1
|
Konrad JD, Marrus N, Lohse KR, Thuet KM, Lang CE. Associations Between Coordination and Wearable Sensor Variables Vary by Recording Context but Not Assessment Type. J Mot Behav 2024; 56:339-355. [PMID: 38189355 PMCID: PMC10957306 DOI: 10.1080/00222895.2023.2300969] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Motor coordination is an important driver of development and improved coordination assessments could facilitate better screening, diagnosis, and intervention for children at risk of developmental disorders. Wearable sensors could provide data that enhance the characterization of coordination and the clinical utility of that data may vary depending on how sensor variables from different recording contexts relate to coordination. We used wearable sensors at the wrists to capture upper-limb movement in 85 children aged 6-12. Sensor variables were extracted from two recording contexts. Structured recordings occurred in the lab during a unilateral throwing task. Unstructured recordings occurred during free-living activity. The objective was to determine the influence of recording context (unstructured versus structured) and assessment type (direct vs. indirect) on the association between sensor variables and coordination. The greatest associations were between six sensor variables from the structured context and the direct measure of coordination. Worse coordination scores were associated with upper-limb movements that had higher peak magnitudes, greater variance, and less smoothness. The associations were consistent across both arms, even though the structured task was unilateral. This finding suggests that wearable sensors could be paired with a simple, structured task to yield clinically informative variables that relate to motor coordination.
Collapse
Affiliation(s)
- Jeffrey D Konrad
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, USA
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, USA
| | - Keith R Lohse
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, USA
| | - Kayla M Thuet
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, USA
| | - Catherine E Lang
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, USA
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
2
|
Kutz DF, Fröhlich S, Rudisch J, Müller K, Voelcker-Rehage C. Sex-dependent performance differences in curvilinear aiming arm movements in octogenarians. Sci Rep 2023; 13:9777. [PMID: 37328601 PMCID: PMC10276047 DOI: 10.1038/s41598-023-36889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
In an aging society, it is necessary to detect the cognitive decline of individuals at an early stage using simple measurement methods. This makes early health care possible for those affected. The aim of the study was to develop a classifier for cognitive state in older adults with and without mild cognitive impairment (MCI) based on kinematic parameters of linear and curvilinear aiming arm movements. In a group of 224 older adults over 80 years of age (cognitively healthy and MCI), the movement duration and intersegment intervals of linear and curvilinear arm movements of 20 cm were recorded. Movement duration was significantly longer in the curvilinear condition than in the straight movement, and MCI participants required significantly more time than cognitively healthy participants. Post-hoc analysis on the fluidity of movement in the curvilinear condition showed that MCI men had significantly longer inter-segmental intervals than non-MCI men. No difference was found in women. Based on the inter-segmental intervals, a simple classifier could be developed that correctly classified 63% of the men. In summary, aiming arm movements are only conditionally suitable as a classifier for cognitive states. For the construction of an ideal classifier, age-related degeneration of cortical and subcortical motor areas should be considered.
Collapse
Affiliation(s)
- Dieter F Kutz
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Muenster, Wilhelm-Schickard-Str. 8, 48149, Münster, Germany.
| | - Stephanie Fröhlich
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Muenster, Wilhelm-Schickard-Str. 8, 48149, Münster, Germany
| | - Julian Rudisch
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Muenster, Wilhelm-Schickard-Str. 8, 48149, Münster, Germany
| | - Katrin Müller
- Faculty of Behavioural and Social Sciences, Institute of Human Movement Science and Health, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Claudia Voelcker-Rehage
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Muenster, Wilhelm-Schickard-Str. 8, 48149, Münster, Germany
| |
Collapse
|
3
|
Konrad J, Marrus N, Lang CE. A Feasibility Study of Bilateral Wrist Sensors for Measuring Motor Traits in Children With Autism. Percept Mot Skills 2022; 129:1709-1735. [PMID: 36065830 PMCID: PMC9974780 DOI: 10.1177/00315125221125275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Direct, quantitative measures of hyperactivity and motor coordination, two motor characteristics associated with impairment in autism, are limited. Wearable sensors can objectively index real-world movement variables that may relate to these behaviors. Here, we explored the feasibility of bilateral wrist accelerometers for measuring upper limb activity in 3-10-year-olds with autism (n = 22; 19 boys, 3 girls; M age = 5.64, SD = 2.73 years) and without autism (n = 26; 15 boys, 11 girls; M age = 6.26, SD = 2.47 years). We investigated the relationships between movement characteristics related to duration, intensity, complexity, and symmetry on the one hand and parent-reported hyperactivity and motor coordination on the other. Participants with and without autism wore the sensors for 12-hour periods. Sensor variables varied by age but not sex, with movement intensity and complexity moderately related to motor coordination. These findings lend preliminary support to wearable sensors as a means of providing ecologically-valid metrics of motor characteristics that impact adaptive function in children with autism.
Collapse
Affiliation(s)
- Jeffrey Konrad
- Program in Physical Therapy, 12275Washington University School of Medicine, St. Louis, Missouri, USA
| | - Natasha Marrus
- Department of Psychiatry, 12275Washington University School of Medicine, St. Louis, Missouri, USA
| | - Catherine E Lang
- Program in Physical Therapy, 12275Washington University School of Medicine, St. Louis, Missouri, USA
- Program in Occupational Therapy, 12275Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, 12275Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Alalawi A, Luque-Suarez A, Fernandez-Sanchez M, Tejada-Villalba R, Navarro-Martin R, Devecchi V, Gallina A, Falla D. Perceived pain and disability but not fear of movement are associated with altered cervical kinematics in people with acute neck pain following a whiplash injury. Musculoskelet Sci Pract 2022; 62:102633. [PMID: 36037745 DOI: 10.1016/j.msksp.2022.102633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To determine if measures of cervical kinematics are altered in people with acute whiplash associated disorders (WAD) and secondarily, to examine whether kinematic variables are associated with self-reported outcomes. METHODS We recruited people with acute WAD within 15 days after a motor vehicle collision and asymptomatic control participants. All participants performed active neck movements at a self-determined velocity. Maximal range of motion (ROM), peak and mean velocity of movement, smoothness of movement, and cervical joint position error were assessed. Moreover, self-reported measures of perceived pain and disability, pain catastrophising, and fear of movement were obtained. RESULTS Sixty people participated: 18 with acute WAD (mean age [SD] 38.7 [12.0]) and 42 as asymptomatic controls (mean age [SD] 38.4 [10.2]). Participants with acute WAD showed significantly decreased ROM in all movement directions (p < 0.0001). All participants with acute WAD showed a reduction in the mean and peak velocity of movement in all directions (p < 0.0001) and the number of velocity peaks was significantly higher (i.e., reduced smoothness of movement) in those with acute WAD in all directions (p < 0.0001). Repositioning acuity following cervical rotation was not significantly different between groups. Neck pain-related disability showed the largest number of significant associations with kinematic features, while fear of movement was not associated with measures of cervical kinematics. CONCLUSIONS Participants with acute WAD presented with altered cervical kinematics compared to asymptomatic participants. Several measures of cervical kinematics were associated with the level of pain and disability in people with acute WAD but not their fear of movement.
Collapse
Affiliation(s)
- Ahmed Alalawi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK; Physical Therapy Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Alejandro Luque-Suarez
- Universidad de Malaga, Department of Physiotherapy, Malaga, Spain; Instituto de la Investigacion Biomedica de Malaga (IBIMA), Malaga, Spain
| | | | | | | | - Valter Devecchi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - Alessio Gallina
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK.
| |
Collapse
|
5
|
de Oliveira DSV, Alouche SR, de Freitas SMSF, Oba GH, Giangiardi VF, de Sá CDSC. Planning and Executing Aiming Movements in Middle Childhood. Percept Mot Skills 2022; 129:1362-1380. [PMID: 35790415 DOI: 10.1177/00315125221112243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Harmonious voluntary movements require efficiency in their planning and execution. Throughout middle childhood structural changes in the central nervous and musculoskeletal systems influence these processes and resultant motor behavior. In this study, we evaluated the characteristics of the motor planning and executing of aiming movements directed at targets located in different positions in space in children aged 7, 9, and 11 years. We divided 43 right-handed children, into three age groups and instructed them to perform aiming movements directed at targets using a stylus on a digital tablet. The children performed the movement with their dominant upper limbs from a starting point towards targets positioned ipsilaterally or contralaterally to this dominant limb. We analyzed temporal and spatial variables of motor performance. Younger (7-year-old) children made more errors in the initial movement direction and more frequently corrected their movements during task execution when compared to 9- and 11-year-old children who did not differ from each other. All age groups were similar in movement accuracy and precision. Movements toward contralateral targets were slower and more accurate than movements toward ipsilateral targets for all groups. These results show that performing aiming movements develop with the onset of middle childhood.
Collapse
Affiliation(s)
- Danielle S V de Oliveira
- Departamento de Ciências do Movimento Humano, 28105Universidade Federal de São Paulo, Santos, Brasil
| | - Sandra R Alouche
- Departamento de Fisioterapia, 149944Universidade Cidade de São Paulo, São Paulo, Brasil
| | | | - Gabriela H Oba
- Departamento de Fisioterapia, 149944Universidade Cidade de São Paulo, São Paulo, Brasil
| | - Vivian F Giangiardi
- Departamento de Fisioterapia, 149944Universidade Cidade de São Paulo, São Paulo, Brasil
| | | |
Collapse
|
6
|
Motor Control and Achilles Tendon Adaptation in Adolescence: Effects of Sport Participation and Maturity. J Hum Kinet 2021; 76:101-116. [PMID: 33603928 PMCID: PMC7877283 DOI: 10.2478/hukin-2021-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An important but unresolved research question in adolescent children is the following: “Does sport participation interact with maturation to change motor control and the mechanical and morphological properties of tendons?” Here, we address this important research question with a longitudinal study around the age of peak height velocity (PHV). Our purpose was to characterize the interactive effects of maturation and sports participation on motor control and the mechanical and morphological properties of the Achilles tendon (AT) in adolescent athletes and non-athletes. Twenty-two adolescent athletes (13.1 ± 1.1 years) and 19 adolescent non-athletes (12.8 ± 1.1 years) volunteered for this study. We quantified motor control as the coefficient of variation of torque during a ramp task. In addition, we quantified the AT morphological and mechanical properties using ultrasonography from 18 months before to 12 months after PHV. We found that motor control improved with maturation in both athletes and non-athletes. We found that athletes have a greater increase in body mass with maturation that relates to greater plantarflexion peak force and AT peak stress. Also, athletes have a thicker and longer AT, as assessed with resting cross-sectional area and length. Although the rate of increase in the morphological change with maturation was similar for athletes and non-athletes, the rate of increase in normalized AT stiffness was greater for athletes. This increased AT stiffness in athletes related to peak force and stress. In summary, maturation improves motor control in adolescent children. Further, we provide novel longitudinal evidence that sport participation interacts with maturation in adolescents to induce adaptive effects on the Achilles tendon morphology and mechanical properties. These findings have the potential to minimize the risk of injuries and maximize athletic development in talented adolescents.
Collapse
|
7
|
Marcori AJ, Teixeira LA, Dascal JB, Okazaki VHA. Are the Predictions of the Dynamic Dominance Model of Laterality Applicable to Children? Dev Neuropsychol 2020; 45:496-505. [PMID: 33203247 DOI: 10.1080/87565641.2020.1849220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
According to the dynamic dominance model, the left cerebral hemisphere is specialized for the control of intersegmental dynamics and the right hemisphere for impedance control. Our aim was to test predictions from the dynamic dominance model in children by comparing performance between the right (preferred) and left hands in aiming. Three groups were compared: 4-7, 8-11, and 18-38 years old. Results showed higher movement linearity in the performance with the right hand in all age groups (P < .01), while initial directional error and endpoint accuracy were equivalent between hands. These results provided partial support for the dynamic dominance model.
Collapse
Affiliation(s)
- Alexandre Jehan Marcori
- School of Physical Education and Sport, Human Motor Systems Laboratory, University of São Paulo , São Paulo, Brazil
| | - Luis Augusto Teixeira
- School of Physical Education and Sport, Human Motor Systems Laboratory, University of São Paulo , São Paulo, Brazil
| | - Juliana Bayeux Dascal
- Center of Physical Education and Sport, Motor Neuroscience Research Group, Londrina State University , Londrina, Brazil
| | - Victor Hugo Alves Okazaki
- Center of Physical Education and Sport, Motor Neuroscience Research Group, Londrina State University , Londrina, Brazil
| |
Collapse
|
8
|
Kitchen NM, Miall RC. Adaptation of reach action to a novel force-field is not predicted by acuity of dynamic proprioception in either older or younger adults. Exp Brain Res 2020; 239:557-574. [PMID: 33315127 PMCID: PMC7936968 DOI: 10.1007/s00221-020-05997-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022]
Abstract
Healthy ageing involves degeneration of the neuromuscular system which impacts movement control and proprioception. Yet the relationship between these sensory and motor deficits in upper limb reaching has not been examined in detail. Recently, we reported that age-related proprioceptive deficits were unrelated to accuracy in rapid arm movements, but whether this applied in motor tasks more heavily dependent on proprioceptive feedback was not clear. To address this, we have tested groups of younger and older adults on a force-field adaptation task under either full or limited visual feedback conditions and examined how performance was related to dynamic proprioceptive acuity. Adaptive performance was similar between the age groups, regardless of visual feedback condition, although older adults showed increased after-effects. Physically inactive individuals made larger systematic (but not variable) proprioceptive errors, irrespective of age. However, dynamic proprioceptive acuity was unrelated to adaptation and there was no consistent evidence of proprioceptive recalibration with adaptation to the force-field for any group. Finally, in spite of clear age-dependent loss of spatial working memory capacity, we found no relationship between memory capacity and adaptive performance or proprioceptive acuity. Thus, non-clinical levels of deficit in dynamic proprioception, due to age or physical inactivity, do not affect force-field adaptation, even under conditions of limited visual feedback that might require greater proprioceptive control.
Collapse
Affiliation(s)
- Nick M Kitchen
- School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Speech and Hearing Science, University of Washington, Seattle, WA, USA.
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Dobri SCD, Samdup D, Scott SH, Davies TC. Differentiating Motor Coordination and Position Sense in Children with Cerebral Palsy and Typically Developing Populations Through Robotic Assessments .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3654-3657. [PMID: 33018793 DOI: 10.1109/embc44109.2020.9175878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Motor function and coordination improve as children age. Robotic assessments of motor function and coordination have been shown to be repeatable, objective, and accurate. Additionally, robotic assessments have been used to measure and quantify deficits in motor function and coordination in children with cerebral palsy (CP). Normative models of motor function and coordination based on age have not been used widely to differentiate impaired performance from typical performance. This study presents preliminary results of identifying deficits in motor function and coordination assessed with a robotic reaching task and using a normative model of typical performance that accounts for age, sex, and handedness. The models were compared with data from three participants with CP to evaluate whether the models could be used to identify deficits in motor function. The models indicated motor deficits in one participant when performing a visually guided reaching task with respect to initial speed and distance ratios. There was no evidence of motor control deficits in the other two participants. Future work will refine the models to be able to better identify and quantify motor control impairments with the potential to target therapy around quantifiable goals.
Collapse
|
10
|
Gehringer JE, Arpin DJ, VerMaas JR, Trevarrow MP, Wilson TW, Kurz MJ. The Strength of the Movement-related Somatosensory Cortical Oscillations Differ between Adolescents and Adults. Sci Rep 2019; 9:18520. [PMID: 31811232 PMCID: PMC6898653 DOI: 10.1038/s41598-019-55004-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Adolescents demonstrate increasing mastery of motor actions with age. One prevailing hypothesis is that maturation of the somatosensory system during adolescence contributes to the improved motor control. However, limited efforts have been made to determine if somatosensory cortical processing is different in adolescents during movement. In this study, we used magnetoencephalographic brain imaging to begin addressing this knowledge gap by applying an electrical stimulation to the tibial nerve as adolescents (Age = 14.8 ± 2.5 yrs.) and adults (Age = 36.8 ± 5.0 yrs.) produced an isometric ankle plantarflexion force, or sat with no motor activity. Our results showed strong somatosensory cortical oscillations for both conditions in the alpha-beta (8–30 Hz) and gamma (38–80 Hz) ranges that occurred immediately after the stimulation (0–125 ms), and a beta (18–26 Hz) oscillatory response shortly thereafter (300–400 ms). Compared with the passive condition, all of these frequency specific cortical oscillations were attenuated while producing the ankle force. The attenuation of the alpha-beta response was greater in adolescents, while the adults had a greater attenuation of the beta response. These results imply that altered attenuation of the somatosensory cortical oscillations might be central to the under-developed somatosensory processing and motor performance characteristics in adolescents.
Collapse
Affiliation(s)
- James E Gehringer
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, United States.,Department Physical Therapy, Munroe Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - David J Arpin
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, United States.,Department Physical Therapy, Munroe Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jacy R VerMaas
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, United States.,Department Physical Therapy, Munroe Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michael P Trevarrow
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, United States.,Department Physical Therapy, Munroe Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tony W Wilson
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Neurological Sciences, UNMC, Omaha, Nebraska, United States
| | - Max J Kurz
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, United States. .,Department Physical Therapy, Munroe Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
11
|
Deng K, Chan JSY, Yan JH. Explicit Aiming Strategy Decreases the Differences in Visuomotor Adaptation between Children and Young Adults. Dev Neuropsychol 2019; 44:495-512. [DOI: 10.1080/87565641.2019.1675664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Kanfeng Deng
- Laboratory of Neuromotor Control and Learning, Shenzhen University, Shenzhen, P.R. China
| | - John S. Y. Chan
- Laboratory of Neuromotor Control and Learning, Shenzhen University, Shenzhen, P.R. China
| | - Jin H. Yan
- Laboratory of Neuromotor Control and Learning, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
12
|
O’Rielly JL, Ma-Wyatt A. The effect of age and perturbation time on online control during rapid pointing. PLoS One 2019; 14:e0222219. [PMID: 31513618 PMCID: PMC6742375 DOI: 10.1371/journal.pone.0222219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
Visual and proprioceptive information is used differently at different phases of a reach. The time at which a target perturbation occurs during a reach therefore has a significant impact on how an individual can compensate for this perturbation though online control. With healthy ageing, there are notable changes to both sensory and motor control that impact motor performance. However, how the online control process changes with age is not yet fully understood. We used a target perturbation paradigm and manipulated the time at which a target perturbation occurred during the reach to investigate how healthy ageing impacts sensorimotor control. We measured how the latency of the correction and the magnitude of the corrective response changed with perturbation time and quantified the difference across groups using a percentage difference measure. For both groups, online corrections to early perturbations were more easily accounted for than those to late perturbations, despite late perturbations eliciting faster correction latencies. While there was no group difference in accuracy, older participants were slower overall and produced a correction to a change in target location proportionally less often despite similar correction latencies. We speculate that the differences in the time during the reach that the correction is first identified may explain the differences in correction latencies observed between the perturbation time conditions.
Collapse
Affiliation(s)
- Jessica L. O’Rielly
- School of Psychology, University of Adelaide, Adelaide, South Australia, Australia
| | - Anna Ma-Wyatt
- School of Psychology, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Online and offline contributions to motor learning change with practice, but are similar across development. Exp Brain Res 2019; 237:2865-2873. [PMID: 31468063 DOI: 10.1007/s00221-019-05639-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
Children show motor learning deficits relative to adults across a diverse range of tasks. One mechanism that has been proposed to underlie these differences is the contribution of online and offline components to overall learning; however, these tasks have almost focused exclusively on sequence learning paradigms which are characterized by performance gains in the offline phase. Here, we examined the role of online and offline learning in a novel motor task which was characterized by warm-up decrement, i.e., a performance loss, during the offline phase. In particular, using a relatively extended practice period, we examined if differences between children and adults persist across relatively long practice periods, and if the contribution of online and offline learning is affected by age and by practice itself. Two groups of children, 8-10 years and 11-13 years old, and one group of young adults (N = 30, n = 10/group) learned a novel task that required control of upper body movements to control a cursor on a screen. Participants learned the task over 5 days and we measured movement time as the primary task performance variable. Consistent with prior results, we found that 8-10 year olds had longer movement times compared to both 11-13 year olds and adults. We also found distinct changes in online and offline learning with practice; the amount of online learning decreased with practice, whereas offline learning was relatively stable across practice. However, there was no detectable effect of age group on either online or offline learning. These results suggest that age-related differences in learning among children 8-10 years old are persistent even after extended practice but are not necessarily accounted for by differences in online and offline learning.
Collapse
|
14
|
Children, Young Adults, and Older Adults Choose Different Fast Learning Strategies. J Aging Phys Act 2019; 27:466-472. [PMID: 30654729 DOI: 10.1123/japa.2018-0102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of the study was to establish whether there were differences in speed–accuracy movement learning strategies between children, young adults, and older adults. A total of 30 boys, 30 young adult men, and 30 older men were seated in a special chair at a table with a Dynamic Parameter Analyzer 1. Participants had to perform a speed–accuracy task with the right-dominant hand. It may be assumed that the motor variables of children are more prone to change during the fast learning process than those of young adults and older adults and that the development of internal models is more changeable in children than in young adults and the older adults during the fast adaptation-based learning process.
Collapse
|
15
|
Hage R, Buisseret F, Pitance L, Brismée JM, Detrembleur C, Dierick F. Head-neck rotational movements using DidRen laser test indicate children and seniors' lower performance. PLoS One 2019; 14:e0219515. [PMID: 31344044 PMCID: PMC6657844 DOI: 10.1371/journal.pone.0219515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/25/2019] [Indexed: 12/01/2022] Open
Abstract
Sensorimotor control strategies during cervical axial rotation movements have been previously explored in narrow age ranges but never concurrently in Children and Seniors during a well-standardized task. However, the lifespan developmental approach provides a framework for research in human sensorimotor control of the head-neck complex. A cross-sectional design was used to investigate the influence of age on head-neck dynamic performance adopted by asymptomatic Children, Adults and Seniors using a standardized task (DidRen Laser test). Participants performed 5 cycles of left/right head-neck complex fast rotational movements toward 3 targets with 30° of angular separation. Dynamic performances were computed from total execution time of the test and kinematic variables derived from rotational motion of head measured by an optoelectronic system. Eighty-one participants, aged 8–85 yrs, were stratified in four groups: Children, Younger adults, Older adults and Seniors. Children were significantly slower than Younger (p<0.001) and Older adults (p<0.004) and Seniors slower than Younger adults (p<0.017) to perform the test. Children adopted a lower average speed compared to Younger (p<0.001) and Older adults (p<0.008). Children reached the peaks speed significantly later than Younger (p<0.004) and Older adults (p<0.04) and acceleration significantly later than Younger (p<0.001) and Older adults (p<0.013). From the peak acceleration, Children reached end of the cycle significantly slower than Younger (p<0.008) and Older adults (p<0.008). Children significantly differed from all other groups for rotational kinetic energy, with smaller values compared to Younger adults (p<0.001), Older adults (p<0.005) and Seniors (p<0.012). Variability was also significantly higher for Seniors and Children. In conclusion, age influences head-neck visually elicited rotational dynamics, especially in Children. These results suggest that age should be taken into account when establishing normative data and assessing dynamic head-neck sensorimotor control of patients with neck pain.
Collapse
Affiliation(s)
- Renaud Hage
- Laboratoire NMSK, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| | - Fabien Buisseret
- Forme & Fonctionnement Humain Lab, CeREF, Haute Ecole Louvain en Hainaut, Charleroi, Belgium
| | - Laurent Pitance
- Laboratoire NMSK, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Stomatologie et Chirurgie Maxillo-Faciale, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Michel Brismée
- Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Christine Detrembleur
- Laboratoire NMSK, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Dierick
- Forme & Fonctionnement Humain Lab, CeREF, Haute Ecole Louvain en Hainaut, Charleroi, Belgium
| |
Collapse
|
16
|
Ranganathan R, Lee MH, Padmanabhan MR, Aspelund S, Kagerer FA, Mukherjee R. Age-dependent differences in learning to control a robot arm using a body-machine interface. Sci Rep 2019; 9:1960. [PMID: 30760779 PMCID: PMC6374475 DOI: 10.1038/s41598-018-38092-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 12/14/2018] [Indexed: 01/04/2023] Open
Abstract
Body-machine interfaces, i.e. interfaces that rely on body movements to control external assistive devices, have been proposed as a safe and robust means of achieving movement and mobility; however, how children learn these novel interfaces is poorly understood. Here we characterized the learning of a body-machine interface in young unimpaired adults, two groups of typically developing children (9-year and 12-year olds), and one child with congenital limb deficiency. Participants had to control the end-effector of a robot arm in 2D using movements of the shoulder and torso. Results showed a striking effect of age - children had much greater difficulty in learning the task compared to adults, with a majority of the 9-year old group unable to even complete the task. The 12-year olds also showed poorer task performance compared to adults (as measured by longer movement times and greater path lengths), which were associated with less effective search strategies. The child with congenital limb deficiency showed superior task performance compared to age-matched children, but had qualitatively distinct coordination strategies from the adults. Taken together, these results imply that children have difficulty learning non-intuitive interfaces and that the design of body-machine interfaces should account for these differences in pediatric populations.
Collapse
Affiliation(s)
- Rajiv Ranganathan
- Department of Kinesiology, Michigan State University, East Lansing, USA. .,Department of Mechanical Engineering, Michigan State University, East Lansing, USA. .,Neuroscience Program, Michigan State University, East Lansing, USA.
| | - Mei-Hua Lee
- Department of Kinesiology, Michigan State University, East Lansing, USA
| | | | - Sanders Aspelund
- Department of Mechanical Engineering, Michigan State University, East Lansing, USA
| | - Florian A Kagerer
- Department of Kinesiology, Michigan State University, East Lansing, USA.,Neuroscience Program, Michigan State University, East Lansing, USA
| | - Ranjan Mukherjee
- Department of Mechanical Engineering, Michigan State University, East Lansing, USA
| |
Collapse
|
17
|
Kitchen NM, Miall RC. Proprioceptive deficits in inactive older adults are not reflected in fast targeted reaching movements. Exp Brain Res 2019; 237:531-545. [PMID: 30478636 PMCID: PMC6373199 DOI: 10.1007/s00221-018-5440-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022]
Abstract
During normal healthy ageing there is a decline in the ability to control simple movements, characterised by increased reaction times, movement durations and variability. There is also growing evidence of age-related proprioceptive loss which may contribute to these impairments. However, this relationship has not been studied in detail for the upper limb. We recruited 20 younger adults (YAs) and 31 older adults (OAs) who each performed 2 tasks on a 2D robotic manipulandum. The first assessed dynamic proprioceptive acuity using active, multi-joint movements constrained by the robot to a pre-defined path. Participants made perceptual judgements of the lateral position of the unseen arm. The second task required fast, accurate and discrete movements to the same targets in the absence of visual feedback of the hand, and without robotic intervention. We predicted that the variable proprioceptive error (uncertainty range) assessed in Task 1 would be increased in physically inactive OAs and would predict increased movement variability in Task 2. Instead we found that physically inactive OAs had larger systematic proprioceptive errors (bias) than YAs (t[33] = 2.8, p = 0.009), and neither proprioceptive uncertainty nor bias was related to motor performance in either age group (all regression model R2 ≤ 0.06). We suggest that previously reported estimates of proprioceptive decline with ageing may be exaggerated by task demands and that the extent of these deficits is unrelated to control of discrete, rapid movement. The relationship between dynamic proprioceptive acuity and movement control in other tasks with greater emphasis on online feedback is still unclear and warrants further investigation.
Collapse
Affiliation(s)
- Nick M Kitchen
- School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Speech and Hearing Science, University of Washington, Seattle, WA, USA.
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
18
|
Gliga T. Telling Apart Motor Noise and Exploratory Behavior, in Early Development. Front Psychol 2018; 9:1939. [PMID: 30369897 PMCID: PMC6194153 DOI: 10.3389/fpsyg.2018.01939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/20/2018] [Indexed: 11/13/2022] Open
Abstract
Infants' minutes long babbling bouts or repetitive reaching for or mouthing of whatever they can get their hands on gives very much the impression of active exploration, a building block for early learning. But how can we tell apart active exploration from the activity of an immature motor system, attempting but failing to achieve goal directed behavior? I will focus here on evidence that infants increase motor activity and variability when faced with opportunities to gather new information (about their own bodies or the world) and propose this as a guiding principle for separating variability generated for exploration from noise. I will discuss mechanisms generating movement variability, and suggests that, in the various forms it takes, from deliberate hypothesis testing to increasing environmental variability, it could be exploited for learning. However, understanding how variability in motor acts contributes to early learning will require more in-depth investigations of both the nature of and the contextual modulation of this variability.
Collapse
Affiliation(s)
- Teodora Gliga
- School of Psychology, University of East Anglia, Norwich, United Kingdom
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| |
Collapse
|
19
|
Simon-Martinez C, dos Santos GL, Jaspers E, Vanderschueren R, Mailleux L, Klingels K, Ortibus E, Desloovere K, Feys H. Age-related changes in upper limb motion during typical development. PLoS One 2018; 13:e0198524. [PMID: 29874278 PMCID: PMC5991355 DOI: 10.1371/journal.pone.0198524] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/21/2018] [Indexed: 12/04/2022] Open
Abstract
Background and aim Understanding the maturation of upper limb (UL) movement characteristics in typically developing (TD) children is key to explore UL deficits in those with neurodevelopmental disorders. Three-dimensional motion analysis (3DMA) offers a reliable tool to comprehensively evaluate UL motion. However, studies thus far mainly focused on specific pre-defined parameters extracted from kinematic waveforms. Here, we investigated age-related differences in UL movement characteristics over the entire movement cycle in TD children. Participants and methods We assessed the non-dominant UL of 60 TD children (mean age 10y3m±3y1m) using 3DMA during eight tasks: reaching (forwards (RF), upwards (RU), sideways (RS)), reach-to-grasp (sphere (RGS), vertical cylinder (RGV)) and activities-of-daily-living mimicking tasks (hand-to-head (HTH), hand-to-mouth (HTM), hand-to-shoulder (HTS)). We investigated differences between four age-groups (5-7y, 8-10y, 11-12y, 13-15y) in: (1) spatiotemporal parameters (movement duration, peak velocity, time-to-peak velocity and trajectory straightness), and (2) 12 UL joint angles, using Statistical Parametric Mapping (SPM). Results We found that the 5-7y children moved with lower peak velocity and less straight trajectories compared to the 11-12y group (peak velocity: RS, HTS, p<0.01; trajectory: RU, RS, RGV, HTS, p<0.01) and the 13-15y group (peak velocity: RF, RS, RGS, RGV, HTH, HTS, p<0.01; trajectory, all tasks, p<0.01). The 5-7y children showed increased scapular protraction compared to older children (8-10y and 11-12y, HTS), as well as increased scapular medial rotation compared to the 13-15y group (RGS). During RU, the 5-7y children moved more towards the frontal plane (shoulder), unlike the 13-15y group. Lastly, the 5-7y group used less elbow flexion than older children (11-12y and 13-15y) during HTH and HTS. Discussion and conclusion In conclusion, our results point toward a maturation in UL movement characteristics up to age 11-12y, when UL motion seemed to reach a plateau. The reference values provided in this study will help to further optimize the interpretation of UL deficits in children with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cristina Simon-Martinez
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
- * E-mail:
| | - Gabriela Lopes dos Santos
- Laboratory of Neurological Physiotherapy Research, Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Ellen Jaspers
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Ruth Vanderschueren
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Lisa Mailleux
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Katrijn Klingels
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
- Rehabilitation Research Centre, BIOMED, Hasselt University, Diepenbeek, Belgium
| | - Els Ortibus
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven, Belgium
| | - Kaat Desloovere
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Pellenberg, Belgium
| | - Hilde Feys
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| |
Collapse
|
20
|
O'Rielly JL, Ma-Wyatt A. Changes to online control and eye-hand coordination with healthy ageing. Hum Mov Sci 2018; 59:244-257. [PMID: 29747069 DOI: 10.1016/j.humov.2018.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/19/2023]
Abstract
Goal directed movements are typically accompanied by a saccade to the target location. Online control plays an important part in correction of a reach, especially if the target or goal of the reach moves during the reach. While there are notable changes to visual processing and motor control with healthy ageing, there is limited evidence about how eye-hand coordination during online updating changes with healthy ageing. We sought to quantify differences between older and younger people for eye-hand coordination during online updating. Participants completed a double step reaching task implemented under time pressure. The target perturbation could occur 200, 400 and 600 ms into a reach. We measured eye position and hand position throughout the trials to investigate changes to saccade latency, movement latency, movement time, reach characteristics and eye-hand latency and accuracy. Both groups were able to update their reach in response to a target perturbation that occurred at 200 or 400 ms into the reach. All participants demonstrated incomplete online updating for the 600 ms perturbation time. Saccade latencies, measured from the first target presentation, were generally longer for older participants. Older participants had significantly increased movement times but there was no significant difference between groups for touch accuracy. We speculate that the longer movement times enable the use of new visual information about the target location for online updating towards the end of the movement. Interestingly, older participants also produced a greater proportion of secondary saccades within the target perturbation condition and had generally shorter eye-hand latencies. This is perhaps a compensatory mechanism as there was no significant group effect on final saccade accuracy. Overall, the pattern of results suggests that online control of movements may be qualitatively different in older participants.
Collapse
Affiliation(s)
| | - Anna Ma-Wyatt
- School of Psychology, University of Adelaide, SA 5005, Australia.
| |
Collapse
|
21
|
Boisgontier MP, Cheval B, van Ruitenbeek P, Cuypers K, Leunissen I, Sunaert S, Meesen R, Zivari Adab H, Renaud O, Swinnen SP. Cerebellar gray matter explains bimanual coordination performance in children and older adults. Neurobiol Aging 2018; 65:109-120. [DOI: 10.1016/j.neurobiolaging.2018.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/12/2018] [Accepted: 01/21/2018] [Indexed: 02/02/2023]
|
22
|
Casamento-Moran A, Fleeman R, Chen YT, Kwon M, Fox EJ, Yacoubi B, Christou EA. Neuromuscular variability and spatial accuracy in children and older adults. J Electromyogr Kinesiol 2018; 41:27-33. [PMID: 29723799 DOI: 10.1016/j.jelekin.2018.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/27/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022] Open
Abstract
Our ability to control movements is influenced by the developmental status of the neuromuscular system. Consequently, movement control improves from childhood to early adulthood but gradually declines thereafter. However, no study has compared movement accuracy between children and older adults. The purpose of this study was to compare endpoint accuracy during a fast goal-directed movement task in children and older adults. Ten pre-adolescent children (9.7 ± 0.67 yrs) and 19 older adults (71.95 ± 6.99 yrs) attempted to accurately match a peak displacement of the foot to a target (9° in 180 ms) with a dorsiflexion movement. We recorded electromyographic activity from the tibialis anterior (agonist) and soleus (antagonist) muscles. We quantified position error (i.e. spatial accuracy) as well as the coordination, magnitude, and variability of the antagonistic muscles. Children exhibited greater position error than older adults (36.4 ± 13.4% vs. 27.0 ± 9.8%). This age-related difference in spatial accuracy, was related to a more variable activation of the agonist muscle (R2: 0.358; P < 0.01). These results suggest that an immature neuromuscular system, compared to an aged one, affects the generation and refinement of the motor plan which increases the variability in the neural drive to the muscle and reduces spatial accuracy in children.
Collapse
Affiliation(s)
| | - Rebecca Fleeman
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA.
| | - Yen-Ting Chen
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA.
| | - MinHyuk Kwon
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA.
| | - Emily J Fox
- Department of Physical Therapy, University of Florida, FL, USA.
| | - Basma Yacoubi
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA.
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA; Department of Physical Therapy, University of Florida, FL, USA.
| |
Collapse
|
23
|
Pope MA, Studenka BE. Experience with Event Timing Does not Alter Emergent Timing: Further Evidence for Robustness of Event and Emergent Timing. J Mot Behav 2018; 51:113-120. [PMID: 29447617 DOI: 10.1080/00222895.2018.1432548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although, event and emergent timings are thought of as mutually exclusive, significant correlations between tapping and circle drawing (Baer, Thibodeau, Gralnick, Li, & Penhune, 2013 ; Studenka, Zelaznik, & Balasubramaniam, 2012 ; Zelaznik & Rosenbaum, 2010 ) suggest that emergent timing may not be as robust as once thought. We aimed to test this hypothesis in both a younger (18-25) and older (55-100) population. Participants performed one block of circle drawing as a baseline, then six blocks of tapping, followed by circle drawing. We examined the use of event timing. Our hypothesis that acute experience with event timing would bias an individual to use event timing during an emergent task was not supported. We, instead, support the robustness of event and emergent timing as independent timing modes.
Collapse
Affiliation(s)
- Megan A Pope
- a Department of Kinesiology and Health Science , Utah State University , Logan , UT
| | - Breanna E Studenka
- a Department of Kinesiology and Health Science , Utah State University , Logan , UT
| |
Collapse
|
24
|
Dully J, McGovern DP, O'Connell RG. The impact of natural aging on computational and neural indices of perceptual decision making: A review. Behav Brain Res 2018; 355:48-55. [PMID: 29432793 DOI: 10.1016/j.bbr.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 01/12/2023]
Abstract
It is well established that natural aging negatively impacts on a wide variety of cognitive functions and research has sought to identify core neural mechanisms that may account for these disparate changes. A central feature of any cognitive task is the requirement to translate sensory information into an appropriate action - a process commonly known as perceptual decision making. While computational, psychophysical, and neurophysiological research has made substantial progress in establishing the key computations and neural mechanisms underpinning decision making, it is only relatively recently that this knowledge has begun to be applied to research on aging. The purpose of this review is to provide an overview of this work which is beginning to offer new insights into the core psychological processes that mediate age-related cognitive decline in adults aged 65 years and over. Mathematical modelling studies have consistently reported that older adults display longer non-decisional processing times and implement more conservative decision policies than their younger counterparts. However, there are limits on what we can learn from behavioural modeling alone and neurophysiological analyses can play an essential role in empirically validating model predictions and in pinpointing the precise neural mechanisms that are impacted by aging. Although few studies to date have explicitly examined correspondences between computational models and neural data with respect to cognitive aging, neurophysiological studies have already highlighted age-related changes at multiple levels of the sensorimotor hierarchy that are likely to be consequential for decision making behaviour. Here, we provide an overview of this literature and suggest some future directions for the field.
Collapse
Affiliation(s)
- Jessica Dully
- Trinity College Dublin Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland.
| | - David P McGovern
- Trinity College Dublin Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland
| | - Redmond G O'Connell
- Trinity College Dublin Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
25
|
Corporaal SHA, Bruijn SM, Hoogkamer W, Chalavi S, Boisgontier MP, Duysens J, Swinnen SP, Gooijers J. Different neural substrates for precision stepping and fast online step adjustments in youth. Brain Struct Funct 2018; 223:2039-2053. [PMID: 29368052 PMCID: PMC5884917 DOI: 10.1007/s00429-017-1586-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022]
Abstract
Humans can navigate through challenging environments (e.g., cluttered or uneven terrains) by modifying their preferred gait pattern (e.g., step length, step width, or speed). Growing behavioral and neuroimaging evidence suggests that the ability to modify preferred step patterns requires the recruitment of cognitive resources. In children, it is argued that prolonged development of complex gait is related to the ongoing development of involved brain regions, but this has not been directly investigated yet. Here, we aimed to elucidate the relationship between structural brain properties and complex gait in youth aged 9–18 years. We used volumetric analyses of cortical grey matter (GM) and whole-brain voxelwise statistical analyses of white matter (WM), and utilized a treadmill-based precision stepping task to investigate complex gait. Moreover, precision stepping was performed on step targets which were either unperturbed or perturbed (i.e., unexpectedly shifting to a new location). Our main findings revealed that larger unperturbed precision step error was associated with decreased WM microstructural organization of tracts that are particularly associated with attentional and visual processing functions. These results strengthen the hypothesis that precision stepping on unperturbed step targets is driven by cortical processes. In contrast, no significant correlations were found between perturbed precision stepping and cortical structures, indicating that other (neural) mechanisms may be more important for this type of stepping.
Collapse
Affiliation(s)
- Sharissa H A Corporaal
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
| | - Sjoerd M Bruijn
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Wouter Hoogkamer
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
- Department of Integrative Physiology, University of Colorado, Boulder, USA
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
| | - Matthieu P Boisgontier
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
| | - Jacques Duysens
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
- Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1501, 3001, Leuven, Belgium.
| |
Collapse
|
26
|
Lee M, Farshchiansadegh A, Ranganathan R. Children show limited movement repertoire when learning a novel motor skill. Dev Sci 2017; 21:e12614. [DOI: 10.1111/desc.12614] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/03/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Mei‐Hua Lee
- Department of Kinesiology Michigan State University East Lansing MI USA
| | | | - Rajiv Ranganathan
- Department of Kinesiology Michigan State University East Lansing MI USA
| |
Collapse
|
27
|
Abstract
Motor skill acquisition occurs while practicing (on-line) and when asleep or awake (off-line). However, developmental questions still remain about whether children of various ages benefit similarly or differentially from night- and day-time sleeping. The likely circadian effects (time-of-day) and the possible between-test-interference (order effects) associated with children's off-line motor learning are currently unknown. Therefore, this study examines the contributions of over-night sleeping and mid-day napping to procedural skill learning. One hundred and eight children were instructed to practice a finger sequence task using computer keyboards. After an equivalent 11-h interval in one of the three states (sleep, nap, wakefulness), children performed the same sequence in retention tests and a novel sequence in transfer tests. Changes in the movement time and sequence accuracy were evaluated between ages (6-7, 8-9, 10-11years) during practice, and from skill training to retrievals across three states. Results suggest that night-time sleeping and day-time napping improved the tapping speed, especially for the 6-year-olds. The circadian factor did not affect off-line motor learning in children. The interference between the two counter-balanced retrieval tests was not found for the off-line motor learning. This research offers possible evidence about the age-related motor learning characteristics in children and a potential means for enhancing developmental motor skills. The dynamics between age, experience, memory formation, and the theoretical implications of motor skill acquisition are discussed.
Collapse
Affiliation(s)
- Jin H Yan
- Laboratory of Neuromotor Control and Learning, Shenzhen University, 3688 Nan Hai Ave, Shenzhen, Gangdong 518060, PR China.
| |
Collapse
|
28
|
Poletti C, Sleimen-Malkoun R, Decker LM, Retornaz F, Lemaire P, Temprado JJ. Strategic Variations in Fitts' Task: Comparison of Healthy Older Adults and Cognitively Impaired Patients. Front Aging Neurosci 2017; 8:334. [PMID: 28163682 PMCID: PMC5247467 DOI: 10.3389/fnagi.2016.00334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 12/22/2016] [Indexed: 11/13/2022] Open
Abstract
The present study aimed at investigating how healthy older adults (HOA) and cognitively impaired patients (CIP) differ in a discrete Fitts' aiming task. Four levels of task difficulty were used, resulting from the simultaneous manipulation of the size of the target and its distance from home position. We found that movement times (MTs) followed Fitts' law in both HOA and CIP, with the latter being significantly slower and more affected by increased task difficulty. Moreover, correlation analyses suggest that lower information processing speed (IPS) and deficits in executive functions (EFs) are associated with decline of sensorimotor performance in Fitts' task. Analyses of strategic variations showed that HOA and CIP differed in strategy repertoire (which strategies they used), strategy distribution (i.e., how often they used each available strategy), and strategy execution (i.e., how quick they were with each available strategy). These findings further our understanding of how strategic variations used in a sensorimotor task are affected by cognitive impairment in older adults.
Collapse
Affiliation(s)
- Céline Poletti
- Laboratoire de Psychologie Cognitive (LPC), Aix-Marseille Université, CNRSMarseille, France; Institut des Sciences du Mouvement (ISM), Aix-Marseille Université, CNRSMarseille, France
| | - Rita Sleimen-Malkoun
- Institut des Sciences du Mouvement (ISM), Aix-Marseille Université, CNRS Marseille, France
| | | | | | - Patrick Lemaire
- Laboratoire de Psychologie Cognitive (LPC), Aix-Marseille Université, CNRS Marseille, France
| | - Jean-Jacques Temprado
- Institut des Sciences du Mouvement (ISM), Aix-Marseille Université, CNRS Marseille, France
| |
Collapse
|
29
|
Pancani S, Tindale W, Shaw PJ, McDermott CJ, Mazzà C. An Objective Functional Characterisation of Head Movement Impairment in Individuals with Neck Muscle Weakness Due to Amyotrophic Lateral Sclerosis. PLoS One 2017; 12:e0169019. [PMID: 28068376 PMCID: PMC5222498 DOI: 10.1371/journal.pone.0169019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022] Open
Abstract
Background Neck muscle weakness and head drop are well recognised in patients with Amyotrophic lateral sclerosis (ALS), but an objective characterisation of the consequent head movement impairment is lacking. The aim of this study was to quantitatively characterise head movements in ALS compared to aged matched controls. Methods We evaluated two groups, one of thirteen patients with ALS and one of thirteen age-matched controls, during the execution of a series of controlled head movements, performed while wearing two inertial sensors attached on the forehead and sternum, respectively. We quantified the differences between the two groups from the sensor data using indices of velocity, smoothness and movement coupling (intended as a measure of undesired out of plane movements). Findings Results confirmed a general limitation in the ability of the ALS patients to perform and control head movements. High inter-patient variability was observed due to a wide range of observed functional impairment levels. The ability to extend the head backward and flex it laterally were the most compromised, with significantly lower angular velocity (P < 0.05, Cohen’s d > 0.8), reduced smoothness and greater presence of coupled movements with respect to the controls. A significant reduction of angular velocity (P < 0.05, Cohen’s d > 0.8) in extension, axial rotation and lateral flexion was observed when patients were asked to perform the movements as fast as possible. Interpretation This pilot study is the first study providing a functional objective quantification of head movements in ALS. Further work involving different body areas and correlation with existing methods of evaluating neuromuscular function, such as dynamometry and EMG, is needed to explore the use of this approach as a marker of disease progression in ALS.
Collapse
Affiliation(s)
- Silvia Pancani
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| | - Wendy Tindale
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- NIHR Devices for Dignity Healthcare Technology Co-operative, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Christopher J. McDermott
- NIHR Devices for Dignity Healthcare Technology Co-operative, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Claudia Mazzà
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
30
|
Lifespan development of the bilateral deficit in a simple reaction time task. Exp Brain Res 2016; 235:985-992. [DOI: 10.1007/s00221-016-4856-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
31
|
Kurz MJ, Proskovec AL, Gehringer JE, Becker KM, Arpin DJ, Heinrichs-Graham E, Wilson TW. Developmental Trajectory of Beta Cortical Oscillatory Activity During a Knee Motor Task. Brain Topogr 2016; 29:824-833. [PMID: 27277428 DOI: 10.1007/s10548-016-0500-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/01/2016] [Indexed: 01/10/2023]
Abstract
There is currently a void in the scientific literature on the cortical beta oscillatory activity that is associated with the production of leg motor actions. In addition, we have limited data on how these cortical oscillations may progressively change as a function of development. This study began to fill this vast knowledge gap by using high-density magnetoencephalography to quantify the beta cortical oscillatory activity over a cross-section of typically developing children as they performed an isometric knee target matching task. Advanced beamforming methods were used to identify the spatiotemporal changes in beta oscillatory activity during the motor planning and motor action time frames. Our results showed that a widespread beta event-related desynchronization (ERD) was present across the pre/postcentral gyri, supplementary motor area, and the parietal cortices during the motor planning stage. The strength of this beta ERD sharply diminished across this fronto-parietal network as the children initiated the isometric force needed to match the target. Rank order correlations indicated that the older children were more likely to initiate their force production sooner, took less time to match the targets, and tended to have a weaker beta ERD during the motor planning stage. Lastly, we determined that there was a relationship between the child's age and the strength of the beta ERD within the parietal cortices during isometric force production. Altogether our results suggest that there are notable maturational changes during childhood and adolescence in beta cortical oscillatory activity that are associated with the planning and execution of leg motor actions.
Collapse
Affiliation(s)
- Max J Kurz
- Department of Physical Therapy, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, 68198-5450, Omaha, NE, USA. .,Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Amy L Proskovec
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Psychology, University of Nebraska - Omaha, Omaha, NE, USA
| | - James E Gehringer
- Department of Physical Therapy, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, 68198-5450, Omaha, NE, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Katherine M Becker
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - David J Arpin
- Department of Physical Therapy, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, 68198-5450, Omaha, NE, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Tony W Wilson
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA.,Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
32
|
Viswanathan P, Whitall J, Kagerer FA. Control of Integrated Task Sequences Shapes Components of Reaching. J Mot Behav 2016; 48:435-45. [PMID: 27254601 DOI: 10.1080/00222895.2015.1134431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Reaching toward an object usually consists of a sequence of elemental actions. Using a reaching task sequence, the authors investigated how task elements of that sequence affected feedforward and feedback components of the reaching phase of the movement. Nine right-handed adults performed, with their dominant and nondominant hands, 4 tasks of different complexities: a simple reaching task; a reach-to-grasp task; a reach-to-grasp and lift object task; and a reach-to-grasp, lift, and place object task. Results showed that in the reach-to-grasp and lift object task more time was allocated to the feedforward component of the reach phase, while latency between the task elements decreased. We also found between-hand differences, supporting previous findings of increased efficiency of processing planning-related information in the preferred hand. The presence of task-related modifications supports the concept of contextual effects when planning a movement.
Collapse
Affiliation(s)
- Priya Viswanathan
- a University of Maryland, School of Medicine , Department of Physical Therapy and Rehabilitation Science , Baltimore , Maryland
| | - Jill Whitall
- a University of Maryland, School of Medicine , Department of Physical Therapy and Rehabilitation Science , Baltimore , Maryland
| | - Florian A Kagerer
- b Michigan State University , Department of Kinesiology, Neuroscience Program , East Lansing , Michigan
| |
Collapse
|
33
|
Mawase F, Bar-Haim S, Joubran K, Rubin L, Karniel A, Shmuelof L. Increased Adaptation Rates and Reduction in Trial-by-Trial Variability in Subjects with Cerebral Palsy Following a Multi-session Locomotor Adaptation Training. Front Hum Neurosci 2016; 10:203. [PMID: 27199721 PMCID: PMC4854882 DOI: 10.3389/fnhum.2016.00203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/20/2016] [Indexed: 11/26/2022] Open
Abstract
Cerebral Palsy (CP) results from an insult to the developing brain and is associated with deficits in locomotor and manual skills and in sensorimotor adaptation. We hypothesized that the poor sensorimotor adaptation in persons with CP is related to their high execution variability and does not reflect a general impairment in adaptation learning. We studied the interaction between performance variability and adaptation deficits using a multi-session locomotor adaptation design in persons with CP. Six adolescents with diplegic CP were exposed, during a period of 15 weeks, to a repeated split-belt treadmill perturbation spread over 30 sessions and were tested again 6 months after the end of training. Compared to age-matched healthy controls, subjects with CP showed poor adaptation and high execution variability in the first exposure to the perturbation. Following training they showed marked reduction in execution variability and an increase in learning rates. The reduction in variability and the improvement in adaptation were highly correlated in the CP group and were retained 6 months after training. Interestingly, despite reducing their variability in the washout phase, subjects with CP did not improve learning rates during washout phases that were introduced only four times during the experiment. Our results suggest that locomotor adaptation in subjects with CP is related to their execution variability. Nevertheless, while variability reduction is generalized to other locomotor contexts, the development of savings requires both reduction in execution variability and multiple exposures to the perturbation.
Collapse
Affiliation(s)
- Firas Mawase
- Department of Biomedical Engineering, Ben-Gurion University of the NegevBeer-Sheva, Israel; Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, BaltimoreMD, USA; Zlotowski Center for NeuroscienceBeer-Sheva, Israel
| | - Simona Bar-Haim
- Zlotowski Center for NeuroscienceBeer-Sheva, Israel; Department of Physical Therapy, Ben-Gurion University of the NegevBeer-Sheva, Israel
| | - Katherin Joubran
- Zlotowski Center for NeuroscienceBeer-Sheva, Israel; Department of Physical Therapy, Ben-Gurion University of the NegevBeer-Sheva, Israel
| | - Lihi Rubin
- Department of Biomedical Engineering, Ben-Gurion University of the NegevBeer-Sheva, Israel; Zlotowski Center for NeuroscienceBeer-Sheva, Israel
| | - Amir Karniel
- Department of Biomedical Engineering, Ben-Gurion University of the NegevBeer-Sheva, Israel; Zlotowski Center for NeuroscienceBeer-Sheva, Israel
| | - Lior Shmuelof
- Zlotowski Center for NeuroscienceBeer-Sheva, Israel; Department of Brain and Cognitive Sciences, Ben-Gurion University of the NegevBeer-Sheva, Israel; Department of Physiology and Cell Biology, Ben-Gurion University of the NegevBeer-Sheva, Israel
| |
Collapse
|
34
|
Gómez-Moya R, Díaz R, Fernandez-Ruiz J. Different visuomotor processes maturation rates in children support dual visuomotor learning systems. Hum Mov Sci 2016; 46:221-8. [DOI: 10.1016/j.humov.2016.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/16/2022]
|
35
|
Ren J, Guo W, Yan JH, Liu G, Jia F. Practice and nap schedules modulate children's motor learning. Dev Psychobiol 2015; 58:107-19. [PMID: 26582507 DOI: 10.1002/dev.21380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 10/17/2015] [Indexed: 01/04/2023]
Abstract
Night- or day-time sleep enhances motor skill acquisition. However, prominent issues remained about the circadian (time-of-day) and homeostatic (time since last sleep) effects of sleep on developmental motor learning. Therefore, we examined the effects of nap schedules and nap-test-intervals (NTIs) on the learning of finger tapping sequences on computer keyboards. Children aged 6-7, 8-9, and 10-11 years explicitly acquired the short and long tapping orders that share the same movement strings (4-2-3-1-4, 4-2-3-1-4-2-3-1-4). Following a constant 8- or 10-hr post-learning period in one of the four NTIs (2, 4, 5, 7 hr), children in the morning napping groups, the afternoon napping groups, or the waking group performed the original long sequence in retention test (4-2-3-1-4-2-3-1-4) and the mirrored-order sequence in transfer test (1-3-2-4-1-3-2-4-1). Age and treatment differences in the movement time (MT, ms) and sequence accuracy (SA, %) were compared during skill learning and in retrieval tests. Results suggest that practice or nap affects MT and SA in a greater extent for the younger learners than for the older learners. The circadian effects might not change nap-based skill learning. Importantly, the longer NTIs resulted in superior retention performance than the shorter ones, suggesting that children require a relatively longer post-nap period to form motor memory. Finally, nap-based motor learning was more marked in skill retention than in skill transfer. Brain development may play an important role in motor learning. Our discussion centers on memory consolidation and its relevance for skill acquisition from early to late childhood.
Collapse
Affiliation(s)
- Jie Ren
- Department of Sport Psychology, Shanghai Sports University, Shanghai, China
| | - Wei Guo
- Department of Sport Psychology, Shanghai Sports University, Shanghai, China
| | - Jin H Yan
- Center for Brain Disorders and Cognitive Neuroscience, Shenzhen University, 3688 Nan Hai Ave., Shenzhen, Guangdong, 518060, China.
| | - Guanmin Liu
- Department of Psychology, Tsinghua University, Beijing, China
| | - Fujun Jia
- Guangdong Mental Health Center, Guangdong General Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Davies BL, Gehringer JE, Kurz MJ. Age-related differences in the motor planning of a lower leg target matching task. Hum Mov Sci 2015; 44:299-306. [PMID: 26519904 DOI: 10.1016/j.humov.2015.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/09/2015] [Accepted: 10/17/2015] [Indexed: 11/25/2022]
Abstract
While the development and execution of upper extremity motor plans have been well explored, little is known about how individuals plan and execute rapid, goal-directed motor tasks with the lower extremities. Furthermore, the amount of time needed to integrate the proper amount of visual and proprioceptive feedback before being able to accurately execute a goal-directed movement is not well understood; especially in children. Therefore, the purpose of this study was to initially interrogate how the amount of motor planning time provided to a child before movement execution may influence the preparation and execution of a lower leg goal-directed movement. The results displayed that the amount of pre-movement motor planning time provided may influence the reaction time and accuracy of a goal directed leg movement. All subjects in the study had longer reaction times and less accurate movements when no pre-movement motor planning time was provided. In addition, the children had slower reaction times, slower movements, and less accurate movements than the adults for all the presented targets and motor planning times. These results highlight that children may require more time to successfully plan a goal directed movement with the lower extremity. This suggests that children may potentially have less robust internal models than adults for these types of motor skills.
Collapse
Affiliation(s)
- Brenda L Davies
- Department of Physical Therapy, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, United States
| | - James E Gehringer
- Department of Physical Therapy, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, United States
| | - Max J Kurz
- Department of Physical Therapy, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
37
|
Chan JS, Wu Q, Liang D, Yan JH. Visuospatial working memory training facilitates visually-aided explicit sequence learning. Acta Psychol (Amst) 2015; 161:145-53. [PMID: 26398484 DOI: 10.1016/j.actpsy.2015.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022] Open
Abstract
Finger sequence learning requires visuospatial working memory (WM). However, the dynamics between age, WM training, and motor skill acquisition are unclear. Therefore, we examined how visuospatial WM training improves finger movement sequential accuracy in younger (n=26, 21.1±1.37years) and older adults (n=22, 70.6±4.01years). After performing a finger sequence learning exercise and numerical and spatial WM tasks, participants in each age group were randomly assigned to either the experimental (EX) or control (CO) groups. For one hour daily over a 10-day period, the EX group practiced an adaptive n-back spatial task while those in the CO group practiced a non-adaptive version. As a result of WM practice, the EX participants increased their accuracy in the spatial n-back tasks, while accuracy remained unimproved in the numerical n-back tasks. In all groups, reaction times (RT) became shorter in most numerical and spatial n-back tasks. The learners in the EX group - but not in the CO group - showed improvements in their retention of finger sequences. The findings support our hypothesis that computerized visuospatial WM training improves finger sequence learning both in younger and in older adults. We discuss the theoretical implications and clinical relevance of this research for motor learning and functional rehabilitation.
Collapse
|
38
|
Kimura D, Kadota K, Kinoshita H. The impact of aging on the spatial accuracy of quick corrective arm movements in response to sudden target displacement during reaching. Front Aging Neurosci 2015; 7:182. [PMID: 26441641 PMCID: PMC4585039 DOI: 10.3389/fnagi.2015.00182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/07/2015] [Indexed: 12/21/2022] Open
Abstract
Age-related declines in visuomotor processing speed can have a large impact on motor performance in elderly individuals. Contrary to previous findings, however, recent studies revealed that elderly individuals are able to quickly react to displacement of a visual target during reaching. Here, we investigated the influence of aging on quick, corrective responses to perturbations during reaching in the terms of their functional contribution to accuracy. Elderly and young adults performed reaching movements to a visual target that could be displaced during reaching, and they were requested to move their hand to reach the final target location as quickly as possible. Results showed that, for the younger group, the variance in the directional error of the corrective response correlated with the variance in the reaching trajectory at the halfway point of the reach, but the correlation decreased at the end of the reaching. On the other hand, such correlations were not significant in elderly participants, although the variance of the directional error did not show a significant difference between age groups. Thus, the quick, corrective response seems to play an important role in decreasing variability, especially before the end of reaching, and aging can impair this process.
Collapse
Affiliation(s)
- Daisuke Kimura
- Biomechanics and Motor Control Laboratory, Graduate School of Medicine, Osaka University Toyonaka, Japan
| | - Koji Kadota
- Biomechanics and Motor Control Laboratory, Graduate School of Medicine, Osaka University Toyonaka, Japan
| | - Hiroshi Kinoshita
- Biomechanics and Motor Control Laboratory, Graduate School of Medicine, Osaka University Toyonaka, Japan
| |
Collapse
|
39
|
Chan JSY, Luo Y, Yan JH, Cai L, Peng K. Children's age modulates the effect of part and whole practice in motor learning. Hum Mov Sci 2015; 42:261-72. [PMID: 26112404 DOI: 10.1016/j.humov.2015.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 05/19/2015] [Accepted: 06/04/2015] [Indexed: 11/15/2022]
Abstract
Motor skills can be learned by practicing the whole or part of a movement. In whole practice (WP), a skill is acquired by practicing the movement in its entirety, whereas in part practice (PP), a task is learned by practicing its components before combining them. However, the effectiveness of WP and PP in children is unclear. We, therefore, examined the effects of WP and PP on the learning of juggling among first-, third-, and fifth-graders. Children of each grade were pseudo-randomly assigned to the WP or PP group to learn cascade juggling in 6 days. After baseline assessments, the WP learners practiced three-beanbag juggling. The PP learners practiced one-beanbag juggling on the first 2 days, two-beanbag juggling on the following 2 days, and three-beanbag juggling on the last 2 days. Practice consisted of 40 trials each day. Skill retention and transfer trials (juggling in the opposite direction) were measured 24h after training (number of catches). There was no significant difference between WP and PP in skill retention (WP: 1.28 ± 0.73; PP: 1.42 ± 046, p = .40) and transfer (WP: 1.31 ± 0.78; PP: 1.37 ± 0.55, p = .49). However, a time × grade × group interaction (p < .001) was observed in retention. Children of different grades received differential benefits from the WP and PP regimens. The fifth-graders learned better using WP, whereas the first- and third-graders showed better learning with PP. We discuss the three possible explanations for the results (neural maturity, explicit learning, and coordination capabilities).
Collapse
Affiliation(s)
- John S Y Chan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yuejia Luo
- Institute of Affective and Social Neuroscience, Shenzhen University, Shenzhen, China.
| | - Jin H Yan
- Center for Brain Disorders and Cognitive Neuroscience, School of Medicine, Shenzhen University, Shenzhen, China.
| | - Liuyang Cai
- Department of Psychology, Tsinghua University, Beijing, China
| | - Kaiping Peng
- Department of Psychology, Tsinghua University, Beijing, China
| |
Collapse
|
40
|
Kagerer FA, Clark JE. Development of kinesthetic-motor and auditory-motor representations in school-aged children. Exp Brain Res 2015; 233:2181-94. [PMID: 25912609 DOI: 10.1007/s00221-015-4288-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/12/2015] [Indexed: 11/27/2022]
Abstract
In two experiments using a center-out task, we investigated kinesthetic-motor and auditory-motor integrations in 5- to 12-year-old children and young adults. In experiment 1, participants moved a pen on a digitizing tablet from a starting position to one of three targets (visuo-motor condition), and then to one of four targets without visual feedback of the movement. In both conditions, we found that with increasing age, the children moved faster and straighter, and became less variable in their feedforward control. Higher control demands for movements toward the contralateral side were reflected in longer movement times and decreased spatial accuracy across all age groups. When feedforward control relies predominantly on kinesthesia, 7- to 10-year-old children were more variable, indicating difficulties in switching between feedforward and feedback control efficiently during that age. An inverse age progression was found for directional endpoint error; larger errors increasing with age likely reflect stronger functional lateralization for the dominant hand. In experiment 2, the same visuo-motor condition was followed by an auditory-motor condition in which participants had to move to acoustic targets (either white band or one-third octave noise). Since in the latter directional cues come exclusively from transcallosally mediated interaural time differences, we hypothesized that auditory-motor representations would show age effects. The results did not show a clear age effect, suggesting that corpus callosum functionality is sufficient in children to allow them to form accurate auditory-motor maps already at a young age.
Collapse
Affiliation(s)
- Florian A Kagerer
- Department of Kinesiology, Michigan State University, 308 W Circle Drive, East Lansing, MI, 48824, USA,
| | | |
Collapse
|
41
|
High-gain visual feedback exacerbates ankle movement variability in children. Exp Brain Res 2015; 233:1597-606. [DOI: 10.1007/s00221-015-4234-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
|
42
|
Zhang L, Yang J, Inai Y, Huang Q, Wu J. Effects of aging on pointing movements under restricted visual feedback conditions. Hum Mov Sci 2014; 40:1-13. [PMID: 25506638 DOI: 10.1016/j.humov.2014.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 11/17/2022]
Abstract
The goal of this study was to investigate the effects of aging on pointing movements under restricted visual feedback of hand movement and target location. Fifteen young subjects and fifteen elderly subjects performed pointing movements under four restricted visual feedback conditions that included full visual feedback of hand movement and target location (FV), no visual feedback of hand movement and target location condition (NV), no visual feedback of hand movement (NM) and no visual feedback of target location (NT). This study suggested that Fitts' law applied for pointing movements of the elderly adults under different visual restriction conditions. Moreover, significant main effect of aging on movement times has been found in all four tasks. The peripheral and central changes may be the key factors for these different characteristics. Furthermore, no significant main effects of age on the mean accuracy rate under condition of restricted visual feedback were found. The present study suggested that the elderly subjects made a very similar use of the available sensory information as young subjects under restricted visual feedback conditions. In addition, during the pointing movement, information about the hand's movement was more useful than information about the target location for young and elderly subjects.
Collapse
Affiliation(s)
- Liancun Zhang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, 5 Nandajie, Zhongguancun, Haidian, Beijing 100081, China; Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, 5 Nandajie, Zhongguancun, Haidian, Beijing 100081, China; Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Jiajia Yang
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Yoshinobu Inai
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Qiang Huang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, 5 Nandajie, Zhongguancun, Haidian, Beijing 100081, China; Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, 5 Nandajie, Zhongguancun, Haidian, Beijing 100081, China.
| | - Jinglong Wu
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, 5 Nandajie, Zhongguancun, Haidian, Beijing 100081, China; Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, 5 Nandajie, Zhongguancun, Haidian, Beijing 100081, China; Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan.
| |
Collapse
|
43
|
Sasisekaran J, Weisberg S. Practice and retention of nonwords in adults who stutter. JOURNAL OF FLUENCY DISORDERS 2014; 41:55-71. [PMID: 25173457 PMCID: PMC4156135 DOI: 10.1016/j.jfludis.2014.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
PURPOSE We investigated short-term practice and retention of nonwords in 10 adults who stutter (Mean age=30.7 years, SD=15.1) and age and sex-matched 10 control participants (Mean age=30.8 years, SD=14.9). METHODS Participants were required to repeat nonwords varying in length (3, 4, and 6 syllables), phonotactic constraint (PC vs. NPC, on 3-syllable nonwords only), and complexity (simple, complex). They were tested twice with 1h gap between sessions. RESULTS Logistic mixed model of speech accuracy revealed that the AWS showed a significantly lower probability of correct responses with increasing length and complexity. Analysis of speech kinematics revealed practice effects within Session 1 in AWS seen as a reduction in movement variability for the 3-syllable nonwords; the control group was performing at ceiling at this length. For the 4-syllable nonwords, the control group showed a significant reduction in movement variability with practice, and retained this reduction in Session 2, while the AWS group did not show practice or retention. Group differences were not evident at the 6-syllable level. CONCLUSIONS Group differences in speech accuracy suggest differences in phonemic encoding and/or speech motor processes. Group differences in changes in movement variability within and between sessions suggest reduced practice and retention in AWS. Relevance of the combined use of both behavioral and kinematic measures to interpret the nature of the skill acquisition deficit in persons who stutter is discussed. EDUCATIONAL OBJECTIVES At the end of this activity the reader will be able to: (a) summarize the process of skill acquisition; (b) discuss the literature on skill acquisition deficits in adults who stutter, (c) summarize the differences between AWS and control participants in speech accuracy and speech kinematics with short-term practice and retention of nonwords, (d) discuss potential research directions in the area of skill acquisition in AWS.
Collapse
Affiliation(s)
- Jayanthi Sasisekaran
- Department of Speech, Language, Hearing Sciences, University of Minnesota, United States.
| | | |
Collapse
|
44
|
Liu G, Chen DD, Qin C, Chan JSY, Peng K, Yan JH. Visuomotor Control in Continuous Response Time Tasks across Different Age Groups. Percept Mot Skills 2014; 119:169-82. [DOI: 10.2466/25.10.pms.119c13z8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The goal was to examine whether visuomotor control and choice response time shared age-related developmental trajectories, and if prior computer experience played an important role in control processes. Children (6–7, 8–9, 10–11 yr.), younger adults (24 yr.) and older adults (76 yr.) performed the cursor pointing and choice response time (CRT) tasks with a computer mouse. Participants moved the mouse cursor back and forth to click two targets on the screen as fast and accurately as possible. In the CRT, based on visual stimuli, participants moved and clicked one of the three targets on the screen as fast and accurately as possible; the time between stimulus onset and clicking the correct target was recorded as the choice response time. Visuomotor performance increased with age to younger adulthood but was worse in the older adult group. CRT performance was also positively related to age among the groups of children, with scores leveling off in the young adult group. Computer experience was statistically significantly related only to visuomotor control, but not to CRT. Optimal CRT performance required only sub-optimal visuomotor control. Cognitive and sensory age declines may be related to the poorer CRT performance in the oldest age group.
Collapse
Affiliation(s)
- Guanmin Liu
- Department of Psychology, Tsinghua University, Beijing, China
| | - David D. Chen
- Department of Kinesiology, California State University Fullerton, California, USA
| | - Chunbo Qin
- Department of Sports, Shenzhen University, Shenzhen, China
| | - John S. Y. Chan
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kaiping Peng
- Department of Psychology, Tsinghua University, Beijing, China
| | - Jin H. Yan
- Institute of Affective & Social Neuroscience, Shenzhen University, Shenzhen, China
| |
Collapse
|
45
|
Fox EJ, Moon H, Kwon M, Chen YT, Christou EA. Neuromuscular control of goal-directed ankle movements differs for healthy children and adults. Eur J Appl Physiol 2014; 114:1889-99. [DOI: 10.1007/s00421-014-2915-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 05/15/2014] [Indexed: 11/28/2022]
|
46
|
Tresch UA, Perreault EJ, Honeycutt CF. Startle evoked movement is delayed in older adults: implications for brainstem processing in the elderly. Physiol Rep 2014; 2:2/6/e12025. [PMID: 24907294 PMCID: PMC4208637 DOI: 10.14814/phy2.12025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Little attention has been given to how age affects the neural processing of movement within the brainstem. Since the brainstem plays a critical role in motor control throughout the whole body, having a clear understanding of deficits in brainstem function could provide important insights into movement deficits in older adults. A unique property of the startle reflex is its ability to involuntarily elicit planned movements, a phenomenon referred to as startReact. The noninvasive startReact response has previously been used to probe both brainstem utilization and motor planning. Our objective was to evaluate deficits in startReact hand extension movements in older adults. We hypothesized that startReact hand extension will be intact but delayed. Electromyography was recorded from the sternocleidomastoid (SCM) muscle to detect startle and the extensor digitorum communis (EDC) to quantify movement onset in both young (24 ± 1) and older adults (70 ± 11). Subjects were exposed to a startling loud sound when prepared to extend their hand. Trials were split into those where a startle did (SCM+) and did not (SCM−) occur. We found that startReact was intact but delayed in older adults. SCM+ onset latencies were faster than SCM− trials in both the populations, however, SCM+ onset latencies were slower in older adults compared to young (Δ = 8 msec). We conclude that the observed age‐related delay in the startReact response most likely arises from central processing delays within the brainstem. Our objective was to utilize the noninvasive startReact phenomenon, which is mediated through the brainstem, to gain insight into brainstem processing in older adults. We found that startReact hand extension was intact but delayed in older adults. The observed age‐related delay in the startReact response most likely arises from central processing delays within the brainstem. Our result that the startReact response is delayed in older individuals highlights that movements (e.g., posture, locomotion) and reflexes (e.g., long‐latency stretch reflexes) that are coordinated by the brainstem may have similar deficits in older adults.
Collapse
Affiliation(s)
| | - Eric J Perreault
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois Department of Biomedical Engineering, Northwestern University, Evanston, Illinois Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | - Claire F Honeycutt
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois
| |
Collapse
|
47
|
Sarig Bahat H, Weiss PL(T, Sprecher E, Krasovsky A, Laufer Y. Do neck kinematics correlate with pain intensity, neck disability or with fear of motion? ACTA ACUST UNITED AC 2014; 19:252-8. [DOI: 10.1016/j.math.2013.10.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 10/17/2013] [Accepted: 10/23/2013] [Indexed: 11/30/2022]
|
48
|
Chen YT, Kwon M, Fox EJ, Christou EA. Altered activation of the antagonist muscle during practice compromises motor learning in older adults. J Neurophysiol 2014; 112:1010-9. [PMID: 24848478 DOI: 10.1152/jn.00569.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aging impairs the activation of muscle; however, it remains unclear whether it contributes to deficits in motor learning in older adults. The purpose of this study was to determine whether altered activation of antagonistic muscles in older adults during practice inhibits their ability to transfer a motor task ipsilaterally. Twenty young (25.1 ± 3.9 yr; 10 men, 10 women) and twenty older adults (71.5 ± 4.8 yr; 10 men, 10 women) participated. Half of the subjects practiced 100 trials of a rapid goal-directed task with ankle dorsiflexion and were tested 1 day later with elbow flexion (transfer). The rest did not perform any ankle practice and only performed the task with elbow flexion. The goal-directed task consisted of rapid movement (180 ms) to match a spatiotemporal target. For each limb, we recorded the EMG burst activity of the primary agonist and antagonist muscles. The rate of improvement during task acquisition (practice) was similar for young and older adults (P > 0.3). In contrast, only young adults were able to transfer the task to the upper limb. Specifically, young adults who practiced ankle dorsiflexion exhibited ∼30% (P < 0.05) lower movement error and ∼60% (P < 0.05) lower antagonist EMG burst activity compared with older adults who received equal practice and young adults who did not receive any ankle dorsiflexion practice. These results provide novel evidence that the deficient motor learning in older adults may be related to a differential activation of the antagonist muscle, which compromises their ability to acquire the task during practice.
Collapse
Affiliation(s)
- Yen-Ting Chen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - MinHyuk Kwon
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Emily J Fox
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; Department of Physical Therapy, University of Florida, Gainesville, Florida; and Brooks Rehabilitation, Jacksonville, Florida
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; Department of Physical Therapy, University of Florida, Gainesville, Florida; and
| |
Collapse
|
49
|
Kagerer FA, Clark JE. Development of interactions between sensorimotor representations in school-aged children. Hum Mov Sci 2014; 34:164-77. [PMID: 24636697 DOI: 10.1016/j.humov.2014.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/09/2014] [Accepted: 02/09/2014] [Indexed: 11/15/2022]
Abstract
Reliable sensory-motor integration is a pre-requisite for optimal movement control; the functionality of this integration changes during development. Previous research has shown that motor performance of school-age children is characterized by higher variability, particularly under conditions where vision is not available, and movement planning and control is largely based on kinesthetic input. The purpose of the current study was to determine the characteristics of how kinesthetic-motor internal representations interact with visuo-motor representations during development. To this end, we induced a visuo-motor adaptation in 59 children, ranging from 5 to 12years of age, as well as in a group of adults, and measured initial directional error (IDE) and endpoint error (EPE) during a subsequent condition where visual feedback was not available, and participants had to rely on kinesthetic input. Our results show that older children (age range 9-12years) de-adapted significantly more than younger children (age range 5-8years) over the course of 36 trials in the absence of vision, suggesting that the kinesthetic-motor internal representation in the older children was utilized more efficiently to guide hand movements, and was comparable to the performance of the adults.
Collapse
Affiliation(s)
- Florian A Kagerer
- Dept. of Kinesiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Jane E Clark
- Dept. of Kinesiology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
50
|
Cai L, Chan JSY, Yan JH, Peng K. Brain plasticity and motor practice in cognitive aging. Front Aging Neurosci 2014; 6:31. [PMID: 24653695 PMCID: PMC3947993 DOI: 10.3389/fnagi.2014.00031] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/18/2014] [Indexed: 12/02/2022] Open
Abstract
For more than two decades, there have been extensive studies of experience-based neural plasticity exploring effective applications of brain plasticity for cognitive and motor development. Research suggests that human brains continuously undergo structural reorganization and functional changes in response to stimulations or training. From a developmental point of view, the assumption of lifespan brain plasticity has been extended to older adults in terms of the benefits of cognitive training and physical therapy. To summarize recent developments, first, we introduce the concept of neural plasticity from a developmental perspective. Secondly, we note that motor learning often refers to deliberate practice and the resulting performance enhancement and adaptability. We discuss the close interplay between neural plasticity, motor learning and cognitive aging. Thirdly, we review research on motor skill acquisition in older adults with, and without, impairments relative to aging-related cognitive decline. Finally, to enhance future research and application, we highlight the implications of neural plasticity in skills learning and cognitive rehabilitation for the aging population.
Collapse
Affiliation(s)
- Liuyang Cai
- Department of Psychology, Tsinghua University Beijing, China
| | - John S Y Chan
- Department of Psychology, The Chinese University of Hong Kong Hong Kong, China
| | - Jin H Yan
- Department of Psychology, Tsinghua University Beijing, China ; Institute of Affective and Social Neuroscience, Shenzhen University Shenzhen, China
| | - Kaiping Peng
- Department of Psychology, Tsinghua University Beijing, China
| |
Collapse
|