1
|
Pan J, Wang J, Lei Z, Wang H, Zeng N, Zou J, Zhang X, Sun J, Guo D, Luan F, Shi Y. Therapeutic Potential of Chinese Herbal Medicine and Underlying Mechanism for the Treatment of Myocardial Infarction. Phytother Res 2024. [PMID: 39523856 DOI: 10.1002/ptr.8368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 11/16/2024]
Abstract
Myocardial infarction (MI) is a prevalent disease with high mortality rates worldwide. The course of MI is intricate and variable, necessitating personalized treatment strategies based on different mechanisms. However, variety of postoperative complications and rejections, such as heart failure, arrhythmias, cardiac rupture, and left ventricular thrombus, contribute to a poor prognosis. Despite the inclusion of antiplatelet agents and statins in the conventional treatment regimen, their clinical applicability is constrained by potential adverse effects and limited efficacy. Additionally, the mechanisms leading to MI are complex and diverse. Therefore, the development of novel compounds for MI treatment. The use of traditional Chinese medicine (TCM) in the prevention and treatment of cardiovascular diseases, including MI, is grounded in its profound historical background, comprehensive theoretical system, and accumulated knowledge. An increasing number of contemporary evidence-based medical studies have demonstrated that TCM plays a significant role in alleviating symptoms and improving the quality of life for MI patients. Chinese herbal formulations and active ingredients can intervene in the pathological process of MI through key factors such as inflammation, oxidative stress, apoptosis, ferroptosis, pyroptosis, myocardial fibrosis, angiogenesis, and autophagy. This article critically reviews existing herbal formulations from an evidence-based medicine perspective, evaluating their research status and potential clinical applications. Additionally, it explores recent advancements in the use of herbal medicines and their components for the prevention and treatment of MI, offering detailed insights into their mechanisms of action.
Collapse
Affiliation(s)
- Jiaojiao Pan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jinhui Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Ziwen Lei
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - He Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| |
Collapse
|
2
|
Sanches VL, de Souza Mesquita LM, Viganó J, Contieri LS, Pizani R, Chaves J, da Silva LC, de Souza MC, Breitkreitz MC, Rostagno MA. Insights on the Extraction and Analysis of Phenolic Compounds from Citrus Fruits: Green Perspectives and Current Status. Crit Rev Anal Chem 2024; 54:1173-1199. [PMID: 35993795 DOI: 10.1080/10408347.2022.2107871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Citrus fruits (CF) are highly consumed worldwide, fresh, processed, or prepared as juices and pies. To illustrate the high economic importance of CF, the global production of these commodities in 2021 was around 98 million tons. CF's composition is considered an excellent source of phenolic compounds (PC) as they have a large amount and variety. Since ancient times, PC has been highlighted to promote several benefits related to oxidative stress disorders, such as chronic diseases and cancer. Recent studies suggest that consuming citrus fruits can prevent some of these diseases. However, due to the complexity of citrus matrices, extracting compounds of interest from these types of samples, and identifying and quantifying them effectively, is not a simple task. In this context, several extractive and analytical proposals have been used. This review discusses current research involving CF, focusing mainly on PC extraction and analysis methods, regarding advantages and disadvantages from the perspective of Green Chemistry.
Collapse
Affiliation(s)
- Vitor L Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Juliane Viganó
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Buri, São Paulo, Brazil
| | - Letícia S Contieri
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo Pizani
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Jaísa Chaves
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Laíse Capelasso da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | | | | | - Maurício A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
3
|
Elsori D, Pandey P, Ramniwas S, Kumar R, Lakhanpal S, Rab SO, Siddiqui S, Singh A, Saeed M, Khan F. Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeutics. Front Pharmacol 2024; 15:1406619. [PMID: 38957397 PMCID: PMC11217354 DOI: 10.3389/fphar.2024.1406619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
The bioactive compounds present in citrus fruits are gaining broader acceptance in oncology. Numerous studies have deciphered naringenin's antioxidant and anticancer potential in human and animal studies. Naringenin (NGE) potentially suppresses cancer progression, thereby improving the health of cancer patients. The pleiotropic anticancer properties of naringenin include inhibition of the synthesis of growth factors and cytokines, inhibition of the cell cycle, and modification of several cellular signaling pathways. As an herbal remedy, naringenin has significant pharmacological properties, such as anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, and anti-cancer activities. The inactivation of carcinogens following treatment with pure naringenin, naringenin-loaded nanoparticles, and naringenin combined with anti-cancer agents was demonstrated by data in vitro and in vivo studies. These studies included colon cancer, lung neoplasms, breast cancer, leukemia and lymphoma, pancreatic cancer, prostate tumors, oral squamous cell carcinoma, liver cancer, brain tumors, skin cancer, cervical and ovarian cancers, bladder neoplasms, gastric cancer, and osteosarcoma. The effects of naringenin on processes related to inflammation, apoptosis, proliferation, angiogenesis, metastasis, and invasion in breast cancer are covered in this narrative review, along with its potential to develop novel and secure anticancer medications.
Collapse
Affiliation(s)
- Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Pratibha Pandey
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, India
| | - Seema Ramniwas
- University Centre of Research and Development, University Institute of Biotechnology, Chandigarh University Gharuan, Mohali, India
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, University of Ha’il, Ha’il, Saudi Arabia
| | - Ajay Singh
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Ha’il, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
4
|
Huynh NT, Le TKN, Le THA, Dang TT. Optimising the recovery of phenolic compounds and antioxidant activity from orange peels through solid-state fermentation. Nat Prod Res 2024:1-10. [PMID: 38710024 DOI: 10.1080/14786419.2024.2351541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
It is widely recognised that orange peels contain a considerable quantity of phenolics, primarily in the form of glycosides. The process of fermentation holds potential as a viable method for extracting phenolic compounds and facilitating their biotransformation into novel metabolites. The aim of this study was to assess the enhanced release of phenolic compounds through the process of solid-state fermentation of orange peels using microorganisms. Following a 6-day incubation period, the methanol extract obtained from the sample fermented with starter Banh men exhibited the highest concentration of total phenolic compounds (17.57 ± 0.34 mg GAE/g DW) and demonstrated the most significant DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (55.03%). The Reverse Phase High Performance Liquid Chromatography (RP-HPLC) analysis revealed that the predominant phenolic compounds in all fermented samples were flavonoid aglycones, specifically naringenin, hesperetin, and nobiletin. Conversely, in the unfermented orange peels, the major compound observed was the glycoside derivative hesperidin.
Collapse
Affiliation(s)
- Nguyen Thai Huynh
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Vietnam
| | - Thi Kha Nguyen Le
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Vietnam
| | - Thi Hong Anh Le
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Vietnam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| |
Collapse
|
5
|
Murgia M, Pani SM, Sanna A, Marras L, Manis C, Banchiero A, Coroneo V. Antimicrobial Activity of Grapefruit Seed Extract on Edible Mushrooms Contaminations: Efficacy in Preventing Pseudomonas spp. in Pleurotus eryngii. Foods 2024; 13:1161. [PMID: 38672835 PMCID: PMC11049546 DOI: 10.3390/foods13081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Pleurotus eryngii is an edible mushroom that suffers significant losses due to fungal contamination and bacteriosis. The Pseudomonadaceae family represents one of the most frequent etiologic agents. Grapefruit seed extract (GSE) is a plant extract that contains different bioactive components, such as naringin, and exhibits a strong antibacterial and antioxidant activity. Over the last decade, GSE use as an alternative to chemical treatments in the food sector has been tested. However, to our knowledge, its application on mushroom crops has never been investigated. This study focuses on evaluating GSE efficacy in preventing P. eryngii yellowing. GSE antibiotic activity, inhibitory and bactericidal concentrations, and antibiofilm activity against several microorganisms were tested with the Kirby-Bauer disk diffusion assay, the broth microdilution susceptibility test, and the Crystal violet assay, respectively. In vitro, the extract exhibited antimicrobial and antibiofilm activity against Staphylococcus aureus 6538 and MRSA (wild type), Escherichia coli ATCC 8739, and Pseudomonas spp. (Pseudomonas aeruginosa 9027, P. fluorescens (wild type)). GSE application in vivo, in pre- and post-sprouting stages, effectively prevented bacterial infections and subsequent degradation in the mushroom crops: none of the P. eryngii treated manifested bacteriosis. Our findings support the use of GSE as an eco-friendly and sustainable alternative to chemical treatments for protecting P. eryngii crops from bacterial contamination, consequently ensuring food safety and preventing financial losses due to spoilage. Furthermore, GSE's potential health benefits due to its content in naringin and other bioactive components present new possibilities for its use as a nutraceutical in food fortification and supplementation.
Collapse
Affiliation(s)
- Marcello Murgia
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria Monserrato-S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy (V.C.)
| | - Sara Maria Pani
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria Monserrato-S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy (V.C.)
| | - Adriana Sanna
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria Monserrato-S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy (V.C.)
| | - Luisa Marras
- Analysis Laboratory, ASL Cagliari, Via Piero della Francesca, 1, 09047 Su Planu, CA, Italy
| | - Cristina Manis
- Department of Life and Environmental Sciences, Blocco A, Room 13, University of Cagliari, Cittadella Universitaria Monserrato-S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Alessandro Banchiero
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria Monserrato-S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy (V.C.)
| | - Valentina Coroneo
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria Monserrato-S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy (V.C.)
| |
Collapse
|
6
|
Alarabei AA, Abd Aziz NAL, AB Razak NI, Abas R, Bahari H, Abdullah MA, Hussain MK, Abdul Majid AMS, Basir R. Immunomodulating Phytochemicals: An Insight Into Their Potential Use in Cytokine Storm Situations. Adv Pharm Bull 2024; 14:105-119. [PMID: 38585461 PMCID: PMC10997936 DOI: 10.34172/apb.2024.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 04/09/2024] Open
Abstract
Phytochemicals are compounds found in plants that possess a variety of bioactive properties, including antioxidant and immunomodulatory properties. Recent studies have highlighted the potential of phytochemicals in targeting specific signalling pathways involved in cytokine storm, a life-threatening clinical condition resulting from excessive immune cell activation and oversupply of proinflammatory cytokines. Several studies have documented the immunomodulatory effects of phytochemicals on immune function, including their ability to regulate essential cellular and molecular interactions of immune system cells. This makes them a promising alternative for cytokine storm management, especially when combined with existing chemotherapies. Furthermore, phytochemicals have been found to target multiple signalling pathways, including the TNF-α/NF-κB, IL-1/NF-κB, IFN-γ/JAK/STAT, and IL-6/JAK-STAT. These pathways play critical roles in the development and progression of cytokine storm, and targeting them with phytochemicals represents a promising strategy for controlling cytokine release and the subsequent inflammation. Studies have also investigated certain families of plant-related constituents and their potential immunomodulatory actions. In vivo and in vitro studies have reported the immunomodulatory effects of phytochemicals, which provide viable alternatives in the management of cytokine storm syndrome. The collective data from previous studies suggest that phytochemicals represent a potentially functional source of cytokine storm treatment and promote further exploration of these compounds as immunomodulatory agents for suppressing specific signalling cascade responses. Overall, the previous research findings support the use of phytochemicals as a complementary approach in managing cytokine storm and improving patient outcomes.
Collapse
Affiliation(s)
- Abdusalam Abdullah Alarabei
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Aimi Liyana Abd Aziz
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Izah AB Razak
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Khairi Hussain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amin Malik Shah Abdul Majid
- Natureceuticals Sdn Bhd, Kedah Halal Park, Kawasan Perindustrian Sg. Petani, 08000 Sg. Petani, Kedah, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Siddiqui GA, Naeem A. Bioflavonoids ameliorate crowding induced hemoglobin aggregation: a spectroscopic and molecular docking approach. J Biomol Struct Dyn 2023; 41:10315-10325. [PMID: 36519442 DOI: 10.1080/07391102.2022.2154270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
The cellular environment is densely crowded, confining biomacromolecules including proteins to less available space. This macromolecular confinement may affect the physiological conformation of proteins in long-term processes like ageing. Changes in physiological protein structure can lead to protein conformational disorders including neurodegeneration. An intervention approach using food and plant derived bioflavonoids offered a way to find a treatment for these enervating pathological conditions as there is no remedy available. The bioflavonoids NAR (naringenin), 7HD (7 hydroxyflavanone) and CHR (chrysin) were tested for their ability to protect Hb (hemoglobin) against crowding-induced aggregation. Morphological and secondary structural transitions were studied using microscopic and circular dichroism experiments, respectively. The kinetic study was carried out using the relative thioflavin T assay. Molecular docking, AmylPred2, admetSAR and FRET were applied to understand the binding parameters of bioflavonoids with Hb and their drug likeliness. Isolated human lymphocytes were used as a cellular system to study the toxic effects of Hb aggregates. Redox perturbation and cytotoxicity were evaluated by DCFH-DA and MTT assays, respectively. This study suggests that bioflavonoids bind to Hb in the vicinity of aggregation prone amino acid sequences. Binding of the bioflavonoids stabilizes the Hb against crowding-induced structural alterations. Therefore, this study signifies the potential of bioflavonoids for future treatment of many proteopathies including neurodegeneration.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gufran Ahmed Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
8
|
Naringenin and Hesperidin as Promising Alternatives for Prevention and Co-Adjuvant Therapy for Breast Cancer. Antioxidants (Basel) 2023; 12:antiox12030586. [PMID: 36978836 PMCID: PMC10045673 DOI: 10.3390/antiox12030586] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Citrus (genus Citrus L.) fruits are essential sources of bioactive compounds with antioxidant properties, such as flavonoids. These polyphenolic compounds are divided into subclasses, in which flavanones are the most prominent. Among them, naringenin and hesperidin are emerging compounds with anticancer potential, especially for breast cancer (BC). Several mechanisms have been proposed, including the modulation of epigenetics, estrogen signaling, induction of cell death via regulation of apoptotic signaling pathways, and inhibition of tumor invasion and metastasis. However, this information is sparse in the literature and needs to be brought together to provide an overview of how naringenin and hesperidin can serve as therapeutic tools for drug development and as a successful co-adjuvant strategy against BC. This review detailed such mechanisms in this context and highlighted how naringenin and hesperidin could interfere in BC carcinogenesis and be helpful as potential alternative therapeutic sources for breast cancer treatment.
Collapse
|
9
|
Fu J, Niu H, Gao G, Wang L, Yu K, Guo R, Zhang J. Naringenin promotes angiogenesis of ischemic myocardium after myocardial infarction through miR-223-3p/IGF1R axis. Regen Ther 2022; 21:362-371. [PMID: 36161098 PMCID: PMC9471969 DOI: 10.1016/j.reth.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Naringenin exerts a protective effect on myocardial ischemia and reperfusion. It has been reported that miR-223-3p is a potential target for the treatment of myocardial infarction (MI). In view of the unreported correlation between Naringenin and miR-223-3p, this study was designed to confirm that the ameliorative effects of Naringenin on MI is directly related to the regulation of miR-223-3p. Methods Through electrocardiogram detection, Masson pathological staining and immunohistochemistry of angiogenesis-related factors, alleviative effects of Naringenin on heart function, myocardial injury and angiogenesis in MI mice were observed individually. Hypoxic HUVECs were selected in the in vitro experimental model. The cell viability, angiogenesis and migration ability were analyzed to fathom out the pro-angiogenesis potential of Naringenin. The effect of Naringenin on miR-223-3p, as well as the downstream molecular mechanism was verified through bioinformatics analysis and rescue experiments. Results Naringenin improved heart functions of MI mice, reduced degree of myocardial fibrosis, stimulated expressions of angiogenic factors and down-regulated level of miR-223-3p in myocardial tissue. In in vitro experiments, Naringenin increased the viability of hypoxic HUVECs, as well as the abilities of tube formation and migration, and further inhibited the expression of miR-223-3p. In the rescue trial, miR-223-3p mimic reversed the therapeutic effect of Naringenin. Type 1 insulin-like growth factor receptor (IGF1R), as a downstream target gene of miR-223-3p, partially offset the cellular regulatory effects of miR-223-3p after overexpression of IGF1R. Conclusions Naringenin improves the angiogenesis of hypoxic HUVECs by regulating the miR-223-3p/IGF1R axis, and has the potential to promote myocardial angiogenesis in MI mice.
Collapse
Affiliation(s)
- Jinguo Fu
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Heping Niu
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Guangren Gao
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Lei Wang
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Kai Yu
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Run Guo
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Jun Zhang
- Department of Cardiology, Cangzhou Central Hospital, China
| |
Collapse
|
10
|
Russell T, Gangotia D, Barry G. Assessing the potential of repurposing ion channel inhibitors to treat emerging viral diseases and the role of this host factor in virus replication. Biomed Pharmacother 2022; 156:113850. [DOI: 10.1016/j.biopha.2022.113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 12/03/2022] Open
|
11
|
Bae J, Yang Y, Xu X, Flaherty J, Overby H, Hildreth K, Chen J, Wang S, Zhao L. Naringenin, a citrus flavanone, enhances browning and brown adipogenesis: Role of peroxisome proliferator-activated receptor gamma. Front Nutr 2022; 9:1036655. [PMID: 36438760 PMCID: PMC9686290 DOI: 10.3389/fnut.2022.1036655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Identifying functional brown adipose tissue (BAT) has provided new hope for obesity treatment and prevention. Functional BAT includes classical BAT and brown-like adipose tissue converted from white adipose tissue. By promoting thermogenesis (i.e., heat production) via uncoupling protein 1 (UCP1), functional BAT can increase energy expenditure and aid obesity treatment and prevention. Naringenin (NAR) is a flavanone primarily found in citrus fruits. NAR has been reported to decrease body weight, increase energy expenditure in treated mice, and promote browning in human adipocytes. Here, we examined the effects of NAR on 3T3-L1 adipocytes' browning and β-adrenergic agonist isoproterenol (ISO)-stimulated thermogenic activation and classical murine brown adipogenesis. In addition, we demonstrated the signaling pathways and involvement of peroxisome proliferator-activated receptor gamma (PPARγ) in the process. We found that NAR did not increase Ucp1 mRNA expression at the basal (i.e., non-ISO stimulated) condition. Instead, it enhanced Ucp1 and Pgc-1α up-regulation and thermogenesis under ISO-stimulated conditions in 3T3-L1 adipocytes. NAR promoted protein kinase A (PKA) activation and phosphorylation of p38 MAPK downstream of ISO stimulation and activated PPARγ. Pharmacological inhibition of either PKA or p38 and PPARγ knockdown attenuated Ucp1 up-regulation by NAR. Moreover, NAR promoted brown adipogenesis by increasing lipid accumulation, brown marker expression, and thermogenesis in murine brown adipocytes, which was also attenuated by PPARγ knockdown. Together, our results suggest that NAR may promote the development of functional BAT in part through PPARγ activation. NAR's role in combating human obesity warrants further investigation.
Collapse
Affiliation(s)
- Jiyoung Bae
- Department of Nutrition, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Yang Yang
- Department of Nutrition, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Xinyun Xu
- Department of Nutrition, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jamie Flaherty
- Department of Nutrition, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Haley Overby
- Department of Nutrition, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Kelsey Hildreth
- Department of Nutrition, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, Knoxville, TN, United States,*Correspondence: Ling Zhao,
| |
Collapse
|
12
|
Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Wang L, Wang Z, Yang Z, Wang X, Yan L, Wu J, Liu Y, Fu B, Yang H. Potential common mechanism of four Chinese patent medicines recommended by diagnosis and treatment protocol for COVID-19 in medical observation period. Front Med (Lausanne) 2022; 9:874611. [PMID: 36388945 PMCID: PMC9643314 DOI: 10.3389/fmed.2022.874611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The global epidemic has been controlled to some extent, while sporadic outbreaks still occur in some places. It is essential to summarize the successful experience and promote the development of new drugs. This study aimed to explore the common mechanism of action of the four Chinese patent medicine (CPMs) recommended in the Medical Observation Period COVID-19 Diagnostic and Treatment Protocol and to accelerate the new drug development process. Firstly, the active ingredients and targets of the four CPMs were obtained by the Chinese medicine composition database (TCMSP, TCMID) and related literature, and the common action targets of the four TCMs were sorted out. Secondly, the targets of COVID-19 were obtained through the gene-disease database (GeneCards, NCBI). Then the Venn diagram was used to intersect the common drug targets with the disease targets. And GO and KEGG pathway functional enrichment analysis was performed on the intersected targets with the help of the R package. Finally, the results were further validated by molecular docking and molecular dynamics analysis. As a result, a total of 101 common active ingredients and 21 key active ingredients of four CPMs were obtained, including quercetin, luteolin, acacetin, kaempferol, baicalein, naringenin, artemisinin, aloe-emodin, which might be medicinal substances for the treatment of COVID-19. TNF, IL6, IL1B, CXCL8, CCL2, IL2, IL4, ICAM1, IFNG, and IL10 has been predicted as key targets. 397 GO biological functions and 166 KEGG signaling pathways were obtained. The former was mainly enriched in regulating apoptosis, inflammatory response, and T cell activation. The latter, with 92 entries related to COVID-19, was mainly enriched to signaling pathways such as Coronavirus disease-COVID-19, Cytokine-cytokine receptor interaction, IL-17 signaling pathway, and Toll-like receptor signaling pathway. Molecular docking results showed that 19/21 of key active ingredients exhibited strong binding activity to recognized COVID-19-related targets (3CL of SARS-CoV-2, ACE2, and S protein), even better than one of these four antiviral drugs. Among them, shinflavanone had better affinity to 3CL, ACE2, and S protein of SARS-CoV-2 than these four antiviral drugs. In summary, the four CPMs may play a role in the treatment of COVID-19 by binding flavonoids such as quercetin, luteolin, and acacetin to target proteins such as ACE2, 3CLpro, and S protein and acting on TNF, IL6, IL1B, CXCL8, and other targets to participate in broad-spectrum antiviral, immunomodulatory and inflammatory responses.
Collapse
Affiliation(s)
- Lin Wang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zheyi Wang
- Qilu Hospital, Shandong University, Shandong, China
| | - Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, China
| | - Liping Yan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jianxiong Wu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yue Liu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Baohui Fu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
14
|
Vargas RMF, da Silva GF, Lucas AM, Finkler da Silva CG, Jank L, Barreto F, Cassel E. Investigation of essential oil and water-soluble extract obtained by steam distillation from Acacia mearnsii flowers. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Rubem Mário Figueiró Vargas
- PUCRS. Unit Operations Laboratory (LOPE). Avenida Ipiranga 6681, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Graciane Fabiela da Silva
- PUCRS. Unit Operations Laboratory (LOPE). Avenida Ipiranga 6681, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Animal and Plant Health and Inspection (LFDA-RS), Ministry of Agriculture, Livestock and Food Supply, Estr. Ponta Grossa, Porto Alegre, Brazil
| | - Aline Machado Lucas
- PUCRS. Unit Operations Laboratory (LOPE). Avenida Ipiranga 6681, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Caroline Garcia Finkler da Silva
- PUCRS. Unit Operations Laboratory (LOPE). Avenida Ipiranga 6681, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Louise Jank
- Laboratory of Animal and Plant Health and Inspection (LFDA-RS), Ministry of Agriculture, Livestock and Food Supply, Estr. Ponta Grossa, Porto Alegre, Brazil
| | - Fabiano Barreto
- Laboratory of Animal and Plant Health and Inspection (LFDA-RS), Ministry of Agriculture, Livestock and Food Supply, Estr. Ponta Grossa, Porto Alegre, Brazil
| | - Eduardo Cassel
- PUCRS. Unit Operations Laboratory (LOPE). Avenida Ipiranga 6681, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
15
|
Firouzabadi K, Karimi E, Tabrizi MH. Fabrication of bovine serum albumin-polyethylene glycol nanoparticle conjugated-folic acid loaded-naringenin as an efficient carrier biomacromolecule for suppression of cancer cells. Biotechnol Appl Biochem 2022; 70:790-797. [PMID: 36059122 DOI: 10.1002/bab.2399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/09/2022] [Indexed: 11/08/2022]
Abstract
Flavonoid compounds play an effective role in cancer suppression and today nanocarriers play an important role in improving the physicochemical properties and transmission of these compounds. In this study, polyethylene glycol-modified albumin nanoparticles were synthesized by desolvation method; after loading of naringenin (NRG), folic acid (FA) binding to the surface of nanoparticles was performed (BSA-PEG-FA-NG-NPs). The extent of NRG trapping and FA binding was assessed indirectly using UV absorption methods. The physicochemical properties of BSA-PEG-FA-NG-NPs were investigated by DLS, SEM electron microscopy, and FTIR methods, after which their effects were evaluated on the apoptosis mechanism via MTT, flow cytometry, and qPCR methods. The BSA-PEG-FA-NG-NPs with spherical morphology had dimensions of 205 nm with zeta-potential of 20.61 mV and dispersion index of 0.36. The NRG encapsulation was 84% and the FA binding was 75%. Anticancer effects of BSA-PEG-FA-NG-NPs were confirmed based on inhibiting breast cancer cells (IC50: 922 µg/ml), cell cycle arrest (SubG1 phase), and induction of apoptosis (upregulation of Caspase 3, 8, and 9).
Collapse
Affiliation(s)
- Kimia Firouzabadi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
16
|
Zhang J, Zhang Y, Liu Y, Niu X. Naringenin Attenuates Cognitive Impairment in a Rat Model of Vascular Dementia by Inhibiting Hippocampal Oxidative Stress and Inflammatory Response and Promoting N-Methyl-D-Aspartate Receptor Signaling Pathway. Neurochem Res 2022; 47:3402-3413. [PMID: 36028734 DOI: 10.1007/s11064-022-03696-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Abstract
Vascular dementia (VaD) is the second most common form of dementia globally, yet there are no efficient treatments. Naringenin, a natural flavonoid, exerts antioxidative, anti-inflammatory, and neuroprotective properties; however, its potential effect on VaD remain unclear. Herein, the purpose of present study was to elucidate whether naringenin attenuates cognitive dysfunction in VaD via inhibiting hippocampal oxidative stress and inflammatory response, and promoting N-methyl-D-aspartate receptors (NMDARs) signaling pathway. A rat model of VaD was established by permanent bilateral common carotid artery occlusion [2-vessel occlusion (2VO)]. Behavioral performance analyses results revealed that administration of naringenin improves cognitive impairment in rats with VaD according to the new object recognition test and the Morris water maze test. In addition, naringenin attenuated hippocampal oxidative stress by reducing reactive oxygen species generation, decreasing malondialdehyde content and recombinant reactive oxygen species modulator 1 (Romo-1) expression, and increasing superoxide dismutase and glutathione peroxidase activities in the hippocampus of VaD rats. Moreover, naringenin decreased the proinflammatory cytokines (IL-1β, IL-6, and TNF-α) levels and increased the anti-inflammatory cytokines (IL-10 and IL-4) levels in the hippocampus of 2VO surgery-treated rats, attenuating hippocampal inflammatory response during VaD. Furthermore, naringenin promoted synaptophysin (SYP), postsynaptic density protein 95 (PSD95), N-methyl-Daspartic acid receptor 1 (NR1) and N-methyl-D-aspartate receptor subunit 2B (NR2B) expressions levels in hippocampus of VaD rats. Collectively, these findings indicated that naringenin mitigates cognitive impairment in VaD rats partly via inhibiting hippocampal oxidative stress and inflammatory response and restoring NMDARs signaling pathway.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Neurology, The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Yingze District, Taiyuan, 030000, Shanxi, People's Republic of China
| | - Yu Zhang
- Department of Neurology, Shanxi Hospital of Integrated Traditional and Western Medicine, Taiyuan, 030000, Shanxi, People's Republic of China
| | - Yan Liu
- Department of Neurology, The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Yingze District, Taiyuan, 030000, Shanxi, People's Republic of China
| | - Xiaoyuan Niu
- Department of Neurology, The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Yingze District, Taiyuan, 030000, Shanxi, People's Republic of China.
| |
Collapse
|
17
|
Alhalmi A, Amin S, Khan Z, Beg S, Al kamaly O, Saleh A, Kohli K. Nanostructured Lipid Carrier-Based Codelivery of Raloxifene and Naringin: Formulation, Optimization, In Vitro, Ex Vivo, In Vivo Assessment, and Acute Toxicity Studies. Pharmaceutics 2022; 14:1771. [PMID: 36145519 PMCID: PMC9500671 DOI: 10.3390/pharmaceutics14091771] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/19/2022] Open
Abstract
This work aimed to develop dual drug-loaded nanostructured lipid carriers of raloxifene and naringin (RLX/NRG NLCs) for breast cancer. RLX/NRG NLCs were prepared using Compritol 888 ATO and oleic acid using a hot homogenization-sonication method and optimized using central composite design (CCD). The optimized RLX/NRG NLCs were characterized and evaluated using multiple technological means. The optimized RLX/NRG NLCs exhibited a particle size of 137.12 nm, polydispersity index (PDI) of 0.266, zeta potential (ZP) of 25.9 mV, and entrapment efficiency (EE) of 91.05% (raloxifene) and 85.07% (naringin), respectively. In vitro release (81 ± 2.2% from RLX/NRG NLCs and 31 ± 1.9% from the RLX/NRG suspension for RLX and 93 ± 1.5% from RLX/NRG NLCs and 38 ± 2.01% from the RLX/NRG suspension for NRG within 24 h). Concurrently, an ex vivo permeation study exhibited nearly 2.3 and 2.1-fold improvement in the permeability profiles of RLX and NRG from RLX/NRG NLCs vis-à-vis the RLX/NRG suspension. The depth of permeation was proved with CLSM images which revealed significant permeation of the drug from the RLX/NRG NLCs formulation, 3.5-fold across the intestine, as compared with the RLX/NRG suspension. An in vitro DPPH antioxidant study displayed a better antioxidant potential of RLX/NRG in comparison to RLX and NRG alone due to the synergistic antioxidant effect of RLX and NRG. An acute toxicity study in Wistar rats showed the safety profile of the prepared nanoformulations and their excipients. Our findings shed new light on how poorly soluble and poorly permeable medicines can be codelivered using NLCs in an oral nanoformulation to improve their medicinal performance.
Collapse
Affiliation(s)
- Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Zafar Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sarwar Beg
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Flyde Road, Preston PR1 2HE, UK
| | - Omkulthom Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Lloyd Institute of Management and Technology (Pharm.), Plot No 11, Knowledge Park-II, Greater Noida 201308, India
| |
Collapse
|
18
|
El-Far AH, Al Jaouni SK, Li X, Fu J. Cancer metabolism control by natural products: Pyruvate kinase M2 targeting therapeutics. Phytother Res 2022; 36:3181-3201. [PMID: 35794729 DOI: 10.1002/ptr.7534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/19/2022] [Accepted: 06/12/2022] [Indexed: 12/13/2022]
Abstract
Glycolysis is the primary source of energy for cancer growth and metastasis. The shift in metabolism from mitochondrial oxidative phosphorylation to aerobic glycolysis is called the Warburg effect. Cancer progression due to aerobic glycolysis is often associated with the activation of oncogenes or the loss of tumor suppressors. Therefore, inhibition of glycolysis is one of the effective strategies in cancer control. Pyruvate kinase M2 (PKM2) is a key glycolytic enzyme overexpressed in breast, prostate, lung, colorectal, and liver cancers. Here, we discuss published studies regarding PKM2 inhibitors from natural products that are promising drug candidates for cancer therapy. We have highlighted the potential of natural PKM2 inhibitors for various cancer types. Moreover, we encourage researchers to evaluate the combinational effects between natural and synthetic PKM2 inhibitors. Also, further high-quality studies are needed to firmly establish the clinical efficacy of natural products.
Collapse
Affiliation(s)
- Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Soad K Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Xiaotao Li
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.,School of Arts and Sciences, New York University-Shanghai, Shanghai, China.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
19
|
Motallebi M, Bhia M, Rajani HF, Bhia I, Tabarraei H, Mohammadkhani N, Pereira-Silva M, Kasaii MS, Nouri-Majd S, Mueller AL, Veiga FJB, Paiva-Santos AC, Shakibaei M. Naringenin: A potential flavonoid phytochemical for cancer therapy. Life Sci 2022; 305:120752. [PMID: 35779626 DOI: 10.1016/j.lfs.2022.120752] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Naringenin is an important phytochemical which belongs to the flavanone group of polyphenols, and is found mainly in citrus fruits like grapefruits and others such as tomatoes and cherries plus medicinal plants derived food. Available evidence demonstrates that naringenin, as herbal medicine, has important pharmacological properties, including anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, and anti-cancer activities. Collected data from in vitro and in vivo studies show the inactivation of carcinogens after treatment with pure naringenin, naringenin-loaded nanoparticles, and also naringenin in combination with anti-cancer agents in various malignancies, such as colon cancer, lung neoplasms, breast cancer, leukemia and lymphoma, pancreatic cancer, prostate tumors, oral squamous cell carcinoma, liver cancer, brain tumors, skin cancer, cervical and ovarian cancer, bladder neoplasms, gastric cancer, and osteosarcoma. Naringenin inhibits cancer progression through multiple mechanisms, like apoptosis induction, cell cycle arrest, angiogenesis hindrance, and modification of various signaling pathways including Wnt/β-catenin, PI3K/Akt, NF-ĸB, and TGF-β pathways. In this review, we demonstrate that naringenin is a natural product with potential for the treatment of different types of cancer, whether it is used alone, in combination with other agents, or in the form of the naringenin-loaded nanocarrier, after proper technological encapsulation.
Collapse
Affiliation(s)
- Mahzad Motallebi
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Department of Biology, Yadegar-e-Imam Khomeini Shahr-e-Rey Branch, Islamic Azad University, Tehran 1815163111, Iran
| | - Mohammed Bhia
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Huda Fatima Rajani
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E0T5, Canada
| | - Iman Bhia
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Hadi Tabarraei
- Department of Veterinary Biomedical Science, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon SKS7N 5B4, Canada
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maryam Sadat Kasaii
- Department of Nutrition Research, Department of Community Nutrition, National Nutrition and Food Technology Research Institute (WHO Collaborating Center); and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Saeedeh Nouri-Majd
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 14155-6117, Iran
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Francisco J B Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336 Munich, Germany.
| |
Collapse
|
20
|
Peimanfard S, Zarrabi A, Trotta F, Matencio A, Cecone C, Caldera F. Developing Novel Hydroxypropyl-β-Cyclodextrin-Based Nanosponges as Carriers for Anticancer Hydrophobic Agents: Overcoming Limitations of Host–Guest Complexes in a Comparative Evaluation. Pharmaceutics 2022; 14:pharmaceutics14051059. [PMID: 35631645 PMCID: PMC9147629 DOI: 10.3390/pharmaceutics14051059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
This study aimed to design and fabricate novel hydroxypropyl-β-cyclodextrin-based hypercrosslinked polymers, called nanosponges, as carriers for anticancer hydrophobic agents and compare them with host–guest complexes of hydroxypropyl-β-cyclodextrin, a remarkable solubilizer, to investigate their application in improving the pharmaceutical properties of the flavonoid naringenin, a model hydrophobic nutraceutical with versatile anticancer effects. For this purpose, three new nanosponges, crosslinked with pyromellitic dianhydride, citric acid, and carbonyldiimidazole, were fabricated. The carbonate nanosponge synthesized by carbonyldiimidazole presented the highest naringenin loading capacity (≈19.42%) and exerted significantly higher antiproliferative effects against MCF-7 cancer cells compared to free naringenin. Additionally, this carbonate nanosponge formed a stable nanosuspension, providing several advantages over the naringenin/hydroxypropyl-β-cyclodextrin host–guest complex, including an increase of about 3.62-fold in the loading capacity percentage, sustained released pattern (versus the burst pattern of host–guest complex), and up to an 8.3-fold increase in antiproliferative effects against MCF-7 cancer cells. Both naringenin-loaded carriers were less toxic to L929 murine fibroblast normal cells than MCF-7 cancer cells. These findings suggest that hydroxypropyl-β-cyclodextrin-based carbonate nanosponges could be a good candidate as a drug delivery system with potential applications in cancer treatment.
Collapse
Affiliation(s)
- Shohreh Peimanfard
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran;
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (C.C.); (F.C.)
| | - Ali Zarrabi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran;
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
- Correspondence: or (A.Z.); (F.T.); (A.M.)
| | - Francesco Trotta
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (C.C.); (F.C.)
- Correspondence: or (A.Z.); (F.T.); (A.M.)
| | - Adrián Matencio
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (C.C.); (F.C.)
- Correspondence: or (A.Z.); (F.T.); (A.M.)
| | - Claudio Cecone
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (C.C.); (F.C.)
| | - Fabrizio Caldera
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (C.C.); (F.C.)
| |
Collapse
|
21
|
Blancas-Benitez FJ, Pérez-Jiménez J, Sañudo-Barajas JA, Rocha-Guzmán NE, González-Aguilar GA, Tovar J, Sáyago-Ayerdi SG. Indigestible fraction of guava fruit: Phenolic profile, colonic fermentation and effect on HT-29 cells. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Zhang S, Li J, Shi X, Tan X, Si Q. Naringenin activates beige adipocyte browning in high fat diet-fed C57BL/6 mice by shaping the gut microbiota. Food Funct 2022; 13:9918-9930. [DOI: 10.1039/d2fo01610a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naringenin activates beige adipose thermogenesis and browning by gut microbe-SCFAS-host interactions, which increases energy expenditure and prevents HFD induced obesity.
Collapse
Affiliation(s)
- Sha Zhang
- Department of the Third Health Care, Second Medical Centre of Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100039, China
| | - Jinjie Li
- Centre of Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyang Shi
- Centre of Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Tan
- Centre of Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Quanjin Si
- Department of the Third Health Care, Second Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Geriatric Diseases, Beijing 100039, China
| |
Collapse
|
23
|
Dike CS, Orish CN, Nwokocha CR, Sikoki FD, Babatunde BB, Frazzoli C, Orisakwe OE. Phytowaste as nutraceuticals in boosting public health. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00260-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe utilization of bioactive constituent of peels and seeds provide an effective, environment friendly and inexpensive therapy for different forms of human disease, and the production, improvement and documentation of novel nutraceuticals. This review systematically presents findings and further understanding of the reported benefits and therapeutic applications of peel and seed extracts on innovative cell culture and animal studies, as well as phased clinical human trial research. The extracts of seed and peels were reported to possess high quantities of bioactive substances with antioxidative, antidiabetic, hepatorenal protective, antithyroidal, anti-inflammatory, antibacterial, cardiovascular protective, neuro-protective effects, anticancer and wound healing activities. Therapeutic activities of the bioactive substances of peel and seed extracts include elevation of Superoxide dismutase (SOD), GSH-Px, t-GPx, Catalase and GST activities, with the suppression of MDA levels, hydroperoxide generation and lipid peroxidized products, the extracts also regulate inflammatory mediators and cytokines as they are reported to suppress the secretion of inflammatory cytokines, which include; IL-1β, PGE2, TGF-β and TNF-α and induces apoptosis and cell differentiation. This review revealed the therapeutic importance and best utilization of peels and seed extracts of fruits and vegetables.
Collapse
|
24
|
Zeya B, Nafees S, Imtiyaz K, Uroog L, Fakhri KU, Rizvi MMA. Diosmin in combination with naringenin enhances apoptosis in colon cancer cells. Oncol Rep 2021; 47:4. [PMID: 34738632 DOI: 10.3892/or.2021.8215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/09/2021] [Indexed: 11/05/2022] Open
Abstract
Colon cancer is one of the most commonly diagnosed malignancies, which begins as a polyp and grows to become cancer. Diosmin (DS) and naringenin (NR) are naturally occurring flavonoids that exhibit various pharmacological activities. Although several studies have illustrated the effectiveness of these flavonoids as anti‑cancerous agents individually, the combinatorial impact of these compounds has not been explored. In the present study, the combined effect of DS and NR (DiNar) in colon cancer cell lines HCT116 and SW480 were assessed by targeting apoptosis and inflammatory pathways. The MTT assay was used to evaluate the effect of DiNar on cell proliferation, while Chou‑Talalay analysis was employed to determine the combination index of DS and NR. Moreover, flow cytometry was used to monitor cell cycle arrest and population study. The onset of apoptosis was assessed by DAPI staining, DNA fragmentation, and Annexin V‑fluorescein isothiocyanate/propidium iodide (Annexin V‑FITC/PI). The expression levels of apoptotic pathway markers, Bcl‑2, Bax, caspase3, caspase8, caspase9 and p53, and inflammatory markers, NF‑κβ, IKK‑α and IKK‑β, were assessed using western blotting and reverse transcription‑quantitative PCR. These results suggested that DiNar treatment acts synergistically and induces cytotoxicity with a concomitant increase in chromatin condensation, DNA fragmentation and cell cycle arrest in the G0/G1 phase. Annexin V‑FITC/PI apoptosis assay also showed increased number of cells undergoing apoptosis in the DiNar treatment group. Furthermore, the expression of apoptosis and inflammatory markers was also more effectively regulated under the DiNar treatment. Thereby, these findings demonstrated that DiNar treatment could be a potential novel chemotherapeutic alternative in colon cancer.
Collapse
Affiliation(s)
- Bushra Zeya
- The Genome Biology Laboratory, Department of Biosciences, Ramanujan Block, Jamia Millia Islamia, Jamia Nagar, New Delhi, Delhi 110025, India
| | - Sana Nafees
- The Genome Biology Laboratory, Department of Biosciences, Ramanujan Block, Jamia Millia Islamia, Jamia Nagar, New Delhi, Delhi 110025, India
| | - Khalid Imtiyaz
- The Genome Biology Laboratory, Department of Biosciences, Ramanujan Block, Jamia Millia Islamia, Jamia Nagar, New Delhi, Delhi 110025, India
| | - Laraib Uroog
- The Genome Biology Laboratory, Department of Biosciences, Ramanujan Block, Jamia Millia Islamia, Jamia Nagar, New Delhi, Delhi 110025, India
| | - Khalid Umar Fakhri
- The Genome Biology Laboratory, Department of Biosciences, Ramanujan Block, Jamia Millia Islamia, Jamia Nagar, New Delhi, Delhi 110025, India
| | - M Moshahid A Rizvi
- The Genome Biology Laboratory, Department of Biosciences, Ramanujan Block, Jamia Millia Islamia, Jamia Nagar, New Delhi, Delhi 110025, India
| |
Collapse
|
25
|
Peng C, Li R, Ni H, Li LJ, Li QB. The effects of α‐L‐rhamnosidase, β‐D‐glucosidase, and their combination on the quality of orange juice. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Cheng Peng
- College of Food and Biological Engineering Jimei University Xiamen China
| | - Rui Li
- College of Food and Biological Engineering Jimei University Xiamen China
| | - Hui Ni
- College of Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Li Jun Li
- College of Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Qing Biao Li
- College of Food and Biological Engineering Jimei University Xiamen China
| |
Collapse
|
26
|
|
27
|
Chen X, Yue W, Tian L, Li N, Chen Y, Zhang L, Chen J. A plant-based medicinal food inhibits the growth of human gastric carcinoma by reversing epithelial-mesenchymal transition via the canonical Wnt/β-catenin signaling pathway. BMC Complement Med Ther 2021; 21:137. [PMID: 33964908 PMCID: PMC8106854 DOI: 10.1186/s12906-021-03301-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/06/2021] [Indexed: 02/08/2023] Open
Abstract
Background Natural products, especially those with high contents of phytochemicals, are promising alternative medicines owing to their antitumor properties and few side effects. In this study, the effects of a plant-based medicinal food (PBMF) composed of six medicinal and edible plants, namely, Coix seed, Lentinula edodes, Asparagus officinalis L., Houttuynia cordata, Dandelion, and Grifola frondosa, on gastric cancer and the underlying molecular mechanisms were investigated in vivo. Methods A subcutaneous xenograft model of gastric cancer was successfully established in nude mice inoculated with SGC-7901 cells. The tumor-bearing mice were separately underwent with particular diets supplemented with three doses of PBMF (43.22, 86.44, and 172.88 g/kg diet) for 30 days. Tumor volumes were recorded. Histopathological changes in and apoptosis of the xenografts were evaluated by hematoxylin and eosin staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining, respectively. Serum levels of TNF-α, MMP-2, and MMP-9 were detected by enzyme-linked immunosorbent assay. The mRNA expression levels of β-catenin, GSK-3β, E-cadherin, N-cadherin, MMP-2/9, Snail, Bax, Bcl-2, Caspase-3/9, and Cyclin D1 were evaluated via real-time quantitative polymerase chain reaction. The protein expression levels of GSK-3β, E-cadherin, N-cadherin, and Ki-67 were determined by immunohistochemistry staining. Results PBMF treatment efficiently suppressed neoplastic growth, induced apoptosis, and aggravated necrosis in the xenografts of SGC-7901 cells. PBMF treatment significantly decreased the serum levels of MMP-2 and MMP-9 and significantly increased that of TNF-α. Furthermore, PBMF treatment notably upregulated the mRNA expression levels of GSK-3β, E-cadherin, Bax, Caspase-3, and Caspase-9 but substantially downregulated those of β-catenin, N-cadherin, MMP-2, MMP-9, Snail, and Cyclin D1 in tumor tissues. The Bax/Bcl-2 ratio was upregulated at the mRNA level. Moreover, PBMF treatment remarkably increased the protein expression levels of GSK-3β and E-cadherin but notably reduced those of Ki-67 and N-cadherin in tumor tissues. Conclusions The PBMF concocted herein exerts anti-gastric cancer activities via epithelial–mesenchymal transition reversal, apoptosis induction, and proliferation inhibition. The underlying molecular mechanisms likely rely on suppressing the Wnt/β-catenin signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03301-6.
Collapse
Affiliation(s)
- Xuxi Chen
- West China School of Public Health and West China fourth Hospital, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Wuyang Yue
- West China School of Public Health and West China fourth Hospital, Sichuan University, Chengdu, China.,Department of Tuberculosis Institute Research, Chongqing Public Health Medical Center/Public Health Hospital Affiliated to Southwest University, Chongqing, China
| | - Lin Tian
- West China School of Public Health and West China fourth Hospital, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Na Li
- West China School of Public Health and West China fourth Hospital, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yiyi Chen
- West China School of Public Health and West China fourth Hospital, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- West China School of Public Health and West China fourth Hospital, Sichuan University, Chengdu, China. .,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| | - Jinyao Chen
- West China School of Public Health and West China fourth Hospital, Sichuan University, Chengdu, China. .,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
28
|
Xia Y, Chen R, Lu G, Li C, Lian S, Kang TW, Jung YD. Natural Phytochemicals in Bladder Cancer Prevention and Therapy. Front Oncol 2021; 11:652033. [PMID: 33996570 PMCID: PMC8120318 DOI: 10.3389/fonc.2021.652033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Phytochemicals are natural small-molecule compounds derived from plants that have attracted attention for their anticancer activities. Some phytochemicals have been developed as first-line anticancer drugs, such as paclitaxel and vincristine. In addition, several phytochemicals show good tumor suppression functions in various cancer types. Bladder cancer is a malignant tumor of the urinary system. To date, few specific phytochemicals have been used for bladder cancer therapy, although many have been studied in bladder cancer cells and mouse models. Therefore, it is important to collate and summarize the available information on the role of phytochemicals in the prevention and treatment of bladder cancer. In this review, we summarize the effects of several phytochemicals including flavonoids, steroids, nitrogen compounds, and aromatic substances with anticancer properties and classify the mechanism of action of phytochemicals in bladder cancer. This review will contribute to facilitating the development of new anticancer drugs and strategies for the treatment of bladder cancer using phytochemicals.
Collapse
Affiliation(s)
- Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Ruijiao Chen
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Guangzhen Lu
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Changlin Li
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Taek-Won Kang
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
29
|
Ahmed OM, AbouZid SF, Ahmed NA, Zaky MY, Liu H. An Up-to-Date Review on Citrus Flavonoids: Chemistry and Benefits in Health and Diseases. Curr Pharm Des 2021; 27:513-530. [PMID: 33245267 DOI: 10.2174/1381612826666201127122313] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Flavonoids, the main class of polyphenols, are characterized by the presence of 2-phenyl-benzo-pyrane nucleus. They are found in rich quantities in citrus fruits. Citrus flavonoids are classified into flavanones, flavones, flavonols, polymethoxyflavones and anthocyanins (found only in blood oranges). Flavanones are the most abundant flavonoids in citrus fruits. In many situations, there are structure-function relationships. Due to their especial structures and presence of many hydroxyls, polymethoxies and glycoside moiety, the flavonoids have an array of multiple biological and pharmacological activities. This article provides an updated overview of the differences in chemical structures of the classes and members of citrus flavonoids and their benefits in health and diseases. The review article also sheds light on the mechanisms of actions of citrus flavonoids in the treatment of different diseases, including arthritis, diabetes mellitus, cancer and neurodegenerative disorders as well as liver, kidney and heart diseases. The accumulated and updated knowledge in this review may provide useful information and ideas in the discovery of new strategies for the use of citrus flavonoids in the protection, prevention and therapy of diseases.
Collapse
Affiliation(s)
- Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Sameh F AbouZid
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Noha A Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Mohamed Y Zaky
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Han Liu
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
30
|
Chetia P, Khandelwal B, Haldar PK, Bala A. Dietary Antioxidants Significantly Reduced Phorbol Myristate Acetate Induced Oxidative Stress of Peripheral Blood Mononuclear Cells of Patients with Rheumatoid Arthritis. Curr Rheumatol Rev 2021; 17:81-87. [PMID: 32729420 DOI: 10.2174/1573397116999200729154954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease responsible for maximum human morbidity in modern life, whereas oxidative stress is the ultimate potential biomarker for determining disease activity in patients with RA. OBJECTIVE The present study scientifically validated the effectiveness of antioxidants commonly present in different food supplements to neutralize the free radicals mediated oxidative stress in isolated peripheral blood mononuclear lymphocytes (PBML) of patients with RA. METHODS The study population included patients with Rheumatoid arthritis, RA (n =15), who fulfilled the American College of Rheumatology criteria for RA. Peripheral blood was collected, and isolated mononuclear lymphocyte cells (PBML) were pretreated with phorbol myristate acetate (PMS) and furthermore, incubated with different concentrations of Naringenin, β carotene and Nacetyl cysteine (NAC) in an ex vivo condition. The resultant cell lysate was used for further studies for the determination of other oxidative biomarkers. The increase of superoxide and nitric oxide production was observed when PBML was treated PMS. RESULTS Importantly, the increased oxidative stress was effectively decreased by the selected plantderived compounds β-carotene and naringenin. CONCLUSION The study scientifically evaluated the efficacy of the molecules validated by one-way ANOVA, followed by Dunnett's post hoc test of significance. Collectively, our results indicate that both β carotene and naringenin may be a promising non-toxic food supplement in attenuating the oxidative stress associated pathology in RA, meriting further pharmacological studies on other inflammatory cells like neutrophils.
Collapse
Affiliation(s)
- Purbajit Chetia
- Department of Pharmacology, Himalayan Pharmacy Institute, Majhitar, Rangpo, East Sikkim 737136, Sikkim, India
| | - Bidita Khandelwal
- Department of Medicine, Sikkim Manipal Institute of Medical Science, 5th Mile Tadong, Gangtok 737102, Sikkim, India
| | - Pallab Kanti Haldar
- Department of Pharmaceutical Technology, Jadavpur University, 188B Raja SC Mullick Road, Kolkata 700032, West Bengal, India
| | - Asis Bala
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science and Technology, Sodepur, Pin- 700114, West Bengal, India
| |
Collapse
|
31
|
Xu X, Shen L, Xu Q, Bai X, He Z, Zhang T, Jiang Q. Development and optimization of a high-throughput HPLC-MS/MS method for the simultaneous determination of naringenin and its valine carbamate prodrug in rat plasma. Biomed Chromatogr 2021; 35:e5119. [PMID: 33749889 DOI: 10.1002/bmc.5119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 01/13/2023]
Abstract
A valine carbamate prodrug of naringenin (NAR) called 4'V was synthesized to enhance its oral bioavailability because of low water solubility and poor membrane permeability of NAR. This study developed and fully validated a sensitive, rapid, and robust HPLC-MS/MS method for the simultaneous determination of NAR and 4'V in plasma. The analytes were treated using liquid-liquid extraction, separated on a Phenomenex Kinetex XB-C18 column, and detected using a triple-quadrupole tandem mass spectrometer equipped with an electrospray ionization interface. The analytes were eluted within only 4 min by gradient procedure. The excellent linear correlations were validated over the range of 4-400 ng/mL (r = 0.9990) for NAR and 2-2000 ng/mL (r = 0.9951) for 4'V, with lower limits of quantification of 4 and 2 ng/mL, respectively. For all quality control samples, the intra-day and inter-day precision and accuracy were within ±15%. The validated method was economical, high throughput, and reliable and was first successfully applied to a pharmacokinetic study of NAR and 4'V after oral administration to Sprague-Dawley rats. The results of the pharmacokinetic study demonstrated that the idea of amino acid carbamate prodrug is a promising strategy to improve the bioavailability of NAR.
Collapse
Affiliation(s)
- Xiaolan Xu
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Lulu Shen
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiuchi Xu
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaochen Bai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianhong Zhang
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
32
|
Shi X, Luo X, Chen T, Guo W, Liang C, Tang S, Mo J. Naringenin inhibits migration, invasion, induces apoptosis in human lung cancer cells and arrests tumour progression in vitro. J Cell Mol Med 2021; 25:2563-2571. [PMID: 33523599 PMCID: PMC7933922 DOI: 10.1111/jcmm.16226] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the major cause for high-death rate all over the world, due to increased metastasize and difficulties in diagnosis. Naringenin is naturally occurring flavonoid found in various fruits including tomatoes, citrus fruit and figs. Naringenin is known to have several therapeutic effects including anti-atherogenic, antimicrobial, anti-inflammatory, hepatoprotective, anticancer and anti-mutagenic. The present study was aimed to analyse the naringenin induced anti-proliferative and apoptosis effects in human lung cancer cells. Cells were treated with various concentrations of naringenin (10, 100 & 200 µmol/L) for 48 hours. Cisplatin (20 µg/mL) was used as positive control. Cell viability, apoptosis, migration and mRNA, and protein expression of caspase-3, matrixmetallo proteinases-2 (MMP-2) and MMP-9 were determined. The cell viability was 93.7 ± 7.5, 51.4 ± 4.4 and 32.1 ± 2.1 at 10, 100 and 200 µmol/L of naringenin respectively. Naringenin significantly increased apoptotic cells. The 100 and 200 µmol/L of naringenin significantly suppressed the larger wounds of cultured human cancer cells compared with the untreated lung cancer cells. Naringenin increased d the expression of caspase-3 and reduced the expression of MMP-2 and MMP-9. Taking all these data together, it is suggested that the naringenin was effective against human lung cancer proliferation, migration and metastasis.
Collapse
Affiliation(s)
- Xingyuan Shi
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation OncologyThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Xueping Luo
- Department of Thoracic surgeryThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Ting Chen
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation OncologyThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Wei Guo
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation OncologyThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Chanjin Liang
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation OncologyThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Sihan Tang
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation OncologyThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Jianming Mo
- Department of Respiratory MedicinePeking University Shenzhen HospitalShenzhenChina
| |
Collapse
|
33
|
Naringenin Nano-Delivery Systems and Their Therapeutic Applications. Pharmaceutics 2021; 13:pharmaceutics13020291. [PMID: 33672366 PMCID: PMC7926828 DOI: 10.3390/pharmaceutics13020291] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Naringenin (NRG) is a polyphenolic phytochemical belonging to the class of flavanones and is widely distributed in citrus fruits and some other fruits such as bergamot, tomatoes, cocoa, and cherries. NRG presents several interesting pharmacological properties, such as anti-cancer, anti-oxidant, and anti-inflammatory activities. However, the therapeutic potential of NRG is hampered due to its hydrophobic nature, which leads to poor bioavailability. Here, we review a wide range of nanocarriers that have been used as delivery systems for NRG, including polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanosuspensions, and nanoemulsions. These nanomedicine formulations of NRG have been applied as a potential treatment for several diseases, using a wide range of in vitro, ex vivo, and in vivo models and different routes of administration. From this review, it can be concluded that NRG is a potential therapeutic option for the treatment of various diseases such as cancer, neurological disorders, liver diseases, ocular disorders, inflammatory diseases, skin diseases, and diabetes when formulated in the appropriate nanocarriers.
Collapse
|
34
|
Murti Y, Semwal BC, Goyal A, Mishra P. Naringenin Scaffold as a Template for Drug Designing. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083805666190617144652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural products provide cornucopia of heterocyclic systems. The nucleus of 2-
phenyl chromane is one of the important and well-known heterocycles found in the natural
products. Naringenin, a plant-derived flavanone (2-phenyl chroman-4-one) belongs to the family
of flavanoids. It possesses diverse biologic activities such as antidiabetic, antiatherogenic,
antidepressant, antiandrogenic, antiestrogenic, immunomodulatory, antitumor, antimicrobial,
anti-inflammatory, antiviral, hypolipidemic, antihypertensive, antioxidant, neuroprotective,
anti-obesity, anti-Alzheimer, and memory enhancer activity. It has the potential to be used as
an active pharmacophore. There have been reports of a number of molecular mechanisms
underlying their beneficial activities. With emerging interest in traditional medicine and
exploiting their potential based on a variety of health care systems, naringenin literature was
thought to be explored. Further, this review aims to provide a new era of flavonoid-based
therapeutic agents with new insights into naringenin and its derivatives as a lead compound
in drug design.
Collapse
Affiliation(s)
- Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura N.H.#2, Mathura-Delhi Road, P.O. Chaumuhan, Mathura-281 406, India
| | - Bhupesh Chander Semwal
- Institute of Pharmaceutical Research, GLA University, Mathura N.H.#2, Mathura-Delhi Road, P.O. Chaumuhan, Mathura-281 406, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura N.H.#2, Mathura-Delhi Road, P.O. Chaumuhan, Mathura-281 406, India
| | - Pradeep Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura N.H.#2, Mathura-Delhi Road, P.O. Chaumuhan, Mathura-281 406, India
| |
Collapse
|
35
|
Multi-Therapeutic Potential of Naringenin (4',5,7-Trihydroxyflavonone): Experimental Evidence and Mechanisms. PLANTS 2020; 9:plants9121784. [PMID: 33339267 PMCID: PMC7766900 DOI: 10.3390/plants9121784] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Extensive research has been carried out during the last few decades, providing a detailed account of thousands of discovered phytochemicals and their biological activities that have the potential to be exploited for a wide variety of medicinal purposes. These phytochemicals, which are pharmacologically important for clinical use, primarily consist of polyphenols, followed by terpenoids and alkaloids. There are numerous published reports indicating the primary role of phytochemicals proven to possess therapeutic potential against several diseases. However, not all phytochemicals possess significant medicinal properties, and only some of them exhibit viable biological effects. Naringenin, a flavanone found in citrus fruits, is known to improve immunity, repair DNA damage, and scavenge free radicals. Despite the very low bioavailability of naringenin, it is known to exhibit various promising biological properties of medicinal importance, including anti-inflammatory and antioxidant activities. This review focuses on the various aspects related to naringenin, particularly its physicochemical, pharmacokinetic, and pharmacodynamic properties. Furthermore, various pharmacological activities of naringenin, such as anticancer, antidiabetic, hepatoprotective, neuroprotective, cardioprotective, nephroprotective, and gastroprotective effects, have been discussed along with their mechanisms of action.
Collapse
|
36
|
Jiang J, Wang A, Zhang X, Wang Y, Wang Q, Zhai M, Huang Y, Qi R. The isonicotinamide cocrystal promotes inhibitory effects of naringenin on nonalcoholic fatty liver disease in mice. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Arora I, Sharma M, Sun LY, Tollefsbol TO. The Epigenetic Link between Polyphenols, Aging and Age-Related Diseases. Genes (Basel) 2020; 11:genes11091094. [PMID: 32962067 PMCID: PMC7565986 DOI: 10.3390/genes11091094] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/15/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Aging is a complex process mainly categorized by a decline in tissue, cells and organ function and an increased risk of mortality. Recent studies have provided evidence that suggests a strong association between epigenetic mechanisms throughout an organism’s lifespan and age-related disease progression. Epigenetics is considered an evolving field and regulates the genetic code at several levels. Among these are DNA changes, which include modifications to DNA methylation state, histone changes, which include modifications of methylation, acetylation, ubiquitination and phosphorylation of histones, and non-coding RNA changes. As a result, these epigenetic modifications are vital targets for potential therapeutic interventions against age-related deterioration and disease progression. Dietary polyphenols play a key role in modulating these modifications thereby delaying aging and extending longevity. In this review, we summarize recent advancements linking epigenetics, polyphenols and aging as well as critical findings related to the various dietary polyphenols in different fruits and vegetables. In addition, we cover studies that relate polyphenols and their epigenetic effects to various aging-related diseases such as cardiovascular diseases, neurodegenerative diseases, autoimmune disorders, diabetes, osteoporosis and cancer.
Collapse
Affiliation(s)
- Itika Arora
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.A.); (M.S.); (L.Y.S.)
| | - Manvi Sharma
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.A.); (M.S.); (L.Y.S.)
| | - Liou Y. Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.A.); (M.S.); (L.Y.S.)
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.A.); (M.S.); (L.Y.S.)
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573; Fax: +1-205-975-6097
| |
Collapse
|
38
|
Souza JM, Tuin SA, Robinson AG, de Souza JGO, Bianchini MA, Miguez PA. Effect of Flavonoid Supplementation on Alveolar Bone Healing-A Randomized Pilot Trial. Dent J (Basel) 2020; 8:E86. [PMID: 32759635 PMCID: PMC7560062 DOI: 10.3390/dj8030086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
We investigated the effects of two common dietary supplements on bone healing in dental extraction sockets in humans. In this randomized pilot trial, male subjects took Grape Seed Extract [GSE] or Grapefruit Extract [GFE] starting two weeks prior to dental extraction and maintained this regimen for sixty days after surgery. Extraction sockets were filled with a collagen plug. After 24 h, a socket sample was collected and processed for quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and an 84-gene wound healing assay. Sixty days after tooth extraction, a core of newly formed bone was obtained prior to dental implant placement and processed for histology. qRT-PCR revealed that GFE led to a significant decrease in platelet-derived growth factor and interleukin (IL)1-β compared to GSE, and a significant decrease in IL-6 and CXCL2 compared to control. GSE led to a significant increase in coagulation factor Von Willebrand and inflammatory marker IL1-β compared to GFE. WISP1 and CXCL5 were upregulated in both groups. Overall, GFE showed a downregulation of inflammation and GSE led to a decrease in collagen density and increased osteoclasts. This pilot trial highlights the need for further investigation on the mechanism of action of such supplements on bone healing and oral health.
Collapse
Affiliation(s)
- Jose Moises Souza
- Centro de Ciências da Saúde, Departamento de Odontologia, Campus Reitor David Ferreira Lima, Universidade Federal de Santa Catarina, Bairro Trindade, Florianópolis 88040-970, Brazil; (J.M.S.J.); (J.G.O.d.S.); (M.A.B.)
| | - Stephen A. Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, Koury Oral Health Sciences Building, Rm 4608, CB# 7455, University of North Carolina at Chapel Hill, 385 South Columbia Street, Chapel Hill, NC 27599-7455, USA; (S.A.T.); (A.G.R.)
| | - Adam G. Robinson
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, Koury Oral Health Sciences Building, Rm 4608, CB# 7455, University of North Carolina at Chapel Hill, 385 South Columbia Street, Chapel Hill, NC 27599-7455, USA; (S.A.T.); (A.G.R.)
| | - Joao Gustavo Oliveira de Souza
- Centro de Ciências da Saúde, Departamento de Odontologia, Campus Reitor David Ferreira Lima, Universidade Federal de Santa Catarina, Bairro Trindade, Florianópolis 88040-970, Brazil; (J.M.S.J.); (J.G.O.d.S.); (M.A.B.)
| | - Marco Aurelio Bianchini
- Centro de Ciências da Saúde, Departamento de Odontologia, Campus Reitor David Ferreira Lima, Universidade Federal de Santa Catarina, Bairro Trindade, Florianópolis 88040-970, Brazil; (J.M.S.J.); (J.G.O.d.S.); (M.A.B.)
| | - Patricia A. Miguez
- Division of Comprehensive Oral Health, Adams School of Dentistry, Koury Oral Health Sciences Building, Rm 4610, CB# 7455, University of North Carolina at Chapel Hill, Chapel Hill, NC 77599-7455, USA
| |
Collapse
|
39
|
Akhter MH, Kumar S, Nomani S. Sonication tailored enhance cytotoxicity of naringenin nanoparticle in pancreatic cancer: design, optimization, and in vitro studies. Drug Dev Ind Pharm 2020; 46:659-672. [PMID: 32208984 DOI: 10.1080/03639045.2020.1747485] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: In vitro, optimization, characterization, and cytotoxic studies of NAR nanoparticles (NPs) to against pancreatic cancer.Method: The sonication tailored Naringenin (NARG)-loaded poly (lactide-co-glycolic acid) (PLGA) NPs was fabricated for potential cytotoxic effect against pancreatic cancer. NARG NPs were prepared by emulsion-diffusion evaporation technique applying BoxBehnken experimental design based on three-level and three-factors. The effect of independent variables surfactant concentration (X1), polymer concentration (X2), and sonication time (X3) were studied on responses particle size (Y1), and drug release % (Y2). NPs characterized for particles size and size distribution, polydispersity index (PDI), zeta potential, transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), Differential scanning calorimeter (DSC), and X-ray diffraction (XRD) studies. Further, the studies was fitted to various drug release kinetic model and cytotoxicity evaluated in vitro.Results: The nanosized particles were spherical, uniform with an average size of 150.45 ± 12.45 nm, PDI value 0.132 ± 0.026, zeta potential -20.5 ± 2.5 mV, and cumulative percentage release 85.67 ± 6.23%. In vitro release of NARG from nanoparticle evaluated initially burst followed by sustained release behavior. The Higuchi was best fitted model to drug release from NARG NPs. The cytotoxicity study of NARG NPs apparently showed higher cytotoxic effect over free NARG (p < 0.05). The stability study of optimized formulation revealed no significant physico-chemical changes during 3 months.Conclusions: Thus, NARG-loaded NPs gave ameliorated anticancer effect over plain NARG.
Collapse
Affiliation(s)
| | - Sandeep Kumar
- Alwar Pharmacy College Rajasthan University of Health Sciences (RUHS), M.I.A. Alwar-Rajasthan, Alwar, India.,Karnataka Antibiotics and Pharmaceutical Limited, Bengaluru, India
| | | |
Collapse
|
40
|
Abbas MM, Al-Rawi N, Abbas MA, Al-Khateeb I. Naringenin potentiated β-sitosterol healing effect on the scratch wound assay. Res Pharm Sci 2019; 14:566-573. [PMID: 32038736 PMCID: PMC6937750 DOI: 10.4103/1735-5362.272565] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the present investigation scratch wound assay was used to study the ability of several combinations of each flavonoid (chrysin, naringenin or resveratrol) with β-sitosterol to heal wounds in vitro. MTT test was performed to determine if the combination of flavonoid with β-sitosterol was toxic to fibroblasts or not. Also, superoxide dismutase (SOD) activity and interleukin-1β (IL-1β) concentrations were measured. The best closure rates were obtained with β-sitosterol combined with naringenin and β-sitosterol combined with resveratrol. The combination that produced the best closure rate namely β-sitosterol with naringenin increased SOD activity significantly. However, this combination was not better than naringenin or β-sitosterol alone in reducing IL-β concentration. The results of MTT test indicated that the combination as well as β-sitosterol alone or naringenin alone has no toxic effect on fibroblasts. In conclusion, the combination of β-sitosterol and naringenin exerted a synergistic effect on wound closure without decreasing the viability of fibroblasts, increased antioxidant defense mechanism and decreased IL-β.
Collapse
Affiliation(s)
- Manal Mohammad Abbas
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328, Amman, Jordan
| | - Naseer Al-Rawi
- Faculty of Pharmacy, Al-Ahliyya Amman University, 19328, Amman, Jordan
| | - Manal Ahmad Abbas
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328, Amman, Jordan
| | - Iqbal Al-Khateeb
- Faculty of Pharmacy, Al-Ahliyya Amman University, 19328, Amman, Jordan
| |
Collapse
|
41
|
Zhao Q, Yang H, Liu F, Luo J, Zhao Q, Li X, Yang Y. Naringenin Exerts Cardiovascular Protective Effect in a Palmitate‐Induced Human Umbilical Vein Endothelial Cell Injury Model via Autophagy Flux Improvement. Mol Nutr Food Res 2019; 63:e1900601. [PMID: 31622021 DOI: 10.1002/mnfr.201900601] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/01/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Qiang Zhao
- Department of CardiologyFirst Affiliated Hospital of Xinjiang Medical University Urumqi 830054 China
- Xinjiang Key Laboratory of Cardiovascular Disease Research Urumqi 830054 China
| | - Hongyan Yang
- School of Aerospace MedicineFourth Military Medical University Xi'an 710032 China
| | - Fen Liu
- Department of CardiologyFirst Affiliated Hospital of Xinjiang Medical University Urumqi 830054 China
- Xinjiang Key Laboratory of Cardiovascular Disease Research Urumqi 830054 China
| | - Junyi Luo
- Department of CardiologyFirst Affiliated Hospital of Xinjiang Medical University Urumqi 830054 China
- Xinjiang Key Laboratory of Cardiovascular Disease Research Urumqi 830054 China
| | - Qian Zhao
- Department of CardiologyFirst Affiliated Hospital of Xinjiang Medical University Urumqi 830054 China
- Xinjiang Key Laboratory of Cardiovascular Disease Research Urumqi 830054 China
| | - Xiaomei Li
- Department of CardiologyFirst Affiliated Hospital of Xinjiang Medical University Urumqi 830054 China
- Xinjiang Key Laboratory of Cardiovascular Disease Research Urumqi 830054 China
| | - Yining Yang
- Department of CardiologyFirst Affiliated Hospital of Xinjiang Medical University Urumqi 830054 China
- Xinjiang Key Laboratory of Cardiovascular Disease Research Urumqi 830054 China
| |
Collapse
|
42
|
Krishna Chandran AM, Christina H, Das S, Mumbrekar KD, Satish Rao BS. Neuroprotective role of naringenin against methylmercury induced cognitive impairment and mitochondrial damage in a mouse model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 71:103224. [PMID: 31376681 DOI: 10.1016/j.etap.2019.103224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/09/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Human exposure to organomercurials like methylmercury (MeHg) may occur by consumption of contaminated seafood, affecting various vital organs especially, brain contributing to neuro disorders. The citrus flavanone, naringenin (NAR) has shown strong antioxidant and anti-inflammatory effects and therefore may exert cytoprotective effect against xenobiotic agents. Herein, we investigated the neuroprotective role of NAR against MeHg induced functional changes in mitochondria, neuronal cell death and cognitive impairment in a mouse model. A neurotoxic dose of MeHg (4 mg/kg.b.wt.) was administered orally to mice for 15 days. This resulted in the reduction of GSH and GST, an increase in mitochondrial DNA damage and memory impairment. On the contrary, NAR pre-treatment (100 mg/kg.b.wt.), helped in lowering the oxidative burden which in turn maintained mitochondrial function and prevented induced neuronal cell death, ultimately improving the cognitive impairment. As MeHg intoxication occurs chronically, consumption of the dietary components rich in NAR may have its positive human health impact, ultimately improving the quality of life.
Collapse
Affiliation(s)
- Adwaid Manu Krishna Chandran
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Karnataka, India
| | - Hannah Christina
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Karnataka, India
| | - Shubhankar Das
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Karnataka, India
| | - Kamalesh D Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Karnataka, India
| | - B S Satish Rao
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Karnataka, India.
| |
Collapse
|
43
|
Kumar R, Bhan Tiku A. Naringenin Suppresses Chemically Induced Skin Cancer in Two-Stage Skin Carcinogenesis Mouse Model. Nutr Cancer 2019; 72:976-983. [PMID: 31474152 DOI: 10.1080/01635581.2019.1656756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Naringenin, a flavonoid present in citrus fruits has many health promoting activities. It has been reported to protect skin from UV radiation, thermal damage and atopic allergies. Despite many skin protective effects, in vivo effect of naringenin on skin cancer has not been reported so far.Objective: The present work was designed to study the chemo preventive effect of naringenin on chemically induced skin cancer in mice.Methods: Two stage model of skin papillomagenesis, using DMBA plus croton oil, was used to study the effect of naringenin in Swiss albino mice. The chemo preventive effect was evaluated using morphological, histopathological and biochemical features.Results: Oral administration of naringenin reduced the skin papilloma in both pre-treatment as well as post-treatment groups of mice. The number as well as size of papilloma was significantly reduced in the treated groups. Histopathological studies showed that naringenin treatment suppressed papillomagenesis. Biochemical studies further revealed decrease in the activity of glyoxalase-1 enzyme and an increase in carbonyl content. The effect was more pronounced in ant-initiation group.Conclusion: Naringenin exhibited anti-tumor effect in two stage carcinogenesis mouse skin tumor model. This study revealed that consumption of citrus fruits and the naringenin therein may be helpful in suppression of skin cancer.
Collapse
Affiliation(s)
- Raj Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashu Bhan Tiku
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
44
|
A perspective on the modulation of plant and animal two pore channels (TPCs) by the flavonoid naringenin. Biophys Chem 2019; 254:106246. [PMID: 31426023 DOI: 10.1016/j.bpc.2019.106246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/03/2019] [Accepted: 08/03/2019] [Indexed: 12/17/2022]
Abstract
The inhibitory effect of the flavonoid naringenin on plant and human Two-Pore Channels (TPCs) was assessed by means of electrophysiological measurements. By acting on human TPC2, naringenin, was able to dampen intracellular calcium responses to VEGF in cultured human endothelial cells and to impair angiogenic activity in VEGF-containing matrigel plugs implanted in mice. Molecular docking predicts selective binding sites for naringenin in the TPC structure, thus suggesting a specific interaction between the flavonoid and the channel.
Collapse
|
45
|
Abdel-Magied N, Shedid SM. The effect of naringenin on the role of nuclear factor (erythroid-derived 2)-like2 (Nrf2) and haem oxygenase 1 (HO-1) in reducing the risk of oxidative stress-related radiotoxicity in the spleen of rats. ENVIRONMENTAL TOXICOLOGY 2019; 34:788-795. [PMID: 30843661 DOI: 10.1002/tox.22745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
The present study was to evaluate the radiomitigative effect of naringenin (NRG) on the modulation of ionizing radiation (IR)-induced spleen injury. Rats were exposed to 12 Gy (3Gy/two times/week). NRG (50mg/Kg), was orally given one hour after the first radiation dose, and daily continued during the irradiation period. Rats were sacrificed 1 day after the last dose of radiation. NRG showed a significant decrease of malondialdehyde, hydrogen peroxide with a significant elevation of superoxide dismutase, catalase and glutathione peroxidase activities and glutathione content. Moreover, NRG confirmed the intracellular defense mechanisms through activation of nuclear factor (erythroid-derived 2)-like2 (Nrf2) and haem oxygenase-1 (HO-1) levels and their protein expression. In addition, NRG deactivated the nuclear factor-κB (NF-κB) and reduced the pro-inflammatory cytokines. Further, NRG showed positive modulation in the haematological values (WBCs, RBCs, Hb, Hct% and PLt). In conclusion, these results suggested that NRG reversed the IR-induced redox-imbalance in the rat spleen.
Collapse
Affiliation(s)
- Nadia Abdel-Magied
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| | - Shereen M Shedid
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| |
Collapse
|
46
|
Ding S, Qiu H, Huang J, Chen R, Zhang J, Huang B, Zou X, Cheng O, Jiang Q. Activation of 20-HETE/PPARs involved in reno-therapeutic effect of naringenin on diabetic nephropathy. Chem Biol Interact 2019; 307:116-124. [PMID: 31063766 DOI: 10.1016/j.cbi.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/08/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
Naringenin is a flavanone compound found in citrus fruits. Recent researches showed that naringenin has many potentially pharmacological effects. However, the therapeutic effect and the potential mechanism of naringenin on diabetic nephropathy (DN) remain to be elucidated. DN model was established by a high-fat diet combined with streptozotocin (STZ), which was confirmed by the levels of fasting blood glucose (FBG, more than 11.1 mmol/L) and urinary albumin (10 times higher than the normal mice). After 5 weeks of STZ injection, the DN was developed in model mice. Then naringenin (25 or 75 mg/kg·d) were supplemented for 4 weeks. At the end of the experiment, the injury of the renal function and structure was deteriorated. Concomitantly, peroxisome proliferators-activated receptors (PPARs) protein expression was down-regulated, and CYP4A expression and 20-hydroxyeicosatetraenoic acid (20-HETE) level were reduced in DN mice. Naringenin administration improved the renal damage of DN mice, and up-regulated PPARs expression, increased CYP4A-20-HETE level. Consistent with the results of in vivo, glucose at 30 mmol/L (high glucose, HG) significantly induced cell proliferation and hypertrophy in NRK-52E cells, following the reductive PPARs protein expression and the downward CYP4A-20-HETE level. Naringenin (0.01, 0.1, 1 μmol/L) reversed these changes induced by HG in a dose-dependent manner. HET0016, a selective inhibitor of 20-HETE synthase, partially blocked the effects of naringenin. In conclusion, naringenin has a therapeutic effect on DN, which may be, at least partly, related to the activation of CYP4A-20-HETE and the up-regulation of PPARs.
Collapse
Affiliation(s)
- Shumei Ding
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hongmei Qiu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiajun Huang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Rongchun Chen
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jie Zhang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Bo Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, PR China
| | - Xunliang Zou
- Department of Nephrology, The Fifth Affiliated Hospital, Zunyi Medical University, Zhuhai, Guangdong, 519100, PR China
| | - Oumei Cheng
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Qingsong Jiang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
47
|
Casado N, Perestrelo R, Silva CL, Sierra I, Câmara JS. Comparison of high-throughput microextraction techniques, MEPS and μ-SPEed, for the determination of polyphenols in baby food by ultrahigh pressure liquid chromatography. Food Chem 2019; 292:14-23. [PMID: 31054658 DOI: 10.1016/j.foodchem.2019.04.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
In this study, two different high-throughput microextraction techniques, microextraction by packed sorbents (MEPS) and micro solid phase extraction (μ-SPEed®), were evaluated and compared, regarding the performance criteria, for the isolation of polyphenols from baby foods prior to their determination by ultrahigh pressure liquid chromatography (UHPLC). To achieve the best performance, influential parameters affecting extraction efficiency (including type of sorbent, number of extraction cycles, pH, elution solvent and elution volume) were systematically studied and optimized. To enable an effective comparison, selectivity, linear dynamic range, method detection (LODs) and quantification limits (LOQs), accuracy, precision and extraction yields, were determined and discussed for both techniques. Both methods provided the analytical selectivity required for the analysis of polyphenols in baby foods. However, μ-SPEed® sample treatment in combination with UHPLC-PDA has demonstrated to be more sensitive, selective and efficient than MEPS. Appropriate linearity in solvent and matrix-based calibrations, very low LODs and LOQs, ranging between 1.37 and 13.57 μg kg-1 and 4.57 - 45.23 μg kg-1, respectively, suitable recoveries (from 67 to 97%) and precision (RSD values < 5%) were achieved for the selected analytes by μ-SPEed®/UHPLC-PDA. Finally, the validated methodologies were applied to different commercial baby foods. Gallic acid, chlorogenic acid, epicatechin, ferulic acid, rutin, naringenin and myricetin are the most dominant polyphenols present in the studied baby food samples. The proposed methodology revealed a promising approach to evaluate the nutritional quality of this kind of products.
Collapse
Affiliation(s)
- Natalia Casado
- Departamento de Tecnología Química y Energética, Tecnología Química y Ambiental, Tecnología Mecánica y Química Analítica, E.S.C.E.T, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Catarina L Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Isabel Sierra
- Departamento de Tecnología Química y Energética, Tecnología Química y Ambiental, Tecnología Mecánica y Química Analítica, E.S.C.E.T, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exactas e Engenharia da Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
48
|
Chung TW, Li S, Lin CC, Tsai SW. Antinociceptive and anti-inflammatory effects of the citrus flavanone naringenin. Tzu Chi Med J 2019; 31:81-85. [PMID: 31007486 PMCID: PMC6450145 DOI: 10.4103/tcmj.tcmj_103_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/15/2018] [Accepted: 04/29/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Naringenin, a flavonoid found in citrus fruits, has notably diverse pharmacological properties. In the present study, we investigated the antinociceptive and anti-inflammatory effects of naringenin. MATERIALS AND METHODS The antinociceptive effects were evaluated using hot-plate, acetic acid-induced writhing, and tail-flick assays in mice and rats. The anti-inflammatory effects were examined by a carrageenan-induced paw edema test in rats. RESULTS Naringenin (100 or 200 mg/kg, oral administration) significantly delayed the reaction time of mice to thermal stimulation generated by a hot plate and a tail-flick unit and reduced the acetic acid-induced writhing response in mice. In addition, naringenin significantly decreased paw edema induced by carrageenan in rats, showing its anti-inflammatory effect. CONCLUSION Our results show that naringenin has therapeutic potential with antinociceptive and anti-inflammatory properties and can further be exploited for the development of drugs for pain and inflammatory-related diseases.
Collapse
Affiliation(s)
- Ting-Wen Chung
- Department of Medical Sciences, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shiming Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Life Science, Huanggang Normal University, Huanggang, China
| | - Chi-Chien Lin
- Institute of Biomedical Science, National Chung Hsing University, Taichung, Taiwan
| | - Sen-Wei Tsai
- Department of Physical Medicine and Rehabilitation, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
49
|
Aydeniz Güneşer B, Yilmaz E. Comparing the effects of conventional and microwave roasting methods for bioactive composition and the sensory quality of cold-pressed orange seed oil. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:634-642. [PMID: 30906021 PMCID: PMC6400776 DOI: 10.1007/s13197-018-3518-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/26/2023]
Abstract
This study aims to report the composition of bioactives and volatile aromatic compounds, and determine the descriptive sensory properties of cold-pressed orange seed oil. The effects of oven pre-roasting and microwave pre-roasting of the seeds before cold pressing were compared. Thirteen sensory parameters were used to define the oil samples. The major bioactive components of the orange seed oils were naringin, hesperidin, and trans-ferulic acid. Flavonoids constituted the main phenolic class with 78.5% and 74.4%, followed by phenolic acids with 21.4% and 25.5% in the oven and microwave pre-roasted oil samples. The mean concentration of hesperidin and naringin varied from 903.4 to 909.6 mg/kg and from 234.3 to 299.8 mg/kg, respectively. The results showed for the first time in the literature that orange seed oil contains some volatile aromatic compounds and glycosylated flavanones that could have functional properties. Hence, cold-pressed orange seed oil could be suggested as the new potential health-promoting oil.
Collapse
Affiliation(s)
- B. Aydeniz Güneşer
- Department of Food Engineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey
| | - E. Yilmaz
- Department of Food Engineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey
| |
Collapse
|
50
|
Naringenin Attenuates Myocardial Ischemia-Reperfusion Injury via cGMP-PKGI α Signaling and In Vivo and In Vitro Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7670854. [PMID: 30728891 PMCID: PMC6341255 DOI: 10.1155/2019/7670854] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022]
Abstract
Endoplasmic reticulum (ER) stress and oxidative stress contribute greatly to myocardial ischemia-reperfusion (MI/R) injury. Naringenin, a flavonoid derived from the citrus genus, exerts cardioprotective effects. However, the effects of naringenin on ER stress as well as oxidative stress under MI/R condition and the detailed mechanisms remain poorly defined. This study investigated the protective effect of naringenin on MI/R-injured heart with a focus on cyclic guanosine monophosphate- (cGMP-) dependent protein kinase (PKG) signaling. Sprague-Dawley rats were treated with naringenin (50 mg/kg/d) and subjected to MI/R surgery with or without KT5823 (2 mg/kg, a selective inhibitor of PKG) cotreatment. Cellular experiment was conducted on H9c2 cardiomyoblasts subjected to simulated ischemia-reperfusion treatment. Before the treatment, the cells were incubated with naringenin (80 μmol/L). PKGIα siRNA was employed to inhibit PKG signaling. Our in vivo and in vitro data showed that naringenin effectively improved heart function while it attenuated myocardial apoptosis and infarction. Furthermore, pretreatment with naringenin suppressed MI/R-induced oxidative stress as well as ER stress as evidenced by decreased superoxide generation, myocardial MDA level, gp91phox expression, and phosphorylation of PERK, IRE1α, and EIF2α as well as reduced ATF6 and CHOP. Importantly, naringenin significantly activated myocardial cGMP-PKGIα signaling while inhibition of PKG signaling with KT5823 (in vivo) or siRNA (in vitro) not only abolished these actions but also blunted naringenin's inhibitory effects against oxidative stress and ER stress. In summary, our study demonstrates that naringenin treatment protects against MI/R injury by reducing oxidative stress and ER stress via cGMP-PKGIα signaling. Its cardioprotective effect deserves further clinical study.
Collapse
|