1
|
Bussler W, DeZego K, Chandler H, Reid RW, Komarnytsky S. Nutrient-Nutrient Interactions Among Broccoli Glucosinolates and Their Implications for Breeding Cruciferous Crops to Enhance Human Health. Nutrients 2025; 17:344. [PMID: 39861474 PMCID: PMC11768351 DOI: 10.3390/nu17020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
While a balanced diet can fulfill most nutritional needs, optimizing the composition of specific foods like broccoli can amplify their health benefits. BACKGROUND/OBJECTIVES Broccoli (Brassica oleracea L. Italica group) is a widely consumed cruciferous vegetable valued for its gastrointestinal and immune health benefits. However, the individual contributions and interactions of broccoli glucosinolates, as they hydrolyze into bioactive isothiocyanates, remain poorly understood. METHODS This study investigated mixtures of four major aliphatic glucosinolates-glucoraphanin, gluconapin, progoitrin, and sinigrin-in individual and combinational models to assess their effects on human colorectal cell proliferation. RESULTS Combination index analysis revealed moderate to strong antagonistic interactions among these glucosinolates, with the most significant antagonism observed during enzymatic hydrolysis by myrosinase. Mixture analysis identified an optimal glucosinolate ratio including glucoraphanin (81-84%), gluconapin (9-19%), and others (0-7%) to maximize their antiproliferative effects (adjusted R2 > 0.80). This optimal profile was achievable within the target broccoli mapping population. Testing the near-optimal VB067 isogenic broccoli line showed a 44% increase in antiproliferative activity compared to the initial breeding parent or an average sister line. CONCLUSIONS This study highlights the potential of leveraging nutrient-nutrient interactions to guide molecular breeding and produce functional varieties of cruciferous vegetables with optimized health benefits.
Collapse
Affiliation(s)
- Weston Bussler
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| | - Katelyn DeZego
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Biology, Catawba College, 2300 W Innes St., Salisbury, NC 28144, USA
| | - Holli Chandler
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Biology, Catawba College, 2300 W Innes St., Salisbury, NC 28144, USA
| | - Robert W. Reid
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 150 N Research Campus Dr, Kannapolis, NC 28081, USA;
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
- Department of Biology, Catawba College, 2300 W Innes St., Salisbury, NC 28144, USA
| |
Collapse
|
2
|
Guo C, Liu Y, Fu H, Zhang X, Li M. Effect of cruciferous vegetable intake on cancer: An umbrella review of meta-analysis. J Food Sci 2024; 89:5230-5244. [PMID: 39138635 DOI: 10.1111/1750-3841.17300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Previous systematic evaluations and meta-analyses of the relationship between cruciferous vegetable (CV) intake and cancer risk have yielded inconsistent results. Herein, we summarize and evaluate the existing data and examine the relationship between CV intake and cancer risk. We searched four databases for cancer risk as a key outcome indicator. AMSTAR-2 was used to evaluate the methodological quality of the included systematic reviews, PRISMA 2020 was used to evaluate the report quality, and corrected coverage area analysis was used to evaluate the duplication rate of the original documents. Overall, 22 meta-analyses involving 175 independent cancer studies were included. Evidence on lung, gastric, prostate, breast, endometrial, and ovarian cancer, as well as renal cell carcinoma, suggests a potential association between cancer and CV intake, which influences the risk of various cancers. Future research should focus on improving methods and techniques, controlling influencing factors, elucidating underlying mechanisms, and improving evidence quality to demonstrate the association between CV intake and cancer. The potential role of dietary CVs in cancer control has implications for public health policies.
Collapse
Affiliation(s)
- Chunyan Guo
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, China
| | - Yibo Liu
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Haiqi Fu
- Inner Mongolia Medical University, Hohhot, China
| | - Xinyu Zhang
- Inner Mongolia Medical University, Hohhot, China
| | - Minhui Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
3
|
Sonzogni E, Martinelli G, Fumagalli M, Maranta N, Pozzoli C, Bani C, Marrari LA, Di Lorenzo C, Sangiovanni E, Dell’Agli M, Piazza S. In Vitro Insights into the Dietary Role of Glucoraphanin and Its Metabolite Sulforaphane in Celiac Disease. Nutrients 2024; 16:2743. [PMID: 39203879 PMCID: PMC11357145 DOI: 10.3390/nu16162743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Sulforaphane is considered the bioactive metabolite of glucoraphanin after dietary consumption of broccoli sprouts. Although both molecules pass through the gut lumen to the large intestine in stable form, their biological impact on the first intestinal tract is poorly described. In celiac patients, the function of the small intestine is affected by celiac disease (CD), whose severe outcomes are controlled by gluten-free dietary protocols. Nevertheless, pathological signs of inflammation and oxidative stress may persist. The aim of this study was to compare the biological activity of sulforaphane with its precursor glucoraphanin in a cellular model of gliadin-induced inflammation. Human intestinal epithelial cells (CaCo-2) were stimulated with a pro-inflammatory combination of cytokines (IFN-γ, IL-1β) and in-vitro-digested gliadin, while oxidative stress was induced by H2O2. LC-MS/MS analysis confirmed that sulforaphane from broccoli sprouts was stable after simulated gastrointestinal digestion. It inhibited the release of all chemokines selected as inflammatory read-outs, with a more potent effect against MCP-1 (IC50 = 7.81 µM). On the contrary, glucoraphanin (50 µM) was inactive. The molecules were unable to counteract the oxidative damage to DNA (γ-H2AX) and catalase levels; however, the activity of NF-κB and Nrf-2 was modulated by both molecules. The impact on epithelial permeability (TEER) was also evaluated in a Transwell® model. In the context of a pro-inflammatory combination including gliadin, TEER values were recovered by neither sulforaphane nor glucoraphanin. Conversely, in the context of co-culture with activated macrophages (THP-1), sulforaphane inhibited the release of MCP-1 (IC50 = 20.60 µM) and IL-1β (IC50 = 1.50 µM) only, but both molecules restored epithelial integrity at 50 µM. Our work suggests that glucoraphanin should not merely be considered as just an inert precursor at the small intestine level, thus suggesting a potential interest in the framework of CD. Its biological activity might imply, at least in part, molecular mechanisms different from sulforaphane.
Collapse
Affiliation(s)
- Elisa Sonzogni
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | - Giulia Martinelli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | - Marco Fumagalli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | - Nicole Maranta
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | - Carola Pozzoli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | - Corinne Bani
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | | | - Chiara Di Lorenzo
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| |
Collapse
|
4
|
Baladia E, Moñino M, Pleguezuelos E, Russolillo G, Garnacho-Castaño MV. Broccoli Consumption and Risk of Cancer: An Updated Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2024; 16:1583. [PMID: 38892516 PMCID: PMC11174709 DOI: 10.3390/nu16111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The scientific literature has reported an inverse association between broccoli consumption and the risk of suffering from several types of cancer; however, the results were not entirely consistent across studies. A systematic review and meta-analysis of observational studies were conducted to determine the association between broccoli consumption and cancer risk with the aim of clarifying the beneficial biological effects of broccoli consumption on cancer. METHODS PubMed/MEDLINE, Web of Science, Scopus, Cochrane Library (CENTRAL), and Epistemonikos databases were searched to identify all published papers that evaluate the impact of broccoli consumption on the risk of cancer. Citation chasing of included studies was conducted as a complementary search strategy. The risk of bias in individual studies was assessed using the Newcastle-Ottawa Scale. A random-effects model meta-analysis was employed to quantitatively synthesize results, with the I2 index used to assess heterogeneity. RESULTS Twenty-three case-control studies (n = 12,929 cases and 18,363 controls; n = 31,292 individuals) and 12 cohort studies (n = 699,482 individuals) were included in the meta-analysis. The results suggest an inverse association between broccoli consumption and the risk of cancer both in case-control studies (OR: 0.64, 95% CI from 0.58 to 0.70, p < 0.001; Q = 35.97, p = 0.072, I2 = 30.49%-moderate heterogeneity; τ2 = 0.016) and cohort studies (RR: 0.89, 95% CI from 0.82 to 0.96, p = 0.003; Q = 13.51, p = 0.333, I2 = 11.21%-low heterogeneity; τ2 = 0.002). Subgroup analysis suggested a potential benefit of broccoli consumption in site-specific cancers only in case-control studies. CONCLUSIONS In summary, the findings indicate that individuals suffering from some type of cancer consumed less broccoli, suggesting a protective biological effect of broccoli on cancer. More studies, especially cohort studies, are necessary to clarify the possible beneficial effect of broccoli on several types of cancer.
Collapse
Affiliation(s)
- Eduard Baladia
- Spanish Academy of Nutrition and Dietetics, 31006 Pamplona, Spain; (E.B.); (M.M.); (G.R.)
| | - Manuel Moñino
- Spanish Academy of Nutrition and Dietetics, 31006 Pamplona, Spain; (E.B.); (M.M.); (G.R.)
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 28029 Madrid, Spain
| | - Eulogio Pleguezuelos
- Department of Physical Medicine and Rehabilitation, Mataró Hospital, Mataró, 08304 Barcelona, Spain;
| | - Giuseppe Russolillo
- Spanish Academy of Nutrition and Dietetics, 31006 Pamplona, Spain; (E.B.); (M.M.); (G.R.)
| | - Manuel Vicente Garnacho-Castaño
- DAFNiS Research Group, Pain, Physical Activity, Nutrition and Health, Campus Docent Sant Joan de Déu, Universitat de Barcelona, Sant Boi de Llobregat, 08830 Barcelona, Spain
- Facultad de Ciencias de la Salud, Universidad Internacional de Valencia (VIU), 46002 Valencia, Spain
| |
Collapse
|
5
|
Yamaguchi Y, Sugiki M, Shimizu M, Ogawa K, Kumagai H. Comparative analysis of isothiocyanates in eight cruciferous vegetables and evaluation of the hepatoprotective effects of 4-(methylsulfinyl)-3-butenyl isothiocyanate (sulforaphene) from daikon radish ( Raphanus sativus L.) sprouts. Food Funct 2024; 15:4894-4904. [PMID: 38597802 DOI: 10.1039/d4fo00133h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The contributions of cruciferous vegetables to human health are widely recognised, particularly at the molecular level, where their isothiocyanates play a significant role. However, compared to the well-studied isothiocyanate 4-(methylsulfinyl)butyl isothiocyanate (sulforaphane) produced from broccoli sprouts, less is known about the pharmacological effects of other isothiocyanates and the stage of vegetables preferable to obtain their benefits. We analysed the quantity and quality of isothiocyanates produced in both the sprouts and mature stages of eight cruciferous vegetables using gas chromatography-mass spectrometry (GC-MS). Additionally, we investigated the hepatoprotective effects of isothiocyanates in a mouse model of acute hepatitis induced by carbon tetrachloride (CCl4). Furthermore, we explored the detoxification enzyme-inducing activities of crude sprout extracts in normal rats. Among the eight cruciferous vegetables, daikon radish (Raphanus sativus L.) sprouts produced the highest amount of isothiocyanates, with 4-(methylsulfinyl)-3-butenyl isothiocyanate (sulforaphene) being the dominant compound. The amount of sulforaphene in daikon radish sprouts was approximately 30 times that of sulforaphane in broccoli sprouts. Sulforaphene demonstrated hepatoprotective effects similar to sulforaphane in ameliorating CCl4-induced hepatic injury in mice. A crude extract of 3-day-old daikon radish sprouts upregulated the detoxifying enzyme glutathione S-transferase (GST) in the liver, whereas the crude extract of broccoli sprouts showed limited upregulation. This study highlights that daikon radish sprouts and sulforaphene have the potential to serve as functional food materials with hepatoprotective effects. Furthermore, daikon radish sprouts may exhibit more potent hepatoprotective effects compared to broccoli sprouts.
Collapse
Affiliation(s)
- Yusuke Yamaguchi
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.
| | - Mikio Sugiki
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.
| | - Motomi Shimizu
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.
| | - Kazuki Ogawa
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.
| | - Hitomi Kumagai
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.
| |
Collapse
|
6
|
Shao F, Pan J, Xie Y, Ding J, Sun X, Xia L, Zhu D, Wang S, Qi C. Sulforaphane Attenuates AOM/DSS-Induced Colorectal Tumorigenesis in Mice via Inhibition of Intestinal Inflammation. Nutr Cancer 2023; 76:137-148. [PMID: 37897077 DOI: 10.1080/01635581.2023.2274622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Sulforaphane (SFN) is a compound derived from cruciferous plants. It has received considerable attention in recent years due to its effectiveness in cancer prevention and anti-inflammatory properties. The purpose of this study was to evaluate the antitumor potential of sulforaphane on colitis-associated carcinogenesis (CAC) through the establishment of a mouse model with AOM/DSS. First, AOM/DSS and DSS-induced model were established and administered SFN for 10 wk, and then the severity of colitis-associated colon cancer was examined macroscopically and histologically. Subsequently, immune cells and cytokines in the tumor microenvironment (TME) were quantified. Finally, the influence of sulforaphane was also investigated using different colon cell lines. We found that sulforaphane treatment decreased tumor volume, myeloid-derived suppressor cells (MDSC) expansion, the expression of the proinflammatory cytokine IL-1β, and the level of IL-10 in serum. Also, it enhanced the antitumor activities of CD8+ T cells and significantly reduced tumorigenesis as induced by AOM/DSS. SFN also attenuated intestinal inflammation in DSS-induced chronic colitis by reshaping the inflammatory microenvironment. This work demonstrates that sulforaphane suppresses carcinogenesis-associated intestinal inflammation and prevents AOM/DSS-induced intestinal tumorigenesis and progression.
Collapse
Affiliation(s)
- Fang Shao
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Jie Pan
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Yewen Xie
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Jun Ding
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Xiao Sun
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Lei Xia
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Dawei Zhu
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Shizhong Wang
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Chunjian Qi
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| |
Collapse
|
7
|
Ren HG, Luu HN, Liu Y, Wang DW, Guo X. High intake of cruciferous vegetables reduces the risk of gastrointestinal cancers: results from observational studies. Crit Rev Food Sci Nutr 2023; 64:8493-8499. [PMID: 38051036 DOI: 10.1080/10408398.2023.2271070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The relationship between cruciferous vegetables (CV) and the risk of gastrointestinal (GI) cancers has been extensively investigated. However, epidemiologic investigations have produced inconsistent results. This meta-analysis investigated the association between CV intake and the risk of GI cancers. Due to the heterogeneity, fixed- or random-effects models were used for the analyses. The final analysis included 81 articles covering 89 studies. In comparison to the lowest consumption categories, the highest consumption categories of CV were associated with a lower risk for all GI cancers [rate ratio (RR): 0.81, 95% confidence interval (95% CI) 0.76-0.87]. Compared to a CV intake of 75 g/day, subjects with CV intake <75 g/day experienced a 7% reduction in risk (RR: 0.93; 95% CI: 0.84-0.96) for each 50 g increase in consumption. A negative correlation was identified between CV intake and the risk of esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer (CRC), but not gallbladder cancer (RR: 0.70; 95% CI: 0.38-1.27). High intake of broccoli and cabbage was associated with a decreased risk of gastric cancer (RR: 0.64; 95% CI: 0.47-0.87) and gallbladder cancer (RR: 0.46; 95% CI: 0.29-0.75). These results confirm the association between high intake of CV with a reduced risk of GI cancers.
Collapse
Affiliation(s)
- Hong-Gang Ren
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Hung Nguyen Luu
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ying Liu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Dao Wen Wang
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Holman JM, Colucci L, Baudewyns D, Balkan J, Hunt T, Hunt B, Kinney M, Holcomb L, Stratigakis A, Chen G, Moses PL, Mawe GM, Zhang T, Li Y, Ishaq SL. Steamed broccoli sprouts alleviate DSS-induced inflammation and retain gut microbial biogeography in mice. mSystems 2023; 8:e0053223. [PMID: 37702510 PMCID: PMC10654075 DOI: 10.1128/msystems.00532-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/24/2023] [Indexed: 09/14/2023] Open
Abstract
IMPORTANCE Evaluating bacterial communities across different locations in the gut provides a greater insight than fecal samples alone and provides an additional metric by which to evaluate beneficial host-microbe interactions. Here, we show that 10% steamed broccoli sprouts in the diet protects mice from the negative effects of dextran sodium sulfate-induced colitis, that colitis erases biogeographic patterns of bacterial communities in the gut, and that the cecum is not likely to be a significant contributor to colonic bacteria of interest in the DSS mouse model of ulcerative colitis. Mice fed the broccoli sprout diet during colitis performed better than mice fed the control diet while receiving DSS. The identification of accessible dietary components and concentrations that help maintain and correct the gut microbiome may provide universal and equitable approaches to IBD prevention and recovery, and broccoli sprouts represent a promising strategy.
Collapse
Affiliation(s)
- Johanna M. Holman
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Louisa Colucci
- Department of Biology, Husson University, Bangor, Maine, USA
| | - Dorien Baudewyns
- Department of Psychology, University of Maine, Orono, Maine, USA
| | - Joe Balkan
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Timothy Hunt
- Department of Biology, University of Maine, Orono, Maine, USA
| | - Benjamin Hunt
- Department of Biology, University of Maine, Orono, Maine, USA
| | - Marissa Kinney
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Lola Holcomb
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Allesandra Stratigakis
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA
| | - Grace Chen
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter L. Moses
- Departments of Neurological Sciences and of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Finch Therapeutics, Somerville, Massachusetts, USA
| | - Gary M. Mawe
- Departments of Neurological Sciences and of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Suzanne L. Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| |
Collapse
|
9
|
Iloki Assanga SB, Lewis Luján LM, McCarty MF. Targeting beta-catenin signaling for prevention of colorectal cancer - Nutraceutical, drug, and dietary options. Eur J Pharmacol 2023; 956:175898. [PMID: 37481200 DOI: 10.1016/j.ejphar.2023.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
Progressive up-regulation of β-catenin signaling is very common in the transformation of colorectal epithelium to colorectal cancer (CRC). Practical measures for opposing such signaling hence have potential for preventing or slowing such transformation. cAMP/PKA activity in colon epithelium, as stimulated by COX-2-generated prostaglandins and β2-adrenergic signaling, boosts β-catenin activity, whereas cGMP/PKG signaling has the opposite effect. Bacterial generation of short-chain fatty acids (as supported by unrefined high-carbohydrate diets, berberine, and probiotics), dietary calcium, daily aspirin, antioxidants opposing cox-2 induction, and nicotine avoidance, can suppress cAMP production in colonic epithelium, whereas cGMP can be boosted via linaclotides, PDE5 inhibitors such as sildenafil or icariin, and likely high-dose biotin. Selective activation of estrogen receptor-β by soy isoflavones, support of adequate vitamin D receptor activity with UV exposure or supplemental vitamin D, and inhibition of CK2 activity with flavanols such as quercetin, can also oppose β-catenin signaling in colorectal epithelium. Secondary bile acids, the colonic production of which can be diminished by low-fat diets and berberine, can up-regulate β-catenin activity by down-regulating farnesoid X receptor expression. Stimulation of PI3K/Akt via insulin, IGF-I, TLR4, and EGFR receptors boosts β-catenin levels via inhibition of glycogen synthase-3β; plant-based diets can down-regulate insulin and IGF-I levels, exercise training and leanness can keep insulin low, anthocyanins and their key metabolite ferulic acid have potential for opposing TLR4 signaling, and silibinin is a direct antagonist for EGFR. Partially hydrolyzed phytate can oppose growth factor-mediated down-regulation of β-catenin by inhibiting Akt activation. Multifactorial strategies for safely opposing β-catenin signaling can be complemented with measures that diminish colonic mutagenesis and DNA hypomethylation - such as avoidance of heme-rich meat and charred or processed meats, consumption of phase II-inductive foods and nutraceuticals (e.g., Crucifera), and assurance of adequate folate status.
Collapse
Affiliation(s)
- Simon Bernard Iloki Assanga
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| | - Lidianys María Lewis Luján
- Technological Institute of Hermosillo (ITH), Ave. Tecnológico y Periférico Poniente S/N, Col. Sahuaro, Hermosillo, Sonora, C.P. 83170, México.
| | | |
Collapse
|
10
|
Panduang T, Phucharoenrak P, Karnpanit W, Trachootham D. Cooking Methods for Preserving Isothiocyanates and Reducing Goitrin in Brassica Vegetables. Foods 2023; 12:3647. [PMID: 37835300 PMCID: PMC10573036 DOI: 10.3390/foods12193647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Glucosinolates in Brassica vegetables can be hydrolyzed into various products, e.g., chemopreventive agents, isothiocyanates (ITCs) and anti-thyroid substance, goitrin. Cooking can reduce goitrin but destroy isothiocyanates. This study aimed to optimize cooking conditions for reducing goitrin while preserving isothiocyanates in Brassica vegetables. Cabbage and Chinese kale samples were divided evenly into raw, blanched, steamed, and water-based stir-fried samples. Cooking temperature and time were varied at 60, 80, or 100 °C for 2, 4, or 6 min. The levels of goitrin, benzyl isothiocyanate (BITC), and sulforaphane (SFN) were measured using LC-MS/MS. Response surface model (RSM) was used to identify the optimal cooking conditions to reduce goitrin but preserve ITCs. Results showed that goitrin content in cabbage depended on the cooking methods, temperature, and time, while that of Chinese kale only depended on the methods. In contrast, the concentrations of SFN in cabbage and BITC in kale depended on the cooking temperature and time but not methods. Based on RSM analysis, the suggested household cooking methods for preserving isothiocyanates and reducing goitrin are steaming cabbage at 80-100 °C for 4 min and stir-frying Chinese kale at 60-100 °C for 2 min. Such methods may preserve the bioactive compounds while reducing food hazards.
Collapse
Affiliation(s)
- Thanaporn Panduang
- Master of Science Program in Toxicology and Nutrition for Food Safety, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand;
| | | | - Weeraya Karnpanit
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia;
| | | |
Collapse
|
11
|
Kumar A, Chinnathambi S, Kumar M, Pandian GN. Food Intake and Colorectal Cancer. Nutr Cancer 2023; 75:1710-1742. [PMID: 37572059 DOI: 10.1080/01635581.2023.2242103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/14/2023]
Abstract
Colorectal cancer (CRC) accounts for considerable mortalities worldwide. Several modifiable risk factors, including a high intake of certain foods and beverages can cause CRC. This review summarized the latest findings on the intake of various foods, nutrients, ingredients, and beverages on CRC development, with the objective of classifying them as a risk or protective factor. High-risk food items include red meat, processed meat, eggs, high alcohol consumption, sugar-sweetened beverages, and chocolate candy. Food items that are protective include milk, cheese and other dairy products, fruits, vegetables (particularly cruciferous), whole grains, legumes (particularly soy beans), fish, tea (particularly green tea), coffee (particularly among Asians), chocolate, and moderate alcohol consumption (particularly wine). High-risk nutrients/ingredients include dietary fat from animal sources and industrial trans-fatty acids (semisolid/solid hydrogenated oils), synthetic food coloring, monosodium glutamate, titanium dioxide, and high-fructose corn sirup. Nutrients/ingredients that are protective include dietary fiber (particularly from cereals), fatty acids (medium-chain and odd-chain saturated fatty acids and highly unsaturated fatty acids, including omega-3 polyunsaturated fatty acids), calcium, polyphenols, curcumin, selenium, zinc, magnesium, and vitamins A, C, D, E, and B (particularly B6, B9, and B2). A combination of micronutrients and multi-vitamins also appears to be beneficial in reducing recurrent adenoma incidence.
Collapse
Affiliation(s)
- Akshaya Kumar
- Institute for Integrated Cell-Material Sciences (WPI-ICeMS), Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences (WPI-ICeMS), Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | | | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (WPI-ICeMS), Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Holman JM, Colucci L, Baudewyns D, Balkan J, Hunt T, Hunt B, Kinney M, Holcomb L, Chen G, Moses PL, Mawe GM, Zhang T, Li Y, Ishaq SL. Steamed broccoli sprouts alleviate DSS-induced inflammation and retain gut microbial biogeography in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.522641. [PMID: 37292900 PMCID: PMC10245759 DOI: 10.1101/2023.01.27.522641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inflammatory Bowel Diseases (IBD) are devastating conditions of the gastrointestinal tract with limited treatments, and dietary intervention may be effective, and affordable, for managing symptoms. Glucosinolate compounds are highly concentrated in broccoli sprouts, especially glucoraphanin, and can be metabolized by certain mammalian gut bacteria into anti inflammatory isothiocyanates, such as sulforaphane. Gut microbiota exhibit biogeographic patterns, but it is unknown if colitis alters these or whether the location of glucoraphanin metabolizing bacteria affects anti-inflammatory benefits. We fed specific pathogen free C57BL/6 mice either a control diet or a 10% steamed broccoli sprout diet, and gave a three-cycle regimen of 2.5% dextran sodium sulfate (DSS) in drinking water over a 34-day experiment to simulate chronic, relapsing ulcerative colitis. We monitored body weight, fecal characteristics, lipocalin, serum cytokines, and bacterial communities from the luminal and mucosa-associated populations in the jejunum, cecum, and colon. Mice fed the broccoli sprout diet with DSS treatment performed better than mice fed the control diet with DSS, including significantly more weight gain, lower Disease Activity Indexes, lower plasma lipocalin and proinflammatory cytokines, and higher bacterial richness in all gut locations. Bacterial communities were assorted by gut location, but were more homogenous across locations in the control diet + DSS mice. Importantly, our results showed that broccoli sprout feeding abrogated the effects of DSS on gut microbiota, as bacterial richness and biogeography were similar between mice receiving broccoli sprouts with and without DSS. Collectively, these results support the protective effect of steamed broccoli sprouts against dysbiosis and colitis induced by DSS. Importance Evaluating bacterial communities across different locations in the gut provides a greater insight than fecal samples alone, and provides an additional metric by which to evaluate beneficial host-microbe interactions. Here, we show that 10% steamed broccoli sprouts in the diet protects mice from the negative effects of dextran sodium sulfate induced colitis, that colitis erases biogeographical patterns of bacterial communities in the gut, and that the cecum is not likely to be a significant contributor to colonic bacteria of interest in the DSS mouse model of ulcerative colitis. Mice fed the broccoli sprout diet during colitis performed better than mice fed the control diet while receiving DSS. The identification of accessible dietary components and concentrations that help maintain and correct the gut microbiome may provide universal and equitable approaches to IBD prevention and recovery, and broccoli sprouts represent a promising strategy.
Collapse
Affiliation(s)
- Johanna M. Holman
- School of Food and Agriculture, University of Maine, Orono, Maine, USA 04469
| | - Louisa Colucci
- Department of Biology, Husson University, Bangor, Maine, USA 04401
| | | | - Joe Balkan
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA 02155
| | - Timothy Hunt
- Department of Biology, University of Maine, Orono, Maine, USA 04469
| | - Benjamin Hunt
- Department of Biology, University of Maine, Orono, Maine, USA 04469
| | - Marissa Kinney
- School of Food and Agriculture, University of Maine, Orono, Maine, USA 04469
| | - Lola Holcomb
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA 04469
| | - Grace Chen
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA 48109
| | - Peter L. Moses
- Departments of Neurological Sciences and of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA 05401
- Finch Therapeutics, Somerville, Massachusetts, USA 02143
| | - Gary M. Mawe
- Departments of Neurological Sciences and of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA 05401
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA 13790
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, Maine, USA 04469
| | - Suzanne L. Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine, USA 04469
| |
Collapse
|
13
|
Lepore Signorile M, Grossi V, Fasano C, Simone C. Colorectal Cancer Chemoprevention: A Dream Coming True? Int J Mol Sci 2023; 24:ijms24087597. [PMID: 37108756 PMCID: PMC10140862 DOI: 10.3390/ijms24087597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest forms of cancer worldwide. CRC development occurs mainly through the adenoma-carcinoma sequence, which can last decades, giving the opportunity for primary prevention and early detection. CRC prevention involves different approaches, ranging from fecal occult blood testing and colonoscopy screening to chemoprevention. In this review, we discuss the main findings gathered in the field of CRC chemoprevention, focusing on different target populations and on various precancerous lesions that can be used as efficacy evaluation endpoints for chemoprevention. The ideal chemopreventive agent should be well tolerated and easy to administer, with low side effects. Moreover, it should be readily available at a low cost. These properties are crucial because these compounds are meant to be used for a long time in populations with different CRC risk profiles. Several agents have been investigated so far, some of which are currently used in clinical practice. However, further investigation is needed to devise a comprehensive and effective chemoprevention strategy for CRC.
Collapse
Affiliation(s)
- Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology-IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology-IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology-IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology-IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
14
|
Holman J, Hurd M, Moses PL, Mawe GM, Zhang T, Ishaq SL, Li Y. Interplay of broccoli/broccoli sprout bioactives with gut microbiota in reducing inflammation in inflammatory bowel diseases. J Nutr Biochem 2023; 113:109238. [PMID: 36442719 PMCID: PMC9974906 DOI: 10.1016/j.jnutbio.2022.109238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Inflammatory Bowel Diseases (IBD) are chronic, reoccurring, and debilitating conditions characterized by inflammation in the gastrointestinal tract, some of which can lead to more systemic complications and can include autoimmune dysfunction, a change in the taxonomic and functional structure of microbial communities in the gut, and complicated burdens in a person's daily life. Like many diseases based in chronic inflammation, research on IBD has pointed towards a multifactorial origin involving factors of the person's lifestyle, immune system, associated microbial communities, and environmental conditions. Treatment currently exists only as palliative care, and seeks to disrupt the feedback loop of symptoms by reducing inflammation and allowing as much of a return to homeostasis as possible. Various anti-inflammatory options have been explored, and this review focuses on the use of diet as an alternative means of improving gut health. Specifically, we highlight the connection between the role of sulforaphane from cruciferous vegetables in regulating inflammation and in modifying microbial communities, and to break down the role they play in IBD.
Collapse
Affiliation(s)
- Johanna Holman
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Molly Hurd
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Peter L Moses
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA; Finch Therapeutics, Somerville, Massachusetts, USA
| | - Gary M Mawe
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA
| | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine, USA.
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, Maine, USA.
| |
Collapse
|
15
|
Hill EB, Baxter BA, Pfluger B, Slaughter CK, Beale M, Smith HV, Stromberg SS, Tipton M, Ibrahim H, Rao S, Leach H, Ryan EP. Plasma, urine, and stool metabolites in response to dietary rice bran and navy bean supplementation in adults at high-risk for colorectal cancer. FRONTIERS IN GASTROENTEROLOGY (LAUSANNE, SWITZERLAND) 2023; 2:1087056. [PMID: 38469373 PMCID: PMC10927265 DOI: 10.3389/fgstr.2023.1087056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Introduction Dietary intake of whole grains and legumes and adequate physical activity (PA) have been associated with reduced colorectal cancer (CRC) risk. A single-blinded, two-arm, randomized, placebo-controlled pilot trial was implemented to evaluate the impact of a 12-week dietary intervention of rice bran + navy bean supplementation and PA education on metabolite profiles and the gut microbiome among individuals at high risk of CRC. Methods Adults (n=20) were randomized 1:1 to dietary intervention or control. All participants received PA education at baseline. Sixteen study foods were prepared with either heat-stabilized rice bran + navy bean powder or Fibersol®-2 as a placebo. Intervention participants consumed 30 g rice bran + 30 g navy bean powder daily; those in the control group consumed 10 g placebo daily. Non-targeted metabolite profiling was performed by UPLC-MS/MS to evaluate plasma, urine, and stool at 0, 6, and 12 weeks. Stool was also analyzed for primary and secondary bile acids (BAs) and short chain fatty acids (SCFAs) by UPLC-MS/MS and microbial community structure via 16S amplicon sequencing. Two-way ANOVA was used to compare differences between groups for metabolites, and mixed models were used to compare differences between groups for BAs, SCFAs, and alpha and beta diversity measures of microbial community structure. Results Across biological matrices, the intervention resulted in changes to several amino acid and lipid metabolites, compared to control. There was a 2.33-fold difference in plasma (p<0.001) and a 3.33-fold difference in urine (p=0.008) for the amino acid S-methylcysteine at 12 weeks. Fold-differences to 4-methoxyphenol sulfate in plasma and urine after 6 and 12 weeks (p<0.001) was a novel result from this combined rice bran and navy bean intervention in people. A 2.98-fold difference in plasma (p=0.002) and a 17.74-fold difference in stool (p=0.026) was observed for the lipid octadecenedioylcarnitine at 12 weeks. For stool BAs, 3-oxocholic acid was increased at 12 weeks compared to control within a subset of individuals (mean difference 16.2 ug/uL, p=0.022). No significant differences were observed between groups for stool SCFAs or microbial community structure. Discussion Dietary intake of rice bran + navy beans demonstrates beneficial modulation of host and gut microbial metabolism and represents a practical and affordable means of increasing adherence to national guidelines for CRC control and prevention in a high-risk population.
Collapse
Affiliation(s)
- Emily B. Hill
- Department of Pediatrics, Section of Nutrition, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Bridget A. Baxter
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Brigitte Pfluger
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Caroline K. Slaughter
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Melanie Beale
- Department of Health and Exercise Science, College of Health & Human Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hillary V. Smith
- Colorado School of Public Health, Colorado State University, Fort Collins, CO, United States
| | - Sophia S. Stromberg
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Madison Tipton
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hend Ibrahim
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sangeeta Rao
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Heather Leach
- Department of Health and Exercise Science, College of Health & Human Sciences, Colorado State University, Fort Collins, CO, United States
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Colorado School of Public Health, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
16
|
Bouranis JA, Beaver LM, Jiang D, Choi J, Wong CP, Davis EW, Williams DE, Sharpton TJ, Stevens JF, Ho E. Interplay between Cruciferous Vegetables and the Gut Microbiome: A Multi-Omic Approach. Nutrients 2022; 15:nu15010042. [PMID: 36615700 PMCID: PMC9824405 DOI: 10.3390/nu15010042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Brassica vegetables contain a multitude of bioactive compounds that prevent and suppress cancer and promote health. Evidence suggests that the gut microbiome may be essential in the production of these compounds; however, the relationship between specific microbes and the abundance of metabolites produced during cruciferous vegetable digestion are still unclear. We utilized an ex vivo human fecal incubation model with in vitro digested broccoli sprouts (Broc), Brussels sprouts (Brus), a combination of the two vegetables (Combo), or a negative control (NC) to investigate microbial metabolites of cruciferous vegetables. We conducted untargeted metabolomics on the fecal cultures by LC-MS/MS and completed 16S rRNA gene sequencing. We identified 72 microbial genera in our samples, 29 of which were significantly differentially abundant between treatment groups. A total of 4499 metabolomic features were found to be significantly different between treatment groups (q ≤ 0.05, fold change > 2). Chemical enrichment analysis revealed 45 classes of compounds to be significantly enriched by brassicas, including long-chain fatty acids, coumaric acids, and peptides. Multi-block PLS-DA and a filtering method were used to identify microbe−metabolite interactions. We identified 373 metabolites from brassica, which had strong relationships with microbes, such as members of the family Clostridiaceae and genus Intestinibacter, that may be microbially derived.
Collapse
Affiliation(s)
- John A. Bouranis
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Laura M. Beaver
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Duo Jiang
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P. Wong
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Edward W. Davis
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - David E. Williams
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Thomas J. Sharpton
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Emily Ho
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Correspondence:
| |
Collapse
|
17
|
Lee BY, Ordovás JM, Parks EJ, Anderson CAM, Barabási AL, Clinton SK, de la Haye K, Duffy VB, Franks PW, Ginexi EM, Hammond KJ, Hanlon EC, Hittle M, Ho E, Horn AL, Isaacson RS, Mabry PL, Malone S, Martin CK, Mattei J, Meydani SN, Nelson LM, Neuhouser ML, Parent B, Pronk NP, Roche HM, Saria S, Scheer FAJL, Segal E, Sevick MA, Spector TD, Van Horn L, Varady KA, Voruganti VS, Martinez MF. Research gaps and opportunities in precision nutrition: an NIH workshop report. Am J Clin Nutr 2022; 116:1877-1900. [PMID: 36055772 PMCID: PMC9761773 DOI: 10.1093/ajcn/nqac237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/06/2022] [Accepted: 08/30/2022] [Indexed: 02/01/2023] Open
Abstract
Precision nutrition is an emerging concept that aims to develop nutrition recommendations tailored to different people's circumstances and biological characteristics. Responses to dietary change and the resulting health outcomes from consuming different diets may vary significantly between people based on interactions between their genetic backgrounds, physiology, microbiome, underlying health status, behaviors, social influences, and environmental exposures. On 11-12 January 2021, the National Institutes of Health convened a workshop entitled "Precision Nutrition: Research Gaps and Opportunities" to bring together experts to discuss the issues involved in better understanding and addressing precision nutrition. The workshop proceeded in 3 parts: part I covered many aspects of genetics and physiology that mediate the links between nutrient intake and health conditions such as cardiovascular disease, Alzheimer disease, and cancer; part II reviewed potential contributors to interindividual variability in dietary exposures and responses such as baseline nutritional status, circadian rhythm/sleep, environmental exposures, sensory properties of food, stress, inflammation, and the social determinants of health; part III presented the need for systems approaches, with new methods and technologies that can facilitate the study and implementation of precision nutrition, and workforce development needed to create a new generation of researchers. The workshop concluded that much research will be needed before more precise nutrition recommendations can be achieved. This includes better understanding and accounting for variables such as age, sex, ethnicity, medical history, genetics, and social and environmental factors. The advent of new methods and technologies and the availability of considerably more data bring tremendous opportunity. However, the field must proceed with appropriate levels of caution and make sure the factors listed above are all considered, and systems approaches and methods are incorporated. It will be important to develop and train an expanded workforce with the goal of reducing health disparities and improving precision nutritional advice for all Americans.
Collapse
Affiliation(s)
- Bruce Y Lee
- Health Policy and Management, City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - José M Ordovás
- USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Elizabeth J Parks
- Nutrition and Exercise Physiology, University of Missouri School of Medicine, MO, USA
| | | | - Albert-László Barabási
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, USA
| | | | - Kayla de la Haye
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Paul W Franks
- Novo Nordisk Foundation, Hellerup, Denmark, Copenhagen, Denmark, and Lund University Diabetes Center, Sweden
- The Lund University Diabetes Center, Malmo, SwedenInsert Affiliation Text Here
| | - Elizabeth M Ginexi
- National Institutes of Health, Office of Behavioral and Social Sciences Research, Bethesda, MD, USA
| | - Kristian J Hammond
- Computer Science, Northwestern University McCormick School of Engineering, IL, USA
| | - Erin C Hanlon
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Michael Hittle
- Epidemiology and Clinical Research, Stanford University, Stanford, CA, USA
| | - Emily Ho
- Public Health and Human Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Abigail L Horn
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | | | | | - Susan Malone
- Rory Meyers College of Nursing, New York University, New York, NY, USA
| | - Corby K Martin
- Ingestive Behavior Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Josiemer Mattei
- Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Simin Nikbin Meydani
- USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Lorene M Nelson
- Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | | | - Brendan Parent
- Grossman School of Medicine, New York University, New York, NY, USA
| | | | - Helen M Roche
- UCD Conway Institute, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Dublin, Ireland
| | - Suchi Saria
- Johns Hopkins University, Baltimore, MD, USA
| | - Frank A J L Scheer
- Brigham and Women's Hospital, Boston, MA, USA
- Medicine and Neurology, Harvard Medical School, Boston, MA, USA
| | - Eran Segal
- Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Mary Ann Sevick
- Grossman School of Medicine, New York University, New York, NY, USA
| | - Tim D Spector
- Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Linda Van Horn
- Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Krista A Varady
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Venkata Saroja Voruganti
- Nutrition and Nutrition Research Institute, Gillings School of Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - Marie F Martinez
- Health Policy and Management, City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| |
Collapse
|
18
|
Mi T, Wang D, Yao S, Yang H, Che Y, Wu C. Effects of salt concentration on the quality and microbial diversity of spontaneously fermented radish paocai. Food Res Int 2022; 160:111622. [DOI: 10.1016/j.foodres.2022.111622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/04/2022]
|
19
|
Mitra S, Emran TB, Chandran D, Zidan BMRM, Das R, Mamada SS, Masyita A, Salampe M, Nainu F, Khandaker MU, Idris AM, Simal-Gandara J. Cruciferous vegetables as a treasure of functional foods bioactive compounds: Targeting p53 family in gastrointestinal tract and associated cancers. Front Nutr 2022; 9:951935. [PMID: 35990357 PMCID: PMC9386315 DOI: 10.3389/fnut.2022.951935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
In the past few years, phytochemicals from natural products have gotten the boundless praise in treating cancer. The promising role of cruciferous vegetables and active components contained in these vegetables, such as isothiocyanates, indole-3-carbinol, and isothiocyanates, has been widely researched in experimental in vitro and in vivo carcinogenesis models. The chemopreventive agents produced from the cruciferous vegetables were recurrently proven to affect carcinogenesis throughout the onset and developmental phases of cancer formation. Likewise, findings from clinical investigations and epidemiological research supported this statement. The anticancer activities of these functional foods bioactive compounds are closely related to their ability to upregulate p53 and its related target genes, e.g., p21. As the “guardian of the genome,” the p53 family (p53, p63, and p73) plays a pivotal role in preventing the cancer progression associated with DNA damage. This review discusses the functional foods bioactive compounds derived from several cruciferous vegetables and their use in altering the tumor-suppressive effect of p53 proteins. The association between the mutation of p53 and the incidence of gastrointestinal malignancies (gastric, small intestine, colon, liver, and pancreatic cancers) is also discussed. This review contains crucial information about the use of cruciferous vegetables in the treatment of gastrointestinal tract malignancies.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, India
| | | | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Ayu Masyita
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | | | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia.,Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
20
|
Patra S, Das A, Rakshit R, Choudhury SR, Roy S, Mondal T, Samanta A, Ganguly P, Alsuhaibani AM, Gaber A, Brestic M, Skalicky M, Hossain A. Persistence and Exposure Assessment of Insecticide Indoxacarb Residues in Vegetables. Front Nutr 2022; 9:863519. [PMID: 35634397 PMCID: PMC9131938 DOI: 10.3389/fnut.2022.863519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Indoxacarb, a promising new generation insecticide, is gaining popularity among vegetable growers in West Bengal, India, for controlling a large number of insects. However, it may simultaneously also increase the risk of contamination in the edible portions of the vegetables. This study was planned to analyze the persistence behavior of indoxacarb in cabbages, tomatoes, and soil. Moreover, indoxacarb residue contents were estimated to assess both the dietary and soil ecological risks associated with the application of the same. The experimental location was important because West Bengal is the leading vegetables producing state in India. Indoxacarb was found to dissipate quickly with a half-life ranging between 1.55 and 2.76 days, irrespective of the vegetable, dose, and season, and the safe waiting period was very less. The findings indicate that both vegetables can be safely consumed 1 day after the final spray. However, the risk to soil algae is predicted to be unacceptably high, which needs to be studied extensively.
Collapse
Affiliation(s)
- Sandip Patra
- Division of Crop Science, ICAR Research Complex for NEH Region, Shillong, India
| | - Anupam Das
- Department of Soil Science & Agricultural Chemistry, Bihar Agricultural University, Bhagalpur, India
| | - Rajiv Rakshit
- Department of Soil Science & Agricultural Chemistry, Bihar Agricultural University, Bhagalpur, India
| | | | - Shyamashree Roy
- Department of Agronomy, RRS (OAZ), Uttar Banga Krishi Viswavidyalaya, Majhian, India
| | - Tilak Mondal
- Department of Crop Production, ICAR - Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, India
| | - Arunava Samanta
- Department of Agricultural Entomology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Pritam Ganguly
- Department of Soil Science & Agricultural Chemistry, Bihar Agricultural University, Bhagalpur, India
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia.,Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
21
|
Li YZ, Yang ZY, Gong TT, Liu YS, Liu FH, Wen ZY, Li XY, Gao C, Luan M, Zhao YH, Wu QJ. Cruciferous vegetable consumption and multiple health outcomes: an umbrella review of 41 systematic reviews and meta-analyses of 303 observational studies. Food Funct 2022; 13:4247-4259. [PMID: 35352732 DOI: 10.1039/d1fo03094a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Epidemiological studies evaluating the associations between the consumption of cruciferous vegetables (CV) and diverse health outcomes have generated inconsistent findings. Therefore, we carried out an umbrella review to systematically summarize existing evidence on this topic. Methods: This study had been registered at PROSPERO (no. CRD42021262011). Relevant systematic reviews and meta-analyses of observational studies were identified by searching PubMed, Web of science, and Embase databases from inception up to March 15, 2021. Observational studies investigating the association between CV intake and multiple health outcomes in humans were eligible for inclusion. The validated AMSTAR (A Measurement Tool to Assess Systematic Reviews) instrument was utilized for assessing the methodological quality of the included systematic reviews. For each meta-analysis, we assessed the summary effect size by using fixed and random effects models, 95% prediction intervals, heterogeneity, evidence of small-study effects, and excess significance bias. Results: Our umbrella review included 41 meta-analyses of 303 individual studies involving 13 394 722 participants. Twenty-four health outcomes including cancers (n = 23), cardiovascular disease (n = 12), mortality (n = 5), and metabolic diseases (n = 1) were evaluated. The summary random effects estimates were significant at P < 0.05 in 24 meta-analyses - all of which reported decreased risks of health outcomes. All were of moderate methodological quality in our study. Of the 41 meta-analyses, we observed suggestive evidence for beneficial associations between gastric cancer, lung cancer, endometrial cancer, and all-cause mortality. Moreover, 16 associations were supported by weak evidence, including breast cancer, lung cancer, renal cell carcinoma, bladder cancer, prostate cancer, ovarian cancer, endometrial cancer, colon cancer, colorectal adenoma, colorectal neoplasm, non-Hodgkin lymphoma, and total cancer. Conclusions: It revealed that CV intake might be associated with beneficial effects on several health-related outcomes (gastric cancer, lung cancer, endometrial cancer, and all-cause mortality). Other associations could be genuine, but substantial uncertainty remains. Additional studies are needed to evaluate the relationship between the consumption of CV and various health outcomes as well as robust randomized controlled trials in the future.
Collapse
Affiliation(s)
- Yi-Zi Li
- Department of Clinical Epidemiology, Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, P. R. China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhi-Yong Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, P. R. China.
| | - Ya-Shu Liu
- Department of Clinical Epidemiology, Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, P. R. China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, P. R. China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhao-Yan Wen
- Department of Clinical Epidemiology, Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, P. R. China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Yu Li
- Department of Clinical Epidemiology, Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, P. R. China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chang Gao
- Department of Clinical Epidemiology, Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, P. R. China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Meng Luan
- Department of Clinical Epidemiology, Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, P. R. China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, P. R. China.
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, P. R. China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, P. R. China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, P. R. China.
| |
Collapse
|
22
|
The Role of Diet and Lifestyle in Early-Onset Colorectal Cancer: A Systematic Review. Cancers (Basel) 2021; 13:cancers13235933. [PMID: 34885046 PMCID: PMC8657307 DOI: 10.3390/cancers13235933] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This systematic review sifted through the exogenous dietary and lifestyle risk factors associated with early-onset colorectal cancer, going through the putative involvement of these exogenous risk factors in epigenetic and microbiota modifications. Given the burden of early-onset colorectal cancer and its globally increasing trend with scant literature on its pathogenesis, we believe it would be of benefit to highlight the importance of further systematic and large studies. Indeed, dietary and lifestyle modification could complement colorectal screening for early-onset colorectal cancer prevention. Abstract The incidence of early-onset colorectal cancer, defined as colorectal cancer occurring in young adults under the age of 50, is increasing globally. Knowledge of the etiological factors in young adults is far from complete. Questionable eoCRCs’ exogenous factors are represented by processed meat, sugary drinks, alcohol, Western dietary pattern, overweight and obesity, physical inactivity, and smoking, though with heterogeneous results. Therefore, we performed a systematic review to summarize the current evidence on the role of diet and lifestyle as eoCRC risk factors. We systematically searched PubMed, Scopus, and EMBASE up to July 2021, for original studies evaluating diet, alcohol, physical activity, BMI, and smoking in eoCRC and included twenty-six studies. Indeed, the exogenous factors could represent modifiable key factors, whose recognition could establish areas of future interventions through public health strategies for eoCRC primary prevention. Additionally, we discussed the role of additional non-modifiable risk factors, and of epigenetic regulation and microbiota as mediators of the eoCRC triggered by diet and lifestyle.
Collapse
|
23
|
Bioactive Compounds and Nanodelivery Perspectives for Treatment of Cardiovascular Diseases. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112211031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bioactive compounds are comprised of small quantities of extra nutritional constituents providing both health benefits and enhanced nutritional value, based on their ability to modulate one or more metabolic processes. Plant-based diets are being thoroughly researched for their cardiovascular properties and effectiveness against cancer. Flavonoids, phytoestrogens, phenolic compounds, and carotenoids are some of the bioactive compounds that aim to work in prevention and treating the cardiovascular disease in a systemic manner, including hypertension, atherosclerosis, and heart failure. Their antioxidant and anti-inflammatory properties are the most important characteristics that make them favorable candidates for CVDs treatment. However, their low water solubility and stability results in low bioavailability, limited accessibility, and poor absorption. The oral delivery of bioactive compounds is constrained due to physiological barriers such as the pH, mucus layer, gastrointestinal enzymes, epithelium, etc. The present review aims to revise the main bioactive compounds with a significant role in CVDs in terms of preventive, diagnostic, and treatment measures. The advantages of nanoformulations and novel multifunctional nanomaterials development are described in order to overcome multiple obstacles, including the physiological ones, by summarizing the most recent preclinical data and clinical trials reported in the literature. Nanotechnologies will open a new window in the area of CVDs with the opportunity to achieve effective treatment, better prognosis, and less adverse effects on non-target tissues.
Collapse
|
24
|
Bouranis JA, Beaver LM, Ho E. Metabolic Fate of Dietary Glucosinolates and Their Metabolites: A Role for the Microbiome. Front Nutr 2021; 8:748433. [PMID: 34631775 PMCID: PMC8492924 DOI: 10.3389/fnut.2021.748433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
Robust evidence shows that phytochemicals from cruciferous vegetables, like broccoli, are associated with numerous health benefits. The anti-cancer properties of these foods are attributed to bioactive isothiocyanates (ITCs) and indoles, phytochemicals generated from biological precursor compounds called glucosinolates. ITCs, and particularly sulforaphane (SFN), are of intense interest as they block the initiation, and suppress the progression of cancer, through genetic and epigenetic mechanisms. The efficacy of these compounds is well-demonstrated in cell culture and animal models, however, high levels of inter-individual variation in absorption and excretion of ITCs is a significant barrier to the use of dietary glucosinolates to prevent and treat disease. The source of inter-individual ITC variation has yet to be fully elucidated and the gut microbiome may play a key role. This review highlights evidence that the gut microbiome influences the metabolic fate and activity of ITCs. Human feeding trials have shown inter-individual variations in gut microbiome composition coincides with variations in ITC absorption and excretion, and some bacteria produce ITCs from glucosinolates. Additionally, consumption of cruciferous vegetables can alter the composition of the gut microbiome and shift the physiochemical environment of the gut lumen, influencing the production of phytochemicals. Microbiome and diet induced changes to ITC metabolism may lead to the decrease of cancer fighting phytochemicals such as SFN and increase the production of biologically inert ones like SFN-nitrile. We conclude by offering perspective on the use of novel “omics” technologies to elucidate the interplay of the gut microbiome and ITC formation.
Collapse
Affiliation(s)
- John A Bouranis
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Laura M Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
25
|
Ngo SNT, Williams DB. Protective Effect of Isothiocyanates from Cruciferous Vegetables on Breast Cancer: Epidemiological and Preclinical Perspectives. Anticancer Agents Med Chem 2021; 21:1413-1430. [PMID: 32972351 DOI: 10.2174/1871520620666200924104550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/26/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The effect of cruciferous vegetable intake on breast cancer survival is controversial at present. Glucosinolates are the naturally occurring constituents found across the cruciferous vegetables. Isothiocyanates are produced from the hydrolysis of glucosinolates and this reaction is catalysed by the plant-derived enzyme myrosinase. The main Isothiocyanates (ITCs) from cruciferous vegetables are sulforaphane, benzyl ITC, and phenethyl ITC, which had been intensively investigated over the last decade for their anti-breast cancer effects. OBJECTIVE The aim of this article is to systematically review the evidence from all types of studies, which examined the protective effect of cruciferous vegetables and/or their isothiocyanate constituents on breast cancer. METHODS A systematic review was conducted in Pubmed, EMBASE, and the Cochrane Library from inception to 27 April 2020. Peer-reviewed studies of all types (in vitro studies, animal studies, and human studies) were selected. RESULTS The systematic literature search identified 16 human studies, 4 animal studies, and 65 in vitro studies. The effect of cruciferous vegetables and/or their ITCs intake on breast cancer survival was found to be controversial and varied greatly across human studies. Most of these trials were observational studies conducted in specific regions, mainly in the US and China. Substantial evidence from in vitro and animal studies was obtained, which strongly supported the protective effect of sulforaphane and other ITCs against breast cancer. Evidence from in vitro studies showed that sulforaphane and other ITCs reduced cancer cell viability and proliferation via multiple mechanisms and pathways. Isothiocyanates inhibited cell cycle, angiogenesis and epithelial mesenchymal transition, as well as induced apoptosis and altered the expression of phase II carcinogen detoxifying enzymes. These are the essential pathways that promote the growth and metastasis of breast cancer. Noticeably, benzyl ITC showed a significant inhibitory effect on breast cancer stem cells, a new dimension of chemo-resistance in breast cancer treatment. Sulforaphane and other ITCs displayed anti-breast cancer effects at variable range of concentrations and benzyl isothiocyanate appeared to have a relatively lower inhibitory concentration IC50. The mechanisms underlying the cancer protective effect of sulforaphane and other ITCs have also been highlighted in this article. CONCLUSION Current preclinical evidence strongly supports the role of sulforaphane and other ITCs as potential therapeutic agents for breast cancer, either as adjunct therapy or combined therapy with current anti-breast cancer drugs, with sulforaphane displaying the greatest potential.
Collapse
Affiliation(s)
- Suong N T Ngo
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5071, Australia
| | - Desmond B Williams
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
26
|
Alanazi IO, Shaik JP, Parine NR, Al Naeem A, Azzam NA, Almadi MA, Aljebreen AM, Alharbi O, Alanazi MS, Khan Z. NOTCH Single Nucleotide Polymorphisms in the Predisposition of Breast and Colorectal Cancers in Saudi Patients. Pathol Oncol Res 2021; 27:616204. [PMID: 34257585 PMCID: PMC8262141 DOI: 10.3389/pore.2021.616204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/17/2021] [Indexed: 11/13/2022]
Abstract
Breast cancer (BC) is a heterogeneous disease and is one of the most common malignancy affecting women worldwide while colorectal cancer (CRC) is estimated to be the third common cancer and second leading cause of cancer related death globally. Both BC and CRC involve multiple genetic and epigenetic alterations in genes belonging to various signaling pathways including NOTCH that has been implicated in the development of these cancers. We investigated four single nucleotide polymorphisms, each in genes encoding NOTCH1-4 receptors for their role in susceptibility to breast and colorectal cancers in Saudi population. In this case-control study, TaqMan genotypic analysis of rs3124591 in NOTCH1 and rs3820041 in NOTCH4 did not exhibit association with breast as well as colorectal cancers. However, a strong association of rs11249433 which is in close proximity to NOTCH2 was observed with breast cancer susceptibility especially with those having an early onset of the disease. Interestingly, the rs1043994 located in NOTCH3 showed gender preference and was found to be significantly associated with colorectal cancers in males. Validation of these findings in bigger populations of different ethnicities may prove beneficial in identifying rs11249433 and rs1043994 as genetic screening markers for early detection of breast and colorectal carcinomas, respectively.
Collapse
Affiliation(s)
- Ibrahim O Alanazi
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia
| | - Jilani Purusottapatnam Shaik
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Narasimha Reddy Parine
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulrahman Al Naeem
- Basic Sciences Department, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia.,Department of Women's Imaging, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Nahla A Azzam
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Division of Gastroenterology, Department of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Majid A Almadi
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Division of Gastroenterology, Department of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulrahman M Aljebreen
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Division of Gastroenterology, Department of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Othman Alharbi
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Division of Gastroenterology, Department of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Saud Alanazi
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Zahid Khan
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
27
|
Woźniak M, Krajewski R, Makuch S, Agrawal S. Phytochemicals in Gynecological Cancer Prevention. Int J Mol Sci 2021; 22:1219. [PMID: 33530651 PMCID: PMC7865323 DOI: 10.3390/ijms22031219] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Gynecological cancer confers an enormous burden among women worldwide. Accumulating evidence points to the role of phytochemicals in preventing cervical, endometrial, and ovarian cancer. Experimental studies emphasize the chemopreventive and therapeutic potential of plant-derived substances by inhibiting the early stages of carcinogenesis or improving the efficacy of traditional chemotherapeutic agents. Moreover, a number of epidemiological studies have investigated associations between a plant-based diet and cancer risk. This literature review summarizes the current knowledge on the phytochemicals with proven antitumor activity, emphasizing their effectiveness and mechanism of action in gynecological cancer.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
| | - Rafał Krajewski
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
| | - Siddarth Agrawal
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
28
|
Gupta E, Mishra P. Functional Food with Some Health Benefits, So Called Superfood: A Review. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200717171048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The possible beneficial properties of functional foods are due to their content in bioactive
ingredients, with specific biological properties. A number of processed functional foods are available
in the market - probiotic yogurt, calcium and ω-3 fatty acids enriched orange juice and milk. Simultaneously,
new research studies confer potential health benefits of various conventional foods (salmon,
berries, green tea, vegetables, fruits, nuts, cereals and breads, etc.) termed as “superfood” which
is a marketing term and there is no established medical definition. Following suitable dietary patterns,
superfood reduces the risk of degenerative diseases by promoting physical and emotional
health. Scientific evidences suggest that superfoods are a dense source of antioxidants, minerals, vitamins
and other nutrients. There is insufficient research on the exact explanation of the term ‘superfood’and
its health claims by different companies without any legislation. This buzz word has created
confusion among consumers, that how much and what quantity should make a food superfood, as
no single food may be as nutritious to be stated as a superfood. This article introduces further investigation
on superfood which was categorized on the basis of their major constituents and potential
health benefits. Further, there is a need for more reviews, researches, clinical trials and human case
studies to investigate or test superfood.
Collapse
Affiliation(s)
- Ena Gupta
- Department of Homescience, University of Allahabad, Allahabad-211002, India
| | - Pragya Mishra
- Food Processing and Management, DDU Kaushal Kendra, RGSC, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
29
|
Wu X, Huang H, Childs H, Wu Y, Yu L, Pehrsson PR. Glucosinolates in Brassica Vegetables: Characterization and Factors That Influence Distribution, Content, and Intake. Annu Rev Food Sci Technol 2021; 12:485-511. [PMID: 33467908 DOI: 10.1146/annurev-food-070620-025744] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucosinolates (GSLs) are a class of sulfur-containing compounds found predominantly in the genus Brassica of the Brassicaceae family. Certain edible plants in Brassica, known as Brassica vegetables, are among the most commonly consumed vegetables in the world. Over the last three decades, mounting evidence has suggested an inverse association between consumption of Brassica vegetables and the risk of various types of cancer. The biological activities of Brassica vegetables have been largely attributed to the hydrolytic products of GSLs. GSLs can be hydrolyzed by enzymes; thermal or chemical degradation also breaks down GSLs. There is considerable variation of GSLs in Brassica spp., which are caused by genetic and environmental factors. Most Brassica vegetables are consumed after cooking; common cooking methods have a complex influence on the levels of GSLs. The variationof GSLs in Brassica vegetables and the influence of cooking and processing methods ultimately affect their intake and health-promoting properties.
Collapse
Affiliation(s)
- Xianli Wu
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, USA;
| | - Hui Huang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Holly Childs
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Yanbei Wu
- China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Pamela R Pehrsson
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, USA;
| |
Collapse
|
30
|
Kim S, Abernathy BE, Trudo SP, Gallaher DD. Colon Cancer Risk of a Westernized Diet Is Reduced in Mice by Feeding Cruciferous or Apiaceous Vegetables at a Lower Dose of Carcinogen but Not a Higher Dose. J Cancer Prev 2020; 25:223-233. [PMID: 33409255 PMCID: PMC7783237 DOI: 10.15430/jcp.2020.25.4.223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 01/04/2023] Open
Abstract
Western-style diets (WD) are associated with greater risk of colon cancer. Exposure to 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), a food-borne carcinogen, is linked to increased colon cancer risk. In contrast, intake of apiaceous and cruciferous vegetables (APIs and CRUs) is associated with reduced risk. Here we evaluated effects of a WD alone or a WD containing API or CRU, relative to a purified diet (basal), on colon cancer risk in mice. All diets were fed at one of two concentrations of PhIP (100 or 400 ppm). The activity of the hepatic PhIP-activating enzyme, cytochrome P450 (CYP) 1A2, was examined at week 4 and colonic precancerous lesions (aberrant crypt foci, ACF) were enumerated at week 12. In low PhIP-fed groups, CYP1A2 activity was greater for CRU than all other groups, which did not differ from one another. WD had a significantly greater effect on the formation of ACF than the basal diet. In groups fed API or CRU, the ACF number was reduced to the level observed in the basal diet-fed group. In high PhIP-fed groups, all WD-based diets had greater CYP1A2 activity than the basal diet-fed group. Surprisingly, the basal diet group had more ACF than the WD group, and API and CRU groups did not differ from the WD alone group. Thus, at the lower dose of PhIP, the WD increased colon cancer risk in mice, compared to a purified diet, and APIs and CRUs reduced the risk of the WD. However, at the higher dose of PhIP, the enhancement of colon cancer risk by the WD was not evident, nor was the chemopreventive effect of these vegetables.
Collapse
Affiliation(s)
| | | | - Sabrina P Trudo
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
31
|
Chapelle N, Martel M, Toes-Zoutendijk E, Barkun AN, Bardou M. Recent advances in clinical practice: colorectal cancer chemoprevention in the average-risk population. Gut 2020; 69:2244-2255. [PMID: 32989022 PMCID: PMC7677480 DOI: 10.1136/gutjnl-2020-320990] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the most common and lethal malignancies in Western countries. Its development is a multistep process that spans more than 15 years, thereby providing an opportunity for prevention and early detection. The high incidence and mortality rates emphasise the need for prevention and screening. Many countries have therefore introduced CRC screening programmes. It is expected, and preliminary evidence in some countries suggests, that this screening effort will decrease CRC-related mortality rates. CRC prevention involves a healthy lifestyle and chemoprevention-more specifically, oral chemoprevention that can interfere with progression from a normal colonic mucosa to adenocarcinoma. This preventive effect is important for individuals with a genetic predisposition, but also in the general population. The ideal chemopreventive agent, or combination of agents, remains unknown, especially when considering safety during long-term use. This review evaluates the evidence across 80 meta-analyses of interventional and observational studies of CRC prevention using medications, vitamins, supplements and dietary factors. This review suggests that the following factors are associated with a decreased incidence of CRC: aspirin, non-steroidal anti-inflammatory drugs, magnesium, folate, a high consumption of fruits and vegetables, fibre and dairy products. An increased incidence of CRC was observed with frequent alcohol or meat consumption. No evidence of a protective effect for tea, coffee, garlic, fish and soy products was found. The level of evidence is moderate for aspirin, β-carotene and selenium, but is low or very low for all other exposures or interventions.
Collapse
Affiliation(s)
- Nicolas Chapelle
- Institut des Maladies de l'appareil digestif, Department of Gastroenterology, Hepatology, Nutrition and Medical Oncology, Service de Gastroenterologie, Nantes, France
| | - Myriam Martel
- Department of Gastroenterology, McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Alan N Barkun
- Department of Gastroenterology, McGill University Health Centre, Montreal, Quebec, Canada
| | | |
Collapse
|
32
|
Gasparello J, Gambari L, Papi C, Rozzi A, Manicardi A, Corradini R, Gambari R, Finotti A. High Levels of Apoptosis Are Induced in the Human Colon Cancer HT-29 Cell Line by Co-Administration of Sulforaphane and a Peptide Nucleic Acid Targeting miR-15b-5p. Nucleic Acid Ther 2020; 30:164-174. [DOI: 10.1089/nat.2019.0825] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Laura Gambari
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Andrea Rozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
33
|
Ramirez D, Abellán-Victorio A, Beretta V, Camargo A, Moreno DA. Functional Ingredients From Brassicaceae Species: Overview and Perspectives. Int J Mol Sci 2020; 21:E1998. [PMID: 32183429 PMCID: PMC7139885 DOI: 10.3390/ijms21061998] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Brassicaceae vegetables are important crops consumed worldwide due to their unique flavor, and for their broadly recognized functional properties, which are directly related to their phytochemical composition. Isothiocyanates (ITC) are the most characteristic compounds, considered responsible for their pungent taste. Besides ITC, these vegetables are also rich in carotenoids, phenolics, minerals, and vitamins. Consequently, Brassica's phytochemical profile makes them an ideal natural source for improving the nutritional quality of manufactured foods. In this sense, the inclusion of functional ingredients into food matrices are of growing interest. In the present work, Brassicaceae ingredients, functionality, and future perspectives are reviewed.
Collapse
Affiliation(s)
- Daniela Ramirez
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
- Instituto de Biología Agrícola de Mendoza, CONICET Mendoza 54 261, Argentina
| | - Angel Abellán-Victorio
- Phytochemistry and Healthy Foods Laboratory, Department of Food Science and Technology, Spanish National Research Council for Scientific Research (CEBAS-CSIC), Murcia 30100, Spain;
| | - Vanesa Beretta
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
| | - Alejandra Camargo
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
- Instituto de Biología Agrícola de Mendoza, CONICET Mendoza 54 261, Argentina
| | - Diego A. Moreno
- Phytochemistry and Healthy Foods Laboratory, Department of Food Science and Technology, Spanish National Research Council for Scientific Research (CEBAS-CSIC), Murcia 30100, Spain;
| |
Collapse
|
34
|
Phytochemicals and Gastrointestinal Cancer: Cellular Mechanisms and Effects to Change Cancer Progression. Biomolecules 2020; 10:biom10010105. [PMID: 31936288 PMCID: PMC7022462 DOI: 10.3390/biom10010105] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is a prevailing global health disease with a high incidence rate which varies by region. It is a huge economic burden on health care providers. GI cancer affects different organs in the body such as the gastric organs, colon, esophagus, intestine, and pancreas. Internal and external factors like smoking, obesity, urbanization, genetic mutations, and prevalence of Helicobacter pylori and Hepatitis B and Hepatitis C viral infections could increase the risk of GI cancer. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in fruits, grains, and vegetables. Consumption of phytochemicals may protect against chronic diseases like cardiovascular disease, neurodegenerative disease, and cancer. Multiple studies have assessed the chemoprotective effect of selected phytochemicals in GI cancer, offering support to their potential towards reducing the pathogenesis of the disease. The aim of this review was to summarize the current knowledge addressing the anti-cancerous effects of selected dietary phytochemicals on GI cancer and their molecular activities on selected mechanisms, i.e., nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), detoxification enzymes, adenosine monophosphate activated protein kinase (AMPK), wingless-related integration site/β-catenin (wingless-related integration site (Wnt) β-catenin, cell apoptosis, phosphoinositide 3-kinases (PI3K)/ protein kinase B AKT/ mammalian target of rapamycin (mTOR), and mitogen-activated protein kinase (MAPK). In this review phytochemicals were classified into four main categories: (i) carotenoids, including lutein, lycopene, and β-carotene; (ii) proanthocyanidins, including quercetin and ellagic acid; (iii) organosulfur compounds, including allicin, allyl propyl disulphide, asparagusic acid, and sulforaphane; and (iv) other phytochemicals including pectin, curcumins, p-coumaric acid and ferulic acid. Overall, phytochemicals improve cancer prognosis through the downregulation of β-catenin phosphorylation, therefore enhancing apoptosis, and upregulation of the AMPK pathway, which supports cellular homeostasis. Nevertheless, more studies are needed to provide a better understanding of the mechanism of cancer treatment using phytochemicals and possible side effects associated with this approach.
Collapse
|
35
|
Yang T, Li X, Montazeri Z, Little J, Farrington SM, Ioannidis JP, Dunlop MG, Campbell H, Timofeeva M, Theodoratou E. Gene-environment interactions and colorectal cancer risk: An umbrella review of systematic reviews and meta-analyses of observational studies. Int J Cancer 2019; 145:2315-2329. [PMID: 30536881 PMCID: PMC6767750 DOI: 10.1002/ijc.32057] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
The cause of colorectal cancer (CRC) is multifactorial, involving both genetic variants and environmental risk factors. We systematically searched the MEDLINE, EMBASE, China National Knowledge Infrastructure (CNKI) and Wanfang databases from inception to December 2016, to identify systematic reviews and meta-analyses of observational studies that investigated gene-environment (G×E) interactions in CRC risk. Then, we critically evaluated the cumulative evidence for the G×E interactions using an extension of the Human Genome Epidemiology Network's Venice criteria. Overall, 15 articles reporting systematic reviews of observational studies on 89 G×E interactions, 20 articles reporting meta-analyses of candidate gene- or single-nucleotide polymorphism-based studies on 521 G×E interactions, and 8 articles reporting 33 genome-wide G×E interaction analyses were identified. On the basis of prior and observed scores, only the interaction between rs6983267 (8q24) and aspirin use was found to have a moderate overall credibility score as well as main genetic and environmental effects. Though 5 other interactions were also found to have moderate evidence, these interaction effects were tenuous due to the lack of main genetic effects and/or environmental effects. We did not find highly convincing evidence for any interactions, but several associations were found to have moderate strength of evidence. Our conclusions are based on application of the Venice criteria which were designed to provide a conservative assessment of G×E interactions and thus do not include an evaluation of biological plausibility of an observed joint effect.
Collapse
Affiliation(s)
- Tian Yang
- Centre for Global Health Research, Usher Institute of Population Health Sciences and InformaticsThe University of EdinburghEdinburghUnited Kingdom
| | - Xue Li
- Centre for Global Health Research, Usher Institute of Population Health Sciences and InformaticsThe University of EdinburghEdinburghUnited Kingdom
| | - Zahra Montazeri
- School of Epidemiology and Public HealthUniversity of OttawaOttawaOntarioCanada
| | - Julian Little
- School of Epidemiology and Public HealthUniversity of OttawaOttawaOntarioCanada
| | - Susan M. Farrington
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
| | - John P.A. Ioannidis
- Stanford Prevention Research Center, Departments of Medicine, of Health Research and Policy, and of Biomedical Data Science, Stanford University School of Medicine, and Department of StatisticsStanford University School of Humanities and SciencesStanfordCaliforniaUSA
- Meta‐Research Innovation Center at Stanford (METRICS)Stanford UniversityStanfordCaliforniaUSA
| | - Malcolm G. Dunlop
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and InformaticsThe University of EdinburghEdinburghUnited Kingdom
| | - Maria Timofeeva
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
| | - Evropi Theodoratou
- Centre for Global Health Research, Usher Institute of Population Health Sciences and InformaticsThe University of EdinburghEdinburghUnited Kingdom
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular MedicineWestern General Hospital, The University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
36
|
Coode‐Bate J, Sivapalan T, Melchini A, Saha S, Needs PW, Dainty JR, Maicha J, Beasy G, Traka MH, Mills RD, Ball RY, Mithen RF. Accumulation of Dietary S-Methyl Cysteine Sulfoxide in Human Prostate Tissue. Mol Nutr Food Res 2019; 63:e1900461. [PMID: 31410992 PMCID: PMC6856681 DOI: 10.1002/mnfr.201900461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/06/2019] [Indexed: 12/22/2022]
Abstract
SCOPE Observational studies have associated consumption of cruciferous vegetables with reduced risk of prostate cancer. This effect has been associated with the degradation products of glucosinolates-thioglycosides that accumulate within crucifers. The possible role of S-methyl cysteine sulfoxide, a metabolite that also accumulates in cruciferous vegetables, and its derivatives, in cancer prevention is relatively unexplored compared to glucosinolate derivatives. The hypothesis that consuming a broccoli soup results in the accumulation of sulfate (a SMCSO derivative) and other broccoli-derived metabolites in prostate tissue is tested. METHODS AND RESULTS Eighteen men scheduled for transperineal prostate biopsy were recruited into a 4-week parallel single blinded diet supplementation study (NCT02821728). Nine men supplemented their diet with three 300 mL portions of a broccoli soup each week for four weeks prior to surgery. Analyses of prostate biopsy tissues reveal no detectable levels of glucosinolates and derivatives. In contrast, SMCSO is detected in prostate tissues of the participants, with significantly higher levels in tissue of men in the supplementation arm. SMCSO was also found in blood and urine samples from a previous intervention study with the identical broccoli soup. CONCLUSION The consequences of SMCSO accumulation in prostate tissues and its potential role in prevention of prostate cancer remains to be investigated.
Collapse
Affiliation(s)
| | | | | | - Shikha Saha
- Quadram Institute BioscienceColney LaneNorwichNR4 7UQUK
| | - Paul W. Needs
- Quadram Institute BioscienceColney LaneNorwichNR4 7UQUK
| | | | | | - Gemma Beasy
- Quadram Institute BioscienceColney LaneNorwichNR4 7UQUK
| | | | - Robert D. Mills
- Department of UrologyNorfolk and Norwich University Hospitals NHS Foundation TrustNorwichUK
| | - Richard Y. Ball
- Norfolk and Waveney Cellular Pathology ServiceNorfolk and Norwich University Hospitals NHS Foundation TrustNorwichUK
| | - Richard F. Mithen
- Quadram Institute BioscienceColney LaneNorwichNR4 7UQUK
- The Liggins InstituteUniversity of AucklandNew Zealand
| |
Collapse
|
37
|
Absorption and metabolism of isothiocyanates formed from broccoli glucosinolates: effects of BMI and daily consumption in a randomised clinical trial. Br J Nutr 2019; 120:1370-1379. [PMID: 30499426 DOI: 10.1017/s0007114518002921] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sulphoraphane originates from glucoraphanin in broccoli and is associated with anti-cancer effects. A preclinical study suggested that daily consumption of broccoli may increase the production of sulphoraphane and sulphoraphane metabolites available for absorption. The objective of this study was to determine whether daily broccoli consumption alters the absorption and metabolism of isothiocyanates derived from broccoli glucosinolates. We conducted a randomised cross-over human study (n 18) balanced for BMI and glutathione S-transferase μ 1 (GSTM1) genotype in which subjects consumed a control diet with no broccoli (NB) for 16 d or the same diet with 200 g of cooked broccoli and 20 g of raw daikon radish daily for 15 d (daily broccoli, DB) and 100 g of broccoli and 10 g of daikon radish on day 16. On day 17, all subjects consumed a meal of 200 g of broccoli and 20 g of daikon radish. Plasma and urine were collected for 24 h and analysed for sulphoraphane and metabolites of sulphoraphane and erucin by triple quadrupole tandem MS. For subjects with BMI >26 kg/m2 (median), plasma AUC and urinary excretion rates of total metabolites were higher on the NB diet than on the DB diet, whereas for subjects with BMI <26 kg/m2, plasma AUC and urinary excretion rates were higher on the DB diet than on the NB diet. Daily consumption of broccoli interacted with BMI but not GSTM1 genotype to affect plasma concentrations and urinary excretion of glucosinolate-derived compounds believed to confer protection against cancer. This trial was registered as NCT02346812.
Collapse
|
38
|
Abe-Kanoh N, Kunisue N, Myojin T, Chino A, Munemasa S, Murata Y, Satoh A, Moriya H, Nakamura Y. Yeast screening system reveals the inhibitory mechanism of cancer cell proliferation by benzyl isothiocyanate through down-regulation of Mis12. Sci Rep 2019; 9:8866. [PMID: 31222108 PMCID: PMC6586897 DOI: 10.1038/s41598-019-45248-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/04/2019] [Indexed: 12/02/2022] Open
Abstract
Benzyl isothiocyanate (BITC) is a naturally-occurring isothiocyanate derived from cruciferous vegetables. BITC has been reported to inhibit the proliferation of various cancer cells, which is believed to be important for the inhibition of tumorigenesis. However, the detailed mechanisms of action remain unclear. In this study, we employed a budding yeast Saccharomyces cerevisiae as a model organism for screening. Twelve genes including MTW1 were identified as the overexpression suppressors for the antiproliferative effect of BITC using the genome-wide multi-copy plasmid collection for S. cerevisiae. Overexpression of the kinetochore protein Mtw1 counteracts the antiproliferative effect of BITC in yeast. The inhibitory effect of BITC on the proliferation of human colon cancer HCT-116 cells was consistently suppressed by the overexpression of Mis12, a human orthologue of Mtw1, and enhanced by the knockdown of Mis12. We also found that BITC increased the phosphorylated and ubiquitinated Mis12 level with consequent reduction of Mis12, suggesting that BITC degrades Mis12 through an ubiquitin-proteasome system. Furthermore, cell cycle analysis showed that the change in the Mis12 level affected the cell cycle distribution and the sensitivity to the BITC-induced apoptosis. These results provide evidence that BITC suppresses cell proliferation through the post-transcriptional regulation of the kinetochore protein Mis12.
Collapse
Affiliation(s)
- Naomi Abe-Kanoh
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.,Research Fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-0083, Japan.,Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Narumi Kunisue
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Takumi Myojin
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Ayako Chino
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Ayano Satoh
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hisao Moriya
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
39
|
Mileo AM, Nisticò P, Miccadei S. Polyphenols: Immunomodulatory and Therapeutic Implication in Colorectal Cancer. Front Immunol 2019; 10:729. [PMID: 31031748 PMCID: PMC6470258 DOI: 10.3389/fimmu.2019.00729] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Polyphenolic compounds, widely present in fruits, vegetables, and cereals, have potential benefits for human health and are protective agents against the development of chronic/degenerative diseases including cancer. More recently these bioactive molecules have been gaining great interest as anti-inflammatory and immunomodulatory agents, mainly in neoplasia where the pro-inflammatory context might promote carcinogenesis. Colorectal cancer (CRC) is considered a major public healthy issue, a leading cause of cancer mortality and morbidity worldwide. Epidemiological, pre-clinical and clinical investigations have consistently highlighted important relationships between large bowel inflammation, gut microbiota (GM), and colon carcinogenesis. Many experimental studies and clinical evidence suggest that polyphenols have a relevant role in CRC chemoprevention, exhibit cytotoxic capability vs. CRC cells and induce increased sensitization to chemo/radiotherapies. These effects are most likely related to the immunomodulatory properties of polyphenols able to modulate cytokine and chemokine production and activation of immune cells. In this review we summarize recent advancements on immunomodulatory activities of polyphenols and their ability to counteract the inflammatory tumor microenvironment. We focus on potential role of natural polyphenols in increasing the cell sensitivity to colon cancer therapies, highlighting the polyphenol-based combined treatments as innovative immunomodulatory strategies to inhibit the growth of CRC.
Collapse
Affiliation(s)
- Anna Maria Mileo
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefania Miccadei
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
40
|
Kim S, Trudo SP, Gallaher DD. Apiaceous and Cruciferous Vegetables Fed During the Post-Initiation Stage Reduce Colon Cancer Risk Markers in Rats. J Nutr 2019; 149:249-257. [PMID: 30649390 DOI: 10.1093/jn/nxy257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/20/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Vegetable consumption reduces colon cancer risk when fed in the initiation stage of carcinogenesis; however, the effect of vegetable consumption during the post-initiation stage has rarely been examined. OBJECTIVE We investigated the chemopreventive effects of feeding apiaceous and cruciferous vegetables on colon cancer risk in the post-initiation stage. METHODS Thirty male Wistar rats (∼5 wk, 92 g) were subcutaneously injected with 1,2-dimethylhydrazine 1 time/wk for 2 wk. One week after the last dose, rats were randomly assigned to 3 groups: the basal diet, an apiaceous vegetable-containing diet (API; 21% fresh wt/wt), or a cruciferous vegetable-containing diet (CRU; 21% fresh wt/wt). All diets contained ∼20% protein, 7% fat, and 63% digestible carbohydrate. Experimental diets were fed for 10 wk, after which colons were harvested. RESULTS CRU reduced aberrant crypt foci (ACF) number compared to the basal group (P = 0.014) and API (P = 0.013), whereas API decreased the proportion of dysplastic ACF relative to the basal group (P < 0.05). Both CRU and API reduced doublecortin-like kinase 1-positive marker expression relative to basal by 57.9% (P = 0.009) and 51.4% (P < 0.02). The numbers of CD44-positive ACF did not differ between the groups. We identified 14 differentially expressed microRNAs (miRNAs). Of these, expression of 6 miRNAs were greater or tended to be greater (P ≤ 0.10) in one or both vegetable-containing groups compared to the basal group. Bioinformatic analysis of these expression changes in miRNA predicted a change in WNT/β-catenin signaling, indicating downregulation of β-catenin in the vegetable-fed groups. Consistent with this bioinformatics analysis, β-catenin-accumulated ACF were decreased in CRU (93.1%, P = 0.012), but not in API (54.4%, P = 0.125), compared to the basal group. CONCLUSION Both apiaceous and cruciferous vegetables, fed post-initiation, reduce colonic preneoplastic lesions as well as cancer stem cell marker expression in rats, possibly by suppressing oncogenic signaling through changes in miRNA expression.
Collapse
Affiliation(s)
- Sangyub Kim
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | - Sabrina P Trudo
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN.,School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR
| | - Daniel D Gallaher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| |
Collapse
|
41
|
Boscaro V, Boffa L, Binello A, Amisano G, Fornasero S, Cravotto G, Gallicchio M. Antiproliferative, Proapoptotic, Antioxidant and Antimicrobial Effects of Sinapis nigra L. and Sinapis alba L. Extracts. Molecules 2018; 23:molecules23113004. [PMID: 30453590 PMCID: PMC6278512 DOI: 10.3390/molecules23113004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/11/2018] [Accepted: 11/14/2018] [Indexed: 01/18/2023] Open
Abstract
High Brassicaceae consumption reduces the risk of developing several cancer types, probably due to high levels of glucosinolates. Extracts from Sinapis nigra L. (S. nigra) and Sinapis alba L. (S. alba) have been obtained from leaves and seeds under different conditions using ethanol/water mixtures because their glucosinolates are well accepted by the food industry. The EtOH/H2O 8:2 mixture gives better yields in glucosinolate amounts from ground seeds, mainly, sinalbin in S. alba and sinigrin in S. nigra. The highest antiproliferative activity in both non-tumor and tumor cell lines was induced by S. alba seeds extract. To evaluate whether the effect of Sinapis species (spp) was only due to glucosinolate content or whether it was influenced by the extracts’ complexity, cells were treated with extracts or glucosinolates, in the presence of myrosinase. Pure sinigrin did not modify cell proliferation, while pure sinalbin was less effective than the extract. The addition of myrosinase increased the antiproliferative effects of the S. nigra extract and sinigrin. Antiproliferative activity was correlated to Mitogen-Activated Protein Kinases modulation, which was cell and extract-dependent. Cell-cycle analysis evidenced a proapoptotic effect of S. alba on both tumor cell lines and of S. nigra only on HCT 116. Both extracts showed good antimicrobial activity in disc diffusion tests and on ready-to-eat fresh salad. These results underline the potential effects of Sinapis spp in chemoprevention and food preservation.
Collapse
Affiliation(s)
- Valentina Boscaro
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria, 9, 10125 Turin, Italy.
| | - Luisa Boffa
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria, 9, 10125 Turin, Italy.
| | - Arianna Binello
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria, 9, 10125 Turin, Italy.
| | - Gabriella Amisano
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, University of Turin, P.za Polonia 94, 10126 Turin, Italy.
| | - Stefania Fornasero
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, University of Turin, P.za Polonia 94, 10126 Turin, Italy.
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria, 9, 10125 Turin, Italy.
| | - Margherita Gallicchio
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria, 9, 10125 Turin, Italy.
| |
Collapse
|
42
|
Cruciferous vegetable intake and colorectal cancer risk: Japan public health center-based prospective study. Eur J Cancer Prev 2018; 28:420-427. [PMID: 30399043 DOI: 10.1097/cej.0000000000000491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We aimed to assess the association between cruciferous vegetable intake and colorectal cancer (CRC) development among Japanese adults aged between 45 and 74 years in the Japan Public Health Center-based Prospective Study. During 1 325 853 person-years of follow-up, 2612 CRC cases were identified. The association of cruciferous vegetable intake with CRC risk was assessed using a Cox proportional hazard regression model to compute hazard ratios (HRs) and 95% confidence intervals (CIs), adjusted for potential confounders. No significant association was observed between the highest cruciferous vegetable intake quartile (compared with the lowest) and CRC risk in men (multivariate HRs: 1.08; 95% CI: 0.91, 1.29) and women (multivariate HRs: 0.99; 95% CI: 0.80, 1.22) and its subsites. Women showed a marginal negative association between cruciferous vegetable intake and the risk of colon cancer (CC) after excluding participants who developed CC in the first 3 years of follow-up (P for trend = 0.08); a positive association was found with proximal CC in men. Cruciferous vegetable intake does not have a significant association with CRC risk in the Japanese general population.
Collapse
|
43
|
Cruciferous vegetables and colorectal cancer risk: a hospital-based matched case-control study in Northeast China. Eur J Clin Nutr 2018; 73:450-457. [PMID: 30323175 DOI: 10.1038/s41430-018-0341-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND/OBJECTIVES Conflicting results have been reported on the association of cruciferous vegetable intake and colorectal cancer risk. This study aimed to clarify the relationship of cruciferous vegetables and colorectal cancer among individuals in Northeast China, where large amounts of cruciferous vegetables are consumed habitually. SUBJECTS/METHODS We conducted a hospital-based case-control study in the First Hospital of China Medical University, the Shengjing Hospital of China Medical University and the First Hospital of Dalian Medical University from 2009 to 2011. Patients in the study were matched individually by age, gender, and city of residence. The study ultimately included 833 case-control pairs. A structured questionnaire was applied to collect data on general characteristics, dietary habits, and selected dietary intake. Differences between cases and controls were ascertained with the chi-square test or the Mann-Whitney U test. Unconditional logistic regression was employed to compute odds ratios (ORs) and 95% confidence intervals (CIs). Stratified analyses were conducted by gender. RESULTS In the total study cohort, no significant association was found between total cruciferous vegetable intake and colorectal cancer risk. The adjusted OR for the highest versus the lowest intake was 0.83 (95% CI: 0.59-1.18). In stratification analyses by gender, reduced colorectal cancer risk was related to higher consumption of total cruciferous vegetables in women but not in men. Significant inverse correlations were found in analyses of individual cruciferous vegetables, including greens (OR = 0.47; 95% CI: 0.32-0.68), cabbage (OR = 0.61; 95% CI: 0.44-0.86), and cauliflower (OR = 0.66; 95% CI: 0.48-0.92). CONCLUSIONS No significant association was found between total cruciferous vegetable intake and colorectal cancer risk. However, specific types of cruciferous vegetables might have protective roles against colorectal cancer.
Collapse
|
44
|
Sivapalan T, Melchini A, Saha S, Needs PW, Traka MH, Tapp H, Dainty JR, Mithen RF. Bioavailability of Glucoraphanin and Sulforaphane from High-Glucoraphanin Broccoli. Mol Nutr Food Res 2018; 62:e1700911. [PMID: 29266773 PMCID: PMC6175108 DOI: 10.1002/mnfr.201700911] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/28/2017] [Indexed: 12/22/2022]
Abstract
SCOPE Broccoli accumulates 4-methylsulphinylbutyl glucosinolate (glucoraphanin) which is hydrolyzed to the isothiocyanate sulforaphane. Through the introgression of novel alleles of the Myb28 transcription factor from Brassica villosa, broccoli genotypes have been developed that have enhanced levels of glucoraphanin. This study seeks to quantify the exposure of human tissues to glucoraphanin and sulforaphane following consumption of broccoli with contrasting Myb28 genotypes. METHODS AND RESULTS Ten participants are recruited into a three-phase, double-blinded, randomized crossover trial (NCT02300324), with each phase comprising consumption of 300 g of a soup made from broccoli of one of three Myb28 genotypes (Myb28B/B , Myb28B/V , Myb28V/V ). Plant myrosinases are intentionally denatured during soup manufacture. Threefold and fivefold higher levels of sulforaphane occur in the circulation following consumption of Myb28V/B and Myb28V/V broccoli soups, respectively. The percentage of sulforaphane excreted in 24 h relative to the amount of glucoraphanin consumed varies among volunteers from 2 to 15%, but does not depend on the broccoli genotype. CONCLUSION This is the first study to report the bioavailability of glucoraphanin and sulforaphane from soups made with novel broccoli varieties. The presence of one or two Myb28V alleles results in enhanced delivery of sulforaphane to the systemic circulation.
Collapse
Affiliation(s)
- Tharsini Sivapalan
- Food and Health ProgrammeQuadram Institute BioscienceNorwichUnited Kingdom
| | | | - Shikha Saha
- Food and Health ProgrammeQuadram Institute BioscienceNorwichUnited Kingdom
| | - Paul W. Needs
- Food and Health ProgrammeQuadram Institute BioscienceNorwichUnited Kingdom
| | - Maria H. Traka
- Food and Health ProgrammeQuadram Institute BioscienceNorwichUnited Kingdom
| | - Henri Tapp
- Analytical Support UnitQuadram Institute BioscienceNorwichUnited Kingdom
| | - Jack R. Dainty
- Analytical Support UnitQuadram Institute BioscienceNorwichUnited Kingdom
| | - Richard F. Mithen
- Food and Health ProgrammeQuadram Institute BioscienceNorwichUnited Kingdom
| |
Collapse
|
45
|
Bello C, Maldini M, Baima S, Scaccini C, Natella F. Glucoraphanin and sulforaphane evolution during juice preparation from broccoli sprouts. Food Chem 2018; 268:249-256. [PMID: 30064754 DOI: 10.1016/j.foodchem.2018.06.089] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/11/2022]
Abstract
Broccoli sprouts are considered functional food as they are naturally enriched in glucoraphanin (GR) that is the biological precursor of the anticancer compound sulforaphane (SFN). Due to its health promoting value, also broccoli sprout juice is becoming very popular. The present study aimed to quantitatively assess the conversion of GR to its hydrolysis products, SFN and SFN-nitrile, during the juice preparation process. We demonstrated that SFN plus SFN-nitrile yield from glucoraphanin is quite low (≈25%) and that some SFN is lost during the juice preparation partially due to the spontaneous conversion to sulforaphane-amine or conjugation to GSH and proteins naturally present in the juice. Our results demonstrate that the detection of the sole SFN free form does not provide reliable information about the real concentration of this functional compound in the juice.
Collapse
Affiliation(s)
- Cristiano Bello
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Food and Nutrition Research Centre, Via Ardeatina 546, 00178 Roma, Italy.
| | - Mariateresa Maldini
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Food and Nutrition Research Centre, Via Ardeatina 546, 00178 Roma, Italy
| | - Simona Baima
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Food and Nutrition Research Centre, Via Ardeatina 546, 00178 Roma, Italy.
| | - Cristina Scaccini
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Food and Nutrition Research Centre, Via Ardeatina 546, 00178 Roma, Italy.
| | - Fausta Natella
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Food and Nutrition Research Centre, Via Ardeatina 546, 00178 Roma, Italy.
| |
Collapse
|
46
|
Capuano E, Dekker M, Verkerk R, Oliviero T. Food as Pharma? The Case of Glucosinolates. Curr Pharm Des 2018; 23:2697-2721. [PMID: 28117016 DOI: 10.2174/1381612823666170120160832] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/24/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glucosinolates (GLSs) are dietary plant secondary metabolites occurring in the order Brassicales with potential health effects, in particular as anti-carcinogenic compounds. GLSs are converted into a variety of breakdown products (BPs) upon plant tissue damage and by the gut microbiota. GLS biological activity is related to BPs rather than to GLSs themselves. METHODS we have reviewed the most recent scientific literature on the metabolic fate and the biological effect of GLSs with particular emphasis on the epidemiological evidence for health effect and evidence from clinical trials. An overview of potential molecular mechanisms underlying GLS biological effect is provided. The potential toxic or anti-nutritional effect has also been discussed. RESULTS Epidemiological and human in vivo evidence point towards a potential anti-cancer effect for sulforaphane, indole-3-carbinol and 3,3-diindolylmethane. A number of new human clinical trials are on-going and will likely shed further light on GLS protective effect towards cancer as well as other diseases. BPs biological effect is the results of a plurality of molecular mechanisms acting simultaneously which include modulation of xenobiotic metabolism, modulation of inflammation, regulation of apoptosis, cell cycle arrest, angiogenesis and metastasis and regulation of epigenetic events. BPs have been extensively investigated for their protective effect towards cancer but in recent years the interest also includes other diseases. CONCLUSION It appears that certain BPs may protect against and may even represent a therapeutic strategy against several forms of cancer. Whether this latter effect can be achieved through diet or supplements should be investigated more thoroughly.
Collapse
Affiliation(s)
- Edoardo Capuano
- Food Quality Design, WU Agrotechnology & Food Sciences, Axis building 118, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Matthijs Dekker
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| | - Ruud Verkerk
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| | - Teresa Oliviero
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| |
Collapse
|
47
|
Johnson IT. Cruciferous Vegetables and Risk of Cancers of the Gastrointestinal Tract. Mol Nutr Food Res 2018; 62:e1701000. [PMID: 29573203 DOI: 10.1002/mnfr.201701000] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/09/2018] [Indexed: 12/20/2022]
Abstract
Cancers of the oropharyngeal tissues, oesophagus, stomach, and colorectum are amongst the most common causes of death from cancer throughout the world. Higher consumption of fruits and vegetables is thought to be protective, and cruciferous vegetables are of particular interest because of their unique role as a source of biologically active glucosinolate breakdown products. A literature review of primary studies and meta-analyses indicates that higher consumption of cruciferous vegetables probably reduces the risk of colorectal and gastric cancers by approximately 8% and 19%, respectively. Some studies support the hypothesis that the protective effect against colorectal cancer is modified by genetic polymorphisms of genes regulating the expression of enzymes of the glutathione S-transferase family, but due to contradictory findings the evidence is currently inconclusive. Despite these promising findings, future epidemiological research on the protective effects of cruciferous plants will depend critically upon accurate measurement of dietary exposure, both to the vegetables themselves, and to their active constituents. The development of sensitive chemical assays has facilitated the measurement of urinary excretion of isothiocyanate metabolites as an objective biomarker of intake, but sampling strategies need to be optimized in order to assess long-term exposures at the population level.
Collapse
Affiliation(s)
- Ian T Johnson
- Quadram Institute Bioscience, Norwich Research Park, Colney Lane, Norwich, NR4 7UA, United Kingdom
| |
Collapse
|
48
|
Šamec D, Urlić B, Salopek-Sondi B. Kale ( Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement. Crit Rev Food Sci Nutr 2018; 59:2411-2422. [PMID: 29557674 DOI: 10.1080/10408398.2018.1454400] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Kale (Brassica oleracea var. acephala) is a cruciferous vegetable, characterized by leaves along the stem, which, in recent years, have gained a great popularity as a ´superfood´. Consequently, in a popular culture it is listed in many ´lists of the healthiest vegetables´. Without the doubt, a scientific evidences support the fact that cruciferous vegetables included in human diet can positively affect health and well-being, but remains unclear why kale is declared superior in comparison with other cruciferous. It is questionable if this statement about kale is triggered by scientific evidence or by some other factors. Our review aims to bring an overview of kale's botanical characteristics, agronomic requirements, contemporary and traditional use, macronutrient and phytochemical content and biological activity, in order to point out the reasons for tremendous kale popularity.
Collapse
Affiliation(s)
- Dunja Šamec
- a Ruđer Bošković Institute, Department for Molecular Biology , Zagreb , Croatia
| | - Branimir Urlić
- b Institute for Adriatic Crops and Karst Reclamation , Split , Croatia
| | | |
Collapse
|
49
|
Cruciferous vegetable intake and mortality in middle-aged adults: A prospective cohort study. Clin Nutr 2018; 38:631-643. [PMID: 29739681 DOI: 10.1016/j.clnu.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/19/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Cruciferous vegetables contain isothiocyanates, which effectively reduce inflammation and oxidative stress related to chronic diseases, inhibit the bioactivation of procarcinogens, and enhance the excretion of carcinogens. However, at present, no large cohort studies have investigated the effect of cruciferous vegetable on mortality. We aimed to examine the association between cruciferous vegetable intake and all-cause mortality, namely cancer, heart disease, cerebrovascular disease, and injuries, in a large cohort study conducted between 1990 and 1993, in Japan. METHODS The analysis included 88,184 participants (age: 45-74 years) with no history of cancer, myocardial infarction, and stroke. Participants were tracked for a median of 16.9 years, during which 15,349 deaths were occurred. The association between cruciferous vegetable intake and risk of all-cause and cause-specific mortality was determined by Cox proportional hazard regression analysis to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs), after adjustment for potential confounding factors. RESULTS An inverse association was found between cruciferous vegetable intake and total mortality in both gender. HRs (95% CI) for all-cause mortality in the highest compared to the lowest quintile were 0.86 (0.80, 0.93) for men (P = 0.0002 for trend) and 0.89 (0.81, 0.98) for women (P = 0.03 for trend). Cruciferous vegetable intake was associated with lower cancer mortality in men, as well as with heart disease-, cerebrovascular disease-, and injury-related mortality in women. CONCLUSIONS This prospective study suggests that a higher cruciferous vegetables intake is associated with reduced risk of all-cause mortality.
Collapse
|
50
|
Glucosinolate and isothiocyanate intakes are inversely associated with breast cancer risk: a case–control study in China. Br J Nutr 2018; 119:957-964. [DOI: 10.1017/s0007114518000600] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAlthough previous studies have investigated the association of cruciferous vegetable consumption with breast cancer risk, few studies focused on the association between bioactive components in cruciferous vegetables, glucosinolates (GSL) and isothiocyanates (ITC), and breast cancer risk. This study aimed to examine the association between consumption of cruciferous vegetables and breast cancer risk according to GSL and ITC contents in a Chinese population. A total of 1485 cases and 1506 controls were recruited into this case–control study from June 2007 to March 2017. Consumption of cruciferous vegetables was assessed using a validated FFQ. Dietary GSL and ITC were computed by using two food composition databases linking GSL and ITC contents in cruciferous vegetables with responses to the FFQ. The OR and 95 % CI were assessed by unconditional logistic regression after adjusting for the potential confounders. Significant inverse associations were found between consumption of cruciferous vegetables, GSL and ITC and breast cancer risk. The adjusted OR comparing the highest with the lowest quartile were 0·51 (95 % CI 0·41, 0·63) for cruciferous vegetables, 0·54 (95 % CI 0·44, 0·67) for GSL and 0·62 (95 % CI 0·50, 0·76) for ITC, respectively. These inverse associations were also observed in both premenopausal and postmenopausal women. Subgroup analysis by hormone receptor status found inverse associations between cruciferous vegetables, GSL and ITC and both hormone-receptor-positive or hormone-receptor-negative breast cancer. This study indicated that consumption of cruciferous vegetables, GSL and ITC was inversely associated with breast cancer risk among Chinese women.
Collapse
|