1
|
Hofstätter F, Niedermeier M, Rausch LK, Kopp M, Simpson L, Lawley JS. Effects of time-restricted feeding and meal timing on an 8-week fat oxidation exercise training program-A randomized controlled trial. Physiol Rep 2025; 13:e70194. [PMID: 39838548 PMCID: PMC11750808 DOI: 10.14814/phy2.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025] Open
Abstract
Time-restricted feeding (TRF) and aerobic exercise are lifestyle interventions to prevent or manage different metabolic diseases. How these interventions interact, including the impact of meal timing, is not well understood. The aim of this study was to examine the influence of TRF on fat oxidation during exercise, whereby participants performed an 8-week fatmax-training program either in the fasted state or after a carbohydrate-based snack. 36 participants were randomized into three groups. (1) Training sessions were performed in the fasted state; (2) Training sessions were performed after consuming a standardized carbohydrate-based snack; (3) Exercise training with an ad libitum diet as a control group. Pre- and post-tests included anthropometric measurements and a fatmax-cycle-ergometry protocol to measure substrate oxidation. Data were analyzed as workload-matched and maximal fat oxidation using a series of mixed ANOVAs. Workload-matched (p = 0.038) and maximal (p < 0.001) fat oxidation improved in all groups. No significant group × time interactions were found in substrate utilization. Time had a significant effect on body weight (p = 0.011), fat mass (p < 0.001), and muscle mass (p < 0.001). Results suggest that fatmax exercise training leads to improvements in fat oxidative capacity independent of fed or fasted state.
Collapse
Affiliation(s)
| | | | - Linda K. Rausch
- Department of Sport ScienceUniversity of InnsbruckInnsbruckAustria
| | - Martin Kopp
- Department of Sport ScienceUniversity of InnsbruckInnsbruckAustria
| | - Lydia Simpson
- Department of Sport ScienceUniversity of InnsbruckInnsbruckAustria
- Department of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Justin S. Lawley
- Department of Sport ScienceUniversity of InnsbruckInnsbruckAustria
- Institute of Mountain Emergency Medicine EURAC ResearchBolzanoItaly
| |
Collapse
|
2
|
Banks NF, Rogers EM, Helwig NJ, Schwager LE, Alpers JP, Schulte SL, Trachta ER, Lockwood CM, Jenkins ND. Acute effects of commercial energy drink consumption on exercise performance and cardiovascular safety: a randomized, double-blind, placebo-controlled, crossover trial. J Int Soc Sports Nutr 2024; 21:2297988. [PMID: 38197606 PMCID: PMC10783828 DOI: 10.1080/15502783.2023.2297988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
The aim of this study was to examine the acute effects of a non-caloric energy drink (C4E) compared to a traditional sugar-containing energy drink (MED) and non-caloric placebo (PLA) on exercise performance and cardiovascular safety. Thirty healthy, physically active males (25 ± 4 y) completed three experimental visits under semi-fasted conditions (5-10 h) and in randomized order, during which they consumed C4E, MED, or PLA matched for volume, appearance, taste, and mouthfeel. One hour after drink consumption, participants completed a maximal, graded exercise test (GXT) with measurement of pulmonary gases, an isometric leg extension fatigue test (ISOFTG), and had their cardiac electrical activity (ECG), leg blood flow (LBF), and blood pressure (BP) measured throughout the visit. Neither MED nor C4E had an ergogenic effect on maximal oxygen consumption, time to exhaustion, or peak power during the GXT (p > 0.05). Compared to PLA, MED reduced fat oxidation (respiratory exchange ratio (RER) +0.030 ± 0.01; p = 0.026) during the GXT and did not influence ISOFTG performance. Compared to PLA, C4E did not alter RER (p = 0.94) and improved impulse during the ISOFTG (+0.658 ± 0.25 V·s; p = 0.032). Relative to MED, C4E did not significantly improve gas exchange threshold (p = 0.05-0.07). Both MED and C4E increased systolic BP at rest (+7.1 ± 1.2 mmHg; p < 0.001 and + 5.7 ± 1.0 mmHg; p < 0.001, respectively), C4E increased SBP post-GXT (+13.3 ± 3.8 mmHg; p < 0.001), and MED increased SBP during recovery (+3.2 ± 1.1 mmHg; p < 0.001). Neither MED nor C4E influenced ECG measures (p ≥ 0.08) or LBF (p = 0.37) compared to PLA. C4E may be more efficacious for improving performance in resistance-type tasks without altering fat oxidation under semi-fasted conditions during fatiguing exercise bouts, but promotes similar changes in BP and HR to MED.
Collapse
Affiliation(s)
- Nile F. Banks
- University of Iowa, Integrative Laboratory of Applied Physiology and Lifestyle Medicine, Iowa City, IA, USA
| | - Emily M. Rogers
- University of Iowa, Integrative Laboratory of Applied Physiology and Lifestyle Medicine, Iowa City, IA, USA
| | - Nate J. Helwig
- University of Iowa, Integrative Laboratory of Applied Physiology and Lifestyle Medicine, Iowa City, IA, USA
| | - Laura E. Schwager
- University of Iowa, Integrative Laboratory of Applied Physiology and Lifestyle Medicine, Iowa City, IA, USA
| | - Justin P. Alpers
- University of Iowa, Integrative Laboratory of Applied Physiology and Lifestyle Medicine, Iowa City, IA, USA
| | - Sydni L. Schulte
- University of Iowa, Integrative Laboratory of Applied Physiology and Lifestyle Medicine, Iowa City, IA, USA
| | - Emma R. Trachta
- University of Iowa, Integrative Laboratory of Applied Physiology and Lifestyle Medicine, Iowa City, IA, USA
| | | | - Nathaniel D.M. Jenkins
- University of Iowa, Integrative Laboratory of Applied Physiology and Lifestyle Medicine, Iowa City, IA, USA
- University of Iowa, Abboud Cardiovascular Research Center, Iowa City, IA, USA
| |
Collapse
|
3
|
Amawi A, AlKasasbeh W, Jaradat M, Almasri A, Alobaidi S, Hammad AA, Bishtawi T, Fataftah B, Turk N, Saoud HA, Jarrar A, Ghazzawi H. Athletes' nutritional demands: a narrative review of nutritional requirements. Front Nutr 2024; 10:1331854. [PMID: 38328685 PMCID: PMC10848936 DOI: 10.3389/fnut.2023.1331854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
Nutrition serves as the cornerstone of an athlete's life, exerting a profound impact on their performance and overall well-being. To unlock their full potential, athletes must adhere to a well-balanced diet tailored to their specific nutritional needs. This approach not only enables them to achieve optimal performance levels but also facilitates efficient recovery and reduces the risk of injuries. In addition to maintaining a balanced diet, many athletes also embrace the use of nutritional supplements to complement their dietary intake and support their training goals. These supplements cover a wide range of options, addressing nutrient deficiencies, enhancing recovery, promoting muscle synthesis, boosting energy levels, and optimizing performance in their respective sports or activities. The primary objective of this narrative review is to comprehensively explore the diverse nutritional requirements that athletes face to optimize their performance, recovery, and overall well-being. Through a thorough literature search across databases such as PubMed, Google Scholar, and Scopus, we aim to provide evidence-based recommendations and shed light on the optimal daily intakes of carbohydrates, protein, fats, micronutrients, hydration strategies, ergogenic aids, nutritional supplements, and nutrient timing. Furthermore, our aim is to dispel common misconceptions regarding sports nutrition, providing athletes with accurate information and empowering them in their nutritional choices.
Collapse
Affiliation(s)
- Adam Amawi
- Department of Exercise Science and Kinesiology, School of Sport Science, The University of Jordan, Amman, Jordan
| | - Walaa AlKasasbeh
- Department of Physical and Health Education, Faculty of Educational Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Manar Jaradat
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Amani Almasri
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Sondos Alobaidi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Aya Abu Hammad
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Taqwa Bishtawi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Batoul Fataftah
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Nataly Turk
- Department of Family and Community Medicine, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Hassan Al Saoud
- Department of Exercise Science and Kinesiology, School of Sport Science, The University of Jordan, Amman, Jordan
| | - Amjad Jarrar
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Oxford Brookes Center for Nutrition and Health, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Hadeel Ghazzawi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| |
Collapse
|
4
|
Fernández-Sánchez J, Trujillo-Colmena D, Rodríguez-Castaño A, Lavín-Pérez AM, Del Coso J, Casado A, Collado-Mateo D. Effect of Acute Caffeine Intake on Fat Oxidation Rate during Fed-State Exercise: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:207. [PMID: 38257100 PMCID: PMC10819049 DOI: 10.3390/nu16020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pre-exercise intake of caffeine (from ~3 to 9 mg/kg) has been demonstrated as an effective supplementation strategy to increase fat oxidation during fasted exercise. However, a pre-exercise meal can alter the potential effect of caffeine on fat oxidation during exercise as caffeine modifies postprandial glycaemic and insulinemic responses. Hypothetically, the effect of caffeine on fat oxidation may be reduced or even withdrawn during fed-state exercise. The present systematic review aimed to meta-analyse investigations on the effect of acute caffeine intake on the rate of fat oxidation during submaximal aerobic exercise performed in the fed state (last meal < 5 h before exercise). A total of 18 crossover trials with randomised and placebo-controlled protocols and published between 1982 and 2021 were included, with a total of 228 participants (185 males and 43 females). Data were extracted to compare rates of fat oxidation during exercise with placebo and caffeine at the same exercise intensity, which reported 20 placebo-caffeine pairwise comparisons. A meta-analysis of the studies was performed, using the standardised mean difference (SMD) estimated from Hedges' g, with 95% confidence intervals (CI). In comparison with the placebo, caffeine increased the rate of fat oxidation during fed-state exercise (number of comparisons (n) = 20; p = 0.020, SMD = 0.65, 95% CI = 0.20 to 1.20). Only studies with a dose < 6 mg/kg of caffeine (n = 13) increased the rate of fat oxidation during fed-state exercise (p = 0.004, SMD = 0.86, 95% CI = 0.27 to 1.45), while no such effect was observed in studies with doses ≥6 mg/kg (n = 7; p = 0.97, SMD = -0.03, 95% CI = -1.40 to 1.35). The effect of caffeine on fat oxidation during fed-state exercise was observed in active untrained individuals (n = 13; p < 0.001, SMD = 0.84, 95% CI = 0.39 to 1.30) but not in aerobically trained participants (n = 7; p = 0.27, SMD = 0.50, 95% CI = -0.39 to 1.39). Likewise, the effect of caffeine on fat oxidation was observed in caffeine-naïve participants (n = 9; p < 0.001, SMD = 0.82, 95% CI = 0.45 to 1.19) but not in caffeine consumers (n = 3; p = 0.54, SMD = 0.57, 95% CI = -1.23 to 2.37). In conclusion, acute caffeine intake in combination with a meal ingested within 5 h before the onset of exercise increased the rate of fat oxidation during submaximal aerobic exercise. The magnitude of the effect of caffeine on fat oxidation during fed-state exercise may be modulated by the dose of caffeine administered (higher with <6 mg/kg than with ≥6 mg/kg), participants' aerobic fitness level (higher in active than in aerobically trained individuals), and habituation to caffeine (higher in caffeine-naïve than in caffeine consumers).
Collapse
Affiliation(s)
- Javier Fernández-Sánchez
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| | - Daniel Trujillo-Colmena
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| | - Adrián Rodríguez-Castaño
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| | - Ana Myriam Lavín-Pérez
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
- GO fitLAB, Ingesport, 28003 Madrid, Spain
| | - Juan Del Coso
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| | - Arturo Casado
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| | - Daniel Collado-Mateo
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| |
Collapse
|
5
|
Yin M, Chen Z, Nassis GP, Liu H, Li H, Deng J, Li Y. Chronic high-intensity interval training and moderate-intensity continuous training are both effective in increasing maximum fat oxidation during exercise in overweight and obese adults: A meta-analysis. J Exerc Sci Fit 2023; 21:354-365. [PMID: 37701124 PMCID: PMC10494468 DOI: 10.1016/j.jesf.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Objective to (1) systematically review the chronic effect of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on maximal fat oxidation (MFO) in overweight and obese adults, and (2) explore MFO influencing factors and its dose-response relationships with HIIT and MICT. Methods Studies using a between-group design involving overweight and obese adults and assessing the effect of HIIT and MICT on MFO were included. A meta-analysis on MFO indices was conducted, and the observed heterogeneities were explored through subgroup, regression, and sensitivity analyses. Results Thirteen studies of moderate to high quality with a total of 519 overweight and obese subjects were included in this meta-analysis (HIIT, n = 136; MICT, n = 235; Control, n = 148). HIIT displayed a statistically significant favorable effect on MFO compared to no-training (MD = 0.07; 95%CI [0.03 to 0.11]; I2 = 0%). Likewise, MICT displayed a statistically significant favorable effect on MFO compared to no-training (MD = 0.10; 95%CI [0.06 to 0.15]; I2 = 95%). Subgroup and regression analyses revealed that exercise intensity (Fatmax vs. non-Fatmax; %VO2peak), exercise mode, BMI, and VO2peak all significantly moderated MICT on MFO. When analyzing studies that have directly compared HIIT and MCIT in obese people, it seems there is no difference in the MFO change (MD = 0.01; 95%CI [-0.02 to 0.04]; I2 = 64%). No publication bias was found in any of the above meta-analyses (Egger's test p > 0.05 for all). Conclusion Both HIIT and MICT are effective in improving MFO in overweight and obese adults, and they have similar effects. MCIT with an intensity of 65-70% VO2peak, performed 3 times per week for 60 min per session, will optimize MFO increases in overweight and obese adults. Given the lack of studies examining the effect of HIIT on MFO in overweight and obese adults and the great diversity in the training protocols in the existing studies, we were unable to make sound recommendations for training.
Collapse
Affiliation(s)
- Mingyue Yin
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Zhili Chen
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - George P. Nassis
- Department of Physical Education, College of Education, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
| | - Hengxian Liu
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Hansen Li
- Department of Physical Education, Southwest University, Chongqing, China
| | - Jianfeng Deng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Yongming Li
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
- China Institute of Sport Science, Beijing, China
| |
Collapse
|
6
|
Zakrzewski-Fruer JK, Morari V, Champion RB, Bailey DP, Ferrandino LE, Jones RL. Acute Cardiometabolic and Exercise Responses to Breakfast Omission Versus Breakfast Consumption in Adolescent Girls: A Randomised Crossover Trial. Nutrients 2023; 15:3210. [PMID: 37513628 PMCID: PMC10386247 DOI: 10.3390/nu15143210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Girls often begin to skip breakfast during adolescence. This study compared the acute effect of breakfast omission versus consumption on cardiometabolic risk markers and perceived appetite and mood during rest and/or exercise in adolescent girls classified as habitual breakfast consumers. Girls (aged 13.2 ± 0.7 years) completed two 5.5 h conditions in a randomised crossover design: breakfast omission (BO) and standardised breakfast consumption (BC). A standardised lunch was provided at 3 h. Incremental cycling exercise was performed at 5 h. Blood and expired gas samples were taken at regular intervals. Whilst pre-lunch plasma glucose, insulin, and Metabolic Load Index incremental area under the curve (IAUC) were significantly lower in BO versus BC, post-lunch differences were reversed and larger in magnitude. Peak plasma glucose and insulin were significantly higher in BO versus BC. Pre-lunch perceived fullness and hunger were significantly lower and higher, respectively, in BO versus BC. Perceived energy and concentration were lower, and tiredness was higher, in BO versus BC. Exercise peak fat oxidation and Fatmax were unaffected. The lower physical activity enjoyment in BO versus BC approached significance. To conclude, acutely omitting breakfast adversely affects cardiometabolic risk markers and exercise enjoyment among adolescent girls who habitually consume breakfast.
Collapse
Affiliation(s)
- Julia K Zakrzewski-Fruer
- Institute for Sport and Physical Activity Research, School of Sport Science and Physical Activity, University of Bedfordshire, Bedford MK41 9EA, UK
| | - Victoria Morari
- Institute for Sport and Physical Activity Research, School of Sport Science and Physical Activity, University of Bedfordshire, Bedford MK41 9EA, UK
| | - Rachael B Champion
- Institute for Sport and Physical Activity Research, School of Sport Science and Physical Activity, University of Bedfordshire, Bedford MK41 9EA, UK
| | - Daniel P Bailey
- Centre for Physical Activity in Health and Disease, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Louise E Ferrandino
- Institute for Sport and Physical Activity Research, School of Sport Science and Physical Activity, University of Bedfordshire, Bedford MK41 9EA, UK
| | - Rebecca L Jones
- Institute for Sport and Physical Activity Research, School of Sport Science and Physical Activity, University of Bedfordshire, Bedford MK41 9EA, UK
- Health Advancement Research Team (HART), School of Sport and Exercise Science, University of Lincoln, Lincoln LN6 7TS, UK
| |
Collapse
|
7
|
da Silva LR, Stefani GP, Dorneles GP, Marcadenti A, Dal Lago P. Pre-exercise meal on oxidation of energy substrates during maximal exercise test in non-trained individuals. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e000618. [PMID: 37249453 PMCID: PMC10665054 DOI: 10.20945/2359-3997000000618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/12/2022] [Indexed: 05/31/2023]
Abstract
Objective This study aimed to compare the influence of a high carbohydrate meal versus high-fat meal on the oxidation of substrates during an exercise incremental test. Materials and methods Ten untrained male subjects underwent two days of the protocol. Randomly, they received a high carbohydrate meal or a high-fat meal, receiving the other one in the next protocol. On both days, they performed an incremental treadmill test, with heart rate and maximal oxygen consumption to estimate the oxidation of substrates. Results The high-fat meal showed an increase in the absolute amount of oxidized fat along with the incremental test (P < 0.05; effect size = 0.9528), and a reduction in the respiratory exchange ratio at low intensities (P < 0.05; effect size = 0.7765). Conclusion The meals presented no difference when compared to maximum oxidation point of substrates, the oxidation rate of substrates over time, and heart rate. A pre-test high-fat meal in untrained individuals was shown to be a modulating factor of total oxidized fats throughout the exercise, although it did not exert a significant effect on the rate of this oxidation over time.
Collapse
Affiliation(s)
- Lucas Ribeiro da Silva
- Laboratório de Fisiologia Experimental, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
- Instituto de Pesquisas, Hospital do Coração (IP-HCor), São Paulo, SP, Brasil
| | - Giuseppe Potrick Stefani
- Laboratório de Fisiologia Experimental, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil,
- Programa de Pós-graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
| | - Gilson Pires Dorneles
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - Aline Marcadenti
- Instituto de Pesquisas, Hospital do Coração (IP-HCor), São Paulo, SP, Brasil
| | - Pedro Dal Lago
- Laboratório de Fisiologia Experimental, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
| |
Collapse
|
8
|
Rodriguez-Lopez C, Santalla A, Valenzuela PL, Real-Martínez A, Villarreal-Salazar M, Rodriguez-Gomez I, Pinós T, Ara I, Lucia A. Muscle glycogen unavailability and fat oxidation rate during exercise: Insights from McArdle disease. J Physiol 2023; 601:551-566. [PMID: 36370371 PMCID: PMC10099855 DOI: 10.1113/jp283743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Carbohydrate availability affects fat metabolism during exercise; however, the effects of complete muscle glycogen unavailability on maximal fat oxidation (MFO) rate remain unknown. Our purpose was to examine the MFO rate in patients with McArdle disease, comprising an inherited condition caused by complete blockade of muscle glycogen metabolism, compared to healthy controls. Nine patients (three women, aged 36 ± 12 years) and 12 healthy controls (four women, aged 40 ± 13 years) were studied. Several molecular markers of lipid transport/metabolism were also determined in skeletal muscle (gastrocnemius) and white adipose tissue of McArdle (Pygm p.50R*/p.50R*) and wild-type male mice. Peak oxygen uptake ( V ̇ O 2 peak ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{peak}}}}$ ), MFO rate, the exercise intensity eliciting MFO rate (FATmax) and the MFO rate-associated workload were determined by indirect calorimetry during an incremental cycle-ergometer test. Despite having a much lower V ̇ O 2 peak ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{peak}}}}$ (24.7 ± 4 vs. 42.5 ± 11.4 mL kg-1 min-1 , respectively; P < 0.0001), patients showed considerably higher values for the MFO rate (0.53 ± 0.12 vs. 0.33 ± 0.10 g min-1 , P = 0.001), and for the FATmax (94.4 ± 7.2 vs. 41.3 ± 9.1 % of V ̇ O 2 peak ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{peak}}}}$ , P < 0.0001) and MFO rate-associated workload (1.33 ± 0.35 vs. 0.81 ± 0.54 W kg-1 , P = 0.020) than controls. No between-group differences were found overall in molecular markers of lipid transport/metabolism in mice. In summary, patients with McArdle disease show an exceptionally high MFO rate, which they attained at near-maximal exercise capacity. Pending more mechanistic explanations, these findings support the influence of glycogen availability on MFO rate and suggest that these patients develop a unique fat oxidation capacity, possibly as an adaptation to compensate for the inherited blockade in glycogen metabolism, and point to MFO rate as a potential limiting factor of exercise tolerance in this disease. KEY POINTS: Physically active McArdle patients show an exceptional fat oxidation capacity. Maximal fat oxidation rate occurs near-maximal exercise capacity in these patients. McArdle patients' exercise tolerance might rely on maximal fat oxidation rate capacity. Hyperpnoea might cloud substrate oxidation measurements in some patients. An animal model revealed overall no higher molecular markers of lipid transport/metabolism.
Collapse
Affiliation(s)
- Carlos Rodriguez-Lopez
- Department of Geriatrics, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Alfredo Santalla
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Seville, Spain.,EVOPRED Research Group, Universidad Europea de Canarias, Tenerife, Spain
| | - Pedro L Valenzuela
- Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Alberto Real-Martínez
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER for rare disease (CIBERER), Madrid, Spain
| | - Mónica Villarreal-Salazar
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER for rare disease (CIBERER), Madrid, Spain
| | - Irene Rodriguez-Gomez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER for rare disease (CIBERER), Madrid, Spain
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Alejandro Lucia
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.,Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Krolikowski TC, Borszcz FK, Panza VP, Bevilacqua LM, Nichele S, da Silva EL, Amboni RDMC, Guglielmo LGA, Phillips SM, de Lucas RD, Boaventura BCB. The Impact of Pre-Exercise Carbohydrate Meal on the Effects of Yerba Mate Drink on Metabolism, Performance, and Antioxidant Status in Trained Male Cyclists. SPORTS MEDICINE - OPEN 2022; 8:93. [PMID: 35841429 PMCID: PMC9287718 DOI: 10.1186/s40798-022-00482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/28/2022] [Indexed: 11/11/2022]
Abstract
Introduction The consumption of yerba mate (YM), a source of antioxidants, in a fasted state increases fatty acid oxidation (FATox) during low–moderate-intensity exercise and improves performance in high-intensity exercise. However, the impact of a pre-exercise carbohydrate (CHO) meal on YM effects during exercise is unknown.
Objective We investigated the effects of yerba mate drink (YMD) consumed in the fasted state (YMD-F) or after a CHO meal (YMD-CHO) on measurements of metabolism, performance, and blood oxidative stress markers in cycling exercise. Methods In a randomized, repeated-measures, crossover design, eight trained male cyclists ingested (i) YMD-CHO, (ii) YMD-F, or (iii) control-water and CHO meal (Control-CHO). The YMD (an infusion of 5 g of ultrarefined leaves in 250 mL of water) was taken for 7 days and 40 min before exercise. CHO meal (1 g/kg body mass) was consumed 60 min before exercise. The cycling protocol included a 40-min low-intensity (~ 53% V̇O2peak) constant load test (CLT); a 20-min time trial (TT); and 4 × 10-s all-out sprints. Blood samples and respiratory gases were collected before, during, and/or after tests. Results During CLT, YMD-CHO increased FATox ~ 13% vs. YMD-F (P = 0.041) and ~ 27% vs. Control-CHO (P < 0.001). During TT, YMD-CHO increased FATox ~ 160% vs. YMD-F (P < 0.001) and ~ 150% vs. Control-CHO (P < 0.001). Power output during TT improved ~ 3% (P = 0.022) in YMD-CHO vs. Control-CHO and was strongly correlated with changes in serum total antioxidant capacity (r = −0.87) and oxidative stress index (r = 0.76) at post-exercise in YMD-CHO. Performance in sprints was not affected by YMD. Conclusion CHO intake did not negate the effect of YMD on FATox or TT performance. Instead, a synergism between the two dietary strategies may be present.
Clinical Trial Registration NCT04642144. November 18, 2020. Retrospectively registered. Supplementary Information The online version contains supplementary material available at 10.1186/s40798-022-00482-3.
Collapse
|
10
|
Price M, Bottoms L, Hill M, Eston R. Maximal Fat Oxidation during Incremental Upper and Lower Body Exercise in Healthy Young Males. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15311. [PMID: 36430032 PMCID: PMC9691189 DOI: 10.3390/ijerph192215311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study is to determine the magnitude of maximal fat oxidation (MFO) during incremental upper and lower body exercise. Thirteen non-specifically trained male participants (19.3 ± 0.5 y, 78.1 ± 9.1 kg body mass) volunteered for this repeated-measures study, which had received university ethics committee approval. Participants undertook two incremental arm crank (ACE) and cycle ergometry (CE) exercise tests to volitional exhaustion. The first test for each mode served as habituation. The second test was an individualised protocol, beginning at 40% of the peak power output (POpeak) achieved in the first test, with increases of 10% POpeak until volitional exhaustion. Expired gases were recorded at the end of each incremental stage, from which fat and carbohydrate oxidation rates were calculated. MFO was taken as the greatest fat oxidation value during incremental exercise and expressed relative to peak oxygen uptake (%V˙O2peak). MFO was lower during ACE (0.44 ± 0.24 g·min-1) than CE (0.77 ± 0.31 g·min-1; respectively, p < 0.01) and occurred at a lower exercise intensity (53 ± 21 vs. 67 ± 18%V˙O2peak; respectively, p < 0.01). Inter-participant variability for MFO was greatest during ACE. These results suggest that weight loss programs involving the upper body should occur at lower exercise intensities than for the lower body.
Collapse
Affiliation(s)
- Mike Price
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Lindsay Bottoms
- Department of Psychology, Sport and Geography, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Matthew Hill
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Roger Eston
- Alliance for Research in Exercise, Nutrition and Activity, Campus Central—City East, University of South Australia, GPO Box 2471, Adelaide 5001, Australia
| |
Collapse
|
11
|
López-Seoane J, Buitrago-Morales M, Jiménez SL, Del Coso J, Pareja-Galeano H. Synergy of carbohydrate and caffeine ingestion on physical performance and metabolic responses to exercise: A systematic review with meta-analysis. Crit Rev Food Sci Nutr 2022; 64:2941-2959. [PMID: 36178302 DOI: 10.1080/10408398.2022.2128298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Carbohydrates (CHO) and caffeine (CAF) are two ergogenic aids commonly used among athletes to enhance performance. However, there is some controversy as to whether the concurrent intake of both supplements might result in an additive and synergistic improvement in exercise performance. The aim of this systematic review and meta-analysis was to determine the effect of adding CAF to a protocol of CHO ingestion, compared with the intake of each ergogenic aid alone and with placebo, on exercise performance and metabolic responses in healthy young physically active adults. This study was conducted according to PRISMA 2020 guidelines. The PubMed, Web of Science, Medline Complete, CINAHL, SPORTDiscus and CENTRAL databases were searched including randomized controlled trials (RCT) that were at least single blind. The risk of bias assessment was performed using the Cochrane Risk-of-Bias tool 2. Meta-analysis were performed on performance variables and rating of perceived exertion (RPE) using the random-effects model. Thirteen RCT with 128 participants (117 men and 11 women) were included in this study. The ingestion of CAF and CHO reduced sprint time during repeated sprint protocols in comparison with CHO isolated ingestion (SMD: -0.45; 95% CI: -0.85, -0.05) while there was a tendency for a reduction in the time employed during time trials (SMD: -0.36; 95% CI: -0.77, 0.05). The RPE tended to be lower with CAF and CHO compared with CHO isolated ingestion during steady-state exercise (SMD: -0.43; 95% CI: -0.91, 0.05) with no differences between conditions in performance trials (SMD: -0.05, 95% CI: -0.39, 0.29). Although most of the studies showed higher values of blood glucose when CHO was co-ingested with CAF compared with PLA, only two studies observed higher values with CHO and CAF co-ingestion with respect to the isolated intake of CHO. One study observed greater fat oxidation and lower glycogen use when CAF was added to CHO. In terms of cortisol levels, one study showed an increase in cortisol levels when CAF was co-ingested with CHO compared with PLA. In summary, concurrent CHO and CAF intake may produce an additive ergogenic effect respect of the isolated ingestion of CHO. This additive effect was present when CHO was provided by a 6-9% of CHO solution (maltodextrin/dextrin + fructose) and CAF is administered in a dose of 4-6.5 mg/kg.
Collapse
Affiliation(s)
- Jaime López-Seoane
- ImFINE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences-INEF, Universidad Politécnica de Madrid, Madrid, Spain
- Red Española de Investigación en Ejercicio Físico y Salud (EXERNET), Madrid, Spain
| | - Marta Buitrago-Morales
- Faculty of Sports Sciences and Physiotherapy, Universidad Europea de Madrid, Madrid, Spain
| | - Sergio L Jiménez
- Centre for Sport Studies, Universidad Rey Juan Carlos, Madrid, Spain
| | - Juan Del Coso
- Centre for Sport Studies, Universidad Rey Juan Carlos, Madrid, Spain
| | - Helios Pareja-Galeano
- Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Biomarkers and genetic polymorphisms associated with maximal fat oxidation during physical exercise: implications for metabolic health and sports performance. Eur J Appl Physiol 2022; 122:1773-1795. [PMID: 35362801 DOI: 10.1007/s00421-022-04936-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/18/2022] [Indexed: 11/03/2022]
Abstract
The maximal fat oxidation rate (MFO) assessed during a graded exercise test is a remarkable physiological indicator associated with metabolic flexibility, body weight loss and endurance performance. The present review considers existing biomarkers related to MFO, highlighting the validity of maximal oxygen uptake and free fatty acid availability for predicting MFO in athletes and healthy individuals. Moreover, we emphasize the role of different key enzymes and structural proteins that regulate adipose tissue lipolysis (i.e., triacylglycerol lipase, hormone sensitive lipase, perilipin 1), fatty acid trafficking (i.e., fatty acid translocase cluster of differentiation 36) and skeletal muscle oxidative capacity (i.e., citrate synthase and mitochondrial respiratory chain complexes II-V) on MFO variation. Likewise, we discuss the association of MFO with different polymorphism on the ACE, ADRB3, AR and CD36 genes, identifying prospective studies that will help to elucidate the mechanisms behind such associations. In addition, we highlight existing evidence that contradict the paradigm of a higher MFO in women due to ovarian hormones activity and highlight current gaps regarding endocrine function and MFO relationship.
Collapse
|
13
|
Rauch CE, McCubbin AJ, Gaskell SK, Costa RJS. Feeding Tolerance, Glucose Availability, and Whole-Body Total Carbohydrate and Fat Oxidation in Male Endurance and Ultra-Endurance Runners in Response to Prolonged Exercise, Consuming a Habitual Mixed Macronutrient Diet and Carbohydrate Feeding During Exercise. Front Physiol 2022; 12:773054. [PMID: 35058795 PMCID: PMC8764139 DOI: 10.3389/fphys.2021.773054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022] Open
Abstract
Using metadata from previously published research, this investigation sought to explore: (1) whole-body total carbohydrate and fat oxidation rates of endurance (e.g., half and full marathon) and ultra-endurance runners during an incremental exercise test to volitional exhaustion and steady-state exercise while consuming a mixed macronutrient diet and consuming carbohydrate during steady-state running and (2) feeding tolerance and glucose availability while consuming different carbohydrate regimes during steady-state running. Competitively trained male endurance and ultra-endurance runners (n = 28) consuming a balanced macronutrient diet (57 ± 6% carbohydrate, 21 ± 16% protein, and 22 ± 9% fat) performed an incremental exercise test to exhaustion and one of three 3 h steady-state running protocols involving a carbohydrate feeding regime (76-90 g/h). Indirect calorimetry was used to determine maximum fat oxidation (MFO) in the incremental exercise and carbohydrate and fat oxidation rates during steady-state running. Gastrointestinal symptoms (GIS), breath hydrogen (H2), and blood glucose responses were measured throughout the steady-state running protocols. Despite high variability between participants, high rates of MFO [mean (range): 0.66 (0.22-1.89) g/min], Fatmax [63 (40-94) % V̇O2max], and Fatmin [94 (77-100) % V̇O2max] were observed in the majority of participants in response to the incremental exercise test to volitional exhaustion. Whole-body total fat oxidation rate was 0.8 ± 0.3 g/min at the end of steady-state exercise, with 43% of participants presenting rates of ≥1.0 g/min, despite the state of hyperglycemia above resting homeostatic range [mean (95%CI): 6.9 (6.7-7.2) mmol/L]. In response to the carbohydrate feeding interventions of 90 g/h 2:1 glucose-fructose formulation, 38% of participants showed breath H2 responses indicative of carbohydrate malabsorption. Greater gastrointestinal symptom severity and feeding intolerance was observed with higher carbohydrate intakes (90 vs. 76 g/h) during steady-state exercise and was greatest when high exercise intensity was performed (i.e., performance test). Endurance and ultra-endurance runners can attain relatively high rates of whole-body fat oxidation during exercise in a post-prandial state and with carbohydrate provisions during exercise, despite consuming a mixed macronutrient diet. Higher carbohydrate intake during exercise may lead to greater gastrointestinal symptom severity and feeding intolerance.
Collapse
Affiliation(s)
| | | | | | - Ricardo J. S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
The Importance of 'Durability' in the Physiological Profiling of Endurance Athletes. Sports Med 2021; 51:1619-1628. [PMID: 33886100 DOI: 10.1007/s40279-021-01459-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
Profiling physiological attributes is an important role for applied exercise physiologists working with endurance athletes. These attributes are typically assessed in well-rested athletes. However, as has been demonstrated in the literature and supported by field data presented here, the attributes measured during routine physiological-profiling assessments are not static, but change over time during prolonged exercise. If not accounted for, shifts in these physiological attributes during prolonged exercise have implications for the accuracy of their use in intensity regulation during prolonged training sessions or competitions, quantifying training adaptations, training-load programming and monitoring, and the prediction of exercise performance. In this review, we argue that current models used in the routine physiological profiling of endurance athletes do not account for these shifts. Therefore, applied exercise physiologists working with endurance athletes would benefit from development of physiological-profiling models that account for shifts in physiological-profiling variables during prolonged exercise and quantify the 'durability' of individual athletes, here defined as the time of onset and magnitude of deterioration in physiological-profiling characteristics over time during prolonged exercise. We propose directions for future research and applied practice that may enable better understanding of athlete durability.
Collapse
|
15
|
Rothschild JA, Kilding AE, Broome SC, Stewart T, Cronin JB, Plews DJ. Pre-Exercise Carbohydrate or Protein Ingestion Influences Substrate Oxidation but Not Performance or Hunger Compared with Cycling in the Fasted State. Nutrients 2021; 13:nu13041291. [PMID: 33919779 PMCID: PMC8070691 DOI: 10.3390/nu13041291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/01/2023] Open
Abstract
Nutritional intake can influence exercise metabolism and performance, but there is a lack of research comparing protein-rich pre-exercise meals with endurance exercise performed both in the fasted state and following a carbohydrate-rich breakfast. The purpose of this study was to determine the effects of three pre-exercise nutrition strategies on metabolism and exercise capacity during cycling. On three occasions, seventeen trained male cyclists (VO2peak 62.2 ± 5.8 mL·kg−1·min−1, 31.2 ± 12.4 years, 74.8 ± 9.6 kg) performed twenty minutes of submaximal cycling (4 × 5 min stages at 60%, 80%, and 100% of ventilatory threshold (VT), and 20% of the difference between power at the VT and peak power), followed by 3 × 3 min intervals at 80% peak aerobic power and 3 × 3 min intervals at maximal effort, 30 min after consuming a carbohydrate-rich meal (CARB; 1 g/kg CHO), a protein-rich meal (PROTEIN; 0.45 g/kg protein + 0.24 g/kg fat), or water (FASTED), in a randomized and counter-balanced order. Fat oxidation was lower for CARB compared with FASTED at and below the VT, and compared with PROTEIN at 60% VT. There were no differences between trials for average power during high-intensity intervals (367 ± 51 W, p = 0.516). Oxidative stress (F2-Isoprostanes), perceived exertion, and hunger were not different between trials. Overall, exercising in the overnight-fasted state increased fat oxidation during submaximal exercise compared with exercise following a CHO-rich breakfast, and pre-exercise protein ingestion allowed similarly high levels of fat oxidation. There were no differences in perceived exertion, hunger, or performance, and we provide novel data showing no influence of pre-exercise nutrition ingestion on exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Jeffrey A. Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
- Correspondence:
| | - Andrew E. Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
| | - Sophie C. Broome
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand;
| | - Tom Stewart
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
- Human Potential Centre, School of Sport and Recreation, Auckland University of Technology, Auckland 1010, New Zealand
| | - John B. Cronin
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
| | - Daniel J. Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
| |
Collapse
|
16
|
McCue A, Munten S, Herzig KH, Gagnon DD. Metabolic flexibility is unimpaired during exercise in the cold following acute glucose ingestion in young healthy adults. J Therm Biol 2021; 98:102912. [PMID: 34016339 DOI: 10.1016/j.jtherbio.2021.102912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/05/2021] [Accepted: 03/11/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Metabolic flexibility is compromised in individuals suffering from metabolic diseases, lipo- and glucotoxicity, and mitochondrial dysfunctions. Exercise studies performed in cold environments have demonstrated an increase in lipid utilization, which could lead to a compromised substrate competition, glycotoxic-lipotoxic state, or metabolic inflexibility. Whether metabolic flexibility is altered during incremental maximal exercise to volitional fatigue in a cold environment remains unclear. METHODS Ten young healthy participants performed four maximal incremental treadmill tests to volitional fatigue, in a fasted state, in a cold (0 °C) or a thermoneutral (22.0 °C) environment, with and without a pre-exercise ingestion of a 75-g glucose solution. Metabolic flexibility was assessed via indirect calorimetry using the change in respiratory exchange ratio (ΔRER), maximal fat oxidation (ΔMFO), and where MFO occurred along the exercise intensity spectrum (ΔFatmax), while circulating lactate and glucose levels were measured pre and post exercise. RESULTS Multiple linear mixed-effects regressions revealed an increase in glucose oxidation from glucose ingestion and an increase in lipid oxidation from the cold during exercise (p < 0.001). No differences were observed in metabolic flexibility as assessed via ΔRER (0.05 ± 0.03 vs. 0.05 ± 0.03; p = 0.734), ΔMFO (0.21 ± 0.18 vs. 0.16 ± 0.13 g min-1; p = 0.133) and ΔFatmax (13.3 ± 19.0 vs. 0.6 ± 21.3 %V̇O2peak; p = 0.266) in cold and thermoneutral, respectively. CONCLUSIONS Following glucose loading, metabolic flexibility was unaffected during exercise to volitional fatigue in a cold environment, inducing an increase in lipid oxidation. These results suggest that competing pathways responsible for the regulation of fuel selection during exercise and cold exposure may potentially be mechanistically independent. Whether long-term metabolic influences of high-fat diets and acute lipid overload in cold and warm environments would impact metabolic flexibility remain unclear.
Collapse
Affiliation(s)
- Alexus McCue
- Laboratory of Environmental Exercise Physiology, School of Kinesiology and Health Sciences, Laurentian University, Sudbury, Ontario, Canada; Center of Research in Occupational Health and Safety, Laurentian University, Sudbury, Ontario, Canada
| | - Stephanie Munten
- Laboratory of Environmental Exercise Physiology, School of Kinesiology and Health Sciences, Laurentian University, Sudbury, Ontario, Canada; Center of Research in Occupational Health and Safety, Laurentian University, Sudbury, Ontario, Canada
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, Oulu, Finland; Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominique D Gagnon
- Laboratory of Environmental Exercise Physiology, School of Kinesiology and Health Sciences, Laurentian University, Sudbury, Ontario, Canada; Center of Research in Occupational Health and Safety, Laurentian University, Sudbury, Ontario, Canada.
| |
Collapse
|
17
|
Ruíz-Moreno C, Gutiérrez-Hellín J, González-García J, GiráLdez-Costas V, Brito de Souza D, Del Coso J. Effect of ambient temperature on fat oxidation during an incremental cycling exercise test. Eur J Sport Sci 2020; 21:1140-1147. [PMID: 32781920 DOI: 10.1080/17461391.2020.1809715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aim: The objective of this current research was to compare fat oxidation rates during an incremental cycling exercise test in a temperate vs. hot environment.Methods: Twelve healthy young participants were recruited for a randomised crossover experimental design. Each participant performed a VO2max test in a thermoneutral environment followed by two cycling ramp test trials, one in a temperate environment (18.3°C) and another in a hot environment (36.3°C). The ramp test consisted of 3-min stages of increasing intensity (+10% of VO2max) while gas exchange, heart rate and perceived exertion were measured.Results: During exercise, there was a main effect of the environment temperature on fat oxidation rate (F = 9.35, P = 0.014). The rate of fat oxidation was lower in the heat at 30% VO2max (0.42 ± 0.15 vs.0.37 ± 0.13 g/min; P = 0.042), 60% VO2max (0.37 ± 0.27 vs.0.23 ± 0.23 g/min; P = 0.018) and 70% VO2max (0.22 ± 0.26 vs.0.12 ± 0.26 g/min; P = 0.007). In addition, there was a tendency for a lower maximal fat oxidation rate in the heat (0.55 ± 0.2 vs.0.48 ± 0.2 g/min; P = 0.052) and it occurred at a lower exercise intensity (44 ± 14 vs.38% ± 8% VO2max; P = 0.004). The total amount of fat oxidised was lower in the heat (5.8 ± 2.6 vs 4.6 ± 2.8 g; P = 0.002). The ambient temperature also produced main effects on heart rate (F = 15.18, P = 0.005) and tympanic temperature (F = 25.23, P = 0.001) with no effect on energy expenditure (F = 0.01, P = 0.945).Conclusion: A hot environment notably reduced fat oxidation rates during a ramp exercise test. Exercising in the heat should not be recommended for those individuals seeking to increase fat oxidation during exercise.
Collapse
Affiliation(s)
- Carlos Ruíz-Moreno
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
| | - Jorge Gutiérrez-Hellín
- Exercise and Sport Sciences, Faculty of Health Sciences, Francisco de Vitoria University, Spain
| | | | | | | | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, Spain
| |
Collapse
|
18
|
Rømer T, Thunestvedt Hansen M, Frandsen J, Larsen S, Dela F, Wulff Helge J. The relationship between peak fat oxidation and prolonged double-poling endurance exercise performance. Scand J Med Sci Sports 2020; 30:2044-2056. [PMID: 32654310 DOI: 10.1111/sms.13769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 12/28/2022]
Abstract
The peak fat oxidation rate (PFO) and the exercise intensity that elicits PFO (Fatmax ) are associated with endurance performance during exercise primarily involving lower body musculature, but it remains elusive whether these associations are present during predominant upper body exercise. The aim was to investigate the relationship between PFO and Fatmax determined during a graded exercise test on a ski-ergometer using double-poling (GET-DP) and performance in the long-distance cross-country skiing race, Vasaloppet. Forty-three healthy men completed GET-DP and Vasaloppet and were divided into two subgroups: recreational (RS, n = 35) and elite (ES, n = 8) skiers. Additionally, RS completed a cycle-ergometer GET (GET-Cycling) to elucidate whether the potential relationships were specific to exercise modality. PFO (r2 = .10, P = .044) and Fatmax (r2 = .26, P < .001) were correlated with performance; however, V ˙ O 2 peak was the only independent predictor of performance (adj. R2 = .36) across all participants. In ES, Fatmax was the only variable associated with performance (r2 = .54, P = .038). Within RS, DP V ˙ O 2 peak (r2 = .11, P = .047) and ski-specific training background (r2 = .30, P = .001) were associated with performance. Between the two GETs, Fatmax (r2 = .20, P = .006) but not PFO (r2 = .07, P = .135) was correlated. Independent of exercise mode, neither PFO nor Fatmax were associated with performance in RS (P > .05). These findings suggest that prolonged endurance performance is related to PFO and Fatmax but foremost to V ˙ O 2 peak during predominant upper body exercise. Interestingly, Fatmax may be an important determinant of performance among ES. Among RS, DP V ˙ O 2 peak , and skiing experience appeared as performance predictors. Additionally, whole-body fat oxidation seemed specifically coupled to exercise modality.
Collapse
Affiliation(s)
- Tue Rømer
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Thunestvedt Hansen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Frandsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jørn Wulff Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Arent SM, Cintineo HP, McFadden BA, Chandler AJ, Arent MA. Nutrient Timing: A Garage Door of Opportunity? Nutrients 2020; 12:nu12071948. [PMID: 32629950 PMCID: PMC7400240 DOI: 10.3390/nu12071948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Nutrient timing involves manipulation of nutrient consumption at specific times in and around exercise bouts in an effort to improve performance, recovery, and adaptation. Its historical perspective centered on ingestion during exercise and grew to include pre- and post-training periods. As research continued, translational focus remained primarily on the impact and outcomes related to nutrient consumption during one specific time period to the exclusion of all others. Additionally, there seemed to be increasing emphasis on outcomes related to hypertrophy and strength at the expense of other potentially more impactful performance measures. As consumption of nutrients does not occur at only one time point in the day, the effect and impact of energy and macronutrient availability becomes an important consideration in determining timing of additional nutrients in and around training and competition. This further complicates the confining of the definition of “nutrient timing” to one very specific moment in time at the exclusion of all other time points. As such, this review suggests a new perspective built on evidence of the interconnectedness of nutrient impact and provides a pragmatic approach to help frame nutrient timing more inclusively. Using this approach, it is argued that the concept of nutrient timing is constrained by reliance on interpretation of an “anabolic window” and may be better viewed as a “garage door of opportunity” to positively impact performance, recovery, and athlete availability.
Collapse
Affiliation(s)
- Shawn M. Arent
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA; (H.P.C.); (B.A.M.); (A.J.C.)
- Correspondence: ; Tel.: +1-803-576-8394
| | - Harry P. Cintineo
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA; (H.P.C.); (B.A.M.); (A.J.C.)
| | - Bridget A. McFadden
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA; (H.P.C.); (B.A.M.); (A.J.C.)
| | - Alexa J. Chandler
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA; (H.P.C.); (B.A.M.); (A.J.C.)
| | - Michelle A. Arent
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
20
|
Karppinen JE, Rottensteiner M, Wiklund P, Hämäläinen K, Laakkonen EK, Kaprio J, Kainulainen H, Kujala UM. Fat oxidation at rest and during exercise in male monozygotic twins. Eur J Appl Physiol 2019; 119:2711-2722. [PMID: 31673759 PMCID: PMC6858391 DOI: 10.1007/s00421-019-04247-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/24/2019] [Indexed: 11/24/2022]
Abstract
PURPOSE We aimed to investigate if hereditary factors, leisure-time physical activity (LTPA) and metabolic health interact with resting fat oxidation (RFO) and peak fat oxidation (PFO) during ergometer cycling. METHODS We recruited 23 male monozygotic twin pairs (aged 32-37 years) and determined their RFO and PFO with indirect calorimetry for 21 and 19 twin pairs and for 43 and 41 twin individuals, respectively. Using physical activity interviews and the Baecke questionnaire, we identified 10 twin pairs as LTPA discordant for the past 3 years. Of the twin pairs, 8 pairs participated in both RFO and PFO measurements, and 2 pairs participated in either of the measurements. We quantified the participants' metabolic health with a 2-h oral glucose tolerance test. RESULTS Fat oxidation within co-twins was correlated at rest [intraclass correlation coefficient (ICC) = 0.54, 95% confidence interval (CI) 0.15-0.78] and during exercise (ICC = 0.67, 95% CI 0.33-0.86). The LTPA-discordant pairs had no pairwise differences in RFO or PFO. In the twin individual-based analysis, PFO was positively correlated with the past 12-month LTPA (r = 0.26, p = 0.034) and the Baecke score (r = 0.40, p = 0.022) and negatively correlated with the area under the curve of insulin (r = - 0.42, p = 0.015) and glucose (r = - 0.31, p = 0.050) during the oral glucose tolerance test. CONCLUSIONS Hereditary factors were more important than LTPA for determining fat oxidation at rest and during exercise. Additionally, PFO, but not RFO, was associated with better metabolic health.
Collapse
Affiliation(s)
- Jari E Karppinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Mirva Rottensteiner
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Medicine, Central Finland Health Care District, Jyväskylä, Finland
| | - Petri Wiklund
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Exercise Translational Medicine Center and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Epidemiology and Biostatistics, Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | | | - Eija K Laakkonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Urho M Kujala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
21
|
Tas M, Senturk E, Ekinci D, Demirdag R, Comakli V, Bayram M, Akyuz M, Senturk M, Supuran CT. Comparison of blood carbonic anhydrase activity of athletes performing interval and continuous running exercise at high altitude. J Enzyme Inhib Med Chem 2019; 34:218-224. [PMID: 30560698 PMCID: PMC6292344 DOI: 10.1080/14756366.2018.1545768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 11/12/2022] Open
Abstract
The effects of high-intensity interval and continuous exercise on erythrocytes carbonic anhydrase (CA, EC 4.2.1.1) activity levels were scarcely investigated up until now. Here we present a study focused on the CA activity from erythrocytes of athletes experiencing interval and continuous training for 6 weeks, during cold weather and at high altitude (> 1600 m). We observed a 50% increase in the blood CA activity at the second week after initiation of the training in both interval and continuos running groups, whereas the control group did not experience any variation in the enzyme activity levels. In the trained individuals a mild decrease in their body mass, BMI and an increased [Formula: see text] were also observed. The CA activity returned at the basal values after 4-6 weeks after the training started, probably proving that a metabolic compensation occurred without the need of an enhanced enzyme activity. The unexpected 50% rise of activity for an enzyme which acts as a very efficient catalyst for CO2 hydration/bicarbonate dehydration, such as the blood CA, deserves further investigations for better understanding the physiologic basis of this phenomenon.
Collapse
Affiliation(s)
- Murat Tas
- Faculty of Sport Sciences, Manisa Celal Bayar University, Manisa, Turkey
| | - Esra Senturk
- School of Health Services, Agri Ibrahim Cecen University, Agri, Turkey
| | - Deniz Ekinci
- Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| | - Ramazan Demirdag
- School of Health Services, Agri Ibrahim Cecen University, Agri, Turkey
| | - Veysal Comakli
- School of Health Services, Agri Ibrahim Cecen University, Agri, Turkey
| | - Metin Bayram
- Physical Education Sports High School, Agri Ibrahim Cecen University, Agri, Turkey
| | - Murat Akyuz
- Faculty of Sport Sciences, Manisa Celal Bayar University, Manisa, Turkey
| | - Murat Senturk
- Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| | - Claudiu T. Supuran
- Section of Pharmaceutical Chemistry, Neurofarba Department, University of Florence, Firenze, Italy
| |
Collapse
|
22
|
Amaro-Gahete FJ, Sanchez-Delgado G, Jurado-Fasoli L, De-la-O A, Castillo MJ, Helge JW, Ruiz JR. Assessment of maximal fat oxidation during exercise: A systematic review. Scand J Med Sci Sports 2019; 29:910-921. [PMID: 30929281 DOI: 10.1111/sms.13424] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 11/27/2022]
Abstract
Maximal fat oxidation during exercise (MFO) and the exercise intensity eliciting MFO (Fatmax ) are considered biological markers of metabolic health and performance. A wide range of studies have been performed to increase our knowledge about their regulation by exercise and/or nutritional intervention. However, numerous data collection and analysis approaches have been applied, which may have affected the MFO and Fatmax estimation. We aimed to systematically review the available studies describing and/or comparing different data collection and analysis approach factors that could affect MFO and Fatmax estimation in healthy individuals and patients. Two independent researchers performed the search. We included all original studies in which MFO and/or Fatmax were estimated by indirect calorimetry through an incremental graded exercise protocol published from 2002 to 2019. This systematic review provides key information about the factors that could affect MFO and Fatmax estimation: ergometer type, metabolic cart used, warm-up duration and intensity, stage duration and intensities imposed in the graded exercise protocol, time interval selected for data analysis, stoichiometric equation selected to estimate fat oxidation, data analysis approach, time of the day when the test was performed, fasting time/previous meal before the test, and testing days for MFO/Fatmax and maximal oxygen uptake assessment. We suggest that researchers measuring MFO and Fatmax should take into account these key methodological issues that can considerably affect the accuracy, validity, and reliability of the measurement. Likewise, when comparing different studies, it is important to check whether the above-mentioned key methodological issues are similar in such studies to avoid ambiguous and unacceptable comparisons.
Collapse
Affiliation(s)
- Francisco J Amaro-Gahete
- EFFECTS-262, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain.,PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Guillermo Sanchez-Delgado
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Lucas Jurado-Fasoli
- EFFECTS-262, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Alejandro De-la-O
- EFFECTS-262, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Manuel J Castillo
- EFFECTS-262, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Jørn W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonatan R Ruiz
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
23
|
Randell RK, Carter JM, Jeukendrup AE, Lizarraga MA, Yanguas JI, Rollo I. Fat Oxidation Rates in Professional Soccer Players. Med Sci Sports Exerc 2019; 51:1677-1683. [PMID: 30845048 DOI: 10.1249/mss.0000000000001973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Large interindividual variation exists in maximal fat oxidation (MFO) rates and the exercise intensity at which it occurs (FATMAX). However, there are no data describing the shape of the fat oxidation curve or if individual differences exist when tested on separate occasions. Furthermore, there are limited data on fat metabolism in professional team sport athletes. Therefore, the aim of this study was to test-retest the concavity (shape) and intercept (height) of fat oxidation curves within a group of professional soccer players. METHOD On two occasions, 16 professional male soccer players completed a graded exercise test in a fasted state (≥5 h). Rates of fat oxidation were determined using indirect calorimetry. Maximal oxygen uptake (V˙O2max) was measured to calculate FATMAX (%V˙O2max). The shape of the fat oxidation curves were modeled on an individual basis using third-degree polynomial. Test-by-test differences, in the shape and vertical shift of the fat oxidation curves, were established to assess within-individual variability. RESULTS Average absolute MFO was 0.69 ± 0.15 g·min (range, 0.45-0.99 g·min). On a group level, no significant differences were found in MFO between the two tests. No differences were found (P > 0.05) in the shape of the fat oxidation curves in 13 of 16 players (test 1 vs test 2). There were also no differences (P > 0.05) in the vertical shift of the fat oxidation curves in 10 players. CONCLUSIONS In general, the shape of the fat oxidation curve does not change within an individual; however, the vertical shift is more susceptible to change, which may be due to training status and body composition. Understanding a player's metabolism may be of value to practitioners working within sport, with regard to personalizing nutrition strategies.
Collapse
Affiliation(s)
- Rebecca K Randell
- The Gatorade Sports Science Institute, Global R&D, PepsiCo., Leicester, UNITED KINGDOM.,Loughborough University, School of Sport Exercise and Health Sciences, Loughborough, UNITED KINGDOM
| | - James M Carter
- The Gatorade Sports Science Institute, Global R&D, PepsiCo., Leicester, UNITED KINGDOM
| | - Asker E Jeukendrup
- Loughborough University, School of Sport Exercise and Health Sciences, Loughborough, UNITED KINGDOM
| | | | | | - Ian Rollo
- The Gatorade Sports Science Institute, Global R&D, PepsiCo., Leicester, UNITED KINGDOM.,Loughborough University, School of Sport Exercise and Health Sciences, Loughborough, UNITED KINGDOM
| |
Collapse
|
24
|
Amaro-Gahete FJ, Sanchez-Delgado G, Ruiz JR. Commentary: Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front Physiol 2018; 9:1460. [PMID: 30405428 PMCID: PMC6201563 DOI: 10.3389/fphys.2018.01460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Francisco J Amaro-Gahete
- Departament of Medical Physiology, School of Medicine, University of Granada, Granada, Spain.,PROmoting FITness and Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Guillermo Sanchez-Delgado
- PROmoting FITness and Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jonatan R Ruiz
- PROmoting FITness and Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
25
|
Maunder E, Plews DJ, Kilding AE. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front Physiol 2018; 9:599. [PMID: 29875697 PMCID: PMC5974542 DOI: 10.3389/fphys.2018.00599] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022] Open
Abstract
Using a short-duration step protocol and continuous indirect calorimetry, whole-body rates of fat and carbohydrate oxidation can be estimated across a range of exercise workloads, along with the individual maximal rate of fat oxidation (MFO) and the exercise intensity at which MFO occurs (Fatmax). These variables appear to have implications both in sport and health contexts. After discussion of the key determinants of MFO and Fatmax that must be considered during laboratory measurement, the present review sought to synthesize existing data in order to contextualize individually measured fat oxidation values. Data collected in homogenous cohorts on cycle ergometers after an overnight fast was synthesized to produce normative values in given subject populations. These normative values might be used to contextualize individual measurements and define research cohorts according their capacity for fat oxidation during exercise. Pertinent directions for future research were identified.
Collapse
Affiliation(s)
- Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | | | | |
Collapse
|
26
|
ARETA JOSEL, AUSTARHEIM INGVILD, WANGENSTEEN HELLE, CAPELLI CARLO. Metabolic and Performance Effects of Yerba Mate on Well-trained Cyclists. Med Sci Sports Exerc 2018; 50:817-826. [DOI: 10.1249/mss.0000000000001482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Metabolism and Whole-Body Fat Oxidation Following Postexercise Carbohydrate or Protein Intake. Int J Sport Nutr Exerc Metab 2018; 28:37-45. [DOI: 10.1123/ijsnem.2017-0129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose: This study investigated how postexercise intake of placebo (PLA), protein (PRO), or carbohydrate (CHO) affected fat oxidation (FO) and metabolic parameters during recovery and subsequent exercise. Methods: In a cross-over design, 12 moderately trained women (VO2max 45 ± 6 ml·min−1·kg−1) performed three days of testing. A 23-min control (CON) incremental FO bike test (30–80% VO2max) was followed by 60 min exercise at 75% VO2max. Immediately postexercise, subjects ingested PLA, 20 g PRO, or 40 g CHO followed by a second FO bike test 2 h later. Results: Maximal fat oxidation (MFO) and the intensity at which MFO occurs (Fatmax) increased at the second FO test compared to the first following all three postexercise drinks (MFO for CON = 0.28 ± 0.08, PLA = 0.57 ± 0.13, PRO = 0.52 ± 0.08, CHO = 0.44 ± 0.12 g fat·min−1; Fatmax for CON = 41 ± 7, PLA = 54 ± 4, PRO = 55 ± 6, CHO = 50 ± 8 %VO2max, p < 0.01 for all values compared to CON). Resting FO, MFO, and Fatmax were not significantly different between PLA and PRO, but lower for CHO. PRO and CHO increased insulin levels at 1 h postexercise, though both glucose and insulin were equal with PLA at 2 h postexercise. Increased postexercise ketone levels only occurred with PLA. Conclusion: Protein supplementation immediately postexercise did not affect the doubling in whole body fat oxidation seen during a subsequent exercise trial 2 h later. Neither did it affect resting fat oxidation during the postexercise period despite increased insulin levels and attenuated ketosis. Carbohydrate intake dampened the increase in fat oxidation during the second test, though a significant increase was still observed compared to the first test.
Collapse
|
28
|
Jabbour G, Iancu H. Acute and chronic exercises: Effect on lipid metabolisms in obese individuals. Sci Sports 2017. [DOI: 10.1016/j.scispo.2017.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Randell RK, Rollo I, Roberts TJ, Dalrymple KJ, Jeukendrup AE, Carter JM. Maximal Fat Oxidation Rates in an Athletic Population. Med Sci Sports Exerc 2017; 49:133-140. [PMID: 27580144 DOI: 10.1249/mss.0000000000001084] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The aim of this study was to describe maximal fat oxidation (MFO) rates in an athletic population. METHOD In total, 1121 athletes (933 males and 188 females), from a variety of sports and competitive level, undertook a graded exercise test on a treadmill in a fasted state (≥5 h fasted). Rates of fat oxidation were determined using indirect calorimetry. RESULTS The average MFO was 0.59 ± 0.18 g·min, ranging from 0.17 to 1.27 g·min. Maximal rates occurred at an average exercise intensity of 49.3% ± 14.8% V˙O2max, ranging from 22.6% to 88.8% V˙O2max. In absolute terms, male athletes had significantly higher MFO compared with females (0.61 and 0.50 g·min, respectively, P < 0.001). Expressed relative to fat-free mass (FFM), MFO were higher in the females compared with males (MFO/FFM: 11.0 and 10.0 mg·kg·FFM·min, respectively, P < 0.001). Soccer players had the highest MFO/FFM (10.8 mg·kg·FFM·min), ranging from 4.1 to 20.5 mg·kg·FFM·min, whereas American Football players displayed the lowest rates of MFO/FFM (9.2 mg·kg·FFM·min). In all athletes, and when separated by sport, large individual variations in MFO rates were observed. Significant positive correlations were found between MFO (g·min) and the following variables: FFM, V˙O2max, FATMAX (the exercise intensity at which the MFO was observed), percent body fat, and duration of fasting. When taken together these variables account for 47% of the variation in MFO. CONCLUSION MFO and FATMAX vary significantly between athletes participating in different sports but also in the same sport. Although variance in MFO can be explained to some extent by body composition and fitness status, more than 50% of the variance is not explained by these variables and remains unaccounted for.
Collapse
Affiliation(s)
- Rebecca K Randell
- 1The Gatorade Sports Science Institute, Global Nutrition R&D, PepsiCo, Leicester, UNITED KINGDOM; and 2School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | | | | | | | | | | |
Collapse
|
30
|
Gutiérrez-Hellín J, Del Coso J. Acute p-synephrine ingestion increases fat oxidation rate during exercise. Br J Clin Pharmacol 2016; 82:362-8. [PMID: 27038225 DOI: 10.1111/bcp.12952] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/26/2016] [Accepted: 03/23/2016] [Indexed: 12/30/2022] Open
Abstract
AIMS p-Synephrine is a protoalkaloid widely used in dietary supplements for weight management because of its purported thermogenic effects. However, there is a lack of scientific information about its effectiveness to increase fat metabolism during exercise. The purpose of this investigation was to determine the effects of an acute ingestion of p-synephrine on fat oxidation at rest and during exercise. METHODS In a double-blind, randomized and counterbalanced experimental design, 18 healthy subjects performed two acute experimental trials after the ingestion of p-synephrine (3 mg kg(-1) ) or after the ingestion of a placebo (cellulose). Energy expenditure and fat oxidation rates were measured by indirect calorimetry at rest and during a cycle ergometer ramp exercise test (increases of 25 W every 3 min) until volitional fatigue. RESULTS In comparison with the placebo, the ingestion of p-synephrine did not change energy consumption (1.6 ± 0.3 vs. 1.6 ± 0.3 kcal min(-1) ; P = 0.69) or fat oxidation rate at rest (0.08 ± 0.02 vs. 0.10 ± 0.04 g min(-1) ; P = 0.15). However, the intake of p-synephrine moved the fat oxidation-exercise intensity curve upwards during the incremental exercise (P < 0.05) without affecting energy expenditure. Moreover, p-synephrine increased maximal fat oxidation rate (0.29 ± 0.15 vs. 0.40 ± 0.18 g min(-1) ; P = 0.01) during exercise although it did not affect the intensity at which maximal fat oxidation was achieved (55.8 ± 7.7 vs. 56.7 ± 8.2% VO2peak ; P = 0.51). CONCLUSIONS The acute ingestion of p-synephrine increased the fat oxidation rate while it reduced the carbohydrate oxidation rate when exercising at low-to-moderate exercise intensities.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Hellín
- Exercise Physiology Laboratory, Sport Science Institute, Camilo José Cela University, Madrid, Spain
| | - Juan Del Coso
- Exercise Physiology Laboratory, Sport Science Institute, Camilo José Cela University, Madrid, Spain
| |
Collapse
|
31
|
|
32
|
Andersson Hall U, Edin F, Pedersen A, Madsen K. Whole-body fat oxidation increases more by prior exercise than overnight fasting in elite endurance athletes. Appl Physiol Nutr Metab 2015; 41:430-7. [PMID: 26988766 DOI: 10.1139/apnm-2015-0452] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of this study was to compare whole-body fat oxidation kinetics after prior exercise with overnight fasting in elite endurance athletes. Thirteen highly trained athletes (9 men and 4 women; maximal oxygen uptake: 66 ± 1 mL·min(-1)·kg(-1)) performed 3 identical submaximal incremental tests on a cycle ergometer using a cross-over design. A control test (CON) was performed 3 h after a standardized breakfast, a fasting test (FAST) 12 h after a standardized evening meal, and a postexercise test (EXER) after standardized breakfast, endurance exercise, and 2 h fasting recovery. The test consisted of 3 min each at 30%, 40%, 50%, 60%, 70%, and 80% of maximal oxygen uptake and fat oxidation rates were measured through indirect calorimetry. During CON, maximal fat oxidation rate was 0.51 ± 0.04 g·min(-1) compared with 0.69 ± 0.04 g·min(-1) in FAST (P < 0.01), and 0.89 ± 0.05 g·min(-1) in EXER (P < 0.01). Across all intensities, EXER was significantly higher than FAST and FAST was higher than CON (P < 0.01). Blood insulin levels were lower and free fatty acid and cortisol levels were higher at the start of EXER compared with CON and FAST (P < 0.05). Plasma nuclear magnetic resonance-metabolomics showed similar changes in both EXER and FAST, including increased levels of fatty acids and succinate. In conclusion, prior exercise significantly increases whole-body fat oxidation during submaximal exercise compared with overnight fasting. Already high rates of maximal fat oxidation in elite endurance athletes were increased by approximately 75% after prior exercise and fasting recovery.
Collapse
Affiliation(s)
- Ulrika Andersson Hall
- a Department of Food and Nutrition, and Sport Science, University of Gothenburg, PO Box 300, 405 30 Gothenburg, Sweden.,b Department of Public Health, Section for Sport, Arhus University, Dalgas Avenue 4, DK-8000, Aarhus C, Denmark
| | - Fredrik Edin
- a Department of Food and Nutrition, and Sport Science, University of Gothenburg, PO Box 300, 405 30 Gothenburg, Sweden
| | - Anders Pedersen
- c Swedish NMR Centre, University of Gothenburg, PO Box 465, 405 30, Gothenburg, Sweden
| | - Klavs Madsen
- a Department of Food and Nutrition, and Sport Science, University of Gothenburg, PO Box 300, 405 30 Gothenburg, Sweden.,b Department of Public Health, Section for Sport, Arhus University, Dalgas Avenue 4, DK-8000, Aarhus C, Denmark
| |
Collapse
|
33
|
Cook MD, Myers SD, Blacker SD, Willems MET. New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. Eur J Appl Physiol 2015; 115:2357-65. [PMID: 26175097 DOI: 10.1007/s00421-015-3215-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/29/2015] [Indexed: 11/24/2022]
Abstract
PURPOSE Blackcurrant intake increases peripheral blood flow in humans, potentially by anthocyanin-induced vasodilation which may affect substrate delivery and exercise performance. We examined the effects of New Zealand blackcurrant (NZBC) extract on substrate oxidation, cycling time-trial performance and plasma lactate responses following the time-trial in trained cyclists. METHODS Using a randomized, double-blind, crossover design, 14 healthy men (age: 38 ± 13 years, height: 178 ± 4 cm, body mass: 77 ± 9 kg, VO2max: 53 ± 6 mL kg(-1) min(-1), mean ± SD) ingested NZBC extract (300 mg day(-1) CurraNZ™ containing 105 mg anthocyanin) or placebo (PL, 300 mg microcrystalline cellulose M102) for 7 days (washout 14 days). On day 7, participants performed 30 min of cycling (3 × 10 min at 45, 55 and 65 % VO2max), followed by a 16.1 km time-trial with lactate sampling during a 20-min passive recovery. RESULTS NZBC extract increased fat oxidation at 65 % VO2max by 27 % (P < 0.05) and improved 16.1 km time-trial performance by 2.4 % (NZBC: 1678 ± 108 s, PL: 1722 ± 131 s, P < 0.05). Plasma lactate was higher with NZBC extract immediately following the time-trial (NZBC: 7.06 ± 1.73 mmol L(-1), PL: 5.92 ± 1.58 mmol L(-1), P < 0.01). CONCLUSIONS Seven-day intake of New Zealand blackcurrant extract improves 16.1 km cycling time-trial performance and increases fat oxidation during moderate intensity cycling.
Collapse
Affiliation(s)
- Matthew David Cook
- Department of Sport & Exercise Sciences, University of Chichester, College Lane, Chichester, PO19 6PE, UK
| | - Stephen David Myers
- Department of Sport & Exercise Sciences, University of Chichester, College Lane, Chichester, PO19 6PE, UK
| | - Sam David Blacker
- Department of Sport & Exercise Sciences, University of Chichester, College Lane, Chichester, PO19 6PE, UK
| | | |
Collapse
|
34
|
Egan B, Ashley DT, Kennedy E, O'Connor PL, O'Gorman DJ. Higher rate of fat oxidation during rowing compared with cycling ergometer exercise across a range of exercise intensities. Scand J Med Sci Sports 2015; 26:630-7. [PMID: 26060092 DOI: 10.1111/sms.12498] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 12/13/2022]
Abstract
The relative contribution of carbohydrate and fat oxidation to energy expenditure during exercise is dependent on variables including exercise intensity, mode, and recruited muscle mass. This study investigated patterns of substrate utilization during two non-weightbearing exercise modalities, namely cycling and rowing. Thirteen young, moderately trained males performed a continuous incremental (3-min stages) exercise test to exhaustion on separate occasions on an electronically braked cycle (CYC) ergometer and an air-braked rowing (ROW) ergometer, respectively. On two further occasions, participants performed a 20-min steady-state exercise bout at ∼50%VO2peak on the respective modalities. Despite similar oxygen consumption, rates of fat oxidation (FATox ) were ∼45% higher during ROW compared with CYC (P < 0.05) across a range of power output increments. The crossover point for substrate utilization occurred at a higher relative exercise intensity for ROW than CYC (57.8 ± 2.1 vs 42.1 ± 3.6%VO2peak , P < 0.05). During steady-state submaximal exercise, the higher FATox during ROW compared with CYC was maintained (P < 0.05), but absolute FATox were 42% (CYC) and 28% (ROW) lower than during incremental exercise. FATox is higher during ROW compared with CYC exercise across a range of exercise intensities matched for energy expenditure, and is likely as a consequence of larger muscle mass recruited during ROW.
Collapse
Affiliation(s)
- B Egan
- Institute for Sport & Health, University College Dublin, Dublin, Ireland.,Institute of Food & Health, School of Public Health, Physiotherapy & Population Science, University College Dublin, Dublin, Ireland
| | - D T Ashley
- School of Health & Human Performance, Dublin City University, Dublin, Ireland
| | - E Kennedy
- School of Health & Human Performance, Dublin City University, Dublin, Ireland
| | - P L O'Connor
- School of Health & Human Performance, Dublin City University, Dublin, Ireland.,Exercise and Health Sciences Division, Central Michigan University, Mount Pleasant, Michigan, USA
| | - D J O'Gorman
- School of Health & Human Performance, Dublin City University, Dublin, Ireland.,Centre for Preventive Medicine, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
35
|
Ormsbee MJ, Bach CW, Baur DA. Pre-exercise nutrition: the role of macronutrients, modified starches and supplements on metabolism and endurance performance. Nutrients 2014; 6:1782-808. [PMID: 24787031 PMCID: PMC4042570 DOI: 10.3390/nu6051782] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/03/2014] [Accepted: 04/14/2014] [Indexed: 01/16/2023] Open
Abstract
Endurance athletes rarely compete in the fasted state, as this may compromise fuel stores. Thus, the timing and composition of the pre-exercise meal is a significant consideration for optimizing metabolism and subsequent endurance performance. Carbohydrate feedings prior to endurance exercise are common and have generally been shown to enhance performance, despite increasing insulin levels and reducing fat oxidation. These metabolic effects may be attenuated by consuming low glycemic index carbohydrates and/or modified starches before exercise. High fat meals seem to have beneficial metabolic effects (e.g., increasing fat oxidation and possibly sparing muscle glycogen). However, these effects do not necessarily translate into enhanced performance. Relatively little research has examined the effects of a pre-exercise high protein meal on subsequent performance, but there is some evidence to suggest enhanced pre-exercise glycogen synthesis and benefits to metabolism during exercise. Finally, various supplements (i.e., caffeine and beetroot juice) also warrant possible inclusion into pre-race nutrition for endurance athletes. Ultimately, further research is needed to optimize pre-exercise nutritional strategies for endurance performance.
Collapse
Affiliation(s)
- Michael J Ormsbee
- Human Performance and Sports Nutrition Lab, Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA.
| | - Christopher W Bach
- Human Performance and Sports Nutrition Lab, Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA.
| | - Daniel A Baur
- Human Performance and Sports Nutrition Lab, Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
36
|
Zakrzewski JK, Tolfrey K. Acute effect of Fatmax exercise on the metabolism in overweight and nonoverweight girls. Med Sci Sports Exerc 2013; 44:1698-705. [PMID: 22525763 DOI: 10.1249/mss.0b013e31825804cf] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Acute exercise can reduce postprandial insulin concentrations and increase fat oxidation in adults, which may have important implications for insulin resistance and weight control. However, similar studies with young people or comparing overweight (OW) and nonoverweight (NO) individuals are sparse. Therefore, the acute effect of Fatmax exercise on glucose, insulin, and fat oxidation was examined in 12 OW and 15 NO girls. METHODS Participants completed two 2-d conditions in a counterbalanced order. On day 1, participants either expended 2.09 MJ (500 kcal) during treadmill exercise at individual Fatmax (EX) or 0.47 MJ (112 kcal) during rest (CON). On day 2, capillary blood and expired air samples were taken in the fasting state and at regular intervals for 2 h after high-glycemic-index breakfast consumption. Subsequently, blood glucose and plasma insulin concentrations were determined, and fat oxidation was estimated. RESULTS Blood glucose was similar between conditions in both groups (P > 0.05). Fasting plasma insulin (P = 0.047) and total area under the 2-h curve (P = 0.049) were reduced for EX compared with CON in the NO, but not OW girls (P > 0.05). Fasting fat oxidation was higher for EX than for CON in the NO girls (P = 0.036) and fat oxidation total area under the 2-h curve was higher for EX in both groups of girls (P ≤ 0.05). CONCLUSIONS A bout of Fatmax exercise performed ~16 h before high-glycemic-index breakfast consumption reduced fasting and postprandial insulin concentrations in NO girls and increased fat oxidation in both OW and NO girls. The higher postintervention energy and CHO intake in the OW compared with the NO girls or differences in metabolism between the two groups may have compromised potential exercise-induced reductions in insulin the OW girls.
Collapse
Affiliation(s)
- Julia K Zakrzewski
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | | |
Collapse
|
37
|
Effects of supervised exercise training at the intensity of maximal fat oxidation in overweight young women. J Exerc Sci Fit 2012. [DOI: 10.1016/j.jesf.2012.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
|
39
|
Kwon HR, Min KW, Ahn HJ, Seok HG, Koo BK, Kim HC, Han KA. Effects of aerobic exercise on abdominal fat, thigh muscle mass and muscle strength in type 2 diabetic subject. KOREAN DIABETES JOURNAL 2010; 34:23-31. [PMID: 20532017 PMCID: PMC2879901 DOI: 10.4093/kdj.2010.34.1.23] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/17/2009] [Indexed: 11/08/2022]
Abstract
BACKGROUND Aerobic exercise can effectively reduce visceral fat. However, few studies have examined the effect of daily physical activity on obesity and cardiopulmonary function in the subjects with diabetes. We examined the effect of moderate intensity of walking in obese diabetes patients by monitoring of daily activity and measuring the change in abdominal fat area, muscle are and maximal muscle strength. METHODS We randomly assigned 27 obese women with type 2 diabetes to an aerobic exercise group (AG, n = 13) and control group (CG, n = 14). The AG performed moderate intensity walking for 60 minutes per exercise, 5 times per week, and for 12 weeks. The activity energy expenditure was monitored by a multi-record accelerometer. The CG maintained routine daily activities. At the time of the initiation of the study and after 12 weeks of exercise, the aerobic exercise capacity was assessed using oxygen consumption rate at anaerobic threshold (VO(2)-AT). The abdominal fat area and the quadriceps muscle area were measured by computed tomography, and the maximum muscle strength of the upper and lower limbs was measured by a chest press and a leg press, respectively. RESULTS The mean age of the study subjects was 56.6 +/- 8.0 years, the mean duration of diabetes was 6.3 +/- 6.0 years, and the body weight index (BMI) was 27.3 +/- 2.7 kg/m(2). The BMI of the AG was significantly decreased (P = 0.003). In the AG, the visceral fat area and subcutaneous fat area were also significantly decreased (P = 0.018 and P < 0.001, respectively) but not in CG. VO(2)-AT of the AG was significantly improved, while that of the CG did not change (P = 0.009 and P = 0.115, respectively). The quadriceps muscle mass and the maximal muscle strength of the AG did not change, however, the CG showed a significant decrease. Duration of moderate intensity exercise was correlated with the decrease in total abdominal fat area (r = -0.484; P = 0.011) and that of high intensity exercise was correlated with improvement of cardiopulmonary function (r = 0.414; P = 0.032). CONCLUSION Daily moderate intensity aerobic exercise is effective at reducing abdominal fat mass, while high intensity exercise improves cardiopulmonary function.
Collapse
|
40
|
Carey DG. Quantifying differences in the "fat burning" zone and the aerobic zone: implications for training. J Strength Cond Res 2010; 23:2090-5. [PMID: 19855335 DOI: 10.1519/jsc.0b013e3181bac5c5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The primary objective of this study was to examine the relationship of the "fat burning" and aerobic zones. Subjects consisted of 36 relatively fit runners (20 male, 16 female) who completed a maximal exercise test to exhaustion on a motor-driven treadmill. The lower and upper limit of the "fat burning" zone was visually assessed by examining each individual graph. Maximal fat oxidation (MFO) was determined to be that point during the test at which fat metabolism in fat calories per minute peaked. The lower limit of the aerobic zone was assessed as 50% of heart rate reserve, whereas the upper limit was set at anaerobic threshold. Although the lower and upper limits of the "fat burning" zone (67.6-87.1% maximal heart rate) were significantly lower (p < 0.05) than their counterparts in the aerobic zone (58.9-76.2%), the considerable overlap of the 2 zones would indicate that training for fat oxidation and training for aerobic fitness are not mutually exclusive and may be accomplished with the same training program. Furthermore, it was determined that this training program could simultaneously meet the requirements of the American College of Sports Medicine for both aerobic fitness and weight control. Maximal fat oxidation occurred at 54.2% maximal oxygen uptake (VO2max). However, the great variability in response between individuals would preclude the prediction of both the "fat burning" zone and MFO, indicating a need for measurement in the laboratory. If laboratory testing is not possible, the practitioner or subject can be reasonably confident MFO lies between 60.2% and 80.0% of the maximal heart rate.
Collapse
Affiliation(s)
- Daniel G Carey
- Health and Human Performance Laboratory, University of St Thomas, St Paul, Minnesota, USA.
| |
Collapse
|
41
|
Péronnet F, Abdelaoui M, Lavoie C, Marrao C, Kerr S, Massicotte D, Giesbrecht G. Effect of a 20-day ski trek on fuel selection during prolonged exercise at low workload with ingestion of 13C-glucose. Eur J Appl Physiol 2009; 106:41-9. [DOI: 10.1007/s00421-009-0987-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2009] [Indexed: 10/21/2022]
|
42
|
Bennard P, Doucet E. Acute effects of exercise timing and breakfast meal glycemic index on exercise-induced fat oxidation. Appl Physiol Nutr Metab 2006; 31:502-11. [PMID: 17111004 DOI: 10.1139/h06-027] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fat balance is an important determinant of energy balance. Exercise after an overnight fast can significantly increase fat oxidation; however, little information pertaining to the effects of exercise and meal glycemic index on fat oxidation under these conditions is available. The objective of this investigation was to study the acute effects of exercise timing and meal glycemic index (GI) on whole-body fat oxidation. Eight apparently healthy young men completed 4 randomly ordered trials during which measurements were made at rest, during exercise, and for 2 h post-exercise and (or) post-prandial. After an overnight fast, subjects were required to perform 400 kcal (1 kcal = 4.184 kJ) of treadmill exercise (at FATmax) either before consuming a 400 kcal low-GI (Ex-LG) or high-GI (Ex-HG) oatmeal breakfast, or after consuming the low-GI (LG-Ex) or high-GI (HG-Ex) meal. The amount of fat oxidized during exercise was significantly greater during Ex-LG and Ex-HG (17.2 ± 4.0 and 17.5 ± 4.7 g, respectively) than during LG-Ex and HG-Ex (10.9 ± 3.7 and 11.7 ± 3.5 g, respectively) (p < 0.001), as was the amount of fat oxidized during the entire trial (Ex-LG: 23.4 ± 4.7 g; Ex-HG: 23.4 ± 6.5 g; LG-Ex: 18.4 ± 4.7 g; HG-Ex: 19.6 ± 4.9 g) (p < 0.05), even though energy expenditure was not different across experimental conditions. No significant effect of meal GI on the amount of fat oxidized was noted. Total fat oxidized during exercise, and for 2 h after exercise, was greatest when morning exercise was performed in the fasted state, independently of meal GI.
Collapse
Affiliation(s)
- Patrick Bennard
- School of Human Kinetics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | |
Collapse
|
43
|
Abstract
Interventions aimed at increasing fat metabolism could potentially reduce the symptoms of metabolic diseases such as obesity and type 2 diabetes and may have tremendous clinical relevance. Hence, an understanding of the factors that increase or decrease fat oxidation is important. Exercise intensity and duration are important determinants of fat oxidation. Fat oxidation rates increase from low to moderate intensities and then decrease when the intensity becomes high. Maximal rates of fat oxidation have been shown to be reached at intensities between 59% and 64% of maximum oxygen consumption in trained individuals and between 47% and 52% of maximum oxygen consumption in a large sample of the general population. The mode of exercise can also affect fat oxidation, with fat oxidation being higher during running than cycling. Endurance training induces a multitude of adaptations that result in increased fat oxidation. The duration and intensity of exercise training required to induce changes in fat oxidation is currently unknown. Ingestion of carbohydrate in the hours before or on commencement of exercise reduces the rate of fat oxidation significantly compared with fasted conditions, whereas fasting longer than 6 h optimizes fat oxidation. Fat oxidation rates have been shown to decrease after ingestion of high-fat diets, partly as a result of decreased glycogen stores and partly because of adaptations at the muscle level.
Collapse
Affiliation(s)
- Juul Achten
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| | | |
Collapse
|