1
|
Oltjen H, Crook E, Lanier WA, Rettler H, Oakeson KF, Young EL, Torchetti M, Van Wettere AJ. SARS-CoV-2 delta variant in African lions (Panthera leo) and humans at Utah's Hogle Zoo, USA, 2021-22. Zoonoses Public Health 2024; 71:807-816. [PMID: 38825749 PMCID: PMC11455604 DOI: 10.1111/zph.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 06/04/2024]
Abstract
AIMS We conducted a One Health investigation to assess the source and transmission dynamics of SARS-CoV-2 infection in African lions (Panthera leo) at Utah's Hogle Zoo in Salt Lake City from October 2021 to February 2022. METHODS AND RESULTS Following observation of respiratory illness in the lions, zoo staff collected pooled faecal samples and individual nasal swabs from four lions. All specimens tested positive for SARS-CoV-2 by reverse transcription-polymerase chain reaction (RT-PCR). The resulting investigation included: lion observation; RT-PCR testing of lion faeces every 1-7 days; RT-PCR testing of lion respiratory specimens every 2-3 weeks; staff interviews and RT-PCR testing; whole-genome sequencing of viruses from lions and staff; and comparison with existing SARS-CoV-2 human community surveillance sequences. In addition to all five lions, three staff displayed respiratory symptoms. All lions recovered and no hospitalizations or deaths were reported among staff. Three staff reported close contact with the lions in the 10 days before lion illness onset, one of whom developed symptoms and tested positive for SARS-CoV-2 on days 3 and 4, respectively, after lion illness onset. The other two did not report symptoms or test positive. Two staff who did not have close contact with the lions were symptomatic and tested positive on days 5 and 8, respectively, after lion illness onset. We detected SARS-CoV-2 RNA in lion faeces for 33 days and in lion respiratory specimens for 14 weeks after illness onset. The viruses from lions were genetically highly related to those from staff and two contemporaneous surveillance specimens from Salt Lake County; all were delta variants (AY.44). CONCLUSIONS We did not determine the sources of these infections, although human-to-lion transmission likely occurred. The observed period of respiratory shedding was longer than in previously documented SARS-CoV-2 infections in large felids, indicating the need to further assess duration and potential implications of shedding.
Collapse
Affiliation(s)
- Heather Oltjen
- Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | | | - William A. Lanier
- Utah Department of Health and Human Services, Salt Lake City, Utah, USA
- Centers for Disease Control and Prevention, Office of Readiness and Response, Division of State and Local Readiness, Career Epidemiology Field Officer Program, Atlanta, Georgia, USA
- US Public Health Service, Rockville, Maryland, USA
| | - Hannah Rettler
- Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Kelly F. Oakeson
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Erin L. Young
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Mia Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa, USA
| | | |
Collapse
|
2
|
Kuhn J, Marti I, Ryser-Degiorgis MP, Wernike K, Jones S, Tyson G, Delalay G, Scherrer P, Borel S, Hosie MJ, Kipar A, Kuhlmeier E, Chan T, Hofmann-Lehmann R, Meli ML. Investigations on the Potential Role of Free-Ranging Wildlife as a Reservoir of SARS-CoV-2 in Switzerland. Viruses 2024; 16:1407. [PMID: 39339883 PMCID: PMC11437421 DOI: 10.3390/v16091407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Amid the SARS-CoV-2 pandemic, concerns surfaced regarding the spread of the virus to wildlife. Switzerland lacked data concerning the exposure of free-ranging animals to SARS-CoV-2 during this period. This study aimed to investigate the potential exposure of Swiss free-ranging wildlife to SARS-CoV-2. From 2020 to 2023, opportunistically collected samples from 712 shot or found dead wild mustelids (64 European stone and pine martens, 13 European badgers, 10 European polecats), canids (449 red foxes, 41 gray wolves, one golden jackal) and felids (56 Eurasian lynx, 18 European wildcats), as well as from 45 captured animals (39 Eurasian lynx, 6 European wildcats) were tested. A multi-step serological approach detecting antibodies to the spike protein receptor binding domain (RBD) and N-terminal S1 subunit followed by surrogate virus neutralization (sVNT) and pseudotype-based virus neutralization assays against different SARS-CoV-2 variants was performed. Additionally, viral RNA loads were quantified in lung tissues and in oronasal, oropharyngeal, and rectal swabs by reverse transcription polymerase chain reactions (RT-qPCRs). Serologically, SARS-CoV-2 exposure was confirmed in 14 free-ranging Swiss red foxes (prevalence 3.1%, 95% CI: 1.9-5.2%), two Eurasian lynx (2.2%, 95% CI: 0.6-7.7%), and one European wildcat (4.2%, 95% CI: 0.2-20.2%). Two positive foxes exhibited neutralization activity against the BA.2 and BA.1 Omicron variants. No active infection (viral RNA) was detected in any animal tested. This is the first report of SARS-CoV-2 antibodies in free-ranging red foxes, Eurasian lynx, and European wildcats worldwide. It confirms the spread of SARS-CoV-2 to free-ranging wildlife in Switzerland but does not provide evidence of reservoir formation. Our results underscore the susceptibility of wildlife populations to SARS-CoV-2 and the importance of understanding diseases in a One Health Concept.
Collapse
Affiliation(s)
- Juliette Kuhn
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Iris Marti
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Marie-Pierre Ryser-Degiorgis
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Sarah Jones
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Grace Tyson
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Gary Delalay
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Patrick Scherrer
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Stéphanie Borel
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Margaret J Hosie
- MRC-University of Glasgow Centre for Virus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - Evelyn Kuhlmeier
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Tatjana Chan
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Marina L Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
McEachran MC, Harvey JA, Mummah RO, Bletz MC, Teitelbaum CS, Rosenblatt E, Rudolph FJ, Arce F, Yin S, Prosser DJ, Mosher BA, Mullinax JM, DiRenzo GV, Couret J, Runge MC, Grant EHC, Cook JD. Reframing wildlife disease management problems with decision analysis. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14284. [PMID: 38785034 DOI: 10.1111/cobi.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 05/25/2024]
Abstract
Contemporary wildlife disease management is complex because managers need to respond to a wide range of stakeholders, multiple uncertainties, and difficult trade-offs that characterize the interconnected challenges of today. Despite general acknowledgment of these complexities, managing wildlife disease tends to be framed as a scientific problem, in which the major challenge is lack of knowledge. The complex and multifactorial process of decision-making is collapsed into a scientific endeavor to reduce uncertainty. As a result, contemporary decision-making may be oversimplified, rely on simple heuristics, and fail to account for the broader legal, social, and economic context in which the decisions are made. Concurrently, scientific research on wildlife disease may be distant from this decision context, resulting in information that may not be directly relevant to the pertinent management questions. We propose reframing wildlife disease management challenges as decision problems and addressing them with decision analytical tools to divide the complex problems into more cognitively manageable elements. In particular, structured decision-making has the potential to improve the quality, rigor, and transparency of decisions about wildlife disease in a variety of systems. Examples of management of severe acute respiratory syndrome coronavirus 2, white-nose syndrome, avian influenza, and chytridiomycosis illustrate the most common impediments to decision-making, including competing objectives, risks, prediction uncertainty, and limited resources.
Collapse
Affiliation(s)
- Margaret C McEachran
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Johanna A Harvey
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland, USA
| | - Riley O Mummah
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Molly C Bletz
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Claire S Teitelbaum
- Akima Systems Engineering, Herndon, Virginia, USA
- Contractor to Eastern Ecological Science Center at Patuxent Research Refuge, U.S. Geological Survey, Laurel, Maryland, USA
| | - Elias Rosenblatt
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, USA
| | - F Javiera Rudolph
- Department of Ecosystem Sciences and Management, Pennsylvania State University, Center Valley, Pennsylvania, USA
| | - Fernando Arce
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Starkville, Mississippi, USA
| | - Shenglai Yin
- School of Biological Sciences, Center for Earth Observation and Modeling, University of Oklahoma, Norman, Oklahoma, USA
| | - Diann J Prosser
- Eastern Ecological Science Center at Patuxent Research Refuge, U.S. Geological Survey, Laurel, Maryland, USA
| | - Brittany A Mosher
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, USA
| | - Jennifer M Mullinax
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland, USA
| | - Graziella V DiRenzo
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
- Massachusetts Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jannelle Couret
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Michael C Runge
- Eastern Ecological Science Center at Patuxent Research Refuge, U.S. Geological Survey, Laurel, Maryland, USA
| | - Evan H Campbell Grant
- Eastern Ecological Science Center at the S.O. Conte Research Laboratory, U.S. Geological Survey, Turners Falls, Massachusetts, USA
| | - Jonathan D Cook
- Eastern Ecological Science Center at Patuxent Research Refuge, U.S. Geological Survey, Laurel, Maryland, USA
| |
Collapse
|
4
|
Milich KM, Morse SS. The reverse zoonotic potential of SARS-CoV-2. Heliyon 2024; 10:e33040. [PMID: 38988520 PMCID: PMC11234007 DOI: 10.1016/j.heliyon.2024.e33040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
There has been considerable emphasis recently on the zoonotic origins of emerging infectious diseases in humans, including the SARS-CoV-2 pandemic; however, reverse zoonoses (infections transmitted from humans to other animals) have received less attention despite their potential importance. The effects can be devastating for the infected species and can also result in transmission of the pathogen back to human populations or other animals either in the original form or as a variant. Humans have transmitted SARS-CoV-2 to other animals, and the virus is able to circulate and evolve in those species. As global travel resumes, the potential of SARS-CoV-2 as a reverse zoonosis threatens humans and endangered species. Nonhuman primates are of particular concern given their susceptibility to human respiratory infections. Enforcing safety measures for all people working in and visiting wildlife areas, especially those with nonhuman primates, and increasing access to safety measures for people living near protected areas that are home to nonhuman primates will help mitigate reverse zoonotic transmission.
Collapse
Affiliation(s)
- Krista M. Milich
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, 63130, United States
| | - Stephen S. Morse
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 West 168th St., NY, NY, 10032, United States
| |
Collapse
|
5
|
Abay Z, Sadikaliyeva S, Nurpeisova A, Jekebekov K, Shorayeva K, Yespembetov B, Nurabayev S, Kerimbayev A, Khairullin B, Yoo H, Kutumbetov L, Kassenov M, Zakarya K. Breaking the Barrier: SARS-CoV-2 Infections in Wild and Companion Animals and Their Implications for Public Health. Viruses 2024; 16:956. [PMID: 38932248 PMCID: PMC11209598 DOI: 10.3390/v16060956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of the novel coronavirus SARS-CoV-2 has led to significant interest in its potential transmission between animals and humans, especially pets. This review article summarises the literature on coronavirus infections in domestic animals, emphasising epidemiology, transmission dynamics, clinical manifestations, and public health implications. This article highlights current understandings of the relationship between infections in companion animals and humans, identifies research gaps, and suggests directions for future research. Cases of disease in cats, dogs, and other domestic animals, often occurring through close contact with infected owners, are reviewed, raising concerns about possible zoonotic and reverse zoonotic transmission. Precautions and recommendations for pet owners and healthcare workers are also discussed. The scientific evidence presented in the article highlights the need for a One Health approach that considers the health of people, animals, and the environment to combat future pandemics.
Collapse
Affiliation(s)
- Zhandos Abay
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | | | - Ainur Nurpeisova
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Kuanysh Jekebekov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Kamshat Shorayeva
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Bolat Yespembetov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Sergazy Nurabayev
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Aslan Kerimbayev
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Berik Khairullin
- MVA Group Scientific-Research Production Center Ltd., Almaty 050046, Kazakhstan
| | - Hansang Yoo
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Lespek Kutumbetov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Markhabat Kassenov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Kunsulu Zakarya
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| |
Collapse
|
6
|
Ropi I, Lillo M, Malavasi M, Argentieri A, Barbieri A, Lou B, Barbieri DM, Passavanti M. The psychological implications of COVID-19 over the eighteen-month time span following the virus breakout in Italy. Front Psychol 2024; 15:1363922. [PMID: 38774721 PMCID: PMC11106482 DOI: 10.3389/fpsyg.2024.1363922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Background In a short time, the COVID-19 pandemic has exerted a huge impact on many aspects of people's lives with a number of consequences, an increase in the risks of psychological diseases being one of them. The aim of this experimental study, based on an eighteen-month follow-up survey, is to assess the psychological effects of the COVID-19 pandemic, in particular, changes in stress, anxiety and depression levels, and the risks of developing Post-Traumatic Stress Disorder (PTSD). Methods A follow-up survey was performed on a sample of 184 Italian individuals to collect relevant information about the psychological impact of COVID-19. Predictors of the components of the psychological impact were calculated based on the ANCOVA model. Results The analysis of the online questionnaires led to the conclusion that a high percentage of the participants suffer from levels of stress, anxiety and depression higher than normal as well as an increased risk of PTSD. The severity of such disorders significantly depends on gender, the loss of family members or acquaintances due to the pandemic, the amount of time spent searching for COVID-19 related information, the type of information sources and, in part, on the level of education and income. The time factor had a more severe effect on the low-income population. Conclusion COVID-19 has entailed a very strong psychological impact on the Italian population also depending on the coping strategies adopted, the level of mindful awareness, socio-demographic variables, people's habits and the way individuals use the available means of communication and information.
Collapse
Affiliation(s)
| | - Margherita Lillo
- Department of Psychology, Universität Greifswald, Greifswald, Germany
| | - Matteo Malavasi
- Associazione Nazionale Professionale di Antropologia (ANPIA), Bologna, Italy
| | - Alessandro Argentieri
- Department of Agricultural Economic, Agrarian University of Ecuador, Guayaquil, Ecuador
| | - Aurora Barbieri
- Faculty of Medicine and Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Baowen Lou
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Diego Maria Barbieri
- Department of Built Environment, Oslo Metropolitan University OsloMet, Oslo, Norway
| | | |
Collapse
|
7
|
Hobusch U, Scheuch M, Heuckmann B, Hodžić A, Hobusch GM, Rammel C, Pfeffer A, Lengauer V, Froehlich DE. One Health Education Nexus: enhancing synergy among science-, school-, and teacher education beyond academic silos. Front Public Health 2024; 11:1337748. [PMID: 38585291 PMCID: PMC10995387 DOI: 10.3389/fpubh.2023.1337748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/26/2023] [Indexed: 04/09/2024] Open
Abstract
Introduction The fact that the daily lives of billions of people were affected by the medical, social, and political aspects of the SARS-CoV-2 pandemic shows the need to anchor the understanding of One Health in society. Hence, promoting awareness and deepening the understanding of the interrelation between human health, animal health, and ecosystems must be accomplished through quality education, as advocated by UN Sustainable Development Goal 4. The often-questioned and discussed measures taken by governments to control the global pandemic between 2020 and 2023 can be seen as an opportunity to meet the educational needs of civil society solutions in multi-stakeholder settings between public, universities, and schools. Methods This paper focuses on the integration of One Health principles in educational frameworks, particularly within the context of the higher education teaching framework "Teaching Clinic." This master-level course in the domain of pre-service teacher education serves as a potent vehicle for facilitating One Health Education, bridging the gap between research, higher education, and schools. Through the presentation of two case studies, this article demonstrates how the Teaching Clinic approach fosters interdisciplinary perspectives and provides a dynamic learning environment for pre-service teachers, as well as for pupils involved in the educational process. Results In both cases, the integration of educational One Health school teaching-learning settings effectively enhanced pupils' understanding of complex topics and engaged them in active learning experiences. Pre-service teachers played a crucial role in developing, implementing, and evaluating these interventions. In Case I, pupils demonstrated proficiency in analyzing data and evaluating mathematical models, while in Case II, the chosen instructional approach facilitated One Health knowledge acquisition and enjoyment among pupils. These results underscore the potential of the One Health Teaching Clinic as a valuable educational framework for enhancing teaching and learning outcomes for pre-service teachers and fostering pupil engagement in socio-scientific One Health-related topics. Discussion The discussion delves into the significance of breaking down disciplinary silos and the crucial role of teacher education in promoting a holistic approach to education, emphasizing the intersectionality of One Health Education and Education for Sustainable Development. This article underpins the significance of collaborative efforts across multiple (scientific) disciplines and across secondary and tertiary education levels to reach a nexus. Moreover, it emphasizes the alignment of this approach with the 2030 Agenda, Education for Sustainable Development, and Sustainable Development Goals, highlighting the potential for collective action toward a more sustainable future.
Collapse
Affiliation(s)
- Ulrich Hobusch
- University College for Agricultural and Environmental Education, Vienna, Austria
- Centre for Teacher Education, University of Vienna, Vienna, Austria
| | - Martin Scheuch
- University College for Agricultural and Environmental Education, Vienna, Austria
- Austrian Educational Competence Centre for Biology, University of Vienna, Vienna, Austria
| | | | - Adnan Hodžić
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Gerhard M. Hobusch
- Department of Orthopedics and Trauma-Surgery, Medical University of Vienna, Vienna, Austria
| | - Christian Rammel
- Austria Regional Centre of Expertise on Education for Sustainable Development Vienna (RCE Vienna), Vienna University of Economics and Business, Vienna, Austria
| | - Anna Pfeffer
- Centre for Teacher Education, University of Vienna, Vienna, Austria
| | | | - Dominik E. Froehlich
- Department of Education, Centre for Teacher Education, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Zyoud S. Global Mapping and Visualization Analysis of One Health Knowledge in the COVID-19 Context. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241236017. [PMID: 38449589 PMCID: PMC10916474 DOI: 10.1177/11786302241236017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Globally, the COVID-19 pandemic had a significant impact on the health, social, and economic systems, triggering lasting damage and exposing the complexity of the problem beyond just being a health emergency. This crisis has highlighted the need for a comprehensive and collaborative strategy to successfully counter infectious diseases and other global challenges. With the COVID-19 pandemic pushing One Health to the forefront of global health and sustainable development agendas, this concept has emerged as a potential approach for addressing these challenges. In the context of COVID-19, this study investigates global knowledge about One Health by examining its state, significant contributions, and future directions. It seeks to offer an integrated framework of insights guiding the development of well-informed decisions. A comprehensive search using the Scopus database was conducted, employing specific terms related to One Health and COVID-19. VOSviewer 1.6.19 software was used to generate network visualization maps. Countries' research output was adjusted based on their gross domestic product (GDP) and population size. The study identified a total of 527 publications. The United States led with 134 documents (25.4%), but India topped the adjusted ranking. One Health journal stood as the most common outlet for disseminating knowledge (49 documents; 9.3%), while Centers for Disease Control and Prevention (CDC), the United States emerged as the most prolific institution (13 documents; 2.5%). Key topics were related to the virus transmission mechanisms, climate change impacts, antimicrobial resistance, ecosystem health, preparedness, collaboration, community engagement, and developing of efficient surveillance systems. The study emphasizes how critical it is to capitalize on the present momentum of COVID-19 to advance One Health concepts. Integrating social and environmental sciences, and a variety of professions for better interaction and collaboration is crucial. Additionally, increased funding for developing countries, and legislative empowerment are vital to advance One Health and boost disease prevention.
Collapse
Affiliation(s)
- Shaher Zyoud
- Department of Building Engineering & Environment,Palestine Technical University (Kadoorie), Tulkarem, Palestine
- Department of Civil Engineering & Sustainable Structures,Palestine Technical University (Kadoorie), Tulkarem, Palestine
| |
Collapse
|
9
|
Jahid MJ, Bowman AS, Nolting JM. SARS-CoV-2 Outbreaks on Mink Farms-A Review of Current Knowledge on Virus Infection, Spread, Spillover, and Containment. Viruses 2024; 16:81. [PMID: 38257781 PMCID: PMC10819236 DOI: 10.3390/v16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Many studies have been conducted to explore outbreaks of SARS-CoV-2 in farmed mink and their intra-/inter-species spread and spillover to provide data to the scientific community, protecting human and animal health. Studies report anthropozoonotic introduction, which was initially documented in April 2020 in the Netherlands, and subsequent inter-/intra-species spread of SARS-CoV-2 in farmed mink, likely due to SARS-CoV-2 host tropism capable of establishing efficient interactions with host ACE2 and the mink hosts' ability to enhance swift viral transmission due to their density, housing status, and occupational contacts. Despite the rigorous prevention and control measures adopted, transmission of the virus within and between animal species was efficient, resulting in the development of mink-associated strains able to jump back and forth among the mink hosts and other animal/human contacts. Current knowledge recognizes the mink as a highly susceptible animal host harboring the virus with or without clinical manifestations, furthering infection transmission as a hidden animal reservoir. A One Health approach is, thus, recommended in SARS-CoV-2 surveillance and monitoring on mink farms and of their susceptible contact animals to identify and better understand these potential animal hosts.
Collapse
Affiliation(s)
| | | | - Jacqueline M. Nolting
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (M.J.J.); (A.S.B.)
| |
Collapse
|
10
|
Hansen LG, Larsen LE, Rasmussen TB, Miar Y, Lassuniére R, Jørgensen CS, Ryt-Hansen P. Investigation of the SARS-CoV-2 post-vaccination antibody response in Canadian farmed mink. Vaccine 2023; 41:7387-7394. [PMID: 37932134 DOI: 10.1016/j.vaccine.2023.10.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Currently, SARS-CoV-2 have been detected in farmed mink in 13 different countries. Due to the high susceptibility and transmissibility among mink, great concerns of mink serving as a reservoir to generate novel variants with unknown virulence and antigenic properties arose. These concerns have consequently resulted in entire mink productions being culled and banned. This study investigates the post-vaccination antibody response in the Canadian farmed mink vaccinated with a commercial Index spike protein-based vaccine, approved for use in cats, and compares the antibody response to that observed post infection in Danish farmed mink. Blood samples were obtained from 50 mink at the Canadian Centre for Fur Animal Research (CCFAR), Dalhousie University (Truro, Canada). The sera were initially analyzed for antibodies by enzyme-linked immunosorbent assay (ELISA), and selected sera was subsequently tested in a virus neutralization tests. The levels of neutralizing antibodies were evaluated for an ancestral D614G strain and a recent circulating SARS-CoV-2 variant of concern (Omicron BA.4). The results revealed that the vaccine induced a strong antibody response in mink by reaching antibody titer levels of up to 1:12800 in the ELISA. Moreover, high levels of neutralizing antibodies were obtained, and despite the great level of genetic differences between the ancestral and Omicron BA.4 strains, the vaccinated mink showed high levels of cross-reacting neutralizing antibodies. Interestingly, the antibody levels towards SARS-CoV-2 in the Canadian vaccinated mink were significantly higher than observed in recently SARS-CoV-2 infected Danish mink and equal to anamnestic responses following re-infection. In conclusion, the vaccine used in the Canadian farmed mink was able to induce a strong and broad-reacting antibody response in mink, which could limit the spread of SARS-CoV-2 in farmed mink and thereby reduce the risk of mink serving as a SARS-CoV-2 reservoir for human infections.
Collapse
Affiliation(s)
- Line Gram Hansen
- Dpt. of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Denmark.
| | - Lars Erik Larsen
- Dpt. of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Denmark.
| | | | - Younes Miar
- Haley Institute of Animal Science and Aquaculture 100-A, Dalhousie University, Faculty of Agriculture, 58 Sipu Awti, Truro, NS, Canada.
| | - Ria Lassuniére
- Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | | | - Pia Ryt-Hansen
- Dpt. of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
11
|
Ibrahim MA, Dénes A. Mathematical Modeling of SARS-CoV-2 Transmission between Minks and Humans Considering New Variants and Mink Culling. Trop Med Infect Dis 2023; 8:398. [PMID: 37624336 PMCID: PMC10459927 DOI: 10.3390/tropicalmed8080398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023] Open
Abstract
We formulated and studied mathematical models to investigate control strategies for the outbreak of the disease caused by SARS-CoV-2, considering the transmission between humans and minks. Two novel models, namely SEIR and SVEIR, are proposed to incorporate human-to-human, human-to-mink, and mink-to-human transmission. We derive formulas for the reproduction number R0 for both models using the next-generation matrix technique. We fitted our model to the daily number of COVID-19-infected cases among humans in Denmark as an example, and using the best-fit parameters, we calculated the values of R0 to be 1.58432 and 1.71852 for the two-strain and single-strain models, respectively. Numerical simulations are conducted to investigate the impact of control measures, such as mink culling or vaccination strategies, on the number of infected cases in both humans and minks. Additionally, we investigated the possibility of the mutated virus in minks being transmitted to humans. Our results indicate that to control the disease and spread of SARS-CoV-2 mutant strains among humans and minks, we must minimize the transmission and contact rates between mink farmers and other humans by quarantining such individuals. In order to reduce the virus mutation rate in minks, culling or vaccination strategies for infected mink farms must also be implemented. These measures are essential in managing the spread of SARS-CoV-2 and its variants, protecting public health, and mitigating the potential risks associated with human-to-mink transmission.
Collapse
Affiliation(s)
- Mahmoud A. Ibrahim
- Bolyai Institute, University of Szeged, Aradi Vértanúk Tere 1., 6720 Szeged, Hungary
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Attila Dénes
- National Laboratory for Health Security, Bolyai Institute, University of Szeged, Aradi Vértanúk Tere 1., 6720 Szeged, Hungary
| |
Collapse
|
12
|
Jato-Espino D, Mayor-Vitoria F, Moscardó V, Capra-Ribeiro F, Bartolomé del Pino LE. Toward One Health: a spatial indicator system to model the facilitation of the spread of zoonotic diseases. Front Public Health 2023; 11:1215574. [PMID: 37457260 PMCID: PMC10340543 DOI: 10.3389/fpubh.2023.1215574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Recurrent outbreaks of zoonotic infectious diseases highlight the importance of considering the interconnections between human, animal, and environmental health in disease prevention and control. This has given rise to the concept of One Health, which recognizes the interconnectedness of between human and animal health within their ecosystems. As a contribution to the One Health approach, this study aims to develop an indicator system to model the facilitation of the spread of zoonotic diseases. Initially, a literature review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to identify relevant indicators related to One Health. The selected indicators focused on demographics, socioeconomic aspects, interactions between animal and human populations and water bodies, as well as environmental conditions related to air quality and climate. These indicators were characterized using values obtained from the literature or calculated through distance analysis, geoprocessing tasks, and other methods. Subsequently, Multi-Criteria Decision-Making (MCDM) techniques, specifically the Entropy and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) methods, were utilized to combine the indicators and create a composite metric for assessing the spread of zoonotic diseases. The final indicators selected were then tested against recorded zoonoses in the Valencian Community (Spain) for 2021, and a strong positive correlation was identified. Therefore, the proposed indicator system can be valuable in guiding the development of planning strategies that align with the One Health principles. Based on the results achieved, such strategies may prioritize the preservation of natural landscape features to mitigate habitat encroachment, protect land and water resources, and attenuate extreme atmospheric conditions.
Collapse
Affiliation(s)
- Daniel Jato-Espino
- GREENIUS Research Group, Universidad Internacional de Valencia—VIU, Calle Pintor Sorolla, Valencia, Spain
| | - Fernando Mayor-Vitoria
- GREENIUS Research Group, Universidad Internacional de Valencia—VIU, Calle Pintor Sorolla, Valencia, Spain
| | - Vanessa Moscardó
- GREENIUS Research Group, Universidad Internacional de Valencia—VIU, Calle Pintor Sorolla, Valencia, Spain
| | - Fabio Capra-Ribeiro
- GREENIUS Research Group, Universidad Internacional de Valencia—VIU, Calle Pintor Sorolla, Valencia, Spain
- School of Architecture, College of Art and Design, Louisiana State University, Baton Rouge, LA, United States
| | | |
Collapse
|
13
|
Choga WT, Letsholo SL, Marobela-Raborokgwe C, Gobe I, Mazwiduma M, Maruapula D, Rukwava J, Binta MG, Zuze BJL, Koopile L, Seru K, Motshosi P, Bareng OT, Radibe B, Smith-Lawrence P, Macheke K, Kuate-Lere L, Motswaledi MS, Mbulawa MB, Matshaba M, Masupu KV, Lockman S, Shapiro R, Makhema J, Mosepele M, Gaseitsiwe S, Moyo S. Near-complete genome of SARS-CoV-2 Delta variant of concern identified in a symptomatic dog (Canis lupus familiaris) in Botswana. Vet Med Sci 2023. [PMID: 37119524 DOI: 10.1002/vms3.1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 02/27/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023] Open
Abstract
We sought to investigate whether SARS-CoV-2 was present, and to perform full-length genomic sequencing, in a 5-year-old male crossbreed dog from Gaborone, Botswana that presented overt clinical signs (flu-like symptoms, dry hacking cough and mild dyspnoea). It was only sampled a posteriori, because three adult owners were diagnosed with SARS-CoV-2 infection. Next-generation sequencing based on Oxford Nanopore Technology (ONT) was performed on amplicons that were generated using a reverse transcriptase real-time polymerase chain reaction (RT-qPCR) of confirmed positive SARS-CoV-2 nasopharyngeal and buccal swabs, as well as a bronchoalveolar lavage with mean real cycle threshold (qCt) value of 36 based on the Nucleocapsid (N) gene. Descriptive comparisons to known sequences in Botswana and internationally were made using mutation profiling analysis and phylogenetic inferences. Human samples were not available. A near-full length SARS-CoV-2 genome (∼90% coverage) was successfully genotyped and classified under clade 20 O and Pango-Lineage AY.43 (Pango v.4.0.6 PLEARN-v1.3; 2022-04-21), which is a sublineage of the Delta variant of concern (VOC) (formerly called B.1.617.2, first detected in India). We did not identify novel mutations that may be used to distinguish SARS-CoV-2 isolates from the dog and humans. In addition to Spike (S) region mutation profiling, we performed phylogenetic analysis including 30 Delta sequences publicly available reference also isolated from dogs. In addition, we performed another exploratory analysis to investigate the phylogenetic relatedness of sequence isolated from dog with those from humans in Botswana (n = 1303) as of 31 March 2022 and of same sublineage. Expectedly, the sequence formed a cluster with Delta sublineages - AY.43, AY.116 and B.1.617.2 - circulating in same time frame. This is the first documented report of human-associated SARS-CoV-2 infection in a dog in Botswana. Although the direction of transmission remains unknown, this study further affirms the need for monitoring pets during different COVID-19 waves for possible clinically relevant SARS-CoV-2 transmissions between species.
Collapse
Affiliation(s)
- Wonderful T Choga
- Research Laboratory, Botswana Harvard AIDS Institute Partnership Gaborone, Gaborone, Botswana
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, School of Allied Health Professionals, University of Botswana, Gaborone, Botswana
| | | | | | - Irene Gobe
- Faculty of Health Sciences, School of Allied Health Professionals, University of Botswana, Gaborone, Botswana
| | | | - Dorcas Maruapula
- Research Laboratory, Botswana Harvard AIDS Institute Partnership Gaborone, Gaborone, Botswana
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | | | | | - Boitumelo J L Zuze
- Research Laboratory, Botswana Harvard AIDS Institute Partnership Gaborone, Gaborone, Botswana
| | - Legodile Koopile
- Research Laboratory, Botswana Harvard AIDS Institute Partnership Gaborone, Gaborone, Botswana
| | - Kedumetse Seru
- Research Laboratory, Botswana Harvard AIDS Institute Partnership Gaborone, Gaborone, Botswana
| | - Patience Motshosi
- Research Laboratory, Botswana Harvard AIDS Institute Partnership Gaborone, Gaborone, Botswana
| | - Ontlametse Thato Bareng
- Research Laboratory, Botswana Harvard AIDS Institute Partnership Gaborone, Gaborone, Botswana
- Faculty of Health Sciences, School of Allied Health Professionals, University of Botswana, Gaborone, Botswana
| | - Botshelo Radibe
- Research Laboratory, Botswana Harvard AIDS Institute Partnership Gaborone, Gaborone, Botswana
| | | | - Kutlo Macheke
- Health Services Management, Ministry of Health and Wellness, Gaborone, Botswana
| | - Lesego Kuate-Lere
- Health Services Management, Ministry of Health and Wellness, Gaborone, Botswana
| | - Modisa S Motswaledi
- Faculty of Health Sciences, School of Allied Health Professionals, University of Botswana, Gaborone, Botswana
- Presidential COVID-19 Taskforce, Gaborone, Botswana
| | - Mpaphi B Mbulawa
- Health Services Management, National Health Laboratory, Gaborone, Botswana
| | - Mogomotsi Matshaba
- Presidential COVID-19 Taskforce, Gaborone, Botswana
- Botswana-Baylor Children's Clinic Centre of Excellence, Gaborone, Botswana
| | | | - Shahin Lockman
- Research Laboratory, Botswana Harvard AIDS Institute Partnership Gaborone, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Roger Shapiro
- Research Laboratory, Botswana Harvard AIDS Institute Partnership Gaborone, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Joseph Makhema
- Research Laboratory, Botswana Harvard AIDS Institute Partnership Gaborone, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Mosepele Mosepele
- Research Laboratory, Botswana Harvard AIDS Institute Partnership Gaborone, Gaborone, Botswana
- Presidential COVID-19 Taskforce, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Faculty of Medicine, Department of Internal Medicine, University of Botswana, Gaborone, Botswana
| | - Simani Gaseitsiwe
- Research Laboratory, Botswana Harvard AIDS Institute Partnership Gaborone, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Sikhulile Moyo
- Research Laboratory, Botswana Harvard AIDS Institute Partnership Gaborone, Gaborone, Botswana
- Faculty of Health Sciences, School of Allied Health Professionals, University of Botswana, Gaborone, Botswana
- Presidential COVID-19 Taskforce, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
14
|
Gómez-Hernández EA, Moreno-Gómez FN, Bravo-Gaete M, Córdova-Lepe F. Concurrent dilution and amplification effects in an intraguild predation eco-epidemiological model. Sci Rep 2023; 13:6425. [PMID: 37081120 PMCID: PMC10119278 DOI: 10.1038/s41598-023-33345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/12/2023] [Indexed: 04/22/2023] Open
Abstract
The dilution and amplification effects are important concepts in the field of zoonotic diseases. While the dilution effect predicts that pathogen prevalence is negatively correlated with increased species diversity, the opposite trend is observed when the amplification effect occurs. Understanding how interspecific interactions such as predation and competition within a community influence disease transmission is highly relevant. We explore the conditions under which the dilution and amplification effects arise, using compartmental models that integrate ecological and epidemiological interactions. We formulate an intraguild predation model where each species is divided into two compartments: susceptible and infected individuals. We obtained that increasing predation increases the disease transmission potential of the predator and the density of infected individuals, but decreases the disease transmission potential of the prey, as well as their density. Also, we found that interspecific competition always helps to decrease the number of infected individuals in the population of the two species. Therefore, dilution and amplification effects can be observed simultaneously but depending on different types of cological interactions.
Collapse
Affiliation(s)
- Enith A Gómez-Hernández
- Doctorado en Modelamiento Matemático Aplicado, Universidad Católica del Maule, Talca, Chile.
| | - Felipe N Moreno-Gómez
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Moisés Bravo-Gaete
- Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Fernando Córdova-Lepe
- Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
15
|
Santaniello A, Perruolo G, Cristiano S, Agognon AL, Cabaro S, Amato A, Dipineto L, Borrelli L, Formisano P, Fioretti A, Oriente F. SARS-CoV-2 Affects Both Humans and Animals: What Is the Potential Transmission Risk? A Literature Review. Microorganisms 2023; 11:microorganisms11020514. [PMID: 36838479 PMCID: PMC9959838 DOI: 10.3390/microorganisms11020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In March 2020, the World Health Organization Department declared the coronavirus (COVID-19) outbreak a global pandemic, as a consequence of its rapid spread on all continents. The COVID-19 pandemic has been not only a health emergency but also a serious general problem as fear of contagion and severe restrictions put economic and social activity on hold in many countries. Considering the close link between human and animal health, COVID-19 might infect wild and companion animals, and spawn dangerous viral mutants that could jump back and pose an ulterior threat to us. The purpose of this review is to provide an overview of the pandemic, with a particular focus on the clinical manifestations in humans and animals, the different diagnosis methods, the potential transmission risks, and their potential direct impact on the human-animal relationship.
Collapse
Affiliation(s)
- Antonio Santaniello
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
- Correspondence: (A.S.); (S.C.); Tel.: +39-081-253-6134 (A.S.)
| | - Giuseppe Perruolo
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Serena Cristiano
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
- Correspondence: (A.S.); (S.C.); Tel.: +39-081-253-6134 (A.S.)
| | - Ayewa Lawoe Agognon
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Serena Cabaro
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Alessia Amato
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Ludovico Dipineto
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Luca Borrelli
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Alessandro Fioretti
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Francesco Oriente
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| |
Collapse
|
16
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Velarde A, Viltrop A, Winckler C, Adlhoch C, Aznar I, Baldinelli F, Boklund A, Broglia A, Gerhards N, Mur L, Nannapaneni P, Ståhl K. SARS-CoV-2 in animals: susceptibility of animal species, risk for animal and public health, monitoring, prevention and control. EFSA J 2023; 21:e07822. [PMID: 36860662 PMCID: PMC9968901 DOI: 10.2903/j.efsa.2023.7822] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The epidemiological situation of SARS-CoV-2 in humans and animals is continually evolving. To date, animal species known to transmit SARS-CoV-2 are American mink, raccoon dog, cat, ferret, hamster, house mouse, Egyptian fruit bat, deer mouse and white-tailed deer. Among farmed animals, American mink have the highest likelihood to become infected from humans or animals and further transmit SARS-CoV-2. In the EU, 44 outbreaks were reported in 2021 in mink farms in seven MSs, while only six in 2022 in two MSs, thus representing a decreasing trend. The introduction of SARS-CoV-2 into mink farms is usually via infected humans; this can be controlled by systematically testing people entering farms and adequate biosecurity. The current most appropriate monitoring approach for mink is the outbreak confirmation based on suspicion, testing dead or clinically sick animals in case of increased mortality or positive farm personnel and the genomic surveillance of virus variants. The genomic analysis of SARS-CoV-2 showed mink-specific clusters with a potential to spill back into the human population. Among companion animals, cats, ferrets and hamsters are those at highest risk of SARS-CoV-2 infection, which most likely originates from an infected human, and which has no or very low impact on virus circulation in the human population. Among wild animals (including zoo animals), mostly carnivores, great apes and white-tailed deer have been reported to be naturally infected by SARS-CoV-2. In the EU, no cases of infected wildlife have been reported so far. Proper disposal of human waste is advised to reduce the risks of spill-over of SARS-CoV-2 to wildlife. Furthermore, contact with wildlife, especially if sick or dead, should be minimised. No specific monitoring for wildlife is recommended apart from testing hunter-harvested animals with clinical signs or found-dead. Bats should be monitored as a natural host of many coronaviruses.
Collapse
|
17
|
Porter AF, Purcell DFJ, Howden BP, Duchene S. Evolutionary rate of SARS-CoV-2 increases during zoonotic infection of farmed mink. Virus Evol 2023; 9:vead002. [PMID: 36751428 PMCID: PMC9896948 DOI: 10.1093/ve/vead002] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/11/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
To investigate genetic signatures of adaptation to the mink host, we characterised the evolutionary rate heterogeneity in mink-associated severe acute respiratory syndrome coronaviruses (SARS-CoV-2). In 2020, the first detected anthropozoonotic spillover event of SARS-CoV-2 occurred in mink farms throughout Europe and North America. Both spill-back of mink-associated lineages into the human population and the spread into the surrounding wildlife were reported, highlighting the potential formation of a zoonotic reservoir. Our findings suggest that the evolutionary rate of SARS-CoV-2 underwent an episodic increase upon introduction into the mink host before returning to the normal range observed in humans. Furthermore, SARS-CoV-2 lineages could have circulated in the mink population for a month before detection, and during this period, evolutionary rate estimates were between 3 × 10-3 and 1.05 × 10-2 (95 per cent HPD, with a mean rate of 6.59 × 10-3) a four- to thirteen-fold increase compared to that in humans. As there is evidence for unique mutational patterns within mink-associated lineages, we explored the emergence of four mink-specific Spike protein amino acid substitutions Y453F, S1147L, F486L, and Q314K. We found that mutation Y453F emerged early in multiple mink outbreaks and that mutations F486L and Q314K may co-occur. We suggest that SARS-CoV-2 undergoes a brief, but considerable, increase in evolutionary rate in response to greater selective pressures during species jumps, which may lead to the occurrence of mink-specific mutations. These findings emphasise the necessity of ongoing surveillance of zoonotic SARS-CoV-2 infections in the future.
Collapse
Affiliation(s)
- Ashleigh F Porter
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sebastian Duchene
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
18
|
Boyd E, Coombe M, Prystajecky N, Caleta JM, Sekirov I, Tyson J, Himsworth C. Hands off the Mink! Using Environmental Sampling for SARS-CoV-2 Surveillance in American Mink. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1248. [PMID: 36674005 PMCID: PMC9858792 DOI: 10.3390/ijerph20021248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Throughout the COVID-19 pandemic, numerous non-human species were shown to be susceptible to natural infection by SARS-CoV-2, including farmed American mink. Once infected, American mink can transfer the virus from mink to human and mink to mink, resulting in a high rate of viral mutation. Therefore, outbreak surveillance on American mink farms is imperative for both mink and human health. Historically, disease surveillance on mink farms has consisted of a combination of mortality and live animal sampling; however, these methodologies have significant limitations. This study compared PCR testing of both deceased and live animal samples to environmental samples on an active outbreak premise, to determine the utility of environmental sampling. Environmental sampling mirrored trends in both deceased and live animal sampling in terms of percent positivity and appeared more sensitive in some low-prevalence instances. PCR CT values of environmental samples were significantly different from live animal samples' CT values and were consistently high (mean CT = 36.2), likely indicating a low amount of viral RNA in the samples. There is compelling evidence in favour of environmental sampling for the purpose of disease surveillance, specifically as an early warning tool for SARS-CoV-2; however, further work is needed to ultimately determine whether environmental samples are viable sources for molecular epidemiology investigations.
Collapse
Affiliation(s)
- Ellen Boyd
- Ministry of Agriculture and Food, Government of British Columbia, Abbotsford, BC V3G 2M3, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michelle Coombe
- Ministry of Agriculture and Food, Government of British Columbia, Abbotsford, BC V3G 2M3, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Natalie Prystajecky
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- BC Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | | | - Inna Sekirov
- BC Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - John Tyson
- BC Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - Chelsea Himsworth
- Ministry of Agriculture and Food, Government of British Columbia, Abbotsford, BC V3G 2M3, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
19
|
Pharmaceutics for free-ranging wildlife: Case studies to illustrate considerations and future prospects. Int J Pharm 2022; 628:122284. [DOI: 10.1016/j.ijpharm.2022.122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022]
|
20
|
Villanueva-Saz S, Martínez M, Giner J, González A, Tobajas AP, Pérez MD, Lira-Navarrete E, González-Ramírez AM, Macías-León J, Verde M, Yzuel A, Hurtado-Guerrero R, Arias M, Santiago L, Aguiló-Gisbert J, Ruíz H, Lacasta D, Marteles D, Fernández A. A cross-sectional serosurvey of SARS-CoV-2 and co-infections in stray cats from the second wave to the sixth wave of COVID-19 outbreaks in Spain. Vet Res Commun 2022; 47:615-629. [PMID: 36229725 PMCID: PMC9560875 DOI: 10.1007/s11259-022-10016-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 is the causative agent of Coronavirus Disease 2019 in humans. Among domestic animals, cats are more susceptible to SARS-CoV-2 than dogs. The detection of anti-SARS-CoV-2 antibodies in seemingly healthy cats and/or infected cats which are in close contact with infected humans has been described. The presence of animals that tested positive by serology or molecular techniques could represent a potential transmission pathway of SARS-CoV-2 that can spill over into urban wildlife. This study analyses the seroprevalence variation of SARS-CoV-2 in stray cats from different waves of outbreaks in a geographical area where previous seroepidemiological information of SARS-CoV-2 was available and investigate if SARS-CoV-2-seropositive cats were exposed to other co-infections causing an immunosuppressive status and/or a chronic disease that could lead to a SARS-CoV-2 susceptibility. For this purpose, a total of 254 stray cats from Zaragoza (Spain) were included. This analysis was carried out by the enzyme-linked immunosorbent assay using the receptor binding domain of Spike antigen and confirmed by serum virus neutralization assay. The presence of co-infections including Toxoplasma gondii, Leishmania infantum, Dirofilaria immitis, feline calicivirus, feline herpesvirus type 1, feline leukemia virus and feline immunodeficiency virus, was evaluated using different serological methods. A seropositivity of 1.57% was observed for SARS-CoV-2 including the presence of neutralizing antibodies in three cats. None of the seropositive to SARS-CoV-2 cats were positive to feline coronavirus, however, four SARS-CoV-2-seropositive cats were also seropositive to other pathogens such as L. infantum, D. immitis and FIV (n = 1), L. infantum and D. immitis (n = 1) and L. infantum alone (n = 1).Considering other pathogens, a seroprevalence of 16.54% was detected for L. infantum, 30.31% for D. immitis, 13.78%, for T. gondii, 83.86% for feline calicivirus, 42.52% for feline herpesvirus type 1, 3.15% for FeLV and 7.87% for FIV. Our findings suggest that the epidemiological role of stray cats in SARS-CoV-2 transmission is scarce, and there is no increase in seropositivity during the different waves of COVID-19 outbreaks in this group of animals. Further epidemiological surveillances are necessary to determine the risk that other animals might possess even though stray cats do not seem to play a role in transmission.
Collapse
Affiliation(s)
- Sergio Villanueva-Saz
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain. .,Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain. .,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| | - Mariví Martínez
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain.,Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Jacobo Giner
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain.,Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Ana González
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain.,Veterinary Teaching Hospital of the University of Zaragoza, Zaragoza, Spain
| | - Ana Pilar Tobajas
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.,Department of Animal Production and Sciences of the Food, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - María Dolores Pérez
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.,Department of Animal Production and Sciences of the Food, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Erandi Lira-Navarrete
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain
| | - Andrés Manuel González-Ramírez
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain
| | - Javier Macías-León
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain
| | - Maite Verde
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.,Veterinary Teaching Hospital of the University of Zaragoza, Zaragoza, Spain
| | - Andrés Yzuel
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain
| | - Ramón Hurtado-Guerrero
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain.,Aragon I+D Foundation (ARAID), Zaragoza, Spain.,Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain.,, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Maykel Arias
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Llipsy Santiago
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Aguiló-Gisbert
- Servicio de Análisis, Investigación, Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, Valencia, Spain
| | - Héctor Ruíz
- Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Delia Lacasta
- Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Diana Marteles
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain
| | - Antonio Fernández
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain. .,Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain. .,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| |
Collapse
|
21
|
Valleriani F, Jurisic L, Di Pancrazio C, Irelli R, Ciarrocchi E, Martino M, Cocco A, Di Felice E, Colaianni ML, Decaro N, Bonfini B, Lorusso A, Di Teodoro G. A Deletion Encompassing the Furin Cleavage Site in the Spike Encoding Gene Does Not Alter SARS-CoV-2 Replication in Lung Tissues of Mink and Neutralization by Convalescent Human Serum Samples. Pathogens 2022; 11:1152. [PMID: 36297209 PMCID: PMC9609486 DOI: 10.3390/pathogens11101152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023] Open
Abstract
SARS-CoV-2 has been shown to lose the furin polybasic cleavage site (FCS) following adaptation on cell culture. Deletion occurring in this region, which may include also the FCS flanking regions, seem not to affect virus replication in vitro; however, a chimeric SARS-CoV-2 virus without the sole FCS motif has been associated with lower virulence in mice and lower neutralization values. Moreover, SARS-CoV-2 virus lacking the FCS was shed to lower titers from experimentally infected ferrets and was not transmitted to cohoused sentinel animals, unlike wild-type virus. In this study, we investigated the replication kinetics and cellular tropism of a SARS-CoV-2 isolate carrying a 10-amino acid deletion in the spike protein spanning the FCS in lung ex vivo organ cultures of mink. Furthermore, we tested the neutralization capabilities of human convalescent SARS-CoV-2 positive serum samples against this virus. We showed that this deletion did not significantly hamper neither ex vivo replication nor neutralization activity by convalescent serum samples. This study highlights the importance of the preliminary phenotypic characterization of emerging viruses in ex vivo models and demonstrates that mink lung tissues are permissive to the replication of a mutant form of SARS-CoV-2 showing a deletion spanning the FCS. Notably, we also highlight the need for sequencing viral stocks before any infection study as large deletions may occur leading to the misinterpretation of results.
Collapse
Affiliation(s)
- Fabrizia Valleriani
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | - Lucija Jurisic
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | - Roberta Irelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | - Eugenia Ciarrocchi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | - Michele Martino
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | - Antonio Cocco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | - Elisabetta Di Felice
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | | | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, 70010 Bari, Italy
| | - Barbara Bonfini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| |
Collapse
|
22
|
Ramanujam H, Palaniyandi K. COVID-19 in animals: A need for One Health approach. Indian J Med Microbiol 2022; 40:485-491. [PMID: 35927142 PMCID: PMC9340561 DOI: 10.1016/j.ijmmb.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND SARS-CoV-2 has been identified as the cause of the COVID-19, which caused a global pandemic. It is a pathogen that causes respiratory disease and can easily navigate the interspecies barrier. A significant number of COVID-19 cases in animals have been reported worldwide, including but not limited to animals in farms, captivity, and household pets. Thus, assessing the affected population and anticipating 'at risk' population becomes essential. OBJECTIVES This article aims to emphasize the zoonotic potential of SARS- CoV-2 and discuss the One Health aspects of the disease. CONTENT This is a narrative review of recently published studies on animals infected with SARS-CoV-2, both experimental and natural. The elucidation of the mechanism of infection by binding SARS-CoV-2 spike protein to the ACE-2 receptor cells in humans has led to bioinformatic analysis that has identified a few other susceptible species in silico. While infections in animals have been extensively reported, no intermediary host has yet been identified for this disease. The articles collected in this review have been grouped into four categories; experimental inoculations, infection in wild animals, infection in farm animals and infection in pet animals, along with a review of literature in each category. The risk of infection transmission between humans and animals and vice versa and the importance of the One Health approach has been discussed at length in this article.
Collapse
Affiliation(s)
- Harini Ramanujam
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India.
| |
Collapse
|
23
|
Allender MC, Adkesson MJ, Langan JN, Delk KW, Meehan T, Aitken‐Palmer C, McEntire MM, Killian ML, Torchetti M, Morales SA, Austin C, Fredrickson R, Olmstead C, Ke R, Smith R, Hostnik ET, Terio K, Wang L. Multi-species outbreak of SARS-CoV-2 Delta variant in a zoological institution, with the detection in two new families of carnivores. Transbound Emerg Dis 2022; 69:e3060-e3075. [PMID: 35839756 PMCID: PMC9349917 DOI: 10.1111/tbed.14662] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a worldwide distribution in humans and many other mammalian species. In late September 2021, 12 animals maintained by the Chicago Zoological Society's Brookfield Zoo were observed with variable clinical signs. The Delta variant of SARS-CoV-2 was detected in faeces and nasal swabs by qRT-PCR, including the first detection in animals from the families Procyonidae and Viverridae. Test positivity rate was 12.5% for 35 animals tested. All animals had been vaccinated with at least one dose of a recombinant vaccine designed for animals and all recovered with variable supportive treatment. Sequence analysis showed that six zoo animal strains were closely correlated with 18 human SARS-CoV-2 strains, suggestive of potential human-to-animal transmission events. This report documents the expanding host range of COVID-19 during the ongoing pandemic.
Collapse
Affiliation(s)
- Matthew C. Allender
- Brookfield ZooChicago Zoological SocietyBrookfieldIllinoisUSA
- Veterinary Diagnostic LabUniversity of Illinois Wildlife Epidemiology LaboratoryUrbanaIllinoisUSA
| | | | - Jennifer N. Langan
- Brookfield ZooChicago Zoological SocietyBrookfieldIllinoisUSA
- Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of IllinoisUrbanaIllinoisUSA
| | - Katie W. Delk
- Brookfield ZooChicago Zoological SocietyBrookfieldIllinoisUSA
| | - Thomas Meehan
- Brookfield ZooChicago Zoological SocietyBrookfieldIllinoisUSA
| | | | - Michael M. McEntire
- Illinois Zoological and Aquatic Animal ResidencyUniversity of IllinoisUrbanaIllinoisUSA
| | - Mary L. Killian
- National Veterinary Services Laboratories, Animal and Plant Health Inspection ServiceUnited States Department of AgricultureAmesIowaUSA
| | - Mia Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection ServiceUnited States Department of AgricultureAmesIowaUSA
| | | | - Connie Austin
- Illinois Department of Public HealthSpringfieldIllinoisUSA
| | - Richard Fredrickson
- Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of IllinoisUrbanaIllinoisUSA
| | - Colleen Olmstead
- Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of IllinoisUrbanaIllinoisUSA
| | - Ruian Ke
- T‐6, Theoretical Biology and Biophysics, T DivisionLos Alamos National LaboratoryLos AlamosNew MexicoUSA
| | - Rebecca Smith
- Department of PathobiologyUniversity of Illinois at Urbana–ChampaignUrbanaIllinoisUSA
| | - Eric T. Hostnik
- Brookfield ZooChicago Zoological SocietyBrookfieldIllinoisUSA
- Department of Veterinary Clinical SciencesOhio State UniversityColumbusOhioUSA
| | - Karen Terio
- Zoological Pathology Program, College of Veterinary MedicineUniversity of IllinoisBrookfieldIllinoisUSA
| | - Leyi Wang
- Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of IllinoisUrbanaIllinoisUSA
| |
Collapse
|
24
|
Yee J, Carpenter A, Nham P, Halley B, Van Rompay KKA, Roberts J. Developing and validating SARS-CoV-2 assays for nonhuman primate surveillance. J Med Primatol 2022; 51:264-269. [PMID: 35794847 PMCID: PMC9350325 DOI: 10.1111/jmp.12604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
Introduction In early 2020, the California National Primate Research Center implemented surveillance to address the threat of SARS‐CoV‐2 infection in its nonhuman primate colony. Materials/Methods To detect antiviral antibodies, multi‐antigen assays were developed and validated on enzyme immunoassay and multiplex microbead immunofluorescent assay (MMIA) platforms. To detect viral RNA, RT‐PCR was also performed. Results/Conclusion Using a 4plex, antibody was identified in 16/16 experimentally infected animals; and specificity for spike, nucleocapsid, receptor binding domain, and whole virus antigens was 95.2%, 93.8%, 94.3%, and 97.1%, respectively on surveillance samples. Six laboratories compared this MMIA favorably with nine additional laboratory‐developed or commercially available assays. Using a screen and confirm algorithm, 141 of the last 2441 surveillance samples were screen‐reactive requiring confirmatory testing. Although 35 samples were reactive to either nucleocapsid or spike; none were reactive to both. Over 20 000 animals have been tested and no spontaneous infections have so far been confirmed across the NIH sponsored National Primate Research Centers.
Collapse
Affiliation(s)
- JoAnn Yee
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Amanda Carpenter
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Peter Nham
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Bryson Halley
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Koen K A Van Rompay
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California, USA.,Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Jeffrey Roberts
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California, USA.,Department Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
25
|
Jones S, Bell T, Coleman CM, Harris D, Woodward G, Worledge L, Roberts H, McElhinney L, Aegerter J, Ransome E, Savolainen V. Testing bats in rehabilitation for SARS-CoV-2 before release into the wild. CONSERVATION SCIENCE AND PRACTICE 2022; 4:e12707. [PMID: 35935171 PMCID: PMC9347622 DOI: 10.1111/csp2.12707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Abstract
Several studies have suggested SARS-CoV-2 originated from a viral ancestor in bats, but whether transmission occurred directly or via an intermediary host to humans remains unknown. Concerns of spillover of SARS-CoV-2 into wild bat populations are hindering bat rehabilitation and conservation efforts in the United Kingdom and elsewhere. Current protocols state that animals cared for by individuals who have tested positive for SARS-CoV-2 cannot be released into the wild and must be isolated to reduce the risk of transmission to wild populations. Here, we propose a reverse transcription-quantitative polymerase chain reaction (RT-qPCR)-based protocol for detection of SARS-CoV-2 in bats, using fecal sampling. Bats from the United Kingdom were tested following suspected exposure to SARS-CoV-2 and tested negative for the virus. With current UK and international legislation, the identification of SARS-CoV-2 infection in wild animals is becoming increasingly important, and protocols such as the one developed here will help improve understanding and mitigation of SARS-CoV-2 in the future.
Collapse
Affiliation(s)
- Scott Jones
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonLondonUK
| | - Thomas Bell
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonLondonUK
| | | | - Danielle Harris
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonLondonUK
| | - Guy Woodward
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonLondonUK
| | - Lisa Worledge
- Bat Conservation Trust, Cloisters Business CentreLondonUK
| | - Helen Roberts
- Department for EnvironmentFood & Rural Affairs (Defra)LondonUK
| | | | - James Aegerter
- National Wildlife Management CentreAnimal and Plant Health AgencyYorkUK
| | - Emma Ransome
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonLondonUK
| | - Vincent Savolainen
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonLondonUK
| |
Collapse
|
26
|
Li M, Chen J, Liu Y, Zhao J, Li Y, Hu Y, Chen YQ, Sun L, Shu Y, Feng F, Sun C. Rational design of AAVrh10-vectored ACE2 functional domain to broadly block the cell entry of SARS-CoV-2 variants. Antiviral Res 2022; 205:105383. [PMID: 35917969 PMCID: PMC9338828 DOI: 10.1016/j.antiviral.2022.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022]
Abstract
The frequently emerging SARS-CoV-2 variants have weakened the effectiveness of existing COVID-19 vaccines and neutralizing antibody therapy. Nevertheless, the infections of SARS-CoV-2 variants still depend on angiotensin-converting enzyme 2 (ACE2) receptor-mediated cell entry, and thus the soluble human ACE2 (shACE2) is a potential decoy for broadly blocking SARS-CoV-2 variants. In this study, we firstly generated the recombinant AAVrh10-vectored shACE2 constructs, a kind of adeno-associated virus (AAV) serotype with pulmonary tissue tropism, and then validated its inhibition capacity against SARS-CoV-2 infection. To further optimize the minimized ACE2 functional domain candidates, a comprehensive analysis was performed to clarify the interactions between the ACE2 orthologs from various species and the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein. Based on the key interface amino acids, we designed a series of truncated ACE2 orthologs, and then assessed their potential affinity to bind to SARS-CoV-2 variants RBD in silico. Of note, we found that the 24-83aa fragment of dog ACE2 (dACE224-83) had a higher affinity to the RBD of SARS-CoV-2 variants than that of human ACE2. Importantly, AAVrh10-vectored shACE2 or dACE224-83 constructs exhibited a broadly blockage breadth against SARS-CoV-2 prototype and variants in vitro and ex vivo. Collectively, these data highlighted a promising therapeutic strategy against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiaoshan Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yajie Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yanjun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yunqi Hu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, PR China.
| | - Fengling Feng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
27
|
Sun C, Xie C, Bu GL, Zhong LY, Zeng MS. Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants. Signal Transduct Target Ther 2022; 7:202. [PMID: 35764603 PMCID: PMC9240077 DOI: 10.1038/s41392-022-01039-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 01/18/2023] Open
Abstract
The persistent COVID-19 pandemic since 2020 has brought an enormous public health burden to the global society and is accompanied by various evolution of the virus genome. The consistently emerging SARS-CoV-2 variants harboring critical mutations impact the molecular characteristics of viral proteins and display heterogeneous behaviors in immune evasion, transmissibility, and the clinical manifestation during infection, which differ each strain and endow them with distinguished features during populational spread. Several SARS-CoV-2 variants, identified as Variants of Concern (VOC) by the World Health Organization, challenged global efforts on COVID-19 control due to the rapid worldwide spread and enhanced immune evasion from current antibodies and vaccines. Moreover, the recent Omicron variant even exacerbated the global anxiety in the continuous pandemic. Its significant evasion from current medical treatment and disease control even highlights the necessity of combinatory investigation of the mutational pattern and influence of the mutations on viral dynamics against populational immunity, which would greatly facilitate drug and vaccine development and benefit the global public health policymaking. Hence in this review, we summarized the molecular characteristics, immune evasion, and impacts of the SARS-CoV-2 variants and focused on the parallel comparison of different variants in mutational profile, transmissibility and tropism alteration, treatment effectiveness, and clinical manifestations, in order to provide a comprehensive landscape for SARS-CoV-2 variant research.
Collapse
Affiliation(s)
- Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China. .,Guangdong-Hong Kong Joint Laboratory for RNA Medicine, 510060, Guangzhou, China.
| |
Collapse
|
28
|
Zhao S, Fan J, Liu E. Animal Models for COVID-19 Therapeutic Development: Where We Are and Where We Need to Go. Front Microbiol 2022; 13:907406. [PMID: 35814648 PMCID: PMC9263605 DOI: 10.3389/fmicb.2022.907406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sihai Zhao
- Laboratory Animal Center, Health Science Center of Xi'an Jiaotong University, Xi'an, China
- Institute of Molecular Virology, Health Science Center of Xi'an Jiaotong University, Xi'an, China
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Chuo, Japan
| | - Enqi Liu
- Laboratory Animal Center, Health Science Center of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Enqi Liu
| |
Collapse
|
29
|
Li Z, Wang A, Zhou J, Chen Y, Liu H, Liu Y, Zhang Y, Ding P, Zhu X, Liang C, Qi Y, Liu E, Zhang G. A Universal Fluorescent Immunochromatography Assay Based on Quantum Dot Nanoparticles for the Rapid Detection of Specific Antibodies against SARS-CoV-2 Nucleocapsid Protein. Int J Mol Sci 2022; 23:ijms23116225. [PMID: 35682904 PMCID: PMC9180975 DOI: 10.3390/ijms23116225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the pathogenic agent leading to COVID-19. Due to high speed of transmission and mutation rates, universal diagnosis and appropriate prevention are still urgently needed. The nucleocapsid protein of SARS-CoV-2 is considered more conserved than spike proteins and is abundant during the virus’ life cycle, making it suitable for diagnostic applications. Here, we designed and developed a fluorescent immunochromatography assay (FICA) for the rapid detection of SARS-CoV-2-specific antibodies using ZnCdSe/ZnS QDs-conjugated nucleocapsid (N) proteins as probes. The nucleocapsid protein was expressed in E.coli and purified via Ni-NTA affinity chromatography with considerable concentration (0.762 mg/mL) and a purity of more than 90%, which could bind to specific antibodies and the complex could be captured by Staphylococcal protein A (SPA) with fluorescence displayed. After the optimization of coupling and detecting conditions, the limit of detection was determined to be 1:1.024 × 105 with an IgG concentration of 48.84 ng/mL with good specificity shown to antibodies against other zoonotic coronaviruses and respiratory infection-related viruses (n = 5). The universal fluorescent immunochromatography assay simplified operation processes in one step, which could be used for the point of care detection of SARS-CoV-2-specific antibodies. Moreover, it was also considered as an efficient tool for the serological screening of potential susceptible animals and for monitoring the expansion of virus host ranges.
Collapse
Affiliation(s)
- Zehui Li
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Aiping Wang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Jingming Zhou
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Yumei Chen
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Hongliang Liu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Yankai Liu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Ying Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Peiyang Ding
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Xifang Zhu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Chao Liang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Yanhua Qi
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Enping Liu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
| | - Gaiping Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China; (Z.L.); (A.W.); (J.Z.); (Y.C.); (H.L.); (Y.L.); (Y.Z.); (P.D.); (X.Z.); (C.L.); (Y.Q.); (E.L.)
- School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou 450000, China
- Correspondence: ; Tel.: +86-371-6355-0369
| |
Collapse
|
30
|
Khandia R, Singhal S, Alqahtani T, Kamal MA, El-Shall NA, Nainu F, Desingu PA, Dhama K. Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic. ENVIRONMENTAL RESEARCH 2022; 209:112816. [PMID: 35093310 PMCID: PMC8798788 DOI: 10.1016/j.envres.2022.112816] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/05/2023]
Abstract
Since the appearance in the late of December 2019, SARS-CoV-2 is rapidly evolving and mutating continuously, giving rise to various variants with variable degrees of infectivity and lethality. The virus that initially appeared in China later mutated several times, wreaking havoc and claiming many lives worldwide amid the ongoing COVID-19 pandemic. After Alpha, Beta, Gamma, and Delta variants, the most recently emerged variant of concern (VOC) is the Omicron (B.1.1.529) that has evolved due to the accumulation of high numbers of mutations especially in the spike protein, raising concerns for its ability to evade from pre-existing immunity acquired through vaccination or natural infection as well as overpowering antibodies-based therapies. Several theories are on the surface to explain how the Omicron has gathered such a high number of mutations within less time. Few of them are higher mutation rates within a subgroup of population and then its introduction to a larger population, long term persistence and evolution of the virus in immune-compromised patients, and epizootic infection in animals from humans, where under different immune pressures the virus mutated and then got reintroduced to humans. Multifaceted approach including rapid diagnosis, genome analysis of emerging variants, ramping up of vaccination drives and receiving booster doses, efficacy testing of vaccines and immunotherapies against newly emerged variants, updating the available vaccines, designing of multivalent vaccines able to generate hybrid immunity, up-gradation of medical facilities and strict implementation of adequate prevention and control measures need to be given high priority to handle the on-going SARS-CoV-2 pandemic successfully.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462026, MP, India.
| | - Shailja Singhal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462026, MP, India
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, 62529, Abha, Saudi Arabia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh; Enzymoics, 7 Peterlee place, Hebersham, NSW, 2770, Novel Global Community Educational Foundation, Australia
| | - Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, 22758, Egypt
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Perumal Arumugam Desingu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, 560012, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| |
Collapse
|
31
|
Siqueira PC, Cola JP, Comerio T, Sales CMM, Maciel EL. Herd immunity threshold for SARS-CoV-2 and vaccination effectiveness in Brazil. J Bras Pneumol 2022; 48:e20210401. [PMID: 35649044 PMCID: PMC8836627 DOI: 10.36416/1806-3756/e20210401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Priscila C Siqueira
- . Programa de Pós Graduação em Saúde Coletiva, Universidade Federal do Espírito Santo, Vitória (ES), Brasil.,. Laboratório de Epidemiologia, Universidade Federal do Espirito Santo, Vitória (ES), Brasil
| | - João P Cola
- . Programa de Pós Graduação em Saúde Coletiva, Universidade Federal do Espírito Santo, Vitória (ES), Brasil.,. Laboratório de Epidemiologia, Universidade Federal do Espirito Santo, Vitória (ES), Brasil
| | - Tatiane Comerio
- . Laboratório de Epidemiologia, Universidade Federal do Espirito Santo, Vitória (ES), Brasil.,. Prefeitura Municipal de Vitória, Secretaria Municipal de Saúde, Vitória (ES), Brasil
| | - Carolina M M Sales
- . Programa de Pós Graduação em Saúde Coletiva, Universidade Federal do Espírito Santo, Vitória (ES), Brasil.,. Laboratório de Epidemiologia, Universidade Federal do Espirito Santo, Vitória (ES), Brasil
| | - Ethel L Maciel
- . Programa de Pós Graduação em Saúde Coletiva, Universidade Federal do Espírito Santo, Vitória (ES), Brasil.,. Laboratório de Epidemiologia, Universidade Federal do Espirito Santo, Vitória (ES), Brasil
| |
Collapse
|
32
|
Doliff R, Martens P. Cats and SARS-CoV-2: A Scoping Review. Animals (Basel) 2022; 12:1413. [PMID: 35681877 PMCID: PMC9179433 DOI: 10.3390/ani12111413] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Since the beginning of the COVID-19 pandemic, various animal species were found to be susceptible to SARS-CoV-2 infection. The close contact that exists between humans and cats warrants special attention to the role of this species. Therefore, a scoping review was performed to obtain a comprehensive overview of the existing literature, and to map key concepts, types of research, and possible gaps in the research. A systematic search of the databases PubMed, Google Scholar, and Scopus and the preprint servers medRxiv and bioRxiv was performed. After a two-step screening process, 27 peer-reviewed articles, 8 scientific communication items, and 2 unpublished pre-prints were included. The main themes discussed were susceptibility to SARS-CoV-2, induced immunity, prevalence of infection, manifestation of infection, interspecies transmission between humans and cats, and lastly, intraspecies transmission between cats. The main gaps in the research identified were a lack of large-scale studies, underrepresentation of stray, feral, and shelter cat populations, lack of investigation into cat-to-cat transmissions under non-experimental conditions, and the relation of cats to other animal species regarding SARS-CoV-2. Overall, cats seemingly play a limited role in the spread of SARS-CoV-2. While cats are susceptible to the virus and reverse zoonotic transmission from humans to cats happens regularly, there is currently no evidence of SARS-CoV-2 circulation among cats.
Collapse
Affiliation(s)
| | - Pim Martens
- University College Venlo, Maastricht University, Nassaustraat 36, 5911 BV Venlo, The Netherlands;
| |
Collapse
|
33
|
Zhang XX, Liu JS, Han LF, Xia S, Li SZ, Li OY, Kassegne K, Li M, Yin K, Hu QQ, Xiu LS, Zhu YZ, Huang LY, Wang XC, Zhang Y, Zhao HQ, Yin JX, Jiang TG, Li Q, Fei SW, Gu SY, Chen FM, Zhou N, Cheng ZL, Xie Y, Li HM, Chen J, Guo ZY, Feng JX, Ai L, Xue JB, Ye Q, Grant L, Song JX, Simm G, Utzinger J, Guo XK, Zhou XN. Towards a global One Health index: a potential assessment tool for One Health performance. Infect Dis Poverty 2022; 11:57. [PMID: 35599310 PMCID: PMC9124287 DOI: 10.1186/s40249-022-00979-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/25/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A One Health approach has been increasingly mainstreamed by the international community, as it provides for holistic thinking in recognizing the close links and inter-dependence of the health of humans, animals and the environment. However, the dearth of real-world evidence has hampered application of a One Health approach in shaping policies and practice. This study proposes the development of a potential evaluation tool for One Health performance, in order to contribute to the scientific measurement of One Health approach and the identification of gaps where One Health capacity building is most urgently needed. METHODS We describe five steps towards a global One Health index (GOHI), including (i) framework formulation; (ii) indicator selection; (iii) database building; (iv) weight determination; and (v) GOHI scores calculation. A cell-like framework for GOHI is proposed, which comprises an external drivers index (EDI), an intrinsic drivers index (IDI) and a core drivers index (CDI). We construct the indicator scheme for GOHI based on this framework after multiple rounds of panel discussions with our expert advisory committee. A fuzzy analytical hierarchy process is adopted to determine the weights for each of the indicators. RESULTS The weighted indicator scheme of GOHI comprises three first-level indicators, 13 second-level indicators, and 57 third-level indicators. According to the pilot analysis based on the data from more than 200 countries/territories the GOHI scores overall are far from ideal (the highest score of 65.0 out of a maximum score of 100), and we found considerable variations among different countries/territories (31.8-65.0). The results from the pilot analysis are consistent with the results from a literature review, which suggests that a GOHI as a potential tool for the assessment of One Health performance might be feasible. CONCLUSIONS GOHI-subject to rigorous validation-would represent the world's first evaluation tool that constructs the conceptual framework from a holistic perspective of One Health. Future application of GOHI might promote a common understanding of a strong One Health approach and provide reference for promoting effective measures to strengthen One Health capacity building. With further adaptations under various scenarios, GOHI, along with its technical protocols and databases, will be updated regularly to address current technical limitations, and capture new knowledge.
Collapse
Affiliation(s)
- Xiao-Xi Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Jing-Shu Liu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Le-Fei Han
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Shang Xia
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
| | - Shi-Zhu Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
| | - Odel Y Li
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
- Shanghai Legislative Research Institute, Shanghai, People's Republic of China
| | - Kokouvi Kassegne
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Min Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Kun Yin
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Qin-Qin Hu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Le-Shan Xiu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Yong-Zhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Liang-Yu Huang
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
| | - Xiang-Cheng Wang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Yi Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
| | - Han-Qing Zhao
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Jing-Xian Yin
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Tian-Ge Jiang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Qin Li
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
| | - Si-Wei Fei
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Si-Yu Gu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Fu-Min Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Nan Zhou
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Zi-Le Cheng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Yi Xie
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Hui-Min Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Jin Chen
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
| | - Zhao-Yu Guo
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
| | - Jia-Xin Feng
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
| | - Lin Ai
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
| | - Jing-Bo Xue
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
| | - Qian Ye
- Zhuhai Branch, ESPRE, Beijing Normal University Zhuhai Campus, Zhuhai, Guangdong, People's Republic of China
| | - Liz Grant
- Global Health Academy, The University of Edinburgh, Edinburgh, UK
| | - Jun-Xia Song
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Geoff Simm
- Global Academy of Agriculture and Food Systems, The University of Edinburgh, Edinburgh, UK
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Xiao-Kui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Xiao-Nong Zhou
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China.
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China.
| |
Collapse
|
34
|
Chen L, Gao X, Xue W, Yuan S, Liu M, Sun Z. Rapid metagenomic identification of two major swine pathogens with real-time nanopore sequencing. J Virol Methods 2022; 306:114545. [PMID: 35595155 DOI: 10.1016/j.jviromet.2022.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Metagenomic next-generation sequencing (mNGS) is a rapid deep-sequencing diagnostic tool for the unbiased identification of pathogens. In this study, we established a nanopore-sequencing-based mNGS protocol to detect two major viral pathogens of swine, Porcine reproductive and respiratory syndrome virus (PRRSV) and Porcine epidemic diarrhea virus (PEDV). Samples were spiked with the serially diluted viruses as standard references to define the specific protocols. The utility of the method was evaluated with key parameters. The limits of detection for PRRSV and PEDV were 2.3 × 102 and 9.0 × 104 copies per reaction, respectively, and good correlations between PCR quantification cycle value and the mapped read count (log value) were observed. Only the nanopore reads could be assembled de novo into nearly full-length of the PRRSV genome, with 99.9% pairwise identity, and 90.0% genome coverage for PEDV. The established protocol was validated in PRRSV-positive clinical samples. The results for PRRSV-positive tissue and serum samples tested with mNGS protocol were 100% concordant with quantitative PCR results. The protocol also recognized infections of single or multiple viruses in a single sample. In conclusion, we have established a nanopore-sequencing-based mNGS protocol that efficiently identifies and characterizes viral pathogen(s) in a variety of clinical sample types.
Collapse
Affiliation(s)
- Lu Chen
- Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200433, China; Global Innovation China, Boehringer Ingelheim Vetmedica (China) Co., Ltd. Shanghai 210203, China.
| | - Xue Gao
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd. Shanghai 210203, China
| | - Wenzhi Xue
- Global Innovation China, Boehringer Ingelheim Vetmedica (China) Co., Ltd. Shanghai 210203, China
| | - Shishan Yuan
- Boehringer Ingelheim (China) Investment Co., Ltd. Shanghai 210203, China
| | - Mingqiu Liu
- Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zhi Sun
- Global Innovation China, Boehringer Ingelheim Vetmedica (China) Co., Ltd. Shanghai 210203, China
| |
Collapse
|
35
|
Alcendor DJ, Matthews-Juarez P, Smoot D, Hildreth JEK, Lamar K, Tabatabai M, Wilus D, Juarez PD. Breakthrough COVID-19 Infections in the US: Implications for Prolonging the Pandemic. Vaccines (Basel) 2022; 10:755. [PMID: 35632512 PMCID: PMC9146933 DOI: 10.3390/vaccines10050755] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
The incidence of COVID-19 breakthrough infections-an infection that occurs after you have been vaccinated-has increased in frequency since the Delta and now Omicron variants of the SARS-CoV-2 coronavirus have become the dominant strains transmitted in the United States (US). Evidence suggests that individuals with breakthrough infections, though rare and expected, may readily transmit COVID-19 to unvaccinated populations, posing a continuing threat to the unvaccinated. Here, we examine factors contributing to breakthrough infections including a poor immune response to the vaccines due to the fact of advanced age and underlying comorbidities, the natural waning of immune protection from the vaccines over time, and viral variants that escape existing immune protection from the vaccines. The rise in breakthrough infections in the US and how they contribute to new infections, specifically among the unvaccinated and individuals with compromised immune systems, will create the need for additional booster vaccinations or development of modified vaccines that directly target current variants circulating among the general population. The need to expedite vaccination among the more than 49.8 million unvaccinated eligible people in the US is critical.
Collapse
Affiliation(s)
- Donald J. Alcendor
- Department of Microbiology, Immunology and Physiology, Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA;
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Hubbard Hospital, 5th Floor, Rm. 5025, Nashville, TN 37208, USA
| | - Patricia Matthews-Juarez
- Department of Family & Community Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA; (P.M.-J.); (P.D.J.)
| | - Duane Smoot
- Department of Internal Medicine, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA;
| | - James E. K. Hildreth
- Department of Microbiology, Immunology and Physiology, Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA;
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Hubbard Hospital, 5th Floor, Rm. 5025, Nashville, TN 37208, USA
- Department of Internal Medicine, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA;
| | - Kimberly Lamar
- Office of Health Disparities Elimination, Tennessee Department of Health, Nashville, TN 37243, USA;
| | - Mohammad Tabatabai
- School of Graduate Studies and Research, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA; (M.T.); (D.W.)
| | - Derek Wilus
- School of Graduate Studies and Research, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA; (M.T.); (D.W.)
| | - Paul D. Juarez
- Department of Family & Community Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA; (P.M.-J.); (P.D.J.)
| |
Collapse
|
36
|
Mertz L. COVID-19 in Animals: What to Fear and What to Learn. IEEE Pulse 2022; 13:19-22. [PMID: 35727749 DOI: 10.1109/mpuls.2022.3175354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While COVID-19 Has been racing through much of the human population, the SARS-CoV-2 virus has also turned up in other mammals. This leads to many questions: Might these animals serve as reservoirs where new variants can emerge and then infect humans? Can animal surveillance identify novel variants before they appear in humans? How dangerous is COVID-19 to nonhuman animals?
Collapse
|
37
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Qiu X, Ding C. Coronavirus Infection and Cholesterol Metabolism. Front Immunol 2022; 13:791267. [PMID: 35529872 PMCID: PMC9069556 DOI: 10.3389/fimmu.2022.791267] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Host cholesterol metabolism remodeling is significantly associated with the spread of human pathogenic coronaviruses, suggesting virus-host relationships could be affected by cholesterol-modifying drugs. Cholesterol has an important role in coronavirus entry, membrane fusion, and pathological syncytia formation, therefore cholesterol metabolic mechanisms may be promising drug targets for coronavirus infections. Moreover, cholesterol and its metabolizing enzymes or corresponding natural products exert antiviral effects which are closely associated with individual viral steps during coronavirus replication. Furthermore, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 infections are associated with clinically significant low cholesterol levels, suggesting cholesterol could function as a potential marker for monitoring viral infection status. Therefore, weaponizing cholesterol dysregulation against viral infection could be an effective antiviral strategy. In this review, we comprehensively review the literature to clarify how coronaviruses exploit host cholesterol metabolism to accommodate viral replication requirements and interfere with host immune responses. We also focus on targeting cholesterol homeostasis to interfere with critical steps during coronavirus infection.
Collapse
Affiliation(s)
- Jun Dai
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Experimental Animal Center, Zunyi Medical University, Zunyi City, China
| | - Huan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| |
Collapse
|
38
|
Barua A, Grot N, Plawski A. The basis of mink susceptibility to SARS-CoV-2 infection. J Appl Genet 2022; 63:543-555. [PMID: 35396646 PMCID: PMC8993591 DOI: 10.1007/s13353-022-00689-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
Abstract
Of all known airborne diseases in the twenty-first century, coronavirus disease 19 (COVID-19) has the highest infection and death rate. Over the past few decades, animal origin viral diseases, notably those of bats-linked, have increased many folds in humans with cross-species transmissions noted and the ongoing COVID-19 pandemic has emphasized the importance of understanding the evolution of natural hosts in response to viral pathogens. Cross-species transmissions are possible due to the possession of the angiotensin-converting enzyme 2 (ACE2) receptor in animals. ACE2 recognition by SARS-CoV-2 is a critical determinant of the host range, interspecies transmission, and viral pathogenesis. Thus, the phenomenon of breaking the cross-species barrier is mainly associated with mutations in the receptor-binding domain (RBD) of the spike (S) protein that interacts with ACE2. In this review, we raise the issue of cross-species transmission based on sequence alignment of S protein. Based on previous reports and our observations, we can conclude that the occurrence of one of two mutations D614G or Y453F is sufficient for infection of minks by SARS-CoV-2 from humans. Unfortunately, D614G is observed in the world’s most common line of virus B.1.1.7 and the latest SARS-CoV-2 variants B.1.617.1, B.1.617.2, and B.1.617.3 too.
Collapse
Affiliation(s)
- Avishak Barua
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-631, Poznań, Poland
| | - Natalia Grot
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Andrzej Plawski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland. .,Department of General and Endocrine Surgery and Gastroenterological Oncology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznań, Poland.
| |
Collapse
|
39
|
Wang Y, Wang P, Qin J. Human Organoids and Organs-on-Chips for Addressing COVID-19 Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105187. [PMID: 35107217 PMCID: PMC8981475 DOI: 10.1002/advs.202105187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/15/2022] [Indexed: 05/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses an imminent threat to our lives. Although animal models and monolayer cell cultures are utilized for pathogenesis studies and the development of COVID-19 therapeutics, models that can more accurately reflect human-relevant responses to this novel virus are still lacking. Stem cell organoids and bioengineered organs-on-chips have emerged as two cutting-edge technologies used to construct biomimetic in vitro three-dimensional (3D) tissue or organ models. In this review, the key features of these two model systems that allow them to recapitulate organ physiology and function are introduced. The recent progress of these technologies for virology research is summarized and their utility in meeting the COVID-19 pandemic is highlighted. Future opportunities and challenges in the development of advanced human organ models and their potential to accelerate translational applications to provide vaccines and therapies for COVID-19 and other emerging epidemics are also discussed.
Collapse
Affiliation(s)
- Yaqing Wang
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Peng Wang
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Jianhua Qin
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- Beijing Institute For Stem Cell and Regeneration MedicineBeijing100101China
- CAS Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
40
|
Xiang B, Yang L, Ye Z, Ren T, Ye Y. Vaccination of Susceptible Animals Against SARS-CoV-2. J Infect 2022; 84:e48-e49. [PMID: 35278484 PMCID: PMC8905880 DOI: 10.1016/j.jinf.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 01/14/2023]
Affiliation(s)
- Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Zaijiao Ye
- College of Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yu Ye
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Jiangxi Engineering Research Center for Animal Health Products, Nanchang 330045, China.
| |
Collapse
|
41
|
Saied AA, Metwally AA, Alobo M, Shah J, Sharun K, Dhama K. Bovine-derived antibodies and camelid-derived nanobodies as biotherapeutic weapons against SARS-CoV-2 and its variants: A review article. Int J Surg 2022; 98:106233. [PMID: 35065260 PMCID: PMC8768012 DOI: 10.1016/j.ijsu.2022.106233] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected 305 million individuals worldwide and killed about 5.5 million people as of January 10, 2022. SARS-CoV-2 is the third major outbreak caused by a new coronavirus in the previous two decades, following SARS-CoV and MERS-CoV. Even though vaccination against SARS-CoV-2 is considered a critical strategy for preventing virus spread in the population and limiting COVID-19 clinical manifestations, new therapeutic drugs, and management strategies are urgently needed, particularly in light of the growing number of SARS-CoV-2 variants (such as Delta and Omicron variants). However, the use of conventional antibodies has faced many challenges, such as viral escape mutants, increased instability, weak binding, large sizes, the need for large amounts of plasma, and high-cost manufacturing. Furthermore, the emergence of new SARS-CoV-2 variants in the human population and recurrent coronavirus spillovers highlight the need for broadly neutralizing antibodies that are not affected by an antigenic drift that could limit future zoonotic infection. Bovine-derived antibodies and camelid-derived nanobodies are more potent and protective than conventional human antibodies, thanks to their inbuilt characteristics, and can be produced in large quantities. In addition, it was reported that these biotherapeutics are effective against a broad spectrum of epitopes, reducing the opportunity of viral pathogens to develop mutational escape. In this review, we focus on the potential benefits behind our rationale for using bovine-derived antibodies and camelid-derived nanobodies in countering SARS-CoV-2 and its emerging variants and mutants.
Collapse
Affiliation(s)
- AbdulRahman A. Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt,Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt,Corresponding author. Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt
| | - Asmaa A. Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt,Corresponding author. Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Moses Alobo
- Grand Challenges Africa, Science for Africa Foundation, Nairobi, Kenya
| | - Jaffer Shah
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
42
|
Da Costa CBP, Cruz ACDM, Penha JCQ, Castro HC, Da Cunha LER, Ratcliffe NA, Cisne R, Martins FJ. Using in vivo animal models for studying SARS-CoV-2. Expert Opin Drug Discov 2022; 17:121-137. [PMID: 34727803 PMCID: PMC8567288 DOI: 10.1080/17460441.2022.1995352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The search for an animal model capable of reproducing the physiopathology of the COVID-19, and also suitable for evaluating the efficacy and safety of new drugs has become a challenge for many researchers. AREAS COVERED This work reviews the current animal models for in vivo tests with SARS-CoV-2 as well as the challenges involved in the safety and efficacy trials. EXPERT OPINION Studies have reported the use of nonhuman primates, ferrets, mice, Syrian hamsters, lagomorphs, mink, and zebrafish in experiments that aimed to understand the course of COVID-19 or test vaccines and other drugs. In contrast, the assays with animal hyperimmune sera have only been used in in vitro assays. Finding an animal that faithfully reproduces all the characteristics of the disease in humans is difficult. Some models may be more complex to work with, such as monkeys, or require genetic manipulation so that they can express the human ACE2 receptor, as in the case of mice. Although some models are more promising, possibly the use of more than one animal model represents the best scenario. Therefore, further studies are needed to establish an ideal animal model to help in the development of other treatment strategies besides vaccines.
Collapse
Affiliation(s)
- Camila B. P. Da Costa
- Technological Development and Innovation Laboratory of the Industrial Board, Instituto Vital Brazil, Rio De Janeiro, Brazil
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | | | - Julio Cesar Q Penha
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | - Helena C Castro
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | - Luis E. R. Da Cunha
- Technological Development and Innovation Laboratory of the Industrial Board, Instituto Vital Brazil, Rio De Janeiro, Brazil
| | - Norman A Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
- Department of Biociences, College of Science, Swansea University, Swansea, UK
| | - Rafael Cisne
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | | |
Collapse
|
43
|
Badiola JJ, Otero A, Sevilla E, Marín B, García Martínez M, Betancor M, Sola D, Pérez Lázaro S, Lozada J, Velez C, Chiner-Oms Á, Comas I, Cancino-Muñoz I, Monleón E, Monzón M, Acín C, Bolea R, Moreno B. SARS-CoV-2 Outbreak on a Spanish Mink Farm: Epidemiological, Molecular, and Pathological Studies. Front Vet Sci 2022; 8:805004. [PMID: 35127883 PMCID: PMC8814420 DOI: 10.3389/fvets.2021.805004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 01/29/2023] Open
Abstract
Farmed minks have been reported to be highly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and may represent a risk to humans. In this study, we describe the first outbreak of SARS-CoV-2 occurred on a mink farm in Spain, between June and July 2020, involving 92,700 animals. The outbreak started shortly after some farm workers became seropositive for SARS-CoV-2. Minks showed no clinical signs compatible with SARS-CoV-2 infection throughout the outbreak. Samples from 98 minks were collected for histopathological, serological, and molecular studies. Twenty out of 98 (20.4%) minks were positive by RT-qPCR and 82 out 92 (89%) seroconverted. This finding may reflect a rapid spread of the virus at the farm with most of the animals overcoming the infection. Additionally, SARS-CoV-2 was detected by RT-qPCR in 30% of brain samples from positive minks. Sequencing analysis showed that the mink sequences were not closely related with the other mink SARS-CoV-2 sequences available, and that this mink outbreak has its probable origin in one of the genetic variants that were prevalent in Spain during the first COVID-19 epidemic wave. Histological studies revealed bronchointerstitial pneumonia in some animals. Immunostaining of viral nucleocapsid was also observed in nasal turbinate tissue. Farmed minks could therefore constitute an important SARS-CoV-2 reservoir, contributing to virus spread among minks and humans. Consequently, continuous surveillance of mink farms is needed.
Collapse
Affiliation(s)
- Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
- *Correspondence: Alicia Otero
| | - Eloisa Sevilla
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Belén Marín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Mirta García Martínez
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Marina Betancor
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Diego Sola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Sonia Pérez Lázaro
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Jenny Lozada
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Carolina Velez
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, General Pico, Argentina
| | - Álvaro Chiner-Oms
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Cientìficas (IBV-CSIC), CIBER in Epidemiology and Public Health, Valencia, Spain
| | - Irving Cancino-Muñoz
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Eva Monleón
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Marta Monzón
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Cristina Acín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Bernardino Moreno
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| |
Collapse
|
44
|
Francisco R, Hernandez SM, Mead DG, Adcock KG, Burke SC, Nemeth NM, Yabsley MJ. Experimental Susceptibility of North American Raccoons ( Procyon lotor) and Striped Skunks ( Mephitis mephitis) to SARS-CoV-2. Front Vet Sci 2022; 8:715307. [PMID: 35097038 PMCID: PMC8790025 DOI: 10.3389/fvets.2021.715307] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Recent spillback events of SARS-CoV-2 from humans to animals has raised concerns about it becoming endemic in wildlife. A sylvatic cycle of SARS-CoV-2 could present multiple opportunities for repeated spillback into human populations and other susceptible wildlife. Based on their taxonomy and natural history, two native North American wildlife species -the striped skunk (Mephitis mephitis) and the raccoon (Procyon lotor) -represent a high likelihood of susceptibility and ecological opportunity of becoming infected with SARS-CoV-2. Eight skunks and raccoons were each intranasally inoculated with one of two doses of the virus (103 PFU and 105 PFU) and housed in pairs. To evaluate direct transmission, a naïve animal was added to each inoculated pair 48 h post-inoculation. Four control animals of each species were handled like the experimental groups. At predetermined intervals, we collected nasal and rectal swabs to quantify virus shed via virus isolation and detect viral RNA via rRT-PCR and blood for serum neutralization. Lastly, animals were euthanized at staggered intervals to describe disease progression through histopathology and immunohistochemistry. No animals developed clinical disease. All intranasally inoculated animals seroconverted, suggesting both species are susceptible to SARS-CoV-2 infection. The highest titers in skunks and raccoons were 1:128 and 1:64, respectively. Low quantities of virus were isolated from 2/8 inoculated skunks for up to day 5 post-inoculation, however no virus was isolated from inoculated raccoons or direct contacts of either species. Neither species had gross lesions, but recovering mild chronic pneumonia consistent with viral insult was recorded histologically in 5/8 inoculated skunks. Unlike another SARS-CoV-2 infection trial in these species, we detected neutralizing antibodies in inoculated raccoons; thus, future wildlife serologic surveillance results must be interpreted with caution. Due to the inability to isolate virus from raccoons, the lack of evidence of direct transmission between both species, and low amount of virus shed by skunks, it seems unlikely for SARS-CoV-2 to become established in raccoon and skunk populations and for virus to spillback into humans. Continued outbreaks in non-domestic species, wild and captive, highlight that additional research on the susceptibility of SARS-CoV-2 in wildlife, especially musteloidea, and of conservation concern, is needed.
Collapse
Affiliation(s)
- Raquel Francisco
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Sonia M. Hernandez
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Daniel G. Mead
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kayla G. Adcock
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Sydney C. Burke
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Nicole M. Nemeth
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Michael J. Yabsley
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
45
|
de Carvalho OV, Ristow LE, Rodrigues DDS, Farias CKDS, Maia RDCC. Retrospective surveillance of severe acute respiratory syndrome coronavirus 2 in pets from Brazil. Vet World 2021; 14:2803-2808. [PMID: 34903942 PMCID: PMC8654753 DOI: 10.14202/vetworld.2021.2803-2808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Background and Aim: The emerging concerns regarding the new Coronavirus’s ability to cause infection in pets has led to animal testing and worrisome findings reported all over the world in domesticated and wild animals. This study aimed to investigate severe acute respiratory syndrome coronavirus (SARS-CoV)-2 by quantitative reverse transcription-polymerase chain reaction in dog and cat samples with the clinical presentation for respiratory or gastrointestinal disease in Brazil. Materials and Methods: One hundred and twenty-five samples were collected from 12 states of Brazil that originated from the gastrointestinal, upper respiratory tract, and other sites, including some pools of samples from before the onset of the pandemic including blood and/or urine samples. They were tested for RT-PCR detection of respiratory or gastrointestinal pathogens through Respiratory or Diarrhea RT-PCR Panels in the TECSA (Tecnologia em Saninade Animal - Animal Health Technology) Veterinary Medicine Laboratory. This work was conducted in compliance with ethical standards. Results: Seven different microorganisms that can cause respiratory and/or gastrointestinal clinical signs were detected in cats (Feline Coronavirus [FCoV], Feline Parvovirus, Feline Leukemia Virus, Feline Calicivirus, Mycoplasma felis, Campylobacter spp., and Cryptosporidium spp.) and three in dogs (canine distemper virus, Cryptosporidium spp., and Babesia spp.). Conclusion: Although the samples corresponded to the beginning of coronavirus disease-19 spread in Brazil and clinically correlated with the expected viral replication sites, none of the animals tested positive for SARS-CoV-2; reassuringly, four cats tested positive or FCoV none of them were positive for SARS-CoV2. The epidemiological surveillance of SARS-CoV-2 in pets is considered a one health issue, important for monitoring the disease evolution, spread and minimizing the animal-human health impacts, and directing Public Health Policies.
Collapse
Affiliation(s)
| | - Luiz Eduardo Ristow
- TECSA Laboratories, Av. do Contorno, 6226 - Funcionários, Belo Horizonte - MG, 30110-042, Brazil
| | - Davi Dos Santos Rodrigues
- Department of Veterinary Medicine, LAVIAN, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Street, S/N, Recife-PE, 52171-900, Brazil
| | - Cláudia Kathariny da Silva Farias
- Department of Veterinary Medicine, LAVIAN, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Street, S/N, Recife-PE, 52171-900, Brazil
| | - Rita de Cássia Carvalho Maia
- Department of Veterinary Medicine, LAVIAN, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Street, S/N, Recife-PE, 52171-900, Brazil
| |
Collapse
|
46
|
Sharun K, Tiwari R, Saied AA, Dhama K. SARS-CoV-2 vaccine for domestic and captive animals: An effort to counter COVID-19 pandemic at the human-animal interface. Vaccine 2021; 39:7119-7122. [PMID: 34782159 PMCID: PMC8570933 DOI: 10.1016/j.vaccine.2021.10.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has already affected millions worldwide. The emergence of multiple SARS-CoV-2 variants may pose a significant threat to our efforts in controlling the pandemic. The impact of SARS-CoV-2 variants on the efficacy of available vaccines, therapeutics, and diagnostics is currently being investigated. SARS-CoV-2 has been implicated to be originated from animals due to cross-species jumping and raises zoonotic concerns due to the potential for reintroduction into the human populations via interspecies transmission between humans and animals. Natural SARS-CoV-2 infections have been reported in domestic animals (dog, cat, and ferret), captive animals (tiger, lion, snow leopard, puma, otter, and gorilla), and wild and farmed minks. Vaccination of domestic animals can prevent the possible introduction of SARS-CoV-2 into the feral population and subsequent transmission to wildlife. Although the need to vaccinate susceptible animal species, such as cats, minks, and great apes, might seem irrational from a public health standpoint, the successful elimination of SARS-CoV-2 will only be possible by controlling the transmission in all susceptible animal species. This is necessary to prevent the re-emergence of SARS-CoV-2 in the future.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura 281 001, Uttar Pradesh, India
| | - AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan 81511, Egypt; Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan 81511, Egypt
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| |
Collapse
|
47
|
Bi Z, Hong W, Yang J, Lu S, Peng X. Animal models for SARS-CoV-2 infection and pathology. MedComm (Beijing) 2021; 2:548-568. [PMID: 34909757 PMCID: PMC8662225 DOI: 10.1002/mco2.98] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiology of coronavirus disease 2019 (COVID-19) pandemic. Current variants including Alpha, Beta, Gamma, Delta, and Lambda increase the capacity of infection and transmission of SARS-CoV-2, which might disable the in-used therapies and vaccines. The COVID-19 has now put an enormous strain on health care system all over the world. Therefore, the development of animal models that can capture characteristics and immune responses observed in COVID-19 patients is urgently needed. Appropriate models could accelerate the testing of therapeutic drugs and vaccines against SARS-CoV-2. In this review, we aim to summarize the current animal models for SARS-CoV-2 infection, including mice, hamsters, nonhuman primates, and ferrets, and discuss the details of transmission, pathology, and immunology induced by SARS-CoV-2 in these animal models. We hope this could throw light to the increased usefulness in fundamental studies of COVID-19 and the preclinical analysis of vaccines and therapeutic agents.
Collapse
Affiliation(s)
- Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shuaiyao Lu
- National Kunming High‐level Biosafety Primate Research CenterInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| | - Xiaozhong Peng
- National Kunming High‐level Biosafety Primate Research CenterInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| |
Collapse
|
48
|
Sharun K, Dhama K, Pawde AM, Gortázar C, Tiwari R, Bonilla-Aldana DK, Rodriguez-Morales AJ, de la Fuente J, Michalak I, Attia YA. SARS-CoV-2 in animals: potential for unknown reservoir hosts and public health implications. Vet Q 2021; 41:181-201. [PMID: 33892621 PMCID: PMC8128218 DOI: 10.1080/01652176.2021.1921311] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously 2019-nCoV) is suspected of having originated in 2019 in China from a coronavirus infected bat of the genus Rhinolophus. Following the initial emergence, possibly facilitated by a mammalian bridge host, SARS-CoV-2 is currently transmitted across the globe via efficient human-to-human transmission. Results obtained from experimental studies indicate that animal species such as cats, ferrets, raccoon dogs, cynomolgus macaques, rhesus macaques, white-tailed deer, rabbits, Egyptian fruit bats, and Syrian hamsters are susceptible to SARS-CoV-2 infection, and that cat-to-cat and ferret-to-ferret transmission can take place via contact and air. However, natural infections of SARS-CoV-2 have been reported only in pet dogs and cats, tigers, lions, snow leopards, pumas, and gorillas at zoos, and farmed mink and ferrets. Even though human-to-animal spillover has been reported at several instances, SARS-CoV-2 transmission from animals-to-humans has only been reported from mink-to-humans in mink farms. Following the rapid transmission of SARS-CoV-2 within the mink population, a new mink-associated SARS-CoV-2 variant emerged that was identified in both humans and mink. The increasing reports of SARS-CoV-2 in carnivores indicate the higher susceptibility of animal species belonging to this order. The sporadic reports of SARS-CoV-2 infection in domestic and wild animal species require further investigation to determine if SARS-CoV-2 or related Betacoronaviruses can get established in kept, feral or wild animal populations, which may eventually act as viral reservoirs. This review analyzes the current evidence of SARS-CoV-2 natural infection in domestic and wild animal species and their possible implications on public health.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Abhijit M. Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Christian Gortázar
- SaBio IREC Instituto de Investigación en Recursos Cinegéticos (CSIC-Universidad de Castilla-La Mancha), Ciudad Real, Spain
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - D. Katterine Bonilla-Aldana
- Semillero de Investigación en Zoonosis (SIZOO), Grupo de Investigacion BIOECOS, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia
- Faculty of Health Sciences, Public Health and Infection Research Group, Universidad Tecnologica de Pereira, Pereira, Colombia
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Public Health and Infection Research Group, Universidad Tecnologica de Pereira, Pereira, Colombia
- Faculty of Medicine, Grupo de Investigacion Biomedicina, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia
- Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Colombia
- School of Medicine, Universidad Privada Franz Tamayo, (UNIFRANZ), Cochabamba, Bolivia
| | - José de la Fuente
- SaBio IREC Instituto de Investigación en Recursos Cinegéticos (CSIC-Universidad de Castilla-La Mancha), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Youssef A. Attia
- Faculty of Environmental Sciences, Department of Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, Jeddah, Saudi Arabia
- Faculty of Agriculture, Animal and Poultry Production Department, Damanhour University, Damanhour, Egypt
| |
Collapse
|
49
|
Akter R, Rahman MH, Bhattacharya T, Kaushik D, Mittal V, Parashar J, Kumar K, Kabir MT, Tagde P. Novel coronavirus pathogen in humans and animals: an overview on its social impact, economic impact, and potential treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68071-68089. [PMID: 34664166 PMCID: PMC8523003 DOI: 10.1007/s11356-021-16809-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/25/2021] [Indexed: 04/15/2023]
Abstract
In the light of thousands of infections and deaths, the World Health Organization (WHO) has declared the outbreak of coronavirus disease (COVID-19) a worldwide pandemic. It has spread to about 22 million people worldwide, with a total of 0.45 million expiries, limiting the movement of most people worldwide in the last 6 months. However, COVID-19 became the foremost health, economic, and humanitarian challenge of the twenty-first century. Measures intended to curb the pandemic of COVID-19 included travel bans, lockdowns, and social distances through shelter orders, which will further stop human activities suddenly and eventually impact the world and the national economy. The viral disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After SARS-CoV-2 virus and Middle East respiratory syndrome (MERS)-related CoV, COVID-19 is the third most significant lethal disease to humans. According to WHO, COVID-19 mortality exceeded that of SARS and MERS since COVID-19 was declared an international public health emergency. Genetic sequencing has recently established that COVID-19 is close to SARS-CoV and bat coronavirus which has not yet been recognized as the key cause of this pandemic outbreak, its transmission, and human pathogen mechanism. This review focuses on a brief introduction of novel coronavirus pathogens, including coronavirus in humans and animals, its taxonomic classification, symptoms, pathogenicity, social impact, economic impact, and potential treatment therapy for COVID-19.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213, Bangladesh.
| | - Tanima Bhattacharya
- School of Chemistry & Chemical Engineering, Hubei University, Wuhan, People's Republic of China, 430062
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University, Bhopal, M.P, India
| |
Collapse
|
50
|
Eckstrand CD, Baldwin TJ, Rood KA, Clayton MJ, Lott JK, Wolking RM, Bradway DS, Baszler T. An outbreak of SARS-CoV-2 with high mortality in mink (Neovison vison) on multiple Utah farms. PLoS Pathog 2021; 17:e1009952. [PMID: 34767598 PMCID: PMC8589170 DOI: 10.1371/journal.ppat.1009952] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
The breadth of animal hosts that are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and may serve as reservoirs for continued viral transmission are not known entirely. In August 2020, an outbreak of SARS-CoV-2 occurred on five mink farms in Utah and was associated with high mink mortality (35-55% of adult mink) and rapid viral transmission between animals. The premise and clinical disease information, pathology, molecular characterization, and tissue distribution of virus within infected mink during the early phase of the outbreak are provided. Infection spread rapidly between independently housed animals and farms, and caused severe respiratory disease and death. Disease indicators were most notably sudden death, anorexia, and increased respiratory effort. Gross pathology examination revealed severe pulmonary congestion and edema. Microscopically there was pulmonary edema with moderate vasculitis, perivasculitis, and fibrinous interstitial pneumonia. Reverse transcriptase polymerase chain reaction (RT-PCR) of tissues collected at necropsy demonstrated the presence of SARS-CoV-2 viral RNA in multiple organs including nasal turbinates, lung, tracheobronchial lymph node, epithelial surfaces, and others. Localization of viral RNA by in situ hybridization revealed a more localized infection, particularly of the upper respiratory tract. Whole genome sequencing from multiple mink was consistent with published SARS-CoV-2 genomes with few polymorphisms. The Utah mink SARS-CoV-2 strains fell into Clade GH, which is unique among mink and other animal strains sequenced to date. While sharing the N501T mutation which is common in mink, the Utah strains did not share other spike RBD mutations Y453F and F486L found in nearly all mink from the United States. Mink in the outbreak reported herein had high levels of SARS-CoV-2 in the upper respiratory tract associated with symptomatic respiratory disease and death.
Collapse
Affiliation(s)
- Chrissy D. Eckstrand
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, Washington, United States of America
| | - Thomas J. Baldwin
- Utah Veterinary Diagnostic Laboratory, Utah State University, Logan, Utah, United States of America
| | - Kerry A. Rood
- Utah State University, Animal, Dairy, and Veterinary Sciences, Logan, Utah, United States of America
| | - Michael J. Clayton
- Utah Veterinary Diagnostic Laboratory, Utah State University, Logan, Utah, United States of America
| | - Jason K. Lott
- Fur Breeders Agricultural Cooperative, Logan, Utah, United States of America
| | - Rebecca M. Wolking
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, Washington, United States of America
| | - Daniel S. Bradway
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, Washington, United States of America
| | - Timothy Baszler
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|