1
|
Zhang J, Bu L, Liu Y, Huo W, Xia C, Pei C, Liu Q. Influences of lauric acid addition on performance, nutrient digestibility and proteins related to mammary gland development in dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:272-283. [PMID: 39281046 PMCID: PMC11402382 DOI: 10.1016/j.aninu.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 09/18/2024]
Abstract
Lauric acid (LA) has the possibility to improve milk production in dairy cows by improving mammary gland development, however, the mechanism by which it might regulate mammary gland development is unclear. The influence of LA on milk production, nutrient digestibility and the expression of proteins related to mammary gland development in dairy cows were evaluated. Forty primiparous Holstein dairy cows were divided into 4 groups in a randomized block design. Four treatments included the control (0 g/d LA per cow), low-LA (100 g/d LA per cow), medium-LA (200 g/d LA per cow), and high-LA (300 g/d LA per cow). Yields of milk, fat-corrected milk, and energy-corrected milk quadratically increased (P < 0.05), and yield and content of milk fat linearly increased (P < 0.05) with LA supplementation. Percentages of C12:0, C18:1 and C20:1 fatty acids in milk fat linearly increased (P < 0.05), but that of C16:0 fatty acid linearly decreased (P = 0.046). Supplementation of LA led to a linear and quadratical increase (P < 0.05) in digestibility of dry matter, organic matter, neutral detergent fibre and acid detergent fibre, and ruminal total volatile fatty acid concentration but a linear reduction (P = 0.018) in the ratio of acetate to propionate. The enzymatic activities of ruminal pectinase, xylanase, and α-amylase, and populations of total bacteria and anaerobic fungi increased linearly (P < 0.05), while populations of total protozoa and methanogens decreased linearly (P < 0.05) with increased LA addition. Following LA addition, blood glucose, triglyceride, estradiol, prolactin, and insulin-like growth factor 1 concentrations increased linearly (P < 0.05) and albumin and total protein concentrations increased quadratically (P < 0.05). Moreover, addition of 200 g/d LA promoted (P < 0.05) the expression of protein involved in mammary gland development and fatty acids synthesis. These results suggested that LA addition enhanced milk production and fatty acids synthesis by stimulating nutrient digestion, the expression of proteins associated with milk fat synthesis and mammary gland development.
Collapse
Affiliation(s)
- Jing Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Lijun Bu
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Yapeng Liu
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Wenjie Huo
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Chengqiang Xia
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Caixia Pei
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Qiang Liu
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| |
Collapse
|
2
|
Souza V, Aguilar M, Storm A, Larsen M, Hanigan M. Ruminal tissue uptake of amino acids in Holstein cows when supply of nutrients within the rumen differs. Animal 2023; 17:100778. [PMID: 37043932 DOI: 10.1016/j.animal.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Characterisation of amino acid (AA) use by the ruminal vein-drained viscera (RDV) has not been assessed in vivo in dairy cattle, and thus, the extent of ruminal AA use from arterial and postabsorptive blood supplies is unclear. Understanding the complete use of AA by the splanchnic bed may lead to alternative feeding programmes that maximise animal N efficiency. The objective of this work was to determine how different nutritional manipulations affect RDV net appearance and apparent affinity for arterial AA in lactating dairy cattle. Data from two arterio-venous (A-V) difference studies, that used a common set of multicatheterised lactating Holstein cows, assigned to different nutritional treatments, were used to assess ruminal metabolism. Study 1 consisted of three dietary treatments at calving [an alfalfa-glucogenic diet, a glucogenic diet (GLCG), or a ketogenic diet (KETO)] to investigate the effects of dietary nutrients and increasing intake postpartum on RDV metabolism of AA at -14, +4, +15, and +29 days relative to calving (DRTC). Study 2 consisted of two dietary levels of CP (17 or 13%) and three ruminal buffers (ammonia, butyrate, and control) to investigate the level of dietary CP and ruminal fermentation products on RDV metabolism of AA. Blood was collected at 9, 20, and 30 min after buffer administration. Regardless of dietary nutrients or fermentation products present in ruminal fluid, net RDV uptake was positive for most AA, excepting Asp, Cys, Glu, and Ser, which were consistently negative. The general positive net uptakes indicate that any AA potentially absorbed from the rumen were not adequate to meet apparent needs. Ruminal plasma flow and net RDV uptake of Trp, Ala, Gly, and Pro increased linearly with increased DRTC. Feeding KETO or GLCG diets increased ruminal plasma flow, and net RDV uptake of Thr and Gly. Feeding high CP diets increased ruminal uptake of Leu, Phe, and Val. The increased AA uptakes were partially driven by increased plasma flow, however, tissue affinity as reflected in clearance rates also increased or tended to for Met, Trp, Ala, Gly, Pro, and Tyr suggesting that changes in RDV uptake were regulated and not due solely to mass action. In conclusion, splanchnic tissue bed responses to dietary and washed rumen conditions were in part driven by changes in RDV nutrient demand and metabolic activity. The adaptive responses alter the fraction of absorbed AA utilised for non-productive purposes and thus the efficiency of conversion of those AA to product.
Collapse
|
3
|
Lu Z, Shen H, Shen Z. Effects of Dietary-SCFA on Microbial Protein Synthesis and Urinal Urea-N Excretion Are Related to Microbiota Diversity in Rumen. Front Physiol 2019; 10:1079. [PMID: 31507445 PMCID: PMC6714491 DOI: 10.3389/fphys.2019.01079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Two experiments were performed in this study. In Experiment 1, twenty goats were fed with an isonitrogenous diet, containing 28% Non-Fiber Carbohydrate (MNFC group, n = 10) or 14% NFC (LNFC group, n = 10). In the MNFC group, the ruminal concentration of Short Chain Fatty Acids (SCFA) increased, and pH declined. Compared with those in the LNFC group, the microbial protein synthesis in rumen and mRNA abundance of urea transporter B (UT-B) in rumen epithelium increased in the MNFC group, although serum urea-N (SUN) did not differ significantly between groups. Simultaneously, urinal urea-N excretion was reduced in the MNFC group. Significant correlations were found between rumen SCFA and UT-B and between UT-B and urinal urea-N excretion. Furthermore, the abundances of SCFA receptor of GPR41 and GPR43 increased in the rumen epithelium of the MNFC group. These results suggest that increases of SUN transported into the rumen and incorporated into microbial protein and decreases of urinal urea-N excretion are related to ruminal SCFA. This is supported by data from our previous study in which added SCFA on the mucosal side caused increases of urea transport rate (flux Jsm urea) from the blood to the ruminal lumen side. In Experiment 2, we used 16S rRNA Amplicon Sequencing to analyze the structure of the ruminal microbiota community in relation to SCFA. An additional eight goats were assigned into the MNFC (n = 4) and LNFC (n = 4) groups. The dietary ingredients, chemical composition, and feeding regimes were the same as those in Experiment 1. Constrained correspondence analysis (CCA analysis) revealed NFC promoted the expansion of microbiota diversity, particularly of SCFA-producing microbes. The function prediction of 19 upregulated Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog groups showed an NFC-induced increase of the types and abundances of genes coding for enzymes catalyzing N and fatty acid metabolism. Based on our present and previous investigations, our results indicate that, in goats consuming a MNFC diet, the facilitated urea transport in the rumen and improved urea N salvage are triggered by an expansion of ruminal microbiota diversity and are signaled by ruminal SCFA. This study thus provides new insights into the microbiota involved in the dietary modulation of urea-N salvage in ruminant animals.
Collapse
Affiliation(s)
- Zhongyan Lu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hong Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.,Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
| | - Zanming Shen
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Fougère H, Bernard L. Effect of diets supplemented with starch and corn oil, marine algae, or hydrogenated palm oil on mammary lipogenic gene expression in cows and goats: A comparative study. J Dairy Sci 2018; 102:768-779. [PMID: 30343921 DOI: 10.3168/jds.2018-15288] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/27/2018] [Indexed: 01/15/2023]
Abstract
A direct comparison of cow and goat performance and milk fatty acid (FA) responses to diets that either induce milk fat depression or increase milk fat content in cows suggests species-specific regulation of lipid metabolism, including mammary lipogenesis. This experiment was conducted to highlight potential mechanisms responsible for the differences in mammary lipogenesis due to diet and ruminant species. Twelve Holstein cows and 12 Alpine goats were fed a basal diet containing no additional lipid (CTL) or a similar diet supplemented with corn oil [5% dry matter intake (DMI)] and wheat starch (COS), marine algae powder (MAP; 1.5% DMI), or hydrogenated palm oil (HPO; 3% DMI), according to a 4 × 4 Latin square design with 28-d experimental periods. Milk yield, milk composition, FA profile, and secretions were measured. On d 27 of each experimental period, the mRNA abundance of 21 genes involved in lipid metabolism or enzyme activities or both were measured in mammary tissue sampled by biopsy. The results showed significant differences in the milk fat response of cows and goats to the dietary treatments. In cows, fat content was lowered by COS (-45%) and MAP (-22%) and increased by HPO (+13%) compared with CTL, and in goats only MAP had an effect compared with CTL, with a decrease of 15%. In both species, COS and MAP lowered the yields (mmol/d per kilogram of body weight) of <C16 and C16 FA. With COS, this decrease was compensated by an increase of >C16 FA in goats but not in cows, and the >C16 FA yield decreased with MAP in both species. Supplementation of HPO increased the yield of milk C16 FA (mmol/d per kilogram of body weight) in cows. These variations in milk fat content and FA secretion were not associated with modifications in the mammary expression of 21 genes involved in major lipid pathways, except for 3 transcription factors: PPARA, INSIG1, and SP1. This absence of large changes might be due to post-transcriptional regulation of these genes and related to the time of sampling of the mammary tissue relative to the previous meal and milking or to differences in the availability of substrate for the corresponding proteins. However, the abundance of 14 mRNA among the 21 encoding for genes studied in the mammary gland was significantly different among species, with 5 more abundant in cows (FADS3, ACSL1, PPARA, LXRA, and PPARG1) and 10 more abundant in goats (FASN, CD36, FABP3, LPL, GPAM, LPIN1, CSN2, MFGE8, and INSIG1). These species specificities of mammary lipid metabolism require further investigation.
Collapse
Affiliation(s)
- H Fougère
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - L Bernard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
5
|
Effects of a wide range of dietary forage-to-concentrate ratios on nutrient utilization and hepatic transcriptional profiles in limit-fed Holstein heifers. BMC Genomics 2018; 19:148. [PMID: 29454312 PMCID: PMC5816523 DOI: 10.1186/s12864-018-4529-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/05/2018] [Indexed: 12/31/2022] Open
Abstract
Background Improving the efficiency of animal production is a relentless pursuit of ruminant producers. Energy utilization and partition can be affected by dietary composition and nutrient availability. Furthermore, the liver is the central metabolic intersection in cattle. However, the specific metabolic changes in the liver under conditions of limit-feeding remain unclear and require further study. The present study aimed to elucidate the effects of a wide range of dietary forage:concentrate ratios (F:C) on energy utilization, and identify potential changes in molecular metabolism by analyzing hepatic transcriptional profiles. Twenty-four half-sib Holstein heifers were fed four F:C diets (20:80, 40:60, 60:40, and 80:20 on a dry matter basis), with similar intake levels of metabolizable energy (ME) and crude protein. Liver biopsy samples were obtained and RNA sequencing was conducted to identify the hepatic transcriptomic changes. Moreover, the ruminal fermentation profiles, growth characteristics, and levels of metabolites in the liver and plasma of the heifers were monitored. Results The proportion of acetate showed a linear increase (P < 0.01) with increasing dietary forage levels, whereas the proportion of propionate showed a linear decline (P ≤ 0.01). Lower levels of average daily gain and feed efficiency (P < 0.01) were observed in heifers fed high levels of forage, with a significant linear response. Using the Short Time-series Expression Miner software package, the expression trends of significant differentially expressed genes (DEGs) were generally divided into 20 clusters, according to their dynamic expression patterns. Functional classification analysis showed that lipid metabolism (particularly cholesterol and steroid metabolism which were in line with the cholesterol content in the liver and plasma) was significantly increased with increasing dietary forage levels and slightly reduced by the 80% forage diet. Nine DEGs were enriched in the related pathways, namely HMGCS1, HMGCR, MSMO1, MVK, MVD, IDI1, FDPS, LSS, and DHCR7. Conclusions The ruminal fermentation and feed efficiency results suggest that different mechanisms of energy utilization might occur in heifers fed different F:C diets with similar levels of ME intake. Increased cholesterol synthesis from acetate might be responsible for the reduced efficiency of energy utilization in heifers fed high-forage diets. Electronic supplementary material The online version of this article (10.1186/s12864-018-4529-9) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Patton RA, Hristov AN, Lapierre H. Protein feeding and balancing for amino acids in lactating dairy cattle. Vet Clin North Am Food Anim Pract 2014; 30:599-621. [PMID: 25245615 DOI: 10.1016/j.cvfa.2014.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This article summarizes the current literature as regards metabolizable protein (MP) and essential amino acid (EAA) nutrition of dairy cattle. Emphasis has been placed on research since the publication of the National Research Council Nutrient Requirements of Dairy Cattle, Seventh Revised Edition (2001). Postruminal metabolism of EAA is discussed in terms of the effect on requirements. This article suggests methods for practical application of MP and EAA balance in milking dairy cows.
Collapse
Affiliation(s)
- Robert A Patton
- Nittany Dairy Nutrition Incorporated, 9355 Buffalo Road, Mifflinburg, PA 17844, USA.
| | - Alexander N Hristov
- Department of Animal Science, Pennsylvania State University, 324 Henning Building, University Park, PA 16802, USA
| | - Hélène Lapierre
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Québec J1M 0C8, Canada
| |
Collapse
|
7
|
Lu Z, Stumpff F, Deiner C, Rosendahl J, Braun H, Abdoun K, Aschenbach JR, Martens H. Modulation of sheep ruminal urea transport by ammonia and pH. Am J Physiol Regul Integr Comp Physiol 2014; 307:R558-70. [PMID: 24920734 DOI: 10.1152/ajpregu.00107.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ruminal fermentation products such as short-chain fatty acids (SCFA) and CO2 acutely stimulate urea transport across the ruminal epithelium in vivo, whereas ammonia has inhibitory effects. Uptake and signaling pathways remain obscure. The ruminal expression of SLC14a1 (UT-B) was studied using polymerase chain reaction (PCR). The functional short-term effects of ammonia on cytosolic pH (pHi) and ruminal urea transport across native epithelia were investigated using pH-sensitive microelectrodes and via flux measurements in Ussing chambers. Two variants (UT-B1 and UT-B2) could be fully sequenced from ovine ruminal cDNA. Functionally, transport was passive and modulated by luminal pH in the presence of SCFA and CO2, rising in response to luminal acidification to a peak value at pH 5.8 and dropping with further acidification, resulting in a bell-shaped curve. Presence of ammonia reduced the amplitude, but not the shape of the relationship between urea flux and pH, so that urea flux remained maximal at pH 5.8. Effects of ammonia were concentration dependent, with saturation at 5 mmol/l. Clamping the transepithelial potential altered the inhibitory potential of ammonia on urea flux. Ammonia depolarized the apical membrane and acidified pHi, suggesting that, at physiological pH (< 7), uptake of NH4 (+) into the cytosol may be a key signaling event regulating ruminal urea transport. We conclude that transport of urea across the ruminal epithelium involves proteins subject to rapid modulation by manipulations that alter pHi and the cytosolic concentration of NH4 (+). Implications for epithelial and ruminal homeostasis are discussed.
Collapse
Affiliation(s)
- Zhongyan Lu
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany; and
| | - Friederike Stumpff
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany; and
| | - Carolin Deiner
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany; and
| | - Julia Rosendahl
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany; and
| | - Hannah Braun
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany; and
| | - Khalid Abdoun
- College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany; and
| | - Holger Martens
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany; and
| |
Collapse
|
8
|
Effects of forage intake level on nitrogen net flux by portal-drained viscera of mature sheep with abomasal infusion of an amino acid mixture. Animal 2013; 7:1614-21. [PMID: 23800417 DOI: 10.1017/s1751731113001122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
This study aimed to investigate the pattern of nitrogen (N) metabolites flux across the portal-drained viscera (PDV) of mature sheep over a wide range of forage intake, and to determine the effect of dry matter intake (DMI) on the PDV recovery of an abomasally infused amino acids (AA) mixture. Four Suffolk mature sheep (61.4 ± 3.6 kg BW) surgically fitted with abomasal cannulae and multi-catheters were fed four levels of DMI of lucerne hay cubes ranging from 0.4 to 1.6 fold the metabolizable energy requirements for maintenance. Each period lasted for 17 days: 7 days for diet adaptation, 5 days for measurement of N balance and N metabolites flux under basal pre-infusion conditions (basal phase) and 5 days for determining the recovery of the infused AA (584 mmol/day) across the PDV (infusion phase). Six sets of blood samples were collected on the last day of both basal and infusion phases. Increasing DMI increased portal release of AA and enhanced N retention. At 0.4 M and as a proportion of digested N, there was a marked drop in total AA-N release accompanied by greater ammonia-N release and urea-N uptake across the PDV. The incremental recovery ratio of infused AA across the PDV was altered with increasing DMI accounting for 0.88, 1.12, 1.23 and 1.31 at 0.4, 0.8, 1.2 and 1.6 M, respectively. In addition, across the individual AA, the net portal recovery ratio of infused methionine and valine increased linearly (P < 0.05) while that of phenylalanine, branched-chain AA and total essential AA tended to increase linearly (P < 0.10) with increasing DMI. These results indicated that DMI affects the net portal recovery of AA available in the small intestine of mature sheep.
Collapse
|
9
|
Rémond D, Buffière C, Pouyet C, Papet I, Dardevet D, Savary-Auzeloux I, Williamson G, Faure M, Breuillé D. Cysteine fluxes across the portal-drained viscera of enterally fed minipigs: effect of an acute intestinal inflammation. Amino Acids 2010; 40:543-52. [PMID: 20593296 DOI: 10.1007/s00726-010-0672-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 06/17/2010] [Indexed: 01/07/2023]
Abstract
Cysteine is considered as a conditionally indispensable amino acid. Its dietary supply should thus be increased when endogenous synthesis cannot meet metabolic need, such as during inflammatory diseases. However, studies in animal models suggest a high first-pass extraction of dietary cysteine by the intestine, limiting the interest for an oral supplementation. We investigated here unidirectional fluxes of cysteine across the portal-drained viscera (PDV) of multi-catheterized minipigs, using simultaneous intragastric L-[(15)N] cysteine and intravenous L-[3,3D2] cysteine continuous infusions. We showed that in minipigs fed with an elemental enteral solution, cysteine first-pass extraction by the intestine is about 60% of the dietary supply, and that the PDV does not capture arterial cysteine. Beside dietary cysteine, the PDV release non-dietary cysteine (20% of the total cysteine release), which originates either from tissue metabolism or from reabsorption of endogenous secretion, such as glutathione (GSH) biliary excretion. Experimental ileitis induced by local administration of trinitrobenzene sulfonic acid, increased liver and ileal GSH fractional synthesis rate during the acute phase of inflammation, and increased whole body flux of cysteine. However, cysteine uptake and release by the PDV were not affected by ileitis, suggesting an adaptation of the intestinal sulfur amino acid metabolism in order to cover the additional requirement of cysteine linked to the increased GSH synthesis. We conclude that the small intestine sequesters large amounts of dietary cysteine during absorption, limiting its release into the bloodstream, and that the other tissues of the PDV (colon, stomach, pancreas, spleen) preferentially use circulating methionine or cysteine-containing peptides to cover their cysteine requirement.
Collapse
Affiliation(s)
- Didier Rémond
- INRA de Clermont-Fd/Theix, UMR 1019, Unité de Nutrition Humaine, 63000, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abdoun K, Stumpff F, Rabbani I, Martens H. Modulation of urea transport across sheep rumen epithelium in vitro by SCFA and CO2. Am J Physiol Gastrointest Liver Physiol 2010; 298:G190-202. [PMID: 19926818 DOI: 10.1152/ajpgi.00216.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Urea transport across the gastrointestinal tract involves transporters of the urea transporter-B group, the regulation of which is poorly understood. The classical stimulatory effect of CO(2) and the effect of short-chain fatty acids (SCFA) on the ruminal recycling of urea were investigated by using Ussing chamber and microelectrode techniques with isolated ruminal epithelium of sheep. The flux of urea was found to be phloretin sensitive and passive. At a luminal pH of 6.4, but not at 7.4, the addition of SCFA (40 mmol/l) or CO(2)/HCO3- (10% and 25 mmol/l) led to a fourfold increase in urea flux. The stepwise reduction of luminal pH in the presence of SCFA from 7.4 to 5.4 led to a bell-shaped modification of urea transport, with a maximum at pH 6.2. Lowering the pH in the absence of SCFA or CO(2) had no effect. Inhibition of Na(+)/H(+) exchange increased urea flux at pH 7.4, with a decrease being seen at pH 6.4. In experiments with double-barreled, pH-sensitive microelectrodes, we confirmed the presence of an apical pH microclimate and demonstrated the acidifying effects of SCFA on the underlying epithelium. We confirm that the permeability of the ruminal epithelium to urea involves a phloretin-sensitive pathway. We present clear evidence for the regulation of urea transport by strategies that alter intracellular pH, with permeability being highest after a moderate decrease. The well-known postprandial stimulation of urea transport to the rumen in vivo may involve acute pH-dependent effects of intraruminal SCFA and CO(2) on the function of existing urea transporters.
Collapse
Affiliation(s)
- Khalid Abdoun
- Dept. of Veterinary Physiology, Free University of Berlin, Oertzenweg 19b, Berlin, Germany
| | | | | | | |
Collapse
|
11
|
|
12
|
Rémond D, Bernard L, Savary-Auzeloux I, Nozière P. Partitioning of nutrient net fluxes across the portal-drained viscera in sheep fed twice daily: effect of dietary protein degradability. Br J Nutr 2009; 102:370-81. [PMID: 19173767 DOI: 10.1017/s0007114508199470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Extrusion is used to decrease leguminous seed protein degradability in the rumen in order to shift part of the dietary protein digestion towards the small intestine. The effect of such displacement of digestion site on the partitioning of nutrient net fluxes across the gastrointestinal tract was studied using four sheep fitted with catheters and blood-flow probes, allowing measurements across the rumen, the mesenteric-drained viscera (MDV) and the portal-drained viscera (PDV). Two diets containing 34 % of pea seeds were tested in a crossover design. They differed only according to pea treatment: raw pea (RP) or extruded pea (EP) diet. Rumen undegradable protein (RUP) accounted for 23 and 40 % of dietary crude protein for RP and EP diets, respectively. Across the rumen wall, ammonia net flux was lower with EP diet, whereas urea net flux was not different. Across the MDV, free amino acid (FAA) net flux was greater with EP diet, whereas peptide amino acid net flux was not different, accounting for 7 % of the non-protein amino acid net release. From RP to EP diet, PDV net flux of ammonia decreased by 23 %, whereas FAA net release increased by 21 %. The difference in dietary RUP did not affect the PDV net flux of SCFA, 3-hydroxybutyrate, lactate and glucose. In conclusion, the partial shift in pea protein digestion from the rumen to the small intestine did not affect the portal net balance of N, but decreased N loss from the rumen, and increased amino acid intestinal absorption and portal delivery.
Collapse
Affiliation(s)
- Didier Rémond
- Institut National de la Recherche Agronomique, UMR 1019 Unité de Nutrition Humaine, St Genès Champanelle, France.
| | | | | | | |
Collapse
|
13
|
Loncke C, Ortigues-Marty I, Vernet J, Lapierre H, Sauvant D, Nozière P. Empirical prediction of net portal appearance of volatile fatty acids, glucose, and their secondary metabolites (β-hydroxybutyrate, lactate) from dietary characteristics in ruminants: A meta-analysis approach1. J Anim Sci 2009; 87:253-68. [DOI: 10.2527/jas.2008-0939] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
The relationships between intake and net portal fluxes of energy metabolites in ruminants: A meta-analysis. Anim Feed Sci Technol 2008. [DOI: 10.1016/j.anifeedsci.2007.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Nozière P, Rémond D, Lemosquet S, Chauveau B, Durand D, Poncet C. Effect of site of starch digestion on portal nutrient net fluxes in steers. Br J Nutr 2007; 94:182-91. [PMID: 16115351 DOI: 10.1079/bjn20051481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Processing of maize grain is known to modulate the site of starch digestion, thus the nature and amount of nutrients delivered for absorption. We assessed the effect of site of starch digestion on nutrient net fluxes across portal-drained viscera (PDV). Three steers, fitted with permanent digestive cannulas and blood catheters, successively received two diets containing 35 % starch as dent maize grain. Diets differed according to maize presentation: dry and cracked (by-pass, BP)v. wet and ground (control, C). Ruminal physicochemical parameters were not significantly affected. Between C and BP, the decrease in ruminal starch digestion was compensated by an increase in starch digestion in the small intestine. The amount of glucose and soluble α-glucoside reaching the ileum was not affected. The amount of glucose disappearing in the small intestine increased from 238 to 531 g/d between C and BP, but portal net flux of glucose remained unchanged (−97 g/d). The portal O2consumption and net energy release were not significantly affected, averaging 16 % and 57 % of metabolizable energy intake, respectively. The whole-body glucose appearance rate, measured by jugular infusion of [6, 6-2H2]glucose, averaged 916 g/d. The present study shows that the increase in the amount of glucose disappearing in the small intestine of conventionally fed cattle at a moderate intake level induces no change in portal net flux of glucose, reflecting an increase in glucose utilization by PDV. That could contribute to the low response of whole-body glucose appearance rate observed at this moderate level of intestinal glucose supply.
Collapse
Affiliation(s)
- Pierre Nozière
- Unité de Recherche sur les Herbivores, INRA Theix, 63122 St Genès Champanelle, France.
| | | | | | | | | | | |
Collapse
|
16
|
van den Borne JJGC, Verdonk JMAJ, Schrama JW, Gerrits WJJ. Reviewing the low efficiency of protein utilization in heavy preruminant calves – a reductionist approach. ACTA ACUST UNITED AC 2006; 46:121-37. [PMID: 16597419 DOI: 10.1051/rnd:2006011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 01/10/2006] [Indexed: 11/14/2022]
Abstract
The efficiency of protein utilization for growth in preruminant calves is decreasing with increasing body weight. In contrast to calves weighing less than 100 kg of body weight, heavy preruminant calves do not respond in protein retention to an increased intake of indispensable amino acids in dose-response studies. The marginal efficiency of protein utilization is low compared with pigs and milk-fed lambs at a similar stage of maturity. A reductionist approach was taken to perceive the potential mechanisms for the low protein utilization in preruminant calves. Neither an imbalance in the dietary protein to energy ratio nor a single limiting indispensable amino acid was responsible for the low efficiency. Also, amino acids were not specifically used to detoxify ammonia. Alternative hypotheses to explain the low efficiency are discussed and result in (i) a reduced post-absorptive supply of amino acids: e.g. by fermentation of milk in the (premature) rumen or preferential amino acid utilization by specific tissues; or (ii) a reduced post-absorptive amino acid utilization: e.g. by decreased insulin sensitivity, utilization of amino acids for gluconeogenesis or an asynchronous nutrient supply. In conclusion, several mechanisms for the low efficiency of protein utilization in heavy preruminant calves were excluded. Other physiological processes which are potentially involved remain to be studied, because the large potential for improving protein utilization in heavy preruminant calves asks for further exploration of their amino acid metabolism.
Collapse
|
17
|
Lapierre H, Pacheco D, Berthiaume R, Ouellet DR, Schwab CG, Dubreuil P, Holtrop G, Lobley GE. What is the True Supply of Amino Acids for a Dairy Cow? J Dairy Sci 2006; 89 Suppl 1:E1-14. [PMID: 16527873 DOI: 10.3168/jds.s0022-0302(06)72359-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Improving the prediction of milk protein yield relies on knowledge of both protein supply and requirement. Definition of protein/amino acid supply in ruminants is a challenging task, due to feedstuff variety and variability and to the remodeling of nutrient intake by the rumen microflora. The questions arise, therefore, how and where should we measure the real supply of AA in the dairy cow? This review will follow the downstream flow of AA from duodenum to peripheral tissue delivery, with a glance at the efficiency of transfer into milk protein. Duodenal AA flow comprises rumen undegradable feed, microbial protein, and endogenous secretions. Most attention has been directed toward definition of the first two contributions but the latter fraction can represent as much as 20% of duodenal flow. More information is needed on what factors affect its magnitude and overall impact. Once digested, AA are absorbed into the portal vein. The ratio of portal absorption to small intestinal apparent digestion varies among essential AA, from 0.43 (threonine) to 0.76 (phenylalanine), due to the contributions of preduodenal endogenous secretions to the digestive flow, non-reabsorption of endogenous secretions and gut oxidation of AA. Few data are available on these phenomena in dairy cows but the evidence indicates that they alter the profile of AA available for anabolic purposes. Recent comparisons of estimated duodenal flux and measured portal flux have prompted a revisit of the NRC (2001) approach to estimate AA flows at the duodenum. Changes to the model are proposed that yield predictions that better fit the current knowledge of AA metabolism across the gut. After absorption, AA flow first to the liver where substantial and differential net removal occurs, varying from zero for the branched-chain AA to 50% of portal absorption for phenylalanine. This process alters the pattern of net supply to the mammary gland. Overall, intermediary metabolism of AA between the duodenum and the mammary gland biologically explains the decreased efficiency of the transfer of absorbed AA into milk protein as maximal yield is approached. Therefore, variable, rather than fixed, factors for transfer efficiencies must be incorporated into future predictive models.
Collapse
Affiliation(s)
- H Lapierre
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, Lennoxville, Quebec, J1M 1Z3, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Doreau M, Michalet-Doreau B, Grimaud P, Atti N, Nozière P. Consequences of underfeeding on digestion and absorption in sheep. Small Rumin Res 2003. [DOI: 10.1016/s0921-4488(03)00145-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|