1
|
Grajzer M, Kozłowska W, Zalewski I, Matkowski A, Wiland-Szymańska J, Rękoś M, Prescha A. Nutraceutical Prospects of Pumpkin Seeds: A Study on the Lipid Fraction Composition and Oxidative Stability Across Eleven Varieties. Foods 2025; 14:354. [PMID: 39941947 PMCID: PMC11816854 DOI: 10.3390/foods14030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The oxidative stability of nutritive and bioactive lipids is essential for their functionality. This study evaluated the potential of lipid fractions from pumpkin seeds obtained from eleven high-performing cultivars of Cucurbita maxima Duchesne, C. pepo L., and C. moschata Duchesne cultivated in Poland, aiming to evaluate their stability for nutraceutical applications. This study investigated the intrinsic relationship between chemical composition and oxidative stability to identify cultivars with promising functional potential and commercial value. The fatty acid, sterol, and lipid antioxidant profiles were characterized using gas chromatography (GC), GC-mass spectrometry (GC-MS), and ultra-high-performance liquid chromatography (UPLC), respectively. Antiradical activity was assessed via the DPPH assay, and oxidative stability was evaluated using differential scanning calorimetry (DSC). The oils exhibited high levels of polyunsaturated fatty acids (PUFAs) (59.5-68.6%), with n-6/n-3 fatty acid ratios ranging from 66.5 to 211.6. The lipid extracts contained up to 97.1% Δ7-sterols, while key antioxidants included squalene (616.6-3092.0 mg/kg) and γ-tocopherol (54.1-423.6 mg/kg). Notably, the C. pepo cultivar 'Moonshine' was the least abundant in these bioactive compounds. The carotenoid content ranged from 5.7 to 19.4 mg/kg across the extracts. Among the studied cultivars, 'Show Winner' and 'Pink Jumbo Banana' (C. maxima) stood out as promising candidates for nutraceutical applications due to their elevated levels of tocopherols, carotenoids, and squalene. A moderate n-6/n-3 fatty acid ratio (100-170), coupled with balanced levels of γ-tocopherol and squalene, was found to significantly enhance the oxidative stability of pumpkin seed lipids. These lipid fractions also show potential as stabilizing additives for oils rich in α-linolenic acid but deficient in natural antioxidants.
Collapse
Affiliation(s)
- Magdalena Grajzer
- Department of Dietetics and Bromatology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (I.Z.); (A.P.)
| | - Weronika Kozłowska
- Division of Pharmaceutical Biotechnology, Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Iwan Zalewski
- Department of Dietetics and Bromatology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (I.Z.); (A.P.)
| | - Adam Matkowski
- Botanical Garden of Medicinal Plants, Division of Pharmaceutical Biology and Botany, Department of Pharmaceutical Biology and Biotechnology, Jana Kochanowskiego 14, 50-367 Wroclaw, Poland;
| | - Justyna Wiland-Szymańska
- Department of Systematic and Environmental Botany, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland;
- Botanical Garden, Adam Mickiewicz University, Dąbrowskiego 165, 60-594 Poznan, Poland;
| | - Monika Rękoś
- Botanical Garden, Adam Mickiewicz University, Dąbrowskiego 165, 60-594 Poznan, Poland;
| | - Anna Prescha
- Department of Dietetics and Bromatology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (I.Z.); (A.P.)
| |
Collapse
|
2
|
Schoss K, Glavač NK. Supercritical CO 2 Extraction vs. Hexane Extraction and Cold Pressing: Comparative Analysis of Seed Oils from Six Plant Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:3409. [PMID: 39683202 DOI: 10.3390/plants13233409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Supercritical fluid extraction using carbon dioxide (SFE-CO2) brings a convincing advance in the production of plant oils used in cosmetics, in fortified foods and dietary supplements, and in pharmaceuticals and medicine. The SFE-CO2-extracted, hexane-extracted, and cold-pressed plant oils of pumpkin (Cucurbita pepo L.), flax (Linum usitatissimum L.), linden (Tilia sp.), poppy (Papaver somniferum L.), apricot (Prunus armeniaca L.), and marigold (Calendula officinalis L.) seeds were investigated in terms of oil yield, fatty acid composition, unsaponifiable matter yield and composition, and the antioxidant activity of unsaponifiable matter. SFE-CO2 proved to be the preferred extraction method for four out of six plant materials, especially for seeds with lower oil content. However, for seeds with higher oil content, such as apricots, cold pressing is a viable alternative. A comparison of fatty acid composition did not reveal significant differences between extraction techniques. SFE-CO2 extraction improved the total phytosterol content of oils, especially pumpkin seed oil. A high variability in the antioxidant potential of the unsaponifiable matter studied was determined, with pumpkin seed oil showing the highest antioxidant activity. A correlation analysis was performed between unsaponifiable composition and antioxidant activity, and showed statistically significant correlations with squalene, cycloartenol, and an unidentified compound. This is the first comparison of the phytosterol compositions of linseed, apricot, linden, and marigold. Through continued optimization, SFE-CO2 has the potential to revolutionize the production of plant oils and provide a sustainable and efficient alternative.
Collapse
Affiliation(s)
- Katja Schoss
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Nina Kočevar Glavač
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Wu W, Chen Z, Huang Q, Chen R, Ma X, Ye W, Fan J, Qian L. Effects of phytosterol ester supplementation on egg weight, biochemical indices, liver immunity and gut microbiota of laying hens during peak laying period. Poult Sci 2024; 103:104305. [PMID: 39316984 PMCID: PMC11462359 DOI: 10.1016/j.psj.2024.104305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
This experiment was aimed to investigate the effects of Phytosterol Ester (PSE) supplementation on egg weight, biochemical indices, liver immunity and gut microbiota of Hy-Line Brown laying hens during peak laying period. A total of 256 healthy Hy-Line Brown laying hens were randomly allocated into 4 groups. Laying hens in the control group were fed a basal diet (CON), while those in the experimental groups received a basal diet containing 10 mg/kg (PSE10), 20 mg/kg (PSE20), or 40 mg/kg (PSE40) mg/kg PSE, respectively. We found that PSE supplementation significantly increased the egg weight in PSE20 and PSE40 groups (P < 0.05) and the serum magnesium (Mg) content in PSE10 and PSE20 groups (P < 0.05), but significantly decreased the serum calcium (Ca) content in PSE40 group (P < 0.05). Moreover, PSE supplementation significantly increased the total protein (TP) content of ovary in all experimental groups (P < 0.01) and decreased the total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) contents of the ovary in PSE20 and PSE40 groups (P < 0.001). In serum, PSE supplementation significantly increased TP content in all experimental groups (P < 0.01) and albumin (ALB) content in PSE20 group (P < 0.05). Alkaline phosphatase (AKP) in PSE20 group, TC content in all experimental groups and LDL-C content in PSE20 and PSE40 groups were significantly decreased (P < 0.05). In egg yolk, PSE supplementation significantly increased TP content in PSE20 and PSE40 groups (P < 0.01) and decreased TC content in PSE20 group (P < 0.01). In liver immunofluorescence, PSE supplementation altered the content of CD163, especially in PSE20 group. Dietary PSE significantly decreased the relative abundance of Bacteroides and Desulfovibrio, while increased the relative abundance of Faecalibacterium, g_unclassified_f_Lachnospiraceae, g_norank_f_Ruminococcaceae, g__unclassified_f__Oscillospiraceae and other bacteria. In conclusion, PSE supplementation increased the average egg weight and total protein, lowered egg yolk, serum and ovary cholesterol of Hy-Line Brown laying hens. At the same time, it can also promote serum magnesium levels, enhanced liver immunity, and improved gut microflora.
Collapse
Affiliation(s)
- Wenzi Wu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
| | - Zhuo Chen
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
| | - Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rui Chen
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
| | - Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Ye
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
| | - Jinghui Fan
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310004, China
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572025, China.
| |
Collapse
|
4
|
Bian Y, Zhang Y, Ruan LY, Feng XS. Phytosterols in Plant-Derived Foods: Recent Updates in Extraction and Analysis Methods. Crit Rev Anal Chem 2024:1-19. [PMID: 39556048 DOI: 10.1080/10408347.2024.2427128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The physiological and officinal functions of phytosterols are of great significance, and recent dietary guidelines have underscored the significance of incorporating them into a balanced diet. Furthermore, it exhibits inhibitory effects on tumor growth, stimulates cellular immunity, possesses anti-inflammatory, antioxidant, and antidiabetic properties. To gain a more comprehensive understanding of the role of phytosterols in public health, it is crucial to establish simple, rapid, eco-conscious, efficient, and highly sensitive techniques for their extraction and determination across various matrices. This review presents a thorough overview of various techniques used for extracting and analyzing phytosterols in diverse plant-derived foods, encompassing a range of advanced technologies like solid-phase extraction, microextraction, supercritical fluid extraction, QuEChERS, alongside traditional approaches. The detection techniques include liquid chromatography-based methods, gas chromatography-based methods, supercritical fluid chromatography, and other methodologies. Additionally, we conduct a thorough examination and comparison of various techniques while proposing future prospects.
Collapse
Affiliation(s)
- Yu Bian
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Ling-Yun Ruan
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Yue Z, Xu Y, Cai M, Fan X, Pan H, Zhang D, Zhang Q. Floral Elegance Meets Medicinal Marvels: Traditional Uses, Phytochemistry, and Pharmacology of the Genus Lagerstroemia L. PLANTS (BASEL, SWITZERLAND) 2024; 13:3016. [PMID: 39519935 PMCID: PMC11548200 DOI: 10.3390/plants13213016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
The genus Lagerstroemia L. (Lythraceae), known for its exquisite flowers and prolonged flowering period, is commonly employed in traditional medicinal systems across Asian countries, where it has always been consumed as tea or employed to address ailments such as diabetes, urinary disorders, coughs, fevers, inflammation, pain, and anesthesia. Its diverse uses may be attributed to its rich active ingredients. Currently, at least 364 biological compounds have been identified from Lagerstroemia extracts, encompassing various types such as terpenes, flavonoids, phenolic acids, alkaloids, and phenylpropanoids. Extensive in vitro and in vivo experiments have examined the pharmacological activities of different extracts, revealing their potential in various domains, including but not limited to antidiabetic, anti-obesity, antitumor, antimicrobial, antioxidant, anti-inflammatory, analgesic, and hepatoprotective effects. Additionally, 20 core components have been proven to be associated with antidiabetic and hypoglycemic effects of Lagerstroemia. Overall, Lagerstroemia exhibit substantial medicinal potential, and the alignment between its traditional applications and contemporary pharmacological findings present promising opportunities for further investigation, particularly in food and health products, drug development, herbal teas, and cosmetics. However, evidence-based pharmacological research has largely been confined to in vitro screening and animal model, lacking clinical trials and bioactive compound isolations. Consequently, future endeavors should adopt a more holistic approach.
Collapse
Affiliation(s)
- Ziwei Yue
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (Y.X.); (H.P.); (Q.Z.)
| | - Yan Xu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (Y.X.); (H.P.); (Q.Z.)
| | - Ming Cai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (Y.X.); (H.P.); (Q.Z.)
| | - Xiaohui Fan
- Luoyang Landscape and Greening Center, Luoyang 471000, China;
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (Y.X.); (H.P.); (Q.Z.)
| | - Donglin Zhang
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA;
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (Y.X.); (H.P.); (Q.Z.)
| |
Collapse
|
6
|
Khallouki F, Zennouhi W, Hajji L, Bourhia M, Benbacer L, El Bouhali B, Rezig L, Poirot M, Lizard G. Current advances in phytosterol free forms and esters: Classification, biosynthesis, chemistry, and detection. Steroids 2024; 212:109520. [PMID: 39378976 DOI: 10.1016/j.steroids.2024.109520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Phytosterols are plant sterols that are important secondary plant metabolites with significant pharmacological properties. Their presence in the plant kingdom concerns many unrelated botanical families such as oleageneous plants and cereals. The structures of phytosterols evoke those of cholesterol. These molecules are composed of a sterane ring, also known as perhydrocyclopentanophenanthrene, along with a methyl or ethyl group at C-24 in their side chains, a hydroxyl group at C-3 on ring A, and one or two double bonds in the B ring. Phytosterols display different oxidation degrees at the sterane ring and at the side chain as well as varying numbers of carbons with complex stereochemistries. Fats and water solubilities of phytosterols have been achieved by physical, chemical and enzymatic esterifications to favor their bioavailability and to improve the sensory quality of food, and the efficiency of pharmaceutic and cosmetic products. This review aims to provide comprehensive information starting from the definition and structural classification of phytosterols, and exposes an update of their biogenic relationships. Next, the synthesis of phytosterol esters and their applications as well as their effective roles as hormone precursors are discussed. Finally, a concise exploration of the latest advancements in phytosterol / oxyphytosterols analysis techniques is provided, with a particular focus on modern hyphenated techniques.
Collapse
Affiliation(s)
- Farid Khallouki
- Team of Ethnopharmacology and Pharmacognosy, Department of Biology, FSTE, Moulay Ismail University of Meknes, BP 609, 52000 Errachidia, Morocco.
| | - Wafa Zennouhi
- Team of Ethnopharmacology and Pharmacognosy, Department of Biology, FSTE, Moulay Ismail University of Meknes, BP 609, 52000 Errachidia, Morocco
| | - Lhoussain Hajji
- Department of Biology, FSM, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Mohamed Bourhia
- Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000 Laayoune, Morocco
| | - Laila Benbacer
- Unité de Biologie et Recherches Moléculaires Département Sciences du Vivant, Centre National de l'Energie, des Sciences et Techniques Nucléaires (CNESTEN), Rabat, Morocco
| | - Bachir El Bouhali
- Department of Biology, FSM, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES24, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis, Tunisia; High Institute of Food Industries, University of Carthage, Tunis, Tunisia
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse III, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
| | - Gérard Lizard
- Laboratoiry Bio-PeroxIL / EA7270, Université de Bourgogne / Inserm, 21000 Dijon, France; PHYNOHA Consulting, 21121 Fontaine-lès-Dijon, France.
| |
Collapse
|
7
|
Shen M, Yuan L, Zhang J, Wang X, Zhang M, Li H, Jing Y, Zeng F, Xie J. Phytosterols: Physiological Functions and Potential Application. Foods 2024; 13:1754. [PMID: 38890982 PMCID: PMC11171835 DOI: 10.3390/foods13111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Dietary intake of natural substances to regulate physiological functions is currently regarded as a potential way of promoting health. As one of the recommended dietary ingredients, phytosterols that are natural bioactive compounds distributed in plants have received increasing attention for their health effects. Phytosterols have attracted great attention from scientists because of many physiological functions, for example, cholesterol-lowering, anticancer, anti-inflammatory, and immunomodulatory effects. In addition, the physiological functions of phytosterols, the purification, structure analysis, synthesis, and food application of phytosterols have been widely studied. Nowadays, many bioactivities of phytosterols have been assessed in vivo and in vitro. However, the mechanisms of their pharmacological activities are not yet fully understood, and in-depth investigation of the relationship between structure and function is crucial. Therefore, a contemporaneous overview of the extraction, beneficial properties, and the mechanisms, as well as the current states of phytosterol application, in the food field of phytosterols is provided in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (M.S.); (L.Y.); (J.Z.); (X.W.); (M.Z.); (H.L.); (Y.J.); (F.Z.)
| |
Collapse
|
8
|
Tsevdou M, Ntzimani A, Katsouli M, Dimopoulos G, Tsimogiannis D, Taoukis P. Comparative Study of Microwave, Pulsed Electric Fields, and High Pressure Processing on the Extraction of Antioxidants from Olive Pomace. Molecules 2024; 29:2303. [PMID: 38792161 PMCID: PMC11123897 DOI: 10.3390/molecules29102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Olive oil production is characterized by large amounts of waste, and yet is considerably highly valued. Olive pomace can serve as a cheap source of bioactive compounds (BACs) with important antioxidant activity. Novel technologies like Pulsed Electric Fields (PEF) and High Pressure (HP) and microwave (MW) processing are considered green alternatives for the recovery of BACs. Different microwave (150-600 W), PEF (1-5 kV/cm field strength, 100-1500 pulses/15 µs width), and HP (250-650 MPa) conditions, in various product/solvent ratios, methanol concentrations, extraction temperatures, and processing times were investigated. Results indicated that the optimal MW extraction conditions were 300 W at 50 °C for 5 min using 60% v/v methanol with a product/solvent ratio of 1:10 g/mL. Similarly, the mix of 40% v/v methanol with olive pomace, treated at 650 MPa for the time needed for pressure build-up (1 min) were considered as optimal extraction conditions in the case of HP, while for PEF the optimal conditions were 60% v/v methanol with a product/solvent ratio of 1:10 g/mL, treated at 5000 pulses, followed by 1 h extraction under stirring conditions. Therefore, these alternative extraction technologies could assist the conventional practice in minimizing waste production and simultaneously align with the requirements of the circular bioeconomy concept.
Collapse
Affiliation(s)
| | | | | | | | | | - Petros Taoukis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Heroon Polytechniou Str., 15780 Athens, Greece; (M.T.); (A.N.); (M.K.); (G.D.); (D.T.)
| |
Collapse
|
9
|
Limam I, Ghali R, Abdelkarim M, Ouni A, Araoud M, Abdelkarim M, Hedhili A, Ben-Aissa Fennira F. Tunisian Artemisia campestris L.: a potential therapeutic agent against myeloma - phytochemical and pharmacological insights. PLANT METHODS 2024; 20:59. [PMID: 38698384 PMCID: PMC11067135 DOI: 10.1186/s13007-024-01185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Artemisia campestris L. (AC) leaves are widely recognized for their importance in traditional medicine. Despite the considerable amount of research conducted on this plant overworld, the chemical composition and the biological activity of the leaves grown in Tunisia remains poorly investigated. In this study of AC, a successive extraction method was employed (hexane, ethyl acetate and methanol) to investigate its bioactive constituents by LC-MS analysis, and their antioxidant, antibacterial, antifungal, and anticancer activities. RESULTS Data analysis revealed diverse compound profiles in AC extracts. Methanolic and ethyl acetate extracts exhibited higher polyphenolic content and antioxidant activities, while Hexane showed superior phytosterol extraction. Ethyl acetate extract displayed potent antibacterial activity against multi-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Additionally, all extracts demonstrated, for the first time, robust antifungal efficacy against Aspergillus flavus and Aspergillus niger. Cytotoxicity assays revealed the significant impact of methanolic and ethyl acetate extracts on metastatic breast cancer and multiple myeloma, examined for the first time in our study. Moreover, further analysis on multiple myeloma cells highlighted that the ethyl acetate extract induced apoptotic and necrotic cell death and resulted in an S phase cell cycle blockage, underscoring its therapeutic potential. CONCLUSIONS This investigation uncovers novel findings in Tunisian AC, notably the identification of lupeol, oleanolic acid, ursolic acid, stigmasterol and β-sitosterol. The study sheds light on the promising role of AC extracts in therapeutic interventions and underscores the need for continued research to harness its full potential in medicine and pharmaceutical development.
Collapse
Affiliation(s)
- Inès Limam
- PRF of Onco-Hematology, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
- Human genetics laboratory, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Ridha Ghali
- Research Laboratory of Toxicology and Environment, CAMU of Tunis, Tunis, LR12SP07, Tunisia
- Higher institute of Biotechnology of Sidi Thabet, Manouba University, Manouba, Tunisia
| | - Mohamed Abdelkarim
- PRF of Onco-Hematology, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
- Human genetics laboratory, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Anis Ouni
- Research Laboratory of Toxicology and Environment, CAMU of Tunis, Tunis, LR12SP07, Tunisia
| | - Manel Araoud
- Research Laboratory of Toxicology and Environment, CAMU of Tunis, Tunis, LR12SP07, Tunisia
| | - Mouaadh Abdelkarim
- College of General Education, University of Doha for Science & Technology, PO Box 24449, Doha, Qatar.
| | - Abderrazek Hedhili
- Research Laboratory of Toxicology and Environment, CAMU of Tunis, Tunis, LR12SP07, Tunisia
| | - Fatma Ben-Aissa Fennira
- PRF of Onco-Hematology, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
10
|
Wu W, Ma X, Chen R, Fan J, Ye W, Chen Z, Huang Q, Qian L. Effects of Phytosterol Ester Supplementation on Egg Characteristics, Eggshell Ultrastructure, Antioxidant Capacity, Liver Function and Hepatic Metabolites of Laying Hens during Peak Laying Period. Antioxidants (Basel) 2024; 13:458. [PMID: 38671906 PMCID: PMC11047565 DOI: 10.3390/antiox13040458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this experiment was to investigate the effects of dietary Phytosterol Ester (PSE) supplementation on egg characteristics, eggshell ultrastructure, antioxidant capacity, liver function, hepatic metabolites, and its mechanism of action in Hy-Line Brown laying hens during peak laying period. A total of 256 healthy Hy-Line Brown laying hens were randomly allocated into four groups. The hens in the control group were fed a basal diet, while those in the experimental groups were fed a basal diet further supplemented with 10, 20, and 40 mg/kg PSE, respectively. It was found that the addition of 20 mg/kg and 40 mg/kg PSE to the diets increased egg weight, but decreased egg breaking strength (p < 0.05). The addition of PSEs to the diets increased albumen height and Haugh unit in all experimental groups (p < 0.05). Electron microscopic observation revealed that the mammillary thickness increased significantly at doses of 20 and 40 mg/kg, but the total thickness decreased, and the effective thickness also thinned (p < 0.05). The mammillary width narrowed in all experimental groups (p < 0.001). Dietary supplementation with 40 mg/kg PSE significantly increased egg yolk Phenylalanine, Leucine, and Isoleucine levels (p < 0.05). In untargeted liver metabolomic analyses, L-Phenylalanine increased significantly in all experimental groups. Leucyl-Lysine, Glutamyl-Leucyl-Arginine, and L-Tryptophan increased significantly at doses of 10 and 20 mg/kg (p < 0.05), and L-Tyrosine increased significantly at doses of 10 and 40 mg/kg (p = 0.033). Aspartyl-Isoleucine also increased significantly at a dose of 10 mg/kg (p = 0.044). The concentration of total protein in the liver was significantly higher at doses of 20 and 40 mg/kg than that of the control group, and the concentrations of total cholesterol and low-density lipoprotein cholesterol were significantly reduced (p < 0.05). The concentration of triglyceride and alkaline phosphatase were significantly reduced in all experimental groups (p < 0.05). Steatosis and hemorrhage in the liver were also improved by observing the H&E-stained sections of the liver. Concerning the antioxidant capacity in the liver, malondialdehyde concentration was significantly reduced (p < 0.05) at a dose of 40 mg/kg. In the ovary, malondialdehyde and nitric oxide concentrations were significantly reduced (p < 0.001). In all the experimental groups, plasma nitric oxide concentration was significantly decreased while superoxide dismutase was significantly increased, and total antioxidant capacity concentration was significantly increased (p < 0.05) in the 10 mg/kg and 40 mg/kg doses. Metabolomics analyses revealed that PSEs play a role in promoting protein synthesis by promoting Aminoacyl-tRNA biosynthesis and amino acid metabolism, among other pathways. This study showed that the dietary addition of PSEs improved egg characteristics, antioxidant capacity, liver function, and symptoms of fatty liver hemorrhagic syndrome in Hy-Line Brown laying hens at peak laying stage. The changes in liver metabolism suggest that the mechanism of action may be related to pathways such as Aminoacyl-tRNA biosynthesis and amino acid metabolism. In conclusion, the present study demonstrated that PSEs are safe and effective dietary additives as an alternative to antibiotics.
Collapse
Affiliation(s)
- Wenzi Wu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (W.W.); (X.M.); (Q.H.)
| | - Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (W.W.); (X.M.); (Q.H.)
| | - Rui Chen
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.Y.); (Z.C.)
| | - Jinghui Fan
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310004, China;
| | - Wenxin Ye
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.Y.); (Z.C.)
| | - Zhuo Chen
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.Y.); (Z.C.)
| | - Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (W.W.); (X.M.); (Q.H.)
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (W.W.); (X.M.); (Q.H.)
| |
Collapse
|
11
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
12
|
Davidson M, Louvet F, Meudec E, Landolt C, Grenier K, Périno S, Ouk TS, Saad N. Optimized Single-Step Recovery of Lipophilic and Hydrophilic Compounds from Raspberry, Strawberry and Blackberry Pomaces Using a Simultaneous Ultrasound-Enzyme-Assisted Extraction (UEAE). Antioxidants (Basel) 2023; 12:1793. [PMID: 37891873 PMCID: PMC10603877 DOI: 10.3390/antiox12101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
An ultrasound-enzyme-assisted extraction (UEAE) was optimized to extract, simultaneously, the hydrophilic and lipophilic compounds from three berry pomaces (raspberry, strawberry and blackberry). First, an enzyme screening designated a thermostable alkaline protease as the most suitable enzyme to recover, in an aqueous medium, the highest yields of polyphenols and oil in the most efficient way. Secondly, the selected enzyme was coupled to ultrasounds (US) in sequential and simultaneous combinations. The simultaneous US-alkaline enzyme combination was selected as a one-single-step process and was then optimized by definitive screening design (DSD). The optimized parameters were: US amplitude, 20% (raspberry pomace) or 70% (strawberry and blackberry pomaces); pH, 8; E/S ratio, 1% (w/w); S/L ratio, 6% (w/v); extraction time, 30 min; temperature, 60 °C. Compared to conventional extractions using organic solvents, the UEAE extracted all the polyphenols, with around 75% of the active polyphenols (measured by the DPPH● method) and up to 75% of the initial oil from the berry pomaces. Characterized lipophilic compounds were rich in polyunsaturated fatty acids (PUFAs), tocols and phytosterols. The polyphenolics were analyzed by UPLC-MS/MS; characteristic ellagitannins of the Rosaceae family (sanguiin H-6 or agrimoniin, sanguiin H-10, …) and ellagic acid conjugates were found as the major components.
Collapse
Affiliation(s)
- Morag Davidson
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (M.D.); (C.L.); (K.G.); (T.-S.O.)
| | - François Louvet
- ENSIL-ENSCI Formation: Céramique Industrielle, ESTER, Université de Limoges, 87068 Limoges, France;
| | - Emmanuelle Meudec
- SPO, INRAE, Institut Agro, Université de Montpellier, 34060 Montpellier, France;
- INRAE, PROBE Research Infrastructure, Polyphenol Analytical Facility, 34060 Montpellier, France
| | - Cornelia Landolt
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (M.D.); (C.L.); (K.G.); (T.-S.O.)
| | - Karine Grenier
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (M.D.); (C.L.); (K.G.); (T.-S.O.)
| | - Sandrine Périno
- Équipe GREEN, UMR 408 SQPOV, Avignon Université, F-84000 Avignon, France;
| | - Tan-Sothéa Ouk
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (M.D.); (C.L.); (K.G.); (T.-S.O.)
| | - Naïma Saad
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (M.D.); (C.L.); (K.G.); (T.-S.O.)
| |
Collapse
|
13
|
Evtyugin DD, Evtuguin DV, Casal S, Domingues MR. Advances and Challenges in Plant Sterol Research: Fundamentals, Analysis, Applications and Production. Molecules 2023; 28:6526. [PMID: 37764302 PMCID: PMC10535520 DOI: 10.3390/molecules28186526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Plant sterols (PS) are cholesterol-like terpenoids widely spread in the kingdom Plantae. Being the target of extensive research for more than a century, PS have topped with evidence of having beneficial effects in healthy subjects and applications in food, cosmetic and pharmaceutical industries. However, many gaps in several fields of PS's research still hinder their widespread practical applications. In fact, many of the mechanisms associated with PS supplementation and their health benefits are still not fully elucidated. Furthermore, compared to cholesterol data, many complex PS chemical structures still need to be fully characterized, especially in oxidized PS. On the other hand, PS molecules have also been the focus of structural modifications for applications in diverse areas, including not only the above-mentioned but also in e.g., drug delivery systems or alternative matrixes for functional foods and fats. All the identified drawbacks are also superimposed by the need of new PS sources and technologies for their isolation and purification, taking into account increased environmental and sustainability concerns. Accordingly, current and future trends in PS research warrant discussion.
Collapse
Affiliation(s)
- Dmitry D. Evtyugin
- CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.D.E.); (D.V.E.)
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Dmitry V. Evtuguin
- CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.D.E.); (D.V.E.)
| | - Susana Casal
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Jayantha JBSK, Mashayekhy Rad F, Vidanarachchi JK, Bergquist J, Kumari A Ubhayasekera SJ. A fast ultra performance supercritical fluid chromatography-tandem mass spectrometric method for profiling of targeted phytosterols. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1225:123737. [PMID: 37210885 DOI: 10.1016/j.jchromb.2023.123737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/13/2023] [Accepted: 04/30/2023] [Indexed: 05/23/2023]
Abstract
Phytosterols are essential structural components of plant cell membranes and possess health-related benefits, including lowering blood cholesterol levels in humans. Numerous analytical methods are being used to profile plant and animal sterols. Chromatography hyphenated to tandem mass spectrometry, is a better option due to its specificity, selectivity, and sensitivity. An ultra-performance supercritical fluid chromatography hyphenated with atmospheric pressure chemical ionization (APCI) tandem mass spectrometric method was developed and evaluated for fingerprint analysis of seven phytosterols. Mass spectrometry fragmentation behavior was used for phytosterol identification, and multiple reaction monitoring scanning was utilized for phytosterol confirmation, where APCI outperformed superiority in terms of ion intensity, particularly in the production of [M + H-H2O]+ ions rather than [M + H]+ ions. The chromatographic conditions were thoroughly evaluated, and the ionization parameters were optimized as well. In a 3 min. run, the seven phytosterols were separated concurrently. The calibration and repeatability tests were conducted to check the instrument's performance, and the results indicated that all of the phytosterols tested had correlation coefficients (r2) greater than 0.9911 over the concentration range of 5-5000 ng/mL. The limit of quantification was below 20 ng/mL for all the tested analytes except for stigmasterol and campesterol. The partially validated method was applied for the evaluation of phytosterols in pure coconut oil and palm oil in order to demonstrate its applicability. Total sterols in coconut and palm oils were 126.77 ng/mL and 101.73 ng/mL, respectively. In comparison to earlier methods of phytosterol analysis, the novel method offers a far faster, more sensitive, and more selective analytical process.
Collapse
Affiliation(s)
- J B S K Jayantha
- Department of Chemistry-Biomedical Centre, Uppsala University, 751 24 Uppsala, Sweden; Department of Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | | | - J K Vidanarachchi
- Department of Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Jonas Bergquist
- Department of Chemistry-Biomedical Centre, Uppsala University, 751 24 Uppsala, Sweden
| | | |
Collapse
|
15
|
Yang BW, Ji SY, Zhao T, Wang ZT, Zhang YS, Pan QN, Huang W, Lu BY. Phytosterols photooxidation in O/W emulsion: Influence of emulsifier composition and interfacial properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
16
|
Khan AU, Khan A, Shal B, Khan S, Khan M, Ahmad R, Riaz M. The critical role of the phytosterols in modulating tumor microenvironment via multiple signaling: A comprehensive molecular approach. Phytother Res 2023; 37:1606-1623. [PMID: 36757068 DOI: 10.1002/ptr.7755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023]
Abstract
Cancer is the leading cause of mortality and morbidity worldwide, and its cases are rapidly increasing every year. Several factors contribute to the development of tumorigenesis. including radiation, dietary lifestyle, smoking, environmental, and genetic factors. The cell cycle is regulated by a variety of molecular signaling proteins. However, when the proteins involved in the cell cycle regulation are altered, cellular growth and proliferation are significantly affected. Natural products provide an important source of new drug development for a variety of ailments. including cancer. Phytosterols (PSs) are an important class of natural compounds reported for numerous pharmacological activities, including cancer. Various PSs, such as ergosterol, stigmasterol, sitosterol, withaferin A, etc., have been reported for their anti-cancer activities against a variety of cancer by modulating the tumor microenvironment via molecular signaling pathways discussed within the article. These signaling pathways are associated with the production of pro-inflammatory mediators, growth factors, chemokines, and pro-apoptotic and anti-apoptotic genes. These mediators and their upstream signaling are very active within the variety of tumors and by modulating these signalings, thus PS exhibits promising anti-cancer activities. However, further high-quality studies are needed to firmly establish the clinical efficacy as well the safety of the phytosterols.
Collapse
Affiliation(s)
- Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Faculty of Health Sciences, IQRA University, Islamabad Campus, (Chak Shahzad), Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Majid Khan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, Pakistan
| | - Rizwan Ahmad
- Natural Products & Alternative Medicines College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir Bhutto University Sheringal, Sheringal, Pakistan
| |
Collapse
|
17
|
A comparison of conventional and novel phytonutrient extraction techniques from various sources and their potential applications. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Hwong CS, Leong KH, Abdul Aziz A, Mat Junit S, Mohd Noor S, Kong KW. Alternanthera sessilis: Uncovering the nutritional and medicinal values of an edible weed. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115608. [PMID: 35973630 DOI: 10.1016/j.jep.2022.115608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Weeds are often considered undesirable as they interfere with the habitat of native plants, and therefore they are underestimated and underutilised. In fact, some edible weeds have beneficial nutritional and medicinal values. Alternanthera sessilis (L.) R. Br. ex DC., an edible medicinal weed is a species of the Amaranthaceae family that consists of two cultivars: green and red. Local communities in different regions have traditionally consumed the plants as food and medicine, with the green cultivar being applied to relieve pain, treat wound healing, dysentery, asthma and hypertension, while the red cultivar is applied to prevent cardiovascular and liver diseases in general. AIM OF THE STUDY The present review intends to provide an in-depth discussion and scientific basis of A. sessilis green and red's health-promoting properties in relation to their ethnobotanical use, nutritional components and bioactive compounds. MATERIALS AND METHODS The literature search was conducted using relevant keywords on scientific search engines such as the Web of Science, Google Scholar, Medline and Scopus. RESULTS A. sessilis shows potent antioxidant activity as a result of its diverse phytochemical constituents, such as polyphenols, terpenes, alkaloid and carotenoids in addition to its nutritional components: vitamin C, E and unsaturated fatty acids, which contribute to its various bioactive properties: anti-microbial and anthelmintic, anti-diabetic, lipid lowering, anti-inflammatory and analgesic activities, anti-cancer and other biological activities. Toxicity evaluation revealed the absence of adverse effect of A. sesslis extracts. CONCLUSION A. sessilis has a great potential to be used as complementary medicine and ingredients for pharmaceuticals, nutraceuticals and functional foods, instead of being regarded as a pest. Prospects for enhancing the development and commercialisation of this edible medicinal weed as a high value health-promoting product are suggested.
Collapse
Affiliation(s)
- Chia Shing Hwong
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Azlina Abdul Aziz
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sarni Mat Junit
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kin Weng Kong
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
19
|
High Levels of Policosanols and Phytosterols from Sugar Mill Waste by Subcritical Liquefied Dimethyl Ether. Foods 2022; 11:foods11192937. [PMID: 36230017 PMCID: PMC9564350 DOI: 10.3390/foods11192937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Extracting nutraceuticals with high value from bagasse, filter mud, and sugarcane leaves discarded as sugar mill by-products, is crucial for the development of a sustainable bio-economy. These by-products are important sources of policosanols and phytosterols, which have a cholesterol-lowering effect. This research focused on using a promising green technology, subcritical liquefied dimethyl ether extraction, with a low pressure of 0.8 MPa, to extract policosanols and phytosterols and on application of pretreatments to increase their contents. For direct extraction by subcritical liquefied dimethyl ether without sample pretreatment, the highest extraction yield (7.4%) and policosanol content were found in sugarcane leaves at 2888 mg/100 g, while the highest and lowest phytosterol contents were found in filter mud at 20,878.75 mg/100 g and sugarcane leaves at 10,147.75 mg/100 g, respectively. Pretreatment of filter mud by ultrasonication in hexane solution together with transesterification before the second subcritical liquefied dimethyl ether extraction successfully increased the policosanol content, with an extract purity of 60%, but failed to increase the phytosterol content.
Collapse
|
20
|
Sholikha M, Wulandari A. Tyrosinase Inhibition Activity and Phytochemical Screening of Melaleuca leucadendron L. Leaves. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i3.3694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Melaleuca leucadendron L. is a plant whose almost all parts (bark, leaves, twigs, and fruit) can be used as medicine, such as antioxidants, antifungals, sedative effects, and anti-hyaluronidase. This research was conducted to determine tyrosinase inhibition activity and compound content of M. leucadendron leaves. Maceration of M. leucadendron leaves was done in methanol, then carried out liquid-liquid fractionation with n-butanol, chloroform, and water. Methanol extract, butanol fraction, chloroform fraction, and water fraction were tested for phytochemical screening and tyrosinase inhibition using L-DOPA substrate with an ELISA plate well reader. The results of the tyrosinase inhibition activity test at concentrations of 100, 1000 and 10000 μg/mL respectively showed that methanol extract 29.532%, 55.227%, 89.583%; butanol fraction 29.313%, 59.174%, 94.737%, chloroform fraction 21.820%, 24.671%; 53.765%; water fraction 24,086%, 47.661%, 91.118%. Inhibition of the tyrosinase enzyme is shown through the IC50 value from methanol extract, butanol fraction and water fraction, and kojic acid as a positive control, respectively 645.438 μg/mL, 517.935 μg/mL, 669.403 μg/mL, 50.064 μg/mL. Phytochemical screening showed that the extract and fraction contained tannins, flavonoids, saponins, terpenes, and steroids. These results indicate that the butanol fraction is more potent as an anti-tyrosinase agent than the others.
Collapse
|
21
|
Yang BW, Xu T, Liu Y, Zhao T, Xiao F, Lu BY. Impact of photosensitizers and light wavelength on photooxidation of phytosterols in soymilk emulsions. Food Res Int 2022; 158:111508. [DOI: 10.1016/j.foodres.2022.111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/09/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
|
22
|
Molecular Interaction Studies and Phytochemical Characterization of Mentha pulegium L. Constituents with Multiple Biological Utilities as Antioxidant, Antimicrobial, Anticancer and Anti-Hemolytic Agents. Molecules 2022; 27:molecules27154824. [PMID: 35956775 PMCID: PMC9370026 DOI: 10.3390/molecules27154824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple biological functions of Mentha pulegium extract were evaluated in the current work. Phytochemical components of the M. pulegium extract were detected by Gas Chromatography-Mass Spectrometry (GC-MS) and High-performance liquid chromatography (HPLC). Moreover, M. pulegium extract was estimated for antioxidant potential by 2,2-Diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging, antimicrobial activity by well diffusion, and anticoagulant activity via prothrombin time (PT) and activated partial thromboplastin time (APTT). GC-MS analysis detected compounds including cholesterol margarate, stigmast-5-en-3-ol, 19-nor-4-androstenediol, androstan-17-one, pulegone-1,2-epoxide, isochiapin B, dotriacontane, hexadecanoic acid and neophytadiene. Chrysoeriol (15.36 µg/mL) was followed by kaempferol (11.14 µg/mL) and 7-OH flavone (10.14 µg/mL), catechin (4.11 µg/mL), hisperdin (3.05 µg/mL), and luteolin (2.36 µg/mL) were detected by HPLC as flavonoids, in addition to ferulic (13.19 µg/mL), cinnamic (12.69 µg/mL), caffeic (11.45 µg/mL), pyrogallol (9.36 µg/mL), p-coumaric (5.06 µg/mL) and salicylic (4.17 µg/mL) as phenolics. Antioxidant activity was detected with IC50 18 µg/mL, hemolysis inhibition was recorded as 79.8% at 1000 μg/mL, and PT and APTT were at 21.5 s and 49.5 s, respectively, at 50 μg/mL of M. pulegium extract. The acute toxicity of M. pulegium extract was recorded against PC3 (IC50 97.99 µg/mL) and MCF7 (IC50 80.21 µg/mL). Antimicrobial activity of M. pulegium extract was documented against Bacillus subtilis, Escherichia coli, Pseudomonasaureus, Candida albicans, Pseudomonas aeruginosa, but not against black fungus Mucor circinelloides. Molecular docking was applied using MOE (Molecular Operating Environment) to explain the biological activity of neophytadiene, luteolin, chrysoeriol and kaempferol. These compounds could be suitable for the development of novel pharmacological agents for treatment of cancer and bacterial infections.
Collapse
|
23
|
Dhara O, Rani KNP, Chakrabarti PP. Supercritical Carbon Dioxide Extraction of Vegetable Oils – Retrospect and Prospect. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Olivia Dhara
- Centre for Lipid Science and Technology CSIR‐Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - K N Prasanna Rani
- Centre for Lipid Science and Technology CSIR‐Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 India
| | - Pradosh Prasad Chakrabarti
- Centre for Lipid Science and Technology CSIR‐Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
24
|
Alvarez-Henao MV, Cardona L, Hincapié S, Londoño-Londoño J, Jimenez-Cartagena C. Supercritical fluid extraction of phytosterols from sugarcane bagasse: Evaluation of extraction parameters. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Quitério E, Soares C, Ferraz R, Delerue-Matos C, Grosso C. Marine Health-Promoting Compounds: Recent Trends for Their Characterization and Human Applications. Foods 2021; 10:3100. [PMID: 34945651 PMCID: PMC8702156 DOI: 10.3390/foods10123100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 12/24/2022] Open
Abstract
Seaweeds represent a rich source of biologically active compounds with several applications, especially in the food, cosmetics, and medical fields. The beneficial effects of marine compounds on health have been increasingly explored, making them an excellent choice for the design of functional foods. When studying marine compounds, several aspects must be considered: extraction, identification and quantification methods, purification steps, and processes to increase their stability. Advanced green techniques have been used to extract these valuable compounds, and chromatographic methods have been developed to identify and quantify them. However, apart from the beneficial effects of seaweeds for human health, these natural sources of bioactive compounds can also accumulate undesirable toxic elements with potential health risks. Applying purification techniques of extracts from seaweeds may mitigate the amount of excessive toxic components, ensuring healthy and safer products for commercialization. Furthermore, limitations such as stability and bioavailability problems, chemical degradation reactions during storage, and sensitivity to oxidation and photo-oxidation, need to be overcome using, for example, nanoencapsulation techniques. Here we summarize recent advances in all steps of marine products identification and purification and highlight selected human applications, including food and feed applications, cosmetic, human health, and fertilizers, among others.
Collapse
Affiliation(s)
- Eva Quitério
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (E.Q.); (R.F.)
| | - Cristina Soares
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (E.Q.); (R.F.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica Faculdade de Ciências, Universidade do Porto, R. do Campo Alegre, 4169-007 Porto, Portugal
| | - Cristina Delerue-Matos
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| | - Clara Grosso
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| |
Collapse
|
26
|
Sohn SI, Rathinapriya P, Balaji S, Jaya Balan D, Swetha TK, Durgadevi R, Alagulakshmi S, Singaraj P, Pandian S. Phytosterols in Seaweeds: An Overview on Biosynthesis to Biomedical Applications. Int J Mol Sci 2021; 22:12691. [PMID: 34884496 PMCID: PMC8657749 DOI: 10.3390/ijms222312691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Seaweed extracts are considered effective therapeutic alternatives to synthetic anticancer, antioxidant, and antimicrobial agents, owing to their availability, low cost, greater efficacy, eco-friendliness, and non-toxic nature. Since the bioactive constituents of seaweed, in particular, phytosterols, possess plenty of medicinal benefits over other conventional pharmaceutical agents, they have been extensively evaluated for many years. Fortunately, recent advances in phytosterol-based research have begun to unravel the evidence concerning these important processes and to endow the field with the understanding and identification of the potential contributions of seaweed-steroidal molecules that can be used as chemotherapeutic drugs. Despite the myriad of research interests in phytosterols, there is an immense need to fill the void with an up-to-date literature survey elucidating their biosynthesis, pharmacological effects, and other biomedical applications. Hence, in the present review, we summarize studies dealing with several types of seaweed to provide a comprehensive overview of the structural determination of several phytosterol molecules, their properties, biosynthetic pathways, and mechanisms of action, along with their health benefits, which could significantly contribute to the development of novel drugs and functional foods.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Periyasamy Rathinapriya
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
- Department of Biotechnology, Vidhyaa Giri College of Arts and Science, Karaikudi 630 003, India
| | - Sekaran Balaji
- Independent Researcher, Madurai 625 020, India; (S.B.); (P.S.)
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | | | - Ravindran Durgadevi
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | - Selvaraj Alagulakshmi
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | | | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
27
|
Kaseke T, Opara UL, Fawole OA. Novel seeds pretreatment techniques: effect on oil quality and antioxidant properties: a review. Journal of Food Science and Technology 2021; 58:4451-4464. [PMID: 34629509 DOI: 10.1007/s13197-021-04981-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/04/2020] [Accepted: 01/13/2021] [Indexed: 01/15/2023]
Abstract
Seed oil quality is a function of several attributes which include its bioactive compounds, physicochemical and functional properties. These quality attributes are important in seed oil processing as they determine the oil palatability, nutritional and market value. Besides the health, environmental and economic issues related to seed oil extraction using organic solvents such as hexane, other conventional seed oil extraction techniques such as supercritical fluid extraction, enzyme digestion and cold pressing are associated with low recovery of oil and bioactive compounds. Application of novel seeds pretreatments techniques such as microwaving, enzymatic digestion, pulsed electric field and ultrasonication do not only improve the oil yield and quality attributes, but also reduces seed oil extraction time, solvent and energy consumption. Higher phenolic compounds, carotenoids, tocopherols, phytosterols and antioxidant properties in oil from pretreated seeds offer health benefits related to the prevention of cancer, diabetes, obesity, inflammatory and cardiovascular diseases. Increased consumer interest in functional foods and the potential of seeds pretreatments in enhancing the extractability of bioactive compounds from plant material has increased the application of novel pretreatment techniques on diverse oilseeds. This review describes the commonly studied novel seeds pretreatment techniques and critically discusses their influence on the oil physicochemical attributes, oxidation indices, bioactive compounds and antioxidant properties.
Collapse
Affiliation(s)
- Tafadzwa Kaseke
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch, 7602 South Africa
| | - Umezuruike Linus Opara
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch, 7602 South Africa.,Postharvest Technology Research Laboratory, Faculty of AgriSciences, Africa Institute for Postharvest Technology, South African Research Chair in Postharvest Technology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602 South Africa
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Johannesburg, 2006 South Africa
| |
Collapse
|
28
|
Trabelcy B, Gerchman Y, Sapir A. A sterol-defined system for quantitative studies of sterol metabolism in C. elegans. STAR Protoc 2021; 2:100710. [PMID: 34409305 PMCID: PMC8361321 DOI: 10.1016/j.xpro.2021.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This protocol describes the culturing of the nematode Caenorhabditis elegans (C. elegans) in a sterol-defined experimental system and the subsequent quantitative analysis of C. elegans sterols through gas chromatography-mass spectrometry. Although studied primarily in mammals, sterols are essential biomolecules for most eukaryotes. C. elegans cannot synthesize sterols and thus relies on the uptake of dietary sterols. Therefore, C. elegans is a powerful system to study metabolism in sterol-defined conditions that are described in our protocol. For complete details on the use and execution of this protocol, please refer to Shamsuzzama et al. (2020).
Collapse
Affiliation(s)
- Benjamin Trabelcy
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838 Israel
- Corresponding author
| | - Yoram Gerchman
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838 Israel
| | - Amir Sapir
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838 Israel
- Corresponding author
| |
Collapse
|
29
|
Kang C, Kim S, Lee E, Ryu J, Lee M, Kwon Y. Genetically Encoded Sensor Cells for the Screening of Glucocorticoid Receptor (GR) Effectors in Herbal Extracts. BIOSENSORS-BASEL 2021; 11:bios11090341. [PMID: 34562931 PMCID: PMC8465347 DOI: 10.3390/bios11090341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 01/13/2023]
Abstract
Although in vitro sensors provide facile low-cost ways to screen for biologically active targets, their results may not accurately represent the molecular interactions in biological systems. Cell-based sensors have emerged as promising platforms to screen targets in biologically relevant environments. However, there are few examples where cell-based sensors have been practically applied for drug screening. Here, we used engineered cortisol-detecting sensor cells to screen for natural mimetics of cortisol. The sensor cells were designed to report the presence of a target through signal peptide activation and subsequent fluorescence signal translocation. The developed sensor cells were able to detect known biological targets from human-derived analytes as well as natural product extracts, such as deer antlers and ginseng. The multi-use capability and versatility to screen in different cellular environments were also demonstrated. The sensor cells were used to identify novel GR effectors from medicinal plant extracts. Our results suggest that decursin from dongquai had the GR effector function as a selective GR agonist (SEGRA), making it a potent drug candidate with anti-inflammatory activity. We demonstrated the superiority of cell-based sensing technology over in vitro screening, proving its potential for practical drug screening applications that leads to the function-based discovery of target molecules.
Collapse
Affiliation(s)
- Chungwon Kang
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea; (C.K.); (S.K.); (E.L.); (J.R.); (M.L.)
| | - Soyoun Kim
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea; (C.K.); (S.K.); (E.L.); (J.R.); (M.L.)
| | - Euiyeon Lee
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea; (C.K.); (S.K.); (E.L.); (J.R.); (M.L.)
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeahee Ryu
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea; (C.K.); (S.K.); (E.L.); (J.R.); (M.L.)
| | - Minhyeong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea; (C.K.); (S.K.); (E.L.); (J.R.); (M.L.)
| | - Youngeun Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea; (C.K.); (S.K.); (E.L.); (J.R.); (M.L.)
- Correspondence: ; Tel.: +82-31-961-5151
| |
Collapse
|
30
|
Attempts of Physical Refining of Sterol-Rich Sunflower Press Oil to Obtain Minimally Processed Edible Oil. Foods 2021; 10:foods10081901. [PMID: 34441678 PMCID: PMC8394065 DOI: 10.3390/foods10081901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
New phytosterol (PS)-enriched sunflower seeds, which are higher in campesterol and ∆7-stigmastenol, have recently been developed. Crude oils obtained from these new sunflower seeds in 2015 and 2017 were used in this study. Oils extracted only by press (PO) and with subsequent solvent extraction (SO) were characterized. Physical refining (PhR) was used to obtain edible PO by minimal processing and to keep the PS levels as high as possible. Oils obtained by chemical processing were also studied for comparative purposes. Different bleaching treatments were examined to reduce the contents of phospholipids in the PO to levels required for PhR (<10 mg kg-1). Phosphorous levels in PO from 2015 (9-12 mg kg-1) were reduced to optimal levels by bleaching with 0.1% Trisyl and 1% Tonsil 278 FF. Contrarily, treatments with Trisyl and Tonsil (278 FF or 114 FF) were not sufficient to reduce the higher levels in PO from 2017 (15-36 mg/kg-1), thereby they were subjected to chemical refining (ChR). The PhR applied to PO from 2015 did not lead to substantial changes in the composition and total content of PS. In contrast, losses of up to approximately 30% of total PS were found owing to ChR, although the oils preserved their unique PS profiles.
Collapse
|
31
|
Raju L, Lipin R, Eswaran R. Identification, ADMET evaluation and molecular docking analysis of Phytosterols from Banaba ( Lagerstroemia speciosa ( L.) Pers) seed extract against breast cancer. In Silico Pharmacol 2021; 9:43. [PMID: 34367875 PMCID: PMC8289922 DOI: 10.1007/s40203-021-00104-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/10/2021] [Indexed: 01/22/2023] Open
Abstract
Lagerstroemia speciosa (L.) Pers., (Lythraceae), commonly called Banaba, is a native plant of Southeast Asia and is widely used in the treatment of diabetics, obesity, kidney diseases, and other inflammatory disorders. L. speciosa consists of several phytoconstituents like glycosides, flavones, corosolic acid, ellagic acids, triterpenes, tannins, which are reported to be present in leaves, stem, flowers, fruit, bark, and roots. This paper presents an investigation on the binding interaction of phytosterols derivatives identified from the ethanolic extract of Lagerstroemia speciosa seeds against breast cancer target protein. The ethanolic extracts Lagerstroemia speciosa seeds were analyzed via GC-MS for the identification of their chemical constituent. In silico methods are adopted to predict ADME parameters, pharmacokinetic properties, drug-likeliness, and acute toxicity of the identified phytosterols molecules. Molecular docking analysis of the phytosterols was performed against three breast cancer targets. A total of 29 compounds were identified from the extract by GC-MS analysis, among which four phytosterols derivatives namely cholesterol margarate, 7-dehydrodiosgenin, Stigmastan-3,5-diene, and γ-sitosterol have been considered for the present study. These phytosterols are identified as non-toxic, non-carcinogenic, and non-mutagenic. Molecular docking studies reveal the extent of molecular interaction with breast cancer targets. The outcomes of the investigation suggest that the phytosterols obtained from the ethanolic seed extract of Lagerstroemia speciosa could act as a promising candidate against breast cancer.
Collapse
Affiliation(s)
- Liju Raju
- Department of Chemistry, Madras Christian College (Autonomous), University of Madras, Chennai, India
| | - Raju Lipin
- Department of Chemistry, Madras Christian College (Autonomous), University of Madras, Chennai, India
| | - Rajkumar Eswaran
- Department of Chemistry, Madras Christian College (Autonomous), University of Madras, Chennai, India
| |
Collapse
|
32
|
Teng J, Liao P, Wang M. The role of emerging micro-scale vegetables in human diet and health benefits-an updated review based on microgreens. Food Funct 2021; 12:1914-1932. [PMID: 33595583 DOI: 10.1039/d0fo03299a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Increasing public concern about health has prompted humans to find new sources of food. Microgreens are young and immature plants that have been recently introduced as a new category of vegetables, adapting their production at the micro-scale. In this paper, the chemical compositions including micro-nutrients and some typical phytochemicals of microgreens are summarized. Their edible safety and potential health benefits are also reviewed. Microgreens play an increasingly vital role in health-promoting diets. They are considered good sources of nutritional and bioactive compounds, and show potential in the prevention of malnutrition and chronic diseases. Some strategies in the pre- or post-harvest stages of microgreens can be further applied to obtain better nutritional, functional, and sensorial quality with freshness and extended shelf life. This review provides valuable nutrient data and health information for microgreens, laying a theoretical foundation for people to consume microgreens more wisely, and providing great value for the development of functional products with microgreens.
Collapse
Affiliation(s)
- Jing Teng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mingfu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, P.R. China and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China.
| |
Collapse
|
33
|
Arumugham T, K R, Hasan SW, Show PL, Rinklebe J, Banat F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications - A review. CHEMOSPHERE 2021; 271:129525. [PMID: 33445028 DOI: 10.1016/j.chemosphere.2020.129525] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/17/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Recently, supercritical fluid CO2 extraction (SFE) has emerged as a promising and pervasive technology over conventional extraction techniques for various applications, especially for bioactive compounds extraction and environmental pollutants removal. In this context, temperature and pressure regulate the solvent density and thereby effects the yield, selectivity, and biological/therapeutic properties of the extracted components. However, the nature of plant matrices primarily determines the extraction mechanism based on either density or vapor pressure. The present review aims to cover the recent research and developments of SFE technique in the extraction of bioactive plant phytochemicals with high antioxidant, antibacterial, antimalarial, and anti-inflammatory activities, influencing parameters, process conditions, the investigations for improving the yield and selectivity. In another portion of this review focuses on the ecotoxicology and toxic metal recovery applications. Nonpolar properties of Sc-CO2 create strong solvent strength via distinct intermolecular interaction forces with micro-pollutants and toxic metal complexes. This results in efficient removal of these contaminants and makes SFE technology as a superior alternative for conventional solvent-based treatment methods. Moreover, a compelling assessment on the therapeutic, functional, and solvent properties of SFE is rarely focused, and hence this review would add significant value to the SFE based research studies. Furthermore, we mention the limitations and potential of future perspectives related to SFE applications.
Collapse
Affiliation(s)
- Thanigaivelan Arumugham
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Rambabu K
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Pau Loke Show
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Selangor Darul Ehsan, Malaysia.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
34
|
Termer M, Carola C, Salazar A, Keck CM, Hemberger J, von Hagen J. Identification of plant metabolite classes from Waltheria Indica L. extracts regulating inflammatory immune responses via COX-2 inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113741. [PMID: 33359867 DOI: 10.1016/j.jep.2020.113741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Waltheria Indica L. is traditionally used in Africa, South America and Hawaii to treat pain, anemia, diarrhea, epilepsy and inflammatory related diseases. AIM OF THE STUDY This study aimed to identify extraction parameters to maximize tiliroside yield and to quantitative secondary metabolite composition of Waltheria Indica under various extraction conditions. The extracts were tested for COX-2 inhibition and their activity correlated with the type and quantity of the secondary metabolites. Insight was gained about how extraction parameters influence the extract composition and thus the COX-2 enzymatic inhibitory activity. MATERIALS AND METHODS Powdered leaves of Waltheria Indica were extracted using water, methanol, ethyl acetate and ethanol at different temperatures. Tiliroside was identified by HPLC-HRMS n and quantified using a tiliroside standard. The compound groups of the secondary metabolites were quantified by spectrometric methods. Inhibitory potential of different Waltheria extracts against the COX-2 enzyme was determined using a fluorometric COX-2 inhibition assay. RESULTS The molecule, tiliroside, exhibited a COX-2 inhibition of 10.4% starting at a concentration of 15 μM and increased in a dose dependent manner up to 51.2% at 150 μM. The ethanolic extract at 30 °C and the ethyl acetate extract at 90 °C inhibited COX-2 with 37.7% and 38.9%, while the methanolic and aqueous extract showed a lower inhibition of 21.9% and 9.2% respectively. The results concerning phenol, alkaloid and tiliroside concentration in the extracts showed no dependence on COX-2 inhibition. The extracts demonstrated a direct correlation of COX-2 inhibitory activity with their triterpenoid-/steroidal-saponin concentration. COX-2 inhibition increased linearly with the concentration of the saponins. CONCLUSION The data suggest that Waltheria Indica extracts inhibit the key inflammatory enzyme, COX-2, as a function of triterpenoid- and steroidal-saponin concentration and support the known efficacy of extracted Waltheria Indica leaves as a traditional treatment against inflammation related diseases.
Collapse
Affiliation(s)
- Michael Termer
- Department of Pharmaceutics and Biopharmaceutics, Philipps-University of Marburg, Marburg, Germany.
| | | | - Andrew Salazar
- Merck KGaA, BU Performance Materials, Darmstadt, Germany
| | - Cornelia M Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-University of Marburg, Marburg, Germany
| | - Juergen Hemberger
- Department of Life Science Engineering, Institute for Biochemical Engineering & Analytics, University of Applied Sciences, Giessen, Germany
| | - Joerg von Hagen
- Department of Life Science Engineering, Institute for Biochemical Engineering & Analytics, University of Applied Sciences, Giessen, Germany; Merck KGaA, BU Performance Materials, Darmstadt, Germany
| |
Collapse
|
35
|
Development of a functional whey cheese (ricotta) enriched in phytosterols: Evaluation of the suitability of whey cheese matrix and processing for phytosterols supplementation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Suktham K, Daisuk P, Shotipruk A. Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia L. (Rubiaceae): Errata and review of technological development and prospects. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Yuenyong J, Pokkanta P, Phuangsaijai N, Kittiwachana S, Mahatheeranont S, Sookwong P. GC-MS and HPLC-DAD analysis of fatty acid profile and functional phytochemicals in fifty cold-pressed plant oils in Thailand. Heliyon 2021; 7:e06304. [PMID: 33665454 PMCID: PMC7907780 DOI: 10.1016/j.heliyon.2021.e06304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Cold-pressed oil is one of the healthiest plant extracts, but its use is limited only in some kinds of plants. Therefore, we aimed to investigate some potential cold-pressed oils with attractive fatty acid profiles and high amounts of functional phytochemicals. Fifty cold-pressed plant oils were prepared from various plant materials in Thailand, in which some of them were from uncommon or unattended plant materials. The oils included were nut oils (n = 9), pseudo-cereal oils (n = 9), legume oils (n = 3), amaranth oils (n = 3), marrow seed oils (n = 8), cruciferous seed oils (n = 7), and leafy green seed oils (n = 11). Gas-chromatography mass-spectrometry (GC-MS) and high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD) were employed to analyze fatty acid profile and five functional phytochemicals (e.g., phytosterols, cholecalciferol, and squalene). Saturated fatty acids were detected around 7.87-36.04%, monounsaturated fatty acids 10.17-80.25%, and polyunsaturated fatty acids nondetectable (ND)-78.25%, phytosterols 663-15123 μg g-1, squalene 265-5979 μg g-1, and cholecalciferol ND-1287.75 μg g-1. The study showed chemical characteristic of the analyzed oils: some contained good fatty acid composition and some were rich in functional phytochemical content. Among the obtained oils, marrow seed oils are a good source of phytosterol, cholecalciferol, and linoleic acid. Pseudo-cereal oils are rich in squalene and linolenic acid. Legume oils are rich in phytosterols and oleic acid. Besides, principal component analysis (PCA) was applied to identify the significance of oils that share compositional similarity (e.g., the samples from pseudo-cereal oil were found on the lower side of the PCA space, which separated them from marrow and leafy green seed oils distributed on the upper part of the plot). In summary, the qualitative and quantitative data would provide a good foundation for further application or selection of those plant oils for health purposes.
Collapse
Affiliation(s)
- Jitkunya Yuenyong
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Master's Degree Program in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piramon Pokkanta
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nutthatida Phuangsaijai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sila Kittiwachana
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sugunya Mahatheeranont
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phumon Sookwong
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
38
|
Santos KA, de Aguiar CM, da Silva EA, da Silva C. Evaluation of favela seed oil extraction with alternative solvents and pressurized-liquid ethanol. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Kaseke T, Fawole OA, Mokwena L, Opara UL. Effect of cultivar and blanching of pomegranate seeds on physicochemical properties, nutritional qualities and antioxidant capacity of extracted oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Yao ZD, Cao YN, Peng LX, Yan ZY, Zhao G. Coarse Cereals and Legume Grains Exert Beneficial Effects through Their Interaction with Gut Microbiota: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:861-877. [PMID: 33264009 DOI: 10.1021/acs.jafc.0c05691] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coarse cereals and legume grains (CCLGs) are rich in specific macro- and functional elements that are considered important dietary components for maintaining human health. Therefore, determining the precise nutritional mechanism involved in exerting the health benefits of CCLGs can help understand dietary nutrition in a better manner. Evidence suggests that gut microbiota play a crucial role in the function of CCLGs via their complicated interplay with CCLGs. First, CCLGs modulate gut microbiota and function. Second, gut microbiota convert CCLGs into compounds that perform different functions. Third, gut microbiota mediate interactions among different CCLG components. Therefore, using gut microbiota to expound the nutritional mechanism of CCLGs is important for future studies. A precise and rapid gut microbiota research model is required to screen and evaluate the quality of CCLGs. The outcomes of such research may promote the rapid discovery, classification, and evaluation of CCLG resources, thereby opening a new opportunity to guide nutrition-based development of CCLG products.
Collapse
Affiliation(s)
- Zhen-Dong Yao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Zhu-Yun Yan
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| |
Collapse
|
41
|
Ali MY, Sina AAI, Khandker SS, Neesa L, Tanvir EM, Kabir A, Khalil MI, Gan SH. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods 2020; 10:E45. [PMID: 33375293 PMCID: PMC7823427 DOI: 10.3390/foods10010045] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tomatoes are consumed worldwide as fresh vegetables because of their high contents of essential nutrients and antioxidant-rich phytochemicals. Tomatoes contain minerals, vitamins, proteins, essential amino acids (leucine, threonine, valine, histidine, lysine, arginine), monounsaturated fatty acids (linoleic and linolenic acids), carotenoids (lycopene and β-carotenoids) and phytosterols (β-sitosterol, campesterol and stigmasterol). Lycopene is the main dietary carotenoid in tomato and tomato-based food products and lycopene consumption by humans has been reported to protect against cancer, cardiovascular diseases, cognitive function and osteoporosis. Among the phenolic compounds present in tomato, quercetin, kaempferol, naringenin, caffeic acid and lutein are the most common. Many of these compounds have antioxidant activities and are effective in protecting the human body against various oxidative stress-related diseases. Dietary tomatoes increase the body's level of antioxidants, trapping reactive oxygen species and reducing oxidative damage to important biomolecules such as membrane lipids, enzymatic proteins and DNA, thereby ameliorating oxidative stress. We reviewed the nutritional and phytochemical compositions of tomatoes. In addition, the impacts of the constituents on human health, particularly in ameliorating some degenerative diseases, are also discussed.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.Y.A.); (S.S.K.); (A.K.)
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
| | - Abu Ali Ibn Sina
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Shahad Saif Khandker
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.Y.A.); (S.S.K.); (A.K.)
| | - Lutfun Neesa
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh;
| | - E. M. Tanvir
- Veterinary Drug Residue Analysis Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Savar, Dhaka 1349, Bangladesh;
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Alamgir Kabir
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.Y.A.); (S.S.K.); (A.K.)
| | - Md Ibrahim Khalil
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.Y.A.); (S.S.K.); (A.K.)
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| |
Collapse
|
42
|
Wongwaiwech D, Weerawatanakorn M, Boonnoun P. Subcritical dimethyl ether extraction as a simple method to extract nutraceuticals from byproducts from rice bran oil manufacture. Sci Rep 2020; 10:21007. [PMID: 33273543 PMCID: PMC7713051 DOI: 10.1038/s41598-020-78011-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/18/2020] [Indexed: 11/15/2022] Open
Abstract
The byproducts of rice bran oil processes are a good source of fat-soluble nutraceuticals, including γ-oryzanol, phytosterol, and policosanols. This study aimed to investigate the effects of green technology with low pressure as the subcritical fluid extraction with dimethyl ether (SUBFDME) on the amount of γ-oryzanol, phytosterol, and policosanol extracted from the byproducts and to increase the purity of policosanols. The SUBFDME extraction apparatus was operated under pressures below 1 MPa. Compared to the chemical extraction method, SUBFDME gave the highest content of γ-oryzanol at 924.51 mg/100 g from defatted rice bran, followed by 829.88 mg/100 g from the filter cake, while the highest phytosterol content was 367.54 mg/100 g. Transesterification gave the highest extraction yield of 43.71% with the highest policosanol content (30,787 mg/100 g), and the SUBFDME method increased the policosanol level from transesterified rice bran wax to 84,913.14 mg/100 g. The results indicate that the SUBFDME method is a promising tool to extract γ-oryzanol and phytosterol and a simple and effective technique to increase the purity of policosanol. The study presented a novel technique for the potential use of SUBSFDME as an alternative low-pressure and low-temperature technique to extract γ-oryzanol and phytosterol. The combination of transesterification and the SUBFDME technique is a potential simple two-step method to extract and purify policosanol, which is beneficial for the manufacture of dietary supplements, functional foods and pharmaceutical products.
Collapse
Affiliation(s)
- Donporn Wongwaiwech
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok, 65000, Thailand
| | - Monthana Weerawatanakorn
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok, 65000, Thailand.
| | - Panatpong Boonnoun
- Department of Industrial Engineering, Chemical Engineering Program, Faculty of Engineering, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok, 65000, Thailand
| |
Collapse
|
43
|
Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties. Processes (Basel) 2020. [DOI: 10.3390/pr8121566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The fruit, vegetable, legume, and cereal industries generate many wastes, representing an environmental pollution problem. However, these wastes are a rich source of antioxidant molecules such as terpenes, phenolic compounds, phytosterols, and bioactive peptides with potential applications mainly in the food and pharmaceutical industries, and they exhibit multiple biological properties including antidiabetic, anti-obesity, antihypertensive, anticancer, and antibacterial properties. The aforementioned has increased studies on the recovery of antioxidant compounds using green technologies to value plant waste, since they represent more efficient and sustainable processes. In this review, the main antioxidant molecules from plants are briefly described and the advantages and disadvantages of the use of conventional and green extraction technologies used for the recovery and optimization of the yield of antioxidant naturals are detailed; finally, recent studies on biological properties of antioxidant molecules extracted from plant waste are presented here.
Collapse
|
44
|
Synthesis, Modification and Biological Activity of Diosgenyl β-d-Glycosaminosides: An Overview. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25225433. [PMID: 33233558 PMCID: PMC7699689 DOI: 10.3390/molecules25225433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023]
Abstract
Saponins are a structurally diverse class of natural glycosides that possess a broad spectrum of biological activities. They are composed of hydrophilic carbohydrate moiety and hydrophobic triterpenoid or steroid aglycon. Naturally occurring diosgenyl glycosides are the most abundant steroid saponins, and many of them exhibit various pharmacological properties. Herein, we present an overview of semisynthetic saponins syntheses-diosgenyl β-d-glycosaminosides (d-gluco and d-galacto). These glycosides possess a 2-amino group, which creates great possibilities for further modifications. A wide group of glycosyl donors, different N-protecting groups and various reaction conditions used for their synthesis are presented. In addition, this paper demonstrates the possibilities of chemical modifications of diosgenyl β-d-glycosaminosides, associated with functionalisation of the amino group. These provide N-acyl, N-alkyl, N,N-dialkyl, N-cinnamoyl, 2-ureido and 2-thiosemicarbazonyl derivatives of diosgenyl β-d-glycosaminosides, for which the results of biological activity tests (antifungal, antibacterial, anti-cancer and hemolytic) are presented.
Collapse
|
45
|
Kaseke T, Opara UL, Fawole OA. Effect of Microwave Pretreatment of Seeds on the Quality and Antioxidant Capacity of Pomegranate Seed Oil. Foods 2020; 9:E1287. [PMID: 32937735 PMCID: PMC7555658 DOI: 10.3390/foods9091287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 11/21/2022] Open
Abstract
Microwave pretreatment of oilseeds is a novel technique used to enhance oil nutraceutical properties. In this study, the effect of microwave pretreatment of seeds was investigated on pomegranate seed oil quality attributes including oil yield, yellowness index, refractive index, peroxide value, ρ-anisidine value, total oxidation value, conjugated dienes, total phenolic content, total carotenoids content, phytosterol composition, fatty acid composition, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, and ferric reducing antioxidant power (FRAP). The seeds of three different pomegranate cultivars ('Acco', 'Herskawitz', and 'Wonderful') were microwave heated at 261 W for 102 s. Pomegranate seeds microwave pretreatment enhanced oil yield, yellowness index, total carotenoids content, total phenolic content, FRAP and DPPH radical scavenging capacity, despite an increase in conjugated dienes, and peroxide value. Palmitic acid, oleic acid, linoleic acid, saturated, and monosaturated fatty acids were increased after pomegranate seeds microwave pretreatment, whilst the levels of punicic acid and β-sitosterol were reduced. Nevertheless, the refractive index, the ratio of unsaturated to saturated fatty acid of the extracted oil were not significantly (p > 0.05) affected by pomegranate seeds microwave pretreatment. Principal component analysis and agglomerative hierarchical clustering established that 'Acco' and 'Wonderful' oil extracts from microwave pretreated PS exhibited better oil yield, whilst 'Herskawitz' oil extracts showed higher total carotenoids content, total phenolic content, and antioxidant capacity.
Collapse
Affiliation(s)
- Tafadzwa Kaseke
- Postharvest Technology Research Laboratory, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa;
| | - Umezuruike Linus Opara
- Postharvest Technology Research Laboratory, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa;
- Postharvest Technology Research Laboratory, Department of Horticultural Sciences, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
46
|
Tamkutė L, Pukalskas A, Syrpas M, Urbonavičienė D, Viškelis P, Venskutonis PR. Fractionation of cranberry pomace lipids by supercritical carbon dioxide extraction and on-line separation of extracts at low temperatures. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Advances in various techniques for isolation and purification of sterols. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:2393-2403. [PMID: 32549589 DOI: 10.1007/s13197-019-04209-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
Plants consist of triterpenoids such as phytosterols (PT) (C29H50O) with steroidal nuclei, including sitosterol, stigmasterol, brassicasterol and campesterol. They are hydrophobic but soluble in alcohol and other organic solvents and are isolated from industrial waste deodorizer distillates of various edible oil industries. They exist as free PT or their ester derivatives in soybean, rice, wheat, oat, cottonseed and corn fiber, and other cereals and grains. Conventional isolation techniques such as solvent extraction, distillation, evaporative fractionation, saponification and chemical esterification are employed for isolation and purification of PT. The present article reviews the various advanced separation techniques like solvent crystallization, supercritical fluid extraction, high speed counter-current chromatography and enzymatic process as strategic methods to isolate and purify sterols.
Collapse
|
48
|
Recovery and determination of cholesterol-lowering compounds from Olea europaea seeds employing pressurized liquid extraction and gas chromatography-mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Aldana J, Romero-Otero A, Cala MP. Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis. Metabolites 2020; 10:metabo10060231. [PMID: 32503331 PMCID: PMC7345237 DOI: 10.3390/metabo10060231] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, high-throughput lipid profiling has contributed to understand the biological, physiological and pathological roles of lipids in living organisms. Across all kingdoms of life, important cell and systemic processes are mediated by lipids including compartmentalization, signaling and energy homeostasis. Despite important advances in liquid chromatography and mass spectrometry, sample extraction procedures remain a bottleneck in lipidomic studies, since the wide structural diversity of lipids imposes a constrain in the type and amount of lipids extracted. Differences in extraction yield across lipid classes can induce a bias on down-stream analysis and outcomes. This review aims to summarize current lipid extraction techniques used for untargeted and targeted studies based on mass spectrometry. Considerations, applications, and limitations of these techniques are discussed when used to extract lipids in complex biological matrices, such as tissues, biofluids, foods, and microorganisms.
Collapse
|
50
|
Kaseke T, Opara UL, Fawole OA. Effect of Blanching Pomegranate Seeds on Physicochemical Attributes, Bioactive Compounds and Antioxidant Activity of Extracted Oil. Molecules 2020; 25:E2554. [PMID: 32486338 PMCID: PMC7321380 DOI: 10.3390/molecules25112554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 11/20/2022] Open
Abstract
This study investigated the effect of blanching pomegranate seeds (PS) on oil yield, refractive index (RI), yellowness index (YI), conjugated dienes (K232), conjugated trienes (K270), total carotenoid content (TCC), total phenolic compounds (TPC) and DPPH radical scavenging of the extracted oil. Furthermore, phytosterol and fatty acid compositions of the oil extracted under optimum blanching conditions were compared with those from the oil extracted from unblanched PS. Three different blanching temperature levels (80, 90, and 100 °C) were studied at a constant blanching time of 3 min. The blanching time was then increased to 5 min at the established optimum blanching temperature (90 °C). Blanching PS increased oil yield, K232, K270, stigmasterol, punicic acid, TPC and DPPH radical scavenging, whereas YI, β-sitosterol, palmitic acid and linoleic acid were decreased. The RI, TCC, brassicasterol, stearic acid, oleic acid and arachidic acid of the extracted oil were not significantly (p > 0.05) affected by blanching. Blanching PS at 90 °C for 3 to 5 min was associated with oil yield, TPC and DPPH. Blanching PS at 90 °C for 3 to 5 min will not only increase oil yield but could also improve functional properties such as antioxidant activity, which are desirable in the cosmetic, pharmaceutical, nutraceutical and food industries.
Collapse
Affiliation(s)
- Tafadzwa Kaseke
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa;
| | - Umezuruike Linus Opara
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa;
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Horticultural Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Olaniyi Amos Fawole
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Horticultural Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
- Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| |
Collapse
|