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior 474011, India
| | - Tanweer Haider
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India.
| |
Collapse
|
3
|
Rahman MN, Barua N, Tin MC, Dharmaratne P, Wong SH, Ip M. The use of probiotics and prebiotics in decolonizing pathogenic bacteria from the gut; a systematic review and meta-analysis of clinical outcomes. Gut Microbes 2024; 16:2356279. [PMID: 38778521 PMCID: PMC11123511 DOI: 10.1080/19490976.2024.2356279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Repeated exposure to antibiotics and changes in the diet and environment shift the gut microbial diversity and composition, making the host susceptible to pathogenic infection. The emergence and ongoing spread of AMR pathogens is a challenging public health issue. Recent evidence showed that probiotics and prebiotics may play a role in decolonizing drug-resistant pathogens by enhancing the colonization resistance in the gut. This review aims to analyze available evidence from human-controlled trials to determine the effect size of probiotic interventions in decolonizing AMR pathogenic bacteria from the gut. We further studied the effects of prebiotics in human and animal studies. PubMed, Embase, Web of Science, Scopus, and CINAHL were used to collect articles. The random-effects model meta-analysis was used to pool the data. GRADE Pro and Cochrane collaboration tools were used to assess the bias and quality of evidence. Out of 1395 citations, 29 RCTs were eligible, involving 2871 subjects who underwent either probiotics or placebo treatment to decolonize AMR pathogens. The persistence of pathogenic bacteria after treatment was 22%(probiotics) and 30.8%(placebo). The pooled odds ratio was 0.59(95% CI:0.43-0.81), favoring probiotics with moderate certainty (p = 0.0001) and low heterogeneity (I2 = 49.2%, p = 0.0001). The funnel plot showed no asymmetry in the study distribution (Kendall'sTau = -1.06, p = 0.445). In subgroup, C. difficile showed the highest decolonization (82.4%) in probiotics group. Lactobacillus-based probiotics and Saccharomyces boulardii decolonize 71% and 77% of pathogens effectively. The types of probiotics (p < 0.018) and pathogens (p < 0.02) significantly moderate the outcome of decolonization, whereas the dosages and regions of the studies were insignificant (p < 0.05). Prebiotics reduced the pathogens from 30% to 80% of initial challenges. Moderate certainty of evidence suggests that probiotics and prebiotics may decolonize pathogens through modulation of gut diversity. However, more clinical outcomes are required on particular strains to confirm the decolonization of the pathogens. Protocol registration: PROSPERO (ID = CRD42021276045).
Collapse
Affiliation(s)
- Md Nannur Rahman
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong (SAR), China
- Department of Food Technology and Nutritional Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Nilakshi Barua
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong (SAR), China
| | - Martha C.F. Tin
- Faculty of Medical Sciences, University College of London, London, UK
| | - Priyanga Dharmaratne
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong (SAR), China
| | - Sunny H. Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong (SAR), China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Centre for Gut Microbiota, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong (SAR), China
| |
Collapse
|
4
|
Riva A, Rasoulimehrabani H, Cruz-Rubio JM, Schnorr SL, von Baeckmann C, Inan D, Nikolov G, Herbold CW, Hausmann B, Pjevac P, Schintlmeister A, Spittler A, Palatinszky M, Kadunic A, Hieger N, Del Favero G, von Bergen M, Jehmlich N, Watzka M, Lee KS, Wiesenbauer J, Khadem S, Viernstein H, Stocker R, Wagner M, Kaiser C, Richter A, Kleitz F, Berry D. Identification of inulin-responsive bacteria in the gut microbiota via multi-modal activity-based sorting. Nat Commun 2023; 14:8210. [PMID: 38097563 PMCID: PMC10721620 DOI: 10.1038/s41467-023-43448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Prebiotics are defined as non-digestible dietary components that promote the growth of beneficial gut microorganisms. In many cases, however, this capability is not systematically evaluated. Here, we develop a methodology for determining prebiotic-responsive bacteria using the popular dietary supplement inulin. We first identify microbes with a capacity to bind inulin using mesoporous silica nanoparticles functionalized with inulin. 16S rRNA gene amplicon sequencing of sorted cells revealed that the ability to bind inulin was widespread in the microbiota. We further evaluate which taxa are metabolically stimulated by inulin and find that diverse taxa from the phyla Firmicutes and Actinobacteria respond to inulin, and several isolates of these taxa can degrade inulin. Incubation with another prebiotic, xylooligosaccharides (XOS), in contrast, shows a more robust bifidogenic effect. Interestingly, the Coriobacteriia Eggerthella lenta and Gordonibacter urolithinfaciens are indirectly stimulated by the inulin degradation process, expanding our knowledge of inulin-responsive bacteria.
Collapse
Affiliation(s)
- Alessandra Riva
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Chair of Nutrition and Immunology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Hamid Rasoulimehrabani
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - José Manuel Cruz-Rubio
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Stephanie L Schnorr
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Cornelia von Baeckmann
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Deniz Inan
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Georgi Nikolov
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry and Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Márton Palatinszky
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Aida Kadunic
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Norbert Hieger
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research, Department of Molecular Systems Biology, Leipzig, Germany
| | - Nico Jehmlich
- Helmholtz Centre for Environmental Research, Department of Molecular Systems Biology, Leipzig, Germany
| | - Margarete Watzka
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Kang Soo Lee
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Julia Wiesenbauer
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Sanaz Khadem
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Roman Stocker
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Lokesh J, Delaygues M, Defaix R, Le Bechec M, Pigot T, Dupont-Nivet M, Kerneis T, Labbé L, Goardon L, Terrier F, Panserat S, Ricaud K. Interaction between genetics and inulin affects host metabolism in rainbow trout fed a sustainable all plant-based diet. Br J Nutr 2023; 130:1105-1120. [PMID: 36690577 DOI: 10.1017/s0007114523000120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Inulin affects nutrition and metabolism in many animals. Although inulin is widely used in the diet of teleosts, its mechanism of action is unknown. Here, we investigated the effect of inulin (2 %) on the intestinal microbiome and metabolism in rainbow trout (Oncorhynchus mykiss) selected for growth and survival when fed a 100 % plant-based diet (suave) and a control line (temoin). Metabolic responses to the two factors (line and inulin) in liver, intestine, muscle and adipose were tissue-specific, with line and interaction between the two factors influencing overall expression in liver. In the intestine, inulin and line and in muscle, line influenced the expression of metabolic genes. Microbiota between the mucus and digestive contents was significantly different, with genera from Proteobacteria being more abundant in the mucus, whereas genera from the Firmicutes and Planctomycetes being more abundant in contents. Effect of inulin and interaction between factors on the microbiome was evident in contents. The significant taxa of control and inulin-fed groups differed greatly with Streptococcus and Weissella being significantly abundant in the inulin-fed group. There was a general trend showing higher levels of all SCFA in temoin group with propionic acid levels being significantly higher. An operational taxonomic unit (OTU) belonging to the Ruminococcaceae was significantly abundant in suave. The tissue-specific correlations between OTU and gene expression may indicate the link between microbiome and metabolism. Together, these results suggest that line and inulin impact the gene expression in a tissue-specific manner, possibly driven by specific OTUs enriched in inulin-fed groups and suave.
Collapse
Affiliation(s)
- Jep Lokesh
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Marine Delaygues
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Raphaël Defaix
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Mickael Le Bechec
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, Pau, France; Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux, UMR5254, Hélioparc, 2 avenue Président Angot, 64 053 PAU cedex 9, France
| | - Thierry Pigot
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, Pau, France; Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux, UMR5254, Hélioparc, 2 avenue Président Angot, 64 053 PAU cedex 9, France
| | | | | | | | | | - Frédéric Terrier
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Karine Ricaud
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
6
|
Bakr AF, Farag MA. Soluble Dietary Fibers as Antihyperlipidemic Agents: A Comprehensive Review to Maximize Their Health Benefits. ACS OMEGA 2023; 8:24680-24694. [PMID: 37483202 PMCID: PMC10357562 DOI: 10.1021/acsomega.3c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023]
Abstract
The number of hypercholesterolemic people is increasing rapidly worldwide, with elevated lipid profiles representing a major risk factor of coronary heart diseases. Dietary intervention was shown to improve the lipid profile, thus enhancing the quality of life. Dietary fiber is a nondigestible form of carbohydrates, due to the lack of the digestive enzyme in humans required to digest fiber, and is classified according to its water solubility properties as either soluble (SDF) or insoluble dietary fiber (IDF). Consumption of SDF is associated with several health benefits such as reduced lipid levels, lower blood pressure, improved blood glucose control, improved immune function, and reduced inflammation. SDF has been shown to lower blood cholesterol by several action mechanisms including directly due to the gelling, mucilaginous, and viscous fiber nature, and indirectly due to its fermented products and modulation of the gut microbiome. This review aims to provide a holistic overview on how SDF impacts the lipid profile. We start by providing an overview of the chemical structure of the major SDFs including mucilage, gums (gum arabic and guar gum), pectin, and inulin.
Collapse
Affiliation(s)
- Alaa F. Bakr
- Pathology
Department, Faculty of Veterinary Medicine, Cairo University, Gamaa Street, 12211 Giza, Egypt
| | - Mohamed A. Farag
- Pharmacognosy
Department, College of Pharmacy, Cairo University, Kasr el Aini Street, P.O. Box 11562, 12613 Cairo, Egypt
| |
Collapse
|
7
|
Cerdá-Bernad D, Frutos MJ. Saffron Floral By-Products as Novel Sustainable Vegan Ingredients for the Functional and Nutritional Improvement of Traditional Wheat and Spelt Breads. Foods 2023; 12:2380. [PMID: 37372590 PMCID: PMC10297254 DOI: 10.3390/foods12122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Saffron (Crocus sativus L.) is a traditional Mediterranean plant whose stigmas are used to obtain the most expensive spice in the world. Nevertheless, there is a lack of sustainability in its production, since, to produce 1 kg of saffron, about 350 kg of tepals are discarded. Therefore, this study aimed to develop wheat and spelt breads enriched with saffron floral by-products at a ratio of 0, 2.5, 5, and 10% (w/w), respectively, and to evaluate their nutritional, physicochemical, functional, and sensory properties, as well as the stability of antioxidant compounds during the in vitro digestion. The results revealed that the addition of saffron floral by-products, especially at 10%, increased the dietary fiber content by 25-30% of traditional wheat and spelt breads; improved their mineral content (270-290 mg/100 g for K, 90-95 mg/100 g for Ca, 40-50 mg/100 g for Mg, and 15-18 mg/100 g for Fe); changed their textural properties; and significantly enhanced the phenolic content and antioxidant ability (at 5 and 10%), which remained stable throughout the in vitro oral and gastrointestinal digestion processes. From a sensory point of view, the addition of saffron flowers modified the organoleptic properties of breads. Thus, these novel vegan enriched breads could exert beneficial effects on human health after their intake, making saffron floral by-products suitable and sustainable ingredients to develop new functional foods such as healthier alternative vegan bakery products.
Collapse
Affiliation(s)
| | - María José Frutos
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain;
| |
Collapse
|
8
|
Duncan SH, Conti E, Ricci L, Walker AW. Links between Diet, Intestinal Anaerobes, Microbial Metabolites and Health. Biomedicines 2023; 11:biomedicines11051338. [PMID: 37239009 DOI: 10.3390/biomedicines11051338] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
A dense microbial community resides in the human colon, with considerable inter-individual variability in composition, although some species are relatively dominant and widespread in healthy individuals. In disease conditions, there is often a reduction in microbial diversity and perturbations in the composition of the microbiota. Dietary complex carbohydrates that reach the large intestine are important modulators of the composition of the microbiota and their primary metabolic outputs. Specialist gut bacteria may also transform plant phenolics to form a spectrum of products possessing antioxidant and anti-inflammatory activities. Consumption of diets high in animal protein and fat may lead to the formation of potentially deleterious microbial products, including nitroso compounds, hydrogen sulphide, and trimethylamine. Gut anaerobes also form a range of secondary metabolites, including polyketides that may possess antimicrobial activity and thus contribute to microbe-microbe interactions within the colon. The overall metabolic outputs of colonic microbes are derived from an intricate network of microbial metabolic pathways and interactions; however, much still needs to be learnt about the subtleties of these complex networks. In this review we consider the multi-faceted relationships between inter-individual microbiota variation, diet, and health.
Collapse
Affiliation(s)
- Sylvia H Duncan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Elena Conti
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Liviana Ricci
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Alan W Walker
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
9
|
Tabashsum Z, Scriba A, Biswas D. Alternative approaches to therapeutics and subtherapeutics for sustainable poultry production. Poult Sci 2023; 102:102750. [PMID: 37207572 DOI: 10.1016/j.psj.2023.102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/21/2023] Open
Abstract
The world population is growing rapidly and thus its demand for food is growing as well. To meet the demand of the ever-increasing number of consumers, the poultry industry and both of its main sectors-conventional and organic/cage-free farming-are expanding in parallel. Due to increasing demand of poultry products and higher mortality rate of chicks (an average 0.3% increase of mortality over last 5 yr), both conventional and organic poultry farming systems struggle with various issues; animal welfare, environmental sustainability, and antibiotic resistance of the prevailing zoonotic/enteric pathogens are common issues for conventional farming whereas slow growth rate, higher costs, inefficient land use, different diseases of the chicken, and cross-contamination with bacterial pathogens into the final products are the major issues for organic poultry farming. On top of these issues, the use of subtherapeutic antibiotics was recently banned in conventional farming systems and by definition the organic farming system cannot use the antibiotics/synthetic chemicals even for therapeutic use. In conventional farming system, use of therapeutic antibiotics may result in residuals antibiotics in the final products. As a result, sustainable alternatives are in demand to mitigate the prevailing issues for both conventional and organic farming. Potential alternatives may include bacteriophages, vaccination, probiotics, plant-derived prebiotics, and synbiotics. These alternatives have beneficial attributes and shortcomings of their use in both conventional and organic poultry production system. In this review, we'll discuss the scope of these potential alternatives as therapeutics and subtherapeutics in sustainable poultry production and ways to improve their efficacy.
Collapse
Affiliation(s)
- Zajeba Tabashsum
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA
| | - Aaron Scriba
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA
| | - Debabrata Biswas
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA; Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
10
|
Saud KT, Xu J, Wilkanowicz S, He Y, Moon JJ, Solomon MJ. Electrosprayed microparticles from inulin and poly(vinyl) alcohol for colon targeted delivery of prebiotics. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
11
|
Lim SJ, Kwon HC, Shin DM, Choi YJ, Han SG, Kim YJ, Han SG. Apoptosis-Inducing Effects of Short-Chain Fatty Acids-Rich Fermented Pistachio Milk in Human Colon Carcinoma Cells. Foods 2023; 12:foods12010189. [PMID: 36613403 PMCID: PMC9818824 DOI: 10.3390/foods12010189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 01/03/2023] Open
Abstract
Pistachio milk (PM), an extraction product of pistachio, is protein- and fat-dense food. Short-chain fatty acids (SCFAs) are known for inducing cytotoxicity and apoptosis in colon carcinoma cells. This study aimed to find an optimal combination of probiotics that can produce a higher amount of SCFAs in PM. In addition, the anti-cancer effect of fermented PM on human colon carcinoma cells (Caco-2) was determined. The combinations of probiotics were as follows: Streptococcus thermophilus + Lactobacillus bulgaricus (C); C + Lactobacillus acidophilus (C-La); C + Lactobacillus gasseri (C-Lg); C + Bifidobacterium bifidum (C-Bb). The results indicated that fermented PM was produced after a short fermentation time in all the probiotics combinations. C-Bb produced up to 1.5-fold more acetate than the other probiotics combinations did. A significant amount of cytotoxicity, i.e., 78, 56, and 29% cell viability was observed in Caco-2 cells by C-Bb-fermented PM at 1, 2.5 and 5%, respectively. C-Bb-fermented PM (5%) induced early and late apoptosis up to 6-fold. Additionally, Caco-2 cells treated with C-Bb-fermented PM significantly induced the downregulation of α-tubulin and the upregulation of cleaved caspase-3, as well as nuclear condensation and fragmentation. Our data suggest that fermented PM, which is rich in acetate, may have the potential as a functional food possessing anti-colon cancer properties.
Collapse
Affiliation(s)
- Su-Jin Lim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyuk-Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong-Min Shin
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yong-Jun Choi
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seo-Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Yea-Ji Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence:
| |
Collapse
|
12
|
Muniyappan M, Baek DH, Kim IH. Effects of dietary supplementation of quillaja saponin or fructooligosaccharide and a mixture of both on the growth performance, nutrient utilisation, faecal microbial and faecal noxious gas emissions in growing pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2093656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Madesh Muniyappan
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| | - Dong Heon Baek
- Department of Oral Microbiology and Immunology, Dankook University, Cheonan, Korea
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
13
|
Colamarino AN, Johnson TM, Boudreaux DM, Dutner JM, Stancoven BW, Lincicum AR, Akers JA. Influence of Lactobacillus reuteri, Bifidobacterium animalis subsp. lactis, and prebiotic inulin on dysbiotic dental biofilm composition ex vivo. J Periodontol 2022. [PMID: 36542391 DOI: 10.1002/jper.22-0505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Probiotic bacterial supplementation has shown promising results in the treatment of periodontitis and the maintenance of periodontal health. The purpose of this investigation was to evaluate the influence of Lactobacillus reuteri or Bifidobacterium animalis subsp. lactis supplementation with and without prebiotic inulin on biofilm composition using an ex vivo biofilm model. METHODS Subgingival plaque specimens from three periodontitis-affected human donors were used to grow biofilms on hydroxyapatite disks in media supplemented with varying combinations of prebiotic inulin, Lactobacillus reuteri, and Bifidobacterium animalis subsp. lactis. Relative abundances of bacterial genera present in mature biofilms were evaluated using 16S rRNA next-generation sequencing. Diversity metrics of microbial communities were evaluated using a next-generation microbiome bioinformatics platform. RESULTS Inulin supplementation produced statistically significant dose-dependent increases in relative abundances of Lactobacillus and Bifidobacterium species (p < 0.001) with concomitant decreases in relative abundances of Streptococcus, Veillonella, Fusobacterium, Parvimonas, and Prevotella species (p < 0.001). Inoculation with L. reuteri or B. animalis subsp. lactis increased the relative abundance of only the supplemented probiotic genera (p < 0.05). Supplemental inulin led to a statistically significant decrease in biofilm alpha diversity (p < 0.001). CONCLUSIONS The described ex vivo model appears suitable for investigating the effects of probiotic bacteria, prebiotic oligosaccharides, and combinations thereof on biofilm composition and complexity. Within the limitations imposed by this model, results from the present study underscore the potential for prebiotic inulin to modify biofilm composition favorably. Additional research further elucidating biologic rationale and controlled clinical research defining therapeutic benefits is warranted.
Collapse
Affiliation(s)
- Aaron N Colamarino
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Thomas M Johnson
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | | | - Joseph M Dutner
- Department of Endodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Brian W Stancoven
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Adam R Lincicum
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Joshua A Akers
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| |
Collapse
|
14
|
Aslan Türker D, Göksel Saraç M, Doğan M. Determination of the best interaction of inulin with different proteins by using interfacial rheology: the relationship with the emulsion activity and stability in emulsion systems. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This study aimed to develop functional emulsions with dietary fibre/proteins and to examine the role of interfacial rheological properties on the emulsion stability. Emulsions with inulin and various animal/vegetable proteins were prepared, and their emulsifying and interfacial rheological properties were appraised for their possible applications in stabilizing oil-in-water emulsions. Interfacial measurements including the frequency, time and strain sweep test were determined depending on the protein differences. The results revealed that the adsorption behaviour of proteins at the two interfaces was quite different. The apparent viscosity (η
50) of the emulsions ranged between 0.006 and 0.037 Pa s. The highest interfacial viscosity (η
i) values at low shear rates were determined in the mixture of egg protein-inulin at the oil/water interface. In particular, the interfacial properties of egg protein were not similar to those of other proteins. This study indicated that interfacial rheological properties and emulsifying properties of the proteins were influenced by the presence of inulin which contributes to the existing body of knowledge on the preparation of the prebiotic emulsions with proteins.
Collapse
Affiliation(s)
- Duygu Aslan Türker
- Department of Food Engineering , Erciyes University, Engineering College , 38039 Kayseri Türkiye
| | - Meryem Göksel Saraç
- Food Technology Department , Cumhuriyet University, Yıldızeli Vocational College , 58500 Sivas , Türkiye
| | - Mahmut Doğan
- Department of Food Engineering , Erciyes University, Engineering College , 38039 Kayseri Türkiye
| |
Collapse
|
15
|
Synbiotic Intervention with Lactobacilli, Bifidobacteria, and Inulin in Healthy Volunteers Increases the Abundance of Bifidobacteria but Does Not Alter Microbial Diversity. Appl Environ Microbiol 2022; 88:e0108722. [PMID: 36165644 PMCID: PMC9552601 DOI: 10.1128/aem.01087-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synbiotics combine probiotics and prebiotics and are being investigated for potential health benefits. In this single-group-design trial, we analyzed changes in the gut microbiome, stool quality, and gastrointestinal well-being in 15 healthy volunteers after a synbiotic intervention comprising Lacticaseibacillus rhamnosus (LGG), Lactobacillus acidophilus (LA-5), Lacticaseibacillus paracasei subsp. paracasei (L. CASEI 431), and Bifidobacterium animalis subsp. lactis BB-12 and 20 g of chicory-derived inulin powder consumed daily for 4 weeks. Fecal samples were collected at baseline and at completion of the intervention, and all participants completed a fecal diary based on the Bristol Stool Scale and recorded their gastrointestinal well-being. No adverse effects were observed after consumption of the synbiotic product, and stool consistency and frequency remained almost unchanged during the trial. Microbiome analysis of the fecal samples was achieved using shotgun sequencing followed by taxonomic profiling. No changes in alpha and beta diversity were seen after the intervention. Greater relative abundances of Bifidobacteriaceae were observed in 12 subjects, with indigenous bifidobacteria species constituting the main increase. All four probiotic organisms increased in abundance, and L. rhamnosus, B. animalis, and L. acidophilus were differentially abundant, compared to baseline. Comparison of the fecal strains to the B. animalis subsp. lactis BB-12 reference genome and the sequenced symbiotic product revealed only a few single-nucleotide polymorphisms differentiating the probiotic B. animalis subsp. lactis BB-12 from the fecal strains identified, indicating that this probiotic strain was detectable after the intervention. IMPORTANCE The effects of probiotics/synbiotics are seldom investigated in healthy volunteers; therefore, this study is important, especially considering the safety aspects of multiple probiotics together with prebiotic fiber in consumption by humans. The study explores at the potential of a synbiotic intervention with lactobacilli, bifidobacteria, and inulin in healthy volunteers and tracks the ingested probiotic strain B. animalis subsp. lactis.
Collapse
|
16
|
Effects of inulin supplementation on inflammatory biomarkers and clinical symptoms of women with obesity and depression on a calorie-restricted diet: a randomised controlled clinical trial. Br J Nutr 2022; 129:1897-1907. [PMID: 36059088 DOI: 10.1017/s000711452200232x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Major depressive disorder (MDD) is regarded as an inflammatory disorder. Gut microbiota dysbiosis, observed in both MDD and obesity, leads to endotoxemia and inflammatory status, eventually exacerbating depressive symptoms. Manipulation of gut microbiota by prebiotics might help alleviate depression. The present study aimed to investigate the effects of inulin supplementation on psychological outcomes and biomarkers of gut permeability, endotoxemia, inflammation, and brain-derived neurotrophic factor (BDNF) in women with obesity and depression on a calorie-restricted diet. In a double-blind randomised clinical trial, forty-five women with obesity and MDD were allocated to receive 10 g/d of either inulin or maltodextrin for 8 weeks; all the patients followed a healthy calorie restricted diet as well. Anthropometric measures, dietary intakes, depression, and serum levels of zonulin, lipopolysaccharide (LPS), inflammatory biomarkers (TNF-α, IL-10, monocyte chemoattractant protein-1, toll-like receptor-4 and high-sensitivity C-reactive protein), and BDNF were assessed at baseline and end of the study. Weight and Hamilton Depression Rating Scale (HDRS) scores decreased in both groups; between-group differences were non-significant by the end of study (P = 0·333 for body weight and P = 0·500 for HDRS). No between-group differences were observed for the other psychological outcomes and serum biomarkers (P > 0·05). In this short-term study, prebiotic supplementation had no significant beneficial effects on depressive symptoms, gut permeability, or inflammatory biomarkers in women with obesity and depression.
Collapse
|
17
|
Major N, Perković J, Palčić I, Bažon I, Horvat I, Ban D, Goreta Ban S. The Phytochemical and Nutritional Composition of Shallot Species (Allium × cornutum, Allium × proliferum and A. cepa Aggregatum) Is Genetically and Environmentally Dependent. Antioxidants (Basel) 2022; 11:antiox11081547. [PMID: 36009266 PMCID: PMC9405304 DOI: 10.3390/antiox11081547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Shallots are a perennial plant from the Alliaceae family, classified with the common onion under the name of the Allium cepa Aggregatum group. The term shallot is also used for diploid and triploid viviparous onions, known as Allium × proliferum (Moench) Schrad and Allium × cornutum Clementi ex Vis., respectively. In this study, we compared the dry matter, pyruvic acid content, sugar content, flavonoid content, antioxidant capacity and mineral composition of 34 shallot accessions falling into three shallot species (Allium × cornutum, Allium × proliferum and A. cepa Aggregatum). Shallot accessions belonging to the A.× cornutum and A. × proliferum groups are characterized by high dry matter content (around 25%), of which a little less than 50% is formed of inulin-type sugars, polysaccharides, considered an excellent prebiotic with beneficial effects on human health. On the other hand, accessions belonging to the A. cepa Aggregatum group have lower dry matter content and, as a result, lower pungency (measured as pyruvic acid content), making them more suitable for fresh consumption by a broader range of consumers, but, at the same time, abundant in phenolic compounds, especially quercetin and isorhamnetin glycosides. We also observed a greater biodiversity among accessions within the A. cepa Aggregatum group in all the analyzed physico-chemical parameters compared to the other shallot groups. The investigated shallot accessions have an excellent in vitro antioxidant capacity, as well as excellent nutritional properties.
Collapse
Affiliation(s)
- Nikola Major
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
- Correspondence: (N.M.); (S.G.B.)
| | - Josipa Perković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
| | - Igor Palčić
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| | - Iva Bažon
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| | - Ivana Horvat
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
| | - Dean Ban
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| | - Smiljana Goreta Ban
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
- Correspondence: (N.M.); (S.G.B.)
| |
Collapse
|
18
|
Inulin addition improved probiotic survival in soy-based fermented beverage. World J Microbiol Biotechnol 2022; 38:133. [PMID: 35689148 DOI: 10.1007/s11274-022-03322-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
Currently, the growing demand for non-dairy functional foods leads to the constant development of new products. The objective of the present work was to obtain a soy-based fermented beverage employing the strains Lactiplantibacillus plantarum CIDCA 8327 or Lacticaseibacillus paracasei BGP1 and to analyze the effect of post-fermentation addition of inulin of low or high average polymerization degree on the bacterial resistance. Also, the antimicrobial and antioxidant activity of the fermented soy-based beverages were analyzed. The soy-based matrix was shown to be a suitable substrate for the growth of both lactic acid bacteria, and the fermented beverages obtained presented bioactive properties such us antioxidant activity and bactericidal effect against pathogen microorganisms. The addition of inulin after the fermentation process avoid the hydrolysis and so, preserve its polymerization degree and thus the potential prebiotic effect. The incorporation of inulin to the soy-based fermented beverages increased the bacterial count after 30 days of refrigerated storage up to 8.71 ± 0.15 and 8.41 ± 0.10 log CFU/mL for L. paracasei and L. planatrum respectively. The resistance to the gastrointestinal conditions of the strain L. paracasei BGP1 in the fermented beverage was improved up to 70% when inulin of high polymerization degree was added. Meanwhile the strain L. plantarum CIDCA 8327 showed a survival of 97 and 94% in the fermented beverage added with inulin of low or high polymerization degree, respectively. These results contribute to the development of non-dairy products containing inulin and probiotics and the diversification agri-based functional foods.
Collapse
|
19
|
Lancaster SM, Lee-McMullen B, Abbott CW, Quijada JV, Hornburg D, Park H, Perelman D, Peterson DJ, Tang M, Robinson A, Ahadi S, Contrepois K, Hung CJ, Ashland M, McLaughlin T, Boonyanit A, Horning A, Sonnenburg JL, Snyder MP. Global, distinctive, and personal changes in molecular and microbial profiles by specific fibers in humans. Cell Host Microbe 2022; 30:848-862.e7. [PMID: 35483363 PMCID: PMC9187607 DOI: 10.1016/j.chom.2022.03.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/19/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022]
Abstract
Dietary fibers act through the microbiome to improve cardiovascular health and prevent metabolic disorders and cancer. To understand the health benefits of dietary fiber supplementation, we investigated two popular purified fibers, arabinoxylan (AX) and long-chain inulin (LCI), and a mixture of five fibers. We present multiomic signatures of metabolomics, lipidomics, proteomics, metagenomics, a cytokine panel, and clinical measurements on healthy and insulin-resistant participants. Each fiber is associated with fiber-dependent biochemical and microbial responses. AX consumption associates with a significant reduction in LDL and an increase in bile acids, contributing to its observed cholesterol reduction. LCI is associated with an increase in Bifidobacterium. However, at the highest LCI dose, there is increased inflammation and elevation in the liver enzyme alanine aminotransferase. This study yields insights into the effects of fiber supplementation and the mechanisms behind fiber-induced cholesterol reduction, and it shows effects of individual, purified fibers on the microbiome.
Collapse
Affiliation(s)
- Samuel M Lancaster
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Brittany Lee-McMullen
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Charles Wilbur Abbott
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Jeniffer V Quijada
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Daniel Hornburg
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Heyjun Park
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Dalia Perelman
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Dylan J Peterson
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Michael Tang
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Aaron Robinson
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Sara Ahadi
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Chia-Jui Hung
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Melanie Ashland
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Tracey McLaughlin
- Division of Endocrinology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Anna Boonyanit
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Aaron Horning
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Justin L Sonnenburg
- Department of Microbiology & Immunology, Stanford School of Medicine, Stanford, CA 94305, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Levan-type fructooligosaccharides synthesis by novel levansucrase-inulosucrase fusion enzyme. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Rafiq K, Tofazzal Hossain M, Ahmed R, Hasan MM, Islam R, Hossen MI, Shaha SN, Islam MR. Role of Different Growth Enhancers as Alternative to In-feed Antibiotics in Poultry Industry. Front Vet Sci 2022; 8:794588. [PMID: 35224074 PMCID: PMC8873819 DOI: 10.3389/fvets.2021.794588] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
The poultry industry has grown so fast alongside the irrational use of antibiotics to maximize profit and make the production cost-effective during the last few decades. The rising and indiscriminate use of antibiotics might result in the deposition of residues in poultry food products and in the development of resistance to these drugs by microorganisms. Therefore, many diseases are becoming difficult to treat both in humans and animals. In addition, the use of low-dose antibiotics as growth enhancer results in antibiotic residues in food products, which have detrimental effects on human health. On the other hand, many studies have shown that antibiotics administered to poultry and livestock are poorly absorbed through the gut and usually excreted without metabolism. These excreted antibiotics eventually accumulate in the environment and enter the human food chain, resulting in the bioaccumulation of drug residues in the human body. In this regard, to find out alternatives is of paramount importance for the production of safe meat and egg. Therefore, in recent years, much research attention was disarticulated toward the exploration for alternatives to antibiotic as in-feed growth enhancers after its ban by the EU. As a result, probiotics, prebiotics, phytobiotics, spirulina, symbiotic, and their combination are being used more frequently in poultry production. Feed additives therefore gained popularity in poultry production by having many advantages but without any residues in poultry products. In addition, numerous studies demonstrating that such biological supplements compete with antimicrobial resistance have been conducted. Therefore, the purpose of this review article was to highlight the advantages of using biological products instead of antibiotics as poultry in-feed growth enhancers to enhance the production performance, reduce intestinal pathogenic bacteria, and maintain gut health, potentiating the immune response, safety, and wholesomeness of meat and eggs as evidence of consumer protection, as well as to improve the safety of poultry products for human consumption.
Collapse
Affiliation(s)
- Kazi Rafiq
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- *Correspondence: Kazi Rafiq
| | | | - Rokeya Ahmed
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Mehedi Hasan
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rejaul Islam
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Ismail Hossen
- Livestock Division, Bangladesh Agricultural Research Council, Dhaka, Bangladesh
| | | | | |
Collapse
|
22
|
Chen P, Lei S, Tong M, Chang Q, Zheng B, Zhang Y, Zeng H. Effect of polysaccharide fractions from Fortunella margarita on the fecal microbiota of mice and SCFA production in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Lu X, Li N, Zhao R, Zhao M, Cui X, Xu Y, Qiao X. In vitro Prebiotic Properties of Garlic Polysaccharides and Its Oligosaccharide Mixtures Obtained by Acid Hydrolysis. Front Nutr 2021; 8:798450. [PMID: 34957191 PMCID: PMC8695971 DOI: 10.3389/fnut.2021.798450] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022] Open
Abstract
Fructans and oligofructose are usually used as prebiotics without any limitation in functional food or food ingredients. The degree of polymerization (DP) of polysaccharides affects the utilization of probiotics. Garlic is rich in fructans. The objective of this study was to extract and purify polysaccharides from garlic, analyze its composition, hydrolyze them using HCl, and then evaluate the prebiotic potential of the garlic neutral polysaccharides (GPs) before and after hydrolysis. GPs were 6.57 × 103 Da with a composition of fructose and glucose at a ratio of 4:1. After acid hydrolysis, low molecular weight fraction in garlic oligofructose (GOs) may be eliminated through ultrafiltration. The content of oligosaccharides with an average DP < 10 increased from 15 to 75%. GPs and GOS had a stronger resistance to acid conditions in human stomach than fructooligosaccharide, and GOs showed better prebiotic properties on the growth of lactobacilli than GPs. This study evaluates the prebiotic potential of the garlic frutctans and oligosaccharides mixtures obtained by acid hydrolysis, which may be used as an ingredient in functional food and nutraceutical products.
Collapse
Affiliation(s)
- Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Renjie Zhao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Meng Zhao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xuanxuan Cui
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yukun Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
24
|
Sulejmani E, Boran O, Huppertz T, Hayaloglu A. Rheology, microstructure and sensory properties of low-fat milk jam: Influence of inulin type, sucrose content, sodium bicarbonate and calcium chloride. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Naseer M, Poola S, Uraz S, Tahan V. Therapeutic Effects of Prebiotics on Constipation: A Schematic Review. ACTA ACUST UNITED AC 2021; 15:207-215. [PMID: 32048977 DOI: 10.2174/1574884715666200212125035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Constipation is a highly prevalent functional gastrointestinal disorder that may significantly affect the quality of life and health care costs. Treatment for constipation has been broadly reviewed by cognitive therapies, medications, and surgical interventions. Gut microbiota such as Bifidobacterium, Clostridium, Bacteroidetes, and Lactobacilli have been demonstrated in functional gastrointestinal disorders and prebiotics to play a role in augmenting their presence. Prebiotics are ingredients in foods that remain undigested, stimulating the bacteria. There are a variety of prebiotics; however, there exists only a handful of studies that describe their efficacy for chronic constipation. The purpose of this study is to review the available literature on the utility of different commercially available prebiotics in patients with functional and chronic idiopathic constipation. To fulfil the objectives of the study, published articles in the English language on databases such as Pubmed, Ovid Medline, and EMBASE were searched. The terms prebiotics, constipation, chronic constipation, functional constipation were used. We reviewed and included 21 randomized controlled trials exploring the role of prebiotics in constipated adults. Prebiotics are effective treatments for chronic idiopathic constipation and showed improvement in the stool consistency, number of bowel moments and bloating. Although which prebiotic formulary would promote improved symptoms of constipation is still not clear.
Collapse
Affiliation(s)
- Maliha Naseer
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Shiva Poola
- Department of Internal and Pediatric Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Suleyman Uraz
- Department of Internal Medicine, University of Missouri, Division of Gastroenterology and Hepatology, Columbia, MO 65211, United States
| | - Veysel Tahan
- Department of Internal Medicine, University of Missouri, Division of Gastroenterology and Hepatology, Columbia, MO 65211, United States
| |
Collapse
|
26
|
Rautmann AW, de La Serre CB. Microbiota's Role in Diet-Driven Alterations in Food Intake: Satiety, Energy Balance, and Reward. Nutrients 2021; 13:nu13093067. [PMID: 34578945 PMCID: PMC8470213 DOI: 10.3390/nu13093067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota plays a key role in modulating host physiology and behavior, particularly feeding behavior and energy homeostasis. There is accumulating evidence demonstrating a role for gut microbiota in the etiology of obesity. In human and rodent studies, obesity and high-energy feeding are most consistently found to be associated with decreased bacterial diversity, changes in main phyla relative abundances and increased presence of pro-inflammatory products. Diet-associated alterations in microbiome composition are linked with weight gain, adiposity, and changes in ingestive behavior. There are multiple pathways through which the microbiome influences food intake. This review discusses these pathways, including peripheral mechanisms such as the regulation of gut satiety peptide release and alterations in leptin and cholecystokinin signaling along the vagus nerve, as well as central mechanisms, such as the modulation of hypothalamic neuroinflammation and alterations in reward signaling. Most research currently focuses on determining the role of the microbiome in the development of obesity and using microbiome manipulation to prevent diet-induced increase in food intake. More studies are necessary to determine whether microbiome manipulation after prolonged energy-dense diet exposure and obesity can reduce intake and promote meaningful weight loss.
Collapse
|
27
|
Chengxiao Y, Dongmei W, Kai Z, Hou L, Xiao H, Ding T, Liu D, Ye X, Linhardt RJ, Chen S. Challenges of pectic polysaccharides as a prebiotic from the perspective of fermentation characteristics and anti-colitis activity. Carbohydr Polym 2021; 270:118377. [PMID: 34364621 DOI: 10.1016/j.carbpol.2021.118377] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022]
Abstract
Several studies are described that contribute to the systematic exploration of new aspects of digestion, fermentation, and biological activities of pectic polysaccharides (PPS) leading to a better understanding of prebiotics. Inflammatory bowel disease (IBD) is thought to be associated with the dysbacteriosis induced by different environmental agents in genetically susceptible persons. PPS are considered as an indispensable gut-microbiota-accessible carbohydrate that play a dominant role in maintaining gut microbiota balance and show a better effect in ameliorating IBD than some traditional prebiotics. The aim of this review is to summarize the fermentation characteristics of PPS, highlight its role in improving IBD, and propose a view that PPS may be a new and effective prebiotic.
Collapse
Affiliation(s)
- Yu Chengxiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Wu Dongmei
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Zhu Kai
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Lijuan Hou
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Hang Xiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Shiguo Chen
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
28
|
Chen X, Fu X, Huang L, Xu J, Gao X. Agar oligosaccharides: A review of preparation, structures, bioactivities and application. Carbohydr Polym 2021; 265:118076. [PMID: 33966840 DOI: 10.1016/j.carbpol.2021.118076] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/28/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022]
Abstract
Agar, a gelatinous polysaccharide which is in the cell wall of many red algae, is widely used as food and gelling agent. Agar oligosaccharides (AOs), the hydrolysate of agar, show much more kinds of bio-activities because of its lower molecular weight, better water solubility and higher absorption efficiency. It is indicated that AOs with different structure and degree of polymerization, i.e. series of agaro-oligosaccharides and neoagaro-oligosaccharides, can be obtained under different preparation conditions. In addition, the biological activities of AOs are diversely and closely correlated to the composition and structure. This review aims to comprehensively summarize the preparation, structural characteristics and bio-activities of AOs, so as to provide a reference for applications of AOs as marine natural products in pharmacological, cosmetics and nutraceutical fields.
Collapse
Affiliation(s)
- Xiaodan Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Luqiang Huang
- Key Laboratory of Special Marine Bio-resources Sustainable Utilization of Fujian Province, College of Life Science, Fujian Normal University, Fuzhou, 350108, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
29
|
Oliver L, Ramió-Pujol S, Amoedo J, Malagón M, Serrano M, Bahí A, Lluansí A, Torrealba L, Busquets D, Pardo L, Serra-Pagès M, Aldeguer X, Garcia-Gil J. A Novel Grape-Derived Prebiotic Selectively Enhances Abundance and Metabolic Activity of Butyrate-Producing Bacteria in Faecal Samples. Front Microbiol 2021; 12:639948. [PMID: 33833742 PMCID: PMC8021714 DOI: 10.3389/fmicb.2021.639948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) patients have different faecal microbiota profiles compared to healthy controls. Prebiotics intake influences intestinal microbiota composition which in turn influence the growth of short-chain fatty acids (SCFA) producing bacteria. This study aimed to evaluate the capacity of Previpect, a new prebiotic obtained from grapes fibre, to balance the dysbiosis found in patients with intestinal disorders. This was achieved through the analysis of specific bacterial markers and SCFA production using an in vitro fermentation system and comparing the obtained results with those obtained with other commercial prebiotics. Fresh faecal samples from patients with IBD (N = 6), IBS (N = 3), and control subjects (N = 6) were used. Previpect showed high fermentative ability enabling the growth of butyrate producing bacteria and increasing SCFA concentration up to 2.5-fold. Previpect is a promising prebiotic which may be used as a therapeutic strategy towards promotion of intestinal microbiota restoration, microbial healing, and as a preventive supplement for healthy individuals.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Bahí
- Institut d'Investigació Biomèdica de Girona-IDIBGI, Salt, Spain
| | - Aleix Lluansí
- Institut d'Investigació Biomèdica de Girona-IDIBGI, Salt, Spain
| | | | - David Busquets
- Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Laura Pardo
- Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | | | - Xavier Aldeguer
- GoodGut SL, Girona, Spain.,Institut d'Investigació Biomèdica de Girona-IDIBGI, Salt, Spain.,Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | | |
Collapse
|
30
|
Leyva-Jiménez FJ, Lozano-Sánchez J, Cádiz-Gurrea MDLL, Fernández-Ochoa Á, Arráez-Román D, Segura-Carretero A. Spray-Drying Microencapsulation of Bioactive Compounds from Lemon Verbena Green Extract. Foods 2020; 9:foods9111547. [PMID: 33114638 PMCID: PMC7692807 DOI: 10.3390/foods9111547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Lippia citriodora has been demonstrated to have a wide variety of phytochemicals which provide benefits to human health acting as antioxidants or anti-obesogenics. In this study, these phytochemicals were recovered using a microwave-assisted technology and applying optimal conditions and microencapsulated using spray drying. In this study, two different carbohydrates, maltodextrin (MD) and inulin (IN), were compared as carriers in the encapsulation procedure. The spray drying process was optimized by using a response surface methodology (RSM) based on a central composite design 22, where air inlet temperature and the sample:encapsulating agent ratio (S:EA) were selected as independent variables. Both designs were analyzed equally to evaluate differences between each carrying agent on polar compounds’ encapsulation (process yield (Y%), encapsulation efficiency (EE%) and recovery of compounds (R%)) during the spray drying. The EE% and R% of each polar compound was monitored by High Performance Liquid Chromatography coupled to Time-of-Flight mass spectrometer by electrospray interface (HPLC-ESI-TOF-MS). The results showed that the use of IN as a carrier increased the powder recovered and the recovery of polar compounds after the spray dry process, whereas MD achieved a higher encapsulation efficiency.
Collapse
Affiliation(s)
- Francisco Javier Leyva-Jiménez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (M.d.l.L.C.-G.); (D.A.-R.); (A.S.-C.)
| | - Jesús Lozano-Sánchez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (M.d.l.L.C.-G.); (D.A.-R.); (A.S.-C.)
- Department of Food Science and Nutrition, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Correspondence: (J.L.-S.); (Á.F.-O.); Tel.: +34-958-637-083 (Á.F.-O.)
| | - María de la Luz Cádiz-Gurrea
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (M.d.l.L.C.-G.); (D.A.-R.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| | - Álvaro Fernández-Ochoa
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (M.d.l.L.C.-G.); (D.A.-R.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
- Correspondence: (J.L.-S.); (Á.F.-O.); Tel.: +34-958-637-083 (Á.F.-O.)
| | - David Arráez-Román
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (M.d.l.L.C.-G.); (D.A.-R.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| | - Antonio Segura-Carretero
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (M.d.l.L.C.-G.); (D.A.-R.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| |
Collapse
|
31
|
Metabolic Profiling of Xylooligosaccharides by Lactobacilli. Polymers (Basel) 2020; 12:polym12102387. [PMID: 33081339 PMCID: PMC7603016 DOI: 10.3390/polym12102387] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 01/23/2023] Open
Abstract
Three lactic acid bacteria (LAB) strains identified as Lactobacillus plantarum, Lactobacillus brevis, and Lactobacillus sakei isolated from meat products were tested for their ability to utilize and grow on xylooligosaccharides (XOSs). The extent of carbohydrate utilization by the studied strains was analyzed by HPLC. All three strains showed preferences for the degree of polymerization (DP). The added oligosaccharides induced the LAB to form end-products of typical mixed-acid fermentation. The utilization of XOSs by the microorganisms requires the action of three important enzymes: β-xylosidase (EC 3.2.1.37) exo-oligoxylanase (EC 3.2.1.156) and α-L-arabinofuranosidase (EC 3.2.1.55). The presence of intracellular β-D-xylosidase in Lb. brevis, Lb. plantarum, and Lb. sakei suggest that XOSs might be the first imported into the cell by oligosaccharide transporters, followed by their degradation to xylose. The studies on the influence of XOS intake on the lipids of rat liver plasma membranes showed that oligosaccharides display various beneficial effects for the host organism, which are probably specific for each type of prebiotic used. The utilization of different types of oligosaccharides may help to explain the ability of Lactobacillus strains to compete with other bacteria in the ecosystem of the human gastrointestinal tract.
Collapse
|
32
|
Sangkuanun T, Wichienchot S, Kato Y, Watanabe H, Peerakietkhajorn S. Oligosaccharides derived from dragon fruit modulate gut microbiota, reduce oxidative stress and stimulate toll-pathway related gene expression in freshwater crustacean Daphnia magna. FISH & SHELLFISH IMMUNOLOGY 2020; 103:126-134. [PMID: 32335314 DOI: 10.1016/j.fsi.2020.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Dragon fruit oligosaccharide (DFO) is an indigestible prebiotic. In this study, we aimed to investigate the effects of DFO on gut microbiota, oxidative stress and immune-related gene expression in Daphnia magna. The 10-day-old D. magna were treated with 0, 9, and 27 mg l-1 DFO for 85 h. The gut bacterial communities, superoxide dismutase (SOD) activity, lipid peroxidation and the expressions of genes in Toll signaling pathway were observed. The results showed that D. magna treated with 9 and 27 mg l-1 DFO altered gut microbiota composition by increasing Limnohabitans and Lactobacillus, and significantly increased SOD activity and reduced lipid peroxidation. Moreover, the expressions of Toll2, Toll3, Toll5, Toll7 and Pelle genes were significantly increased in D. magna treated with 9 and 27 mg l-1 DFO. Our results suggested that DFO changed the composition of the gut microbiota of D. magna by increasing the beneficial bacteria. DFO also had the ability to stimulate innate immunity in D. magna by increasing SOD activity, reducing lipid peroxidation, and increasing the expression of immune-related genes.
Collapse
Affiliation(s)
- Thanwarat Sangkuanun
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Gut Biology and Microbiota Research Unit, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Santad Wichienchot
- Interdisciplinary Graduate School of Nutraceutical and Functional Food, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Saranya Peerakietkhajorn
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Gut Biology and Microbiota Research Unit, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
33
|
Tarrah A, Pakroo S, Lemos Junior WJF, Guerra AF, Corich V, Giacomini A. Complete Genome Sequence and Carbohydrates-Active EnZymes (CAZymes) Analysis of Lactobacillus paracasei DTA72, a Potential Probiotic Strain with Strong Capability to Use Inulin. Curr Microbiol 2020; 77:2867-2875. [PMID: 32623485 DOI: 10.1007/s00284-020-02089-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
The whole genome sequence of Lactobacillus paracasei DTA72, isolated from healthy infant feces, is reported, along with the Carbohydrates-Active enZymes (CAZymes) analysis and an in silico safety assessment. Strain DTA72 had previously demonstrated some interesting potential probiotic features, such as a good resistance to gastrointestinal conditions and an anti-Listeria activity. The 3.1 Mb sequenced genome consists of 3116 protein-coding sequences distributed on 340 SEED subsystems. In the present study, we analyzed the fermentation capability of strain DTA72 on six different carbohydrate sources, namely, glucose, fructose, lactose, galactose, xylose, and inulin by using phenotypical and genomic approaches. Interestingly, L. paracasei DTA72 evidenced the best growth performances on inulin with a much shorter lag phase and higher number of cells at the stationary phase in comparison with all the sugars tested. The CAZyme analysis using the predicted amino acid sequences detected 80 enzymes, distributed into the five CAZymes classes. Moreover, the in silico analysis revealed the absence of blood hemolytic genes, transmissible antibiotic resistances, and plasmids in DTA72. The results described in this study, together with those previously reported and particularly the strong capability to utilize inulin as energy source, make DTA72 a very interesting potential probiotic strain to be considered for the production of synbiotic foods. The complete genome data have been deposited in GenBank under the accession number WUJH00000000.
Collapse
Affiliation(s)
- Armin Tarrah
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Shadi Pakroo
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, viale dell'Università 16, 35020, Legnaro, PD, Italy
| | | | - Andre Fioravante Guerra
- Department of Food Engineering, Federal Center of Technological Education Celso Suckow da Fonseca, Valença, RJ, 27.600-000, Brazil
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, viale dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, viale dell'Università 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
34
|
Tallyne de Aguiar Silva A, Lima Cavalcanti ID, Ayanny de Lima Fernandes M, Gisele de Oliveira Coimbra C, Manoella de Souza Lima G. Effect of zymomonas mobilis probiotic on cholesterol and its lipoprotein fractions and the intestinal regulation. Clin Nutr 2020; 39:3750-3755. [PMID: 32471645 DOI: 10.1016/j.clnu.2020.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/09/2020] [Accepted: 04/02/2020] [Indexed: 11/28/2022]
Abstract
Zymomonas mobilis have characteristics that classify it as probiotic. Thus, this study aimed to evaluate the effect of regular consumption of fermented broth of this strain on the intestinal function of individuals with changes in intestinal transit. This is a randomized, descriptive and quantitative clinical trial, a sample composed of undergraduate students from a university center in Caruaru. After screening for individuals with constipation according to the inclusion and exclusion criteria, only 13 agreed to participate in the study. They were divided into groups: group 1 received Zymomonas mobilis fermented broth once a day; group 2 also received the fermented broth in the same concentration cells being twice a day; group 3 received cell-free fermented broth once daily; and group 4, placebo, received saline once daily, all groups drank for fifteen days, and laboratory tests were performed to check lipid profile before and after that period. Observed an increase in evacuation days in all groups averaged in media 7.0-10.5 days. Groups 1 and 2 showed an increase in total cholesterol (0.5% and 5.0%, respectively), HDL cholesterol (4.1% and 24.1%), LDL cholesterol (4.9% and 8.4%), VLDL cholesterol (17.9% and 11.2%) and triglycerides (19.1% and 27.9%). In group 3, there was a reduction of total cholesterol (-2.4%), LDL cholesterol (-11.2%), VLDL cholesterol (-15.9%), triglycerides (-27.7%) and increase in HDL cholesterol (25.7%). Thus, the broth fermented with Zymomonas mobilis regulated the intestinal transit, but did not improve the lipid profile, while the without cells broth showed a better lipid profile.
Collapse
Affiliation(s)
- Andreza Tallyne de Aguiar Silva
- Lato Sensu Multiprofessional Residence Program in Cancer Attention and Palliative Care, University Center Tabosa of Almeida (ASCES-UNITA), Caruaru, Pernambuco, Brazil.
| | - Iago Dillion Lima Cavalcanti
- Lato Sensu Multiprofessional Residence Program in Cancer Attention and Palliative Care, University Center Tabosa of Almeida (ASCES-UNITA), Caruaru, Pernambuco, Brazil
| | - Maria Ayanny de Lima Fernandes
- Lato Sensu Multiprofessional Residence Program in Cancer Attention and Palliative Care, University Center Tabosa of Almeida (ASCES-UNITA), Caruaru, Pernambuco, Brazil
| | | | | |
Collapse
|
35
|
Jiménez-Avalos JA, Arrevillaga-Boni G, González-López L, García-Carvajal ZY, González-Avila M. Classical methods and perspectives for manipulating the human gut microbial ecosystem. Crit Rev Food Sci Nutr 2020; 61:234-258. [PMID: 32114770 DOI: 10.1080/10408398.2020.1724075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A healthy Human Gut Microbial Ecosystem (HGME) is a necessary condition for maintaining the orderly function of the whole body. Major alterations in the normal gut microbial composition, activity and functionality (dysbiosis) by an environmental or host-related disruptive event, can compromise metabolic, inflammatory, and neurological processes, causing disorders such as obesity, inflammatory bowel disease, colorectal cancer, and depressive episodes. The restore or the maintaining of the homeostatic balance of Gut Microbiota (GM) populations (eubiosis) is possible through diet, the use of probiotics, prebiotics, antibiotics, and even Fecal Microbiota Transplantation (FMT). Although these "classic methods" represent an effective and accepted way to modulate GM, the complexity of HGME requires new approaches to control it in a more appropriate way. Among the most promising emergent strategies for modulating GM are the use of engineered nanomaterials (metallic nanoparticles (NP), polymeric-NP, quantum dots, micelles, dendrimers, and liposomes); phagotherapy (i.e., phages linked with the CRISPR/Cas9 system), and the use of antimicrobial peptides, non-antibiotic drugs, vaccines, and immunoglobulins. Here we review the current state of development, implications, advantages, disadvantages, and perspectives of the different approaches for manipulating HGME.
Collapse
Affiliation(s)
- Jorge Armando Jiménez-Avalos
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Gerardo Arrevillaga-Boni
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | | | - Zaira Yunuen García-Carvajal
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Marisela González-Avila
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| |
Collapse
|
36
|
In Vitro Evaluation of the Effects of Tylosin on the Composition and Metabolism of Canine Fecal Microbiota. Animals (Basel) 2020; 10:ani10010098. [PMID: 31936221 PMCID: PMC7022563 DOI: 10.3390/ani10010098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The antibiotic-responsive enteropathy is a common canine chronic disorder for which tylosin represents an effective widely used therapeutic option, although its mechanism of action, beyond the well-known antibacterial activity, is still unclear. Given the beneficial role of prebiotic substrates for gut health, positive outcomes deriving from the association of tylosin with some prebiotic oligosaccharides might be supposed. The present study investigated in vitro the effects of tylosin, alone or supplemented with fructooligosaccharides, galactooligosaccharides, or xylooligosaccharides, on the composition and activity of the fecal microbiota of healthy dogs. It was partially confirmed that the antibacterial effect of tylosin, given the reduction of some microbial populations and metabolites, e.g., volatile fatty acids. Interestingly, the association of tylosin with prebiotics revealed counteracting effects on some undesirable changes exerted by tylosin, e.g., the reduction of bacteria generally considered beneficial such as lactobacilli and Clostridium cluster XIVa as well as volatile fatty acids, i.e., microbial fermentative end-products that are recognized as essential for enterocytes homeostasis. Abstract The present study investigated the in vitro effects of tylosin (TYL), alone or associated with prebiotics (PRE), on selected canine fecal parameters. Eight treatments were set up: control diet with no addition of substrates; TYL; Fructooligosaccharides (FOS); Galactooligosaccharides (GOS); Xylooligosaccharides (XOS); TYL + FOS; TYL + GOS; TYL + XOS. The flasks (five for treatment), containing a canine fecal suspension (prepared with the feces of healthy adult dogs) and the residue of an in vitro digested dry dog food, were incubated in an anaerobic chamber at 39 °C. TYL and PRE were added at a concentration of 0.2 and 1 g/L, respectively. Samples were collected after 6 and 24 h for analyses. PRE decreased pH values, iso-butyrate, and iso-valerate throughout the incubation; increased lactobacilli, cadaverine, and, tendentiously, total volatile fatty acids after 6 h; increased n-butyrate, putrescine, spermidine, and reduced spermine and E. coli after 24 h. TYL resulted in lower total volatile fatty acids and lactobacilli and higher Clostridium cluster I after 6 h and higher pH values, spermidine, and E. coli throughout the study. When associated with TYL, PRE counteracted some undesirable effects of the antibiotic such as the decrease of lactobacilli and Clostridium cluster XIVa at both 6 and 24 h. In the present study, TYL exhibited inhibitory effects on canine fecal microbiota partially counteracted by PRE supplementation.
Collapse
|
37
|
Williams LM, Scott HA, Wood LG. Soluble fibre as a treatment for inflammation in asthma. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.100108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
38
|
Vallejo-García LC, Rodríguez-Alegría ME, López Munguía A. Enzymatic Process Yielding a Diversity of Inulin-Type Microbial Fructooligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10392-10400. [PMID: 31461615 DOI: 10.1021/acs.jafc.9b03782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The specificity of fructooligosaccharides as prebiotics depends on their size and structure, which in turn depend on their origin or the synthesis procedure. In this work we describe the application of an inulosucrase (IslA) from Leuconostoc citreum CW28 to produce high molecular weight inulin from sucrose alongside a commercial endoinulinase (Novozym 960) produced by Aspergillus niger for a simultaneous or sequential reaction to synthesize fructooligosaccharides (FOS). The simultaneous reaction resulted in a higher substrate conversion and a wide diversity of FOS when compared to the sequential reaction. A shotgun MS analysis of the commercial endoinulinase preparation surprisingly revealed an additional enzymatic activity: a fructosyltransferase, responsible for the synthesis of FOS from sucrose. Consequentially, the range of FOS obtained in reactions combining inulosucrase from Ln. citreum with the fructosyltransferase and endoinulinase from A. niger with sucrose as substrate may be extended and regulated.
Collapse
Affiliation(s)
- Luz Cristina Vallejo-García
- Departamento de Ingeniería celular y Biocatálisis , Instituto de Biotecnología, UNAM , Avenida Universidad 2001, Colonia Chamilpa , 62420 Cuernavaca , México
| | - María Elena Rodríguez-Alegría
- Departamento de Ingeniería celular y Biocatálisis , Instituto de Biotecnología, UNAM , Avenida Universidad 2001, Colonia Chamilpa , 62420 Cuernavaca , México
| | - Agustín López Munguía
- Departamento de Ingeniería celular y Biocatálisis , Instituto de Biotecnología, UNAM , Avenida Universidad 2001, Colonia Chamilpa , 62420 Cuernavaca , México
| |
Collapse
|
39
|
Comparative genomics and functional analysis of a highly adhesive dairy Lactobacillus paracasei subsp. paracasei IBB3423 strain. Appl Microbiol Biotechnol 2019; 103:7617-7634. [PMID: 31359102 PMCID: PMC6717177 DOI: 10.1007/s00253-019-10010-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 01/04/2023]
Abstract
Various Lactobacillus paracasei strains are found in diverse environments, including dairy and plant materials and the intestinal tract of humans and animals, and are also used in the food industry or as probiotics. In this study, we have isolated a new strain L. paracasei subsp. paracasei IBB3423 from samples of raw cow milk collected in a citizen science project. IBB3423 showed some desired probiotic features such as high adhesion capacity and ability to metabolize inulin. Its complete genome sequence comprising the chromosome of 3,183,386 bp and two plasmids of 5986 bp and 51,211 bp was determined. In silico analysis revealed numerous genes encoding proteins involved in carbohydrate metabolism and of extracellular localization likely supporting interaction with host tissues. In vitro tests confirmed the high adhesion capacity of IBB3423 and showed that it even exceeds that of the highly adhesive L. rhamnosus GG. Curing of the larger plasmid indicated that the adhesive properties depend on the plasmid and thus could be determined by its pilus-encoding spaCBA genes.
Collapse
|
40
|
González‐Herrera SM, Rocha‐Guzmán NE, Simental‐Mendía LE, Rodríguez‐Herrera R, Aguilar CN, Rutiaga-Quiñones OM, López MG, Gamboa‐Gómez CI. Dehydrated apple‐based snack supplemented with Agave fructans exerts prebiotic effect regulating the production of short‐chain fatty acid in mice. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Silvia Marina González‐Herrera
- Tecnológico Nacional de México, Instituto/ Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica. Blvd. Felipe Pescador 1830 ote. Colonia Nueva Vizcaya. Durango, Dgo. Mexico
| | - Nuria E. Rocha‐Guzmán
- Tecnológico Nacional de México, Instituto/ Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica. Blvd. Felipe Pescador 1830 ote. Colonia Nueva Vizcaya. Durango, Dgo. Mexico
| | - Luis E. Simental‐Mendía
- Unidad de Investigación Biomédica del Instituto Mexicano del Seguro Social Durango, Dgo. Mexico
| | - Raúl Rodríguez‐Herrera
- Food Research Department, School of Chemistry Universidad Autónoma de Coahuila Saltillo Mexico
| | - Cristóbal Noé Aguilar
- Food Research Department, School of Chemistry Universidad Autónoma de Coahuila Saltillo Mexico
| | - Olga Miriam Rutiaga-Quiñones
- Tecnológico Nacional de México, Instituto/ Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica. Blvd. Felipe Pescador 1830 ote. Colonia Nueva Vizcaya. Durango, Dgo. Mexico
| | - Mercedes G. López
- Departamento de Biotecnología y Bioquímica Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Apartado Postal 629, C.P. 36821 Irapuato, Gto. Mexico
| | - Claudia I. Gamboa‐Gómez
- Unidad de Investigación Biomédica del Instituto Mexicano del Seguro Social Durango, Dgo. Mexico
| |
Collapse
|
41
|
Prebiotic Supplementation of In Vitro Fecal Fermentations Inhibits Proteolysis by Gut Bacteria, and Host Diet Shapes Gut Bacterial Metabolism and Response to Intervention. Appl Environ Microbiol 2019; 85:AEM.02749-18. [PMID: 30824442 DOI: 10.1128/aem.02749-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Metabolism of protein by gut bacteria is potentially detrimental due to the production of toxic metabolites, such as ammonia, amines, p-cresol, and indole. The consumption of prebiotic carbohydrates results in specific changes in the composition and/or activity of the microbiota that may confer benefits to host well-being and health. Here, we have studied the impact of prebiotics on proteolysis within the gut in vitro Anaerobic stirred batch cultures were inoculated with feces from omnivores (n = 3) and vegetarians (n = 3) and four protein sources (casein, meat, mycoprotein, and soy protein) with and without supplementation by an oligofructose-enriched inulin. Bacterial counts and concentrations of short-chain fatty acids (SCFA), ammonia, phenol, indole, and p-cresol were monitored during fermentation. Addition of the fructan prebiotic Synergy1 increased levels of bifidobacteria (P = 0.000019 and 0.000013 for omnivores and vegetarians, respectively). Branched-chain fatty acids (BCFA) were significantly lower in fermenters with vegetarians' feces (P = 0.004), reduced further by prebiotic treatment. Ammonia production was lower with Synergy1. Bacterial adaptation to different dietary protein sources was observed through different patterns of ammonia production between vegetarians and omnivores. In volunteer samples with high baseline levels of phenol, indole, p-cresol, and skatole, Synergy1 fermentation led to a reduction of these compounds.IMPORTANCE Dietary protein intake is high in Western populations, which could result in potentially harmful metabolites in the gut from proteolysis. In an in vitro fermentation model, the addition of prebiotics reduced the negative consequences of high protein levels. Supplementation with a prebiotic resulted in a reduction of proteolytic metabolites in the model. A difference was seen in protein fermentation between omnivore and vegetarian gut microbiotas: bacteria from vegetarian donors grew more on soy and Quorn than on meat and casein, with reduced ammonia production. Bacteria from vegetarian donors produced less branched-chain fatty acids (BCFA).
Collapse
|
42
|
The Effect of Inulin on Lifespan, Related Gene Expression and Gut Microbiota in InRp5545/TM3 Mutant Drosophila melanogaster: A Preliminary Study. Nutrients 2019; 11:nu11030636. [PMID: 30875994 PMCID: PMC6470987 DOI: 10.3390/nu11030636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022] Open
Abstract
Inulin is considered an efficient prebiotic and is beneficial for metabolic diseases via promoting intestinal probiotic enrichment and the metabolites of short-chain fatty acids (SCFAs). However, the effect of inulin on patients with InR deficiencies has seldom been reported. In this study, the lifespan, related gene expression, and gut microbiota of InRp5545/TM3 (insulin receptor mutant) Drosophila melanogaster under inulin treatment were investigated. The results showed that the lifespan was extended in only males and not in females. Furthermore, distinctly different patterns of gene expression were found between males and females, especially in the insulin/insulin-like growth factor (IGF)-like signalling (IIS) and target of rapamycin (TOR) pathways. Additionally, as a link between inulin and lifespan responses, the gut microbiota was distinctly separated by gender in both the standard diet group and the inulin treatment group, and the relationship between lifespan and the gut microbiota community was stronger in male flies than in females. This study provides preliminary evidence for the gender-dependent lifespan responses to inulin in insulin signalling-deficient Drosophila. However, controls such as wild-type and TM3 flies, and more InR mutant strains with different genetic backgrounds need to be further investigated to elucidate the mechanisms underlying the phenomenon.
Collapse
|
43
|
López-Castejón ML, Bengoechea C, Espinosa S, Carrera C. Characterization of prebiotic emulsions stabilized by inulin and β-lactoglobulin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Teng PY, Kim WK. Review: Roles of Prebiotics in Intestinal Ecosystem of Broilers. Front Vet Sci 2018; 5:245. [PMID: 30425993 PMCID: PMC6218609 DOI: 10.3389/fvets.2018.00245] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
In recent years, prebiotics have been considered as potential alternatives to antibiotics. Mechanisms by which prebiotics modulate the ecosystem of the gut include alternation of the intestinal microbiota, improvement of the epithelium, and stimulation of the immune system. It is suggested that the administration of prebiotics not only influences these aspects but also regulates the interaction between the host and the intestinal microbiota comprehensively. In this review, we will discuss how each prebiotic ameliorates the ecosystem by direct or indirect mechanisms. Emphasis will be placed on the effects of prebiotics, including mannan oligosaccharides, β-glucans, and fructans, on the interaction between the intestinal microbiota, gut integrity, and the immunity of broilers. We will highlight how the prebiotics modulate microbial community and regulate production of cytokines and antibodies, improving gut development and the overall broiler health. Understanding the cross talk between prebiotics and the intestinal ecosystem may provide us with novel insights and strategies for preventing pathogen invasion and improving health and productivity of broilers. However, further studies need to be conducted to identify the appropriate dosages and better resources of prebiotics for refinement of administration, as well as to elucidate the unknown mechanisms of action.
Collapse
Affiliation(s)
- Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
45
|
Inulin Supplementation Does Not Reduce Plasma Trimethylamine N-Oxide Concentrations in Individuals at Risk for Type 2 Diabetes. Nutrients 2018; 10:nu10060793. [PMID: 29925775 PMCID: PMC6024751 DOI: 10.3390/nu10060793] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022] Open
Abstract
Trimethylamine N-oxide (TMAO) is associated with type 2 diabetes (T2DM) and increased risk of adverse cardiovascular events. Prebiotic supplementation has been purported to reduce TMAO production, but whether prebiotics reduce fasting or postprandial TMAO levels is unclear. Sedentary, overweight/obese adults at risk for T2DM (n = 18) were randomized to consume a standardized diet (55% carbohydrate, 30% fat) with 10 g/day of either an inulin supplement or maltodextrin placebo for 6 weeks. Blood samples were obtained in the fasting state and hourly during a 4-h high-fat challenge meal (820 kcal; 25% carbohydrate, 63% fat; 317.4 mg choline, 62.5 mg betaine, 8.1 mg l-carnitine) before and after the diet. Plasma TMAO and trimethylamine (TMA) moieties (choline, l-carnitine, betaine, and γ-butyrobetaine) were measured using isocratic ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). There were no differences in fasting or postprandial TMAO or TMA moieties between the inulin and placebo groups at baseline (all p > 0.05). There were no significant changes in fasting or postprandial plasma TMAO or TMA moiety concentrations following inulin or placebo. These findings suggest that inulin supplementation for 6 weeks did not reduce fasting or postprandial TMAO in individuals at risk for T2DM. Future studies are needed to identify efficacious interventions that reduce plasma TMAO concentrations.
Collapse
|
46
|
Differences in Carbohydrates Utilization and Antibiotic Resistance Between Streptococcus macedonicus and Streptococcus thermophilus Strains Isolated from Dairy Products in Italy. Curr Microbiol 2018; 75:1334-1344. [DOI: 10.1007/s00284-018-1528-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022]
|
47
|
Hayen SM, Otten HG, Overbeek SA, Knulst AC, Garssen J, Willemsen LEM. Exposure of Intestinal Epithelial Cells to Short- and Long-Chain Fructo-Oligosaccharides and CpG Oligodeoxynucleotides Enhances Peanut-Specific T Helper 1 Polarization. Front Immunol 2018; 9:923. [PMID: 29867934 PMCID: PMC5958185 DOI: 10.3389/fimmu.2018.00923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/13/2018] [Indexed: 12/25/2022] Open
Abstract
Background Non-digestible oligosaccharides promote colonization of beneficial gut bacteria and have direct immunomodulatory effects. Apical exposure of intestinal epithelial cells (IECs) to short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides (scGOS/lcFOS) in a transwell co-culture model enhanced the CpG-induced (TLR-9 ligand) T helper 1 (Th1) phenotype and regulatory IL-10 response of underlying peripheral mononuclear cells (PBMCs) of healthy donors. scGOS is derived from lactose and may pose risks in severe cow's milk allergic patients, and scFOS/lcFOS may be an alternative. The goal of this study was to determine the immunomodulatory effects of scGOS/lcFOS and scFOS/lcFOS in an allergen-specific transwell co-culture model using PBMCs from peanut-allergic patients. Methods IECs cultured on transwell filters were apically exposed to CpG, either or not in combination with oligosaccharides. These IECs were co-cultured with basolateral PBMCs of peanut-allergic patients that were either activated with aCD3/28 or peanut extract. Basolateral cytokine production and T-cell polarization were measured and the contribution of galectin-9 and the dectin-1 receptor in immune modulation were assessed. Results IECs exposed to CpG increased IFN-γ, IL-10, and galectin-9 production by aCD3/28-stimulated PBMCs, whereas IL-13 decreased. Both scGOS/lcFOS and scFOS/lcFOS further enhanced IFN-γ and IL-10, while suppressing IL-13 and TNF-α. In the peanut-specific model, only scFOS/lcFOS further increased IFN-γ and IL-10 production, coinciding with enhanced Th1-frequency. Expression of CRTH2 reduced after CpG exposure, and was further reduced by scFOS/lcFOS. Galectin-9 inhibitor TIM-3-Fc abrogated the additional effect of scFOS/lcFOS on peanut-specific IFN-γ production, while neutralization of the dectin-1 receptor was not effective. Conclusion Epithelial exposure to scFOS/lcFOS enhanced the CpG-induced Th1 and regulatory IL-10 response in a peanut-specific co-culture model. These effects suggest scFOS/lcFOS as candidate for dietary adjunct in allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Simone M Hayen
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Henny G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Saskia A Overbeek
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Immunology Platform, Nutricia Research, Utrecht, Netherlands
| | - André C Knulst
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Immunology Platform, Nutricia Research, Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
48
|
Van den Abbeele P, Taminiau B, Pinheiro I, Duysburgh C, Jacobs H, Pijls L, Marzorati M. Arabinoxylo-Oligosaccharides and Inulin Impact Inter-Individual Variation on Microbial Metabolism and Composition, Which Immunomodulates Human Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1121-1130. [PMID: 29363966 DOI: 10.1021/acs.jafc.7b04611] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fecal batch fermentations coupled to cocultures of epithelial cells and macrophages were used to compare how arabinoxylo-oligosaccharides (AXOS) and inulin modulate gut microbial activity and composition of three different human donors and subsequently the epithelial permeability and immune response. Both inulin and AXOS decreased the pH during incubation (-1.5 pH units), leading to increased productions of acetate, propionate, and butyrate. Differences in terms of metabolites production could be linked to specific microbial alterations at genus level upon inulin/AXOS supplementation (i.e., Bifidobacterium, Bacteroides, Prevotella and unclassified Erysipelotrichaceae), as shown by 16S-targeted Illumina sequencing. Both products stimulated gut barrier and immune function with increases in TEER, NF-KB, IL-10, and IL-6. Ingredients with different structures selectively modulate the microbiota of a specific donor leading to differential changes at metabolic level. The extent of this effect is donor specific and is linked to a final specific modulation of the host's immune system.
Collapse
Affiliation(s)
| | - Bernard Taminiau
- Department of Food Science, University of Liège (ULG) , Quartier Vallée 2, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - Iris Pinheiro
- ProDigest bvba , Technologiepark 3, 9052 Ghent, Belgium
| | | | - Heidi Jacobs
- Cosucra-Groupe Warcoing S.A. , Rue de la Sucrerie 1, 7740 Pecq, Belgium
| | - Loek Pijls
- Cosucra-Groupe Warcoing S.A. , Rue de la Sucrerie 1, 7740 Pecq, Belgium
| | - Massimo Marzorati
- Center of Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
49
|
Tomadoni B, Fiszman S, Moreira MR, Tarrega A. The Role of the Dynamic Sensory Perception in the Reformulation of Shakes: Use of TDS for Studying the Effect of Milk, Fiber, and Flavor Addition. J Food Sci 2017; 83:198-204. [PMID: 29243808 DOI: 10.1111/1750-3841.14008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
Various factors need to be taken into account when reformulating a food or beverage. The food components, not only macronutrients but also minor ingredients such as flavoring agents, could affect the perception of the sensory sensations, importantly their dynamic aspects, as rising and duration, which are not normally considered. The novelty of this approach is the study of the effects of the addition of several ingredients (fiber, extra milk powder, and strawberry flavoring) on the dynamic perception of a food item (strawberry shakes) using the temporal dominance of sensations (TDS) technique. The occurrence and duration of the key sensory sensations (acid, natural strawberry flavor, thick, sweet, candy strawberry flavor, and milk flavor) extracted from the TDS curves were analyzed and linked to the composition factors and liking and expectations of satiety scores. For example, the addition of flavoring increased the liking scores (increments ranging from 0.3 to 1.1) that was linked to the attenuation of acid sensation; and the addition of extra milk powder increased the expectation of satiety scores (increments ranging from 0.5 to 0.7) that was linked to the perception of early thick sensation in the mouth. In general, the more complex sensory profiles the higher liking and expectations of satiety. PRACTICAL APPLICATION This work is a case study on how temporal sensory methods can contribute important information on the actual perception of food during consumption. Depending on the ingredients added these sensory properties appear at different times and with different dominance during evaluation affecting liking or fullness expectations. In consequence, the temporal sensory properties should be taken into account when designing or reformulating food.
Collapse
Affiliation(s)
- Barbara Tomadoni
- Grupo de Investigación en Ingeniería de Alimentos (GIIA), CONICET, Facultad de Ingeniería, UNMdP, 7600 Mar del Plata, Argentina
| | - Susana Fiszman
- Insto. de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia), Spain
| | - María R Moreira
- Grupo de Investigación en Ingeniería de Alimentos (GIIA), CONICET, Facultad de Ingeniería, UNMdP, 7600 Mar del Plata, Argentina
| | - Amparo Tarrega
- Insto. de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia), Spain
| |
Collapse
|
50
|
Porras-Domínguez JR, Rodríguez-Alegría ME, Ávila-Fernández Á, Montiel-Salgado S, López-Munguía A. Levan-type fructooligosaccharides synthesis by a levansucrase-endolevanase fusion enzyme (LevB 1SacB). Carbohydr Polym 2017; 177:40-48. [PMID: 28962785 DOI: 10.1016/j.carbpol.2017.08.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/28/2017] [Accepted: 08/09/2017] [Indexed: 01/31/2023]
Abstract
We describe here the enzymatic production of levan type-fructooligosaccharides (L-FOS) with a DP from 2 to 10, through simultaneous synthesis and hydrolysis reactions. This was accomplished by LevB1SacB, a new enzyme resulting from the fusion of SacB, a levansucrase from Bacillus subtilis and LevB1, an endolevanase from B. licheniformis. In the fusion enzyme, SacB retains its catalytic behavior with a decrease in kcat from 164 to 108s-1. LevB1 in LevB1SacB kinetic behavior improves considerably reaching saturation with levan and following Michaelis-Menten kinetics, quite differently from the previously reported first order kinetic behavior. We also report that LevB1SacB or both enzymes (LevB1 & SacB) at equimolar concentrations in simultaneous reactions result in an optimal, wide and diverse L-FOS profile, including 6-kestose, levanbiose and blastose among other L-FOS and 1-kestose, which accumulates as by-product of SacB levan synthesis. Yields of around 40% (w/w) were obtained from 600g/l sucrose with either LevB1SacB or LevB1 & SacB. The reaction was successfully scaled up to a stirred 2l bioreactor.
Collapse
Affiliation(s)
- Jaime R Porras-Domínguez
- Instituto de Biotecnología UNAM, Av. Universidad #2001, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, Mexico
| | | | - Ángela Ávila-Fernández
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A, Col. Tamulte, CP 86150, Villahermosa, Centro, Tabasco, Mexico
| | - Silvia Montiel-Salgado
- Instituto de Biotecnología UNAM, Av. Universidad #2001, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Agustín López-Munguía
- Instituto de Biotecnología UNAM, Av. Universidad #2001, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|