1
|
Palsania P, Singhal K, Dar MA, Kaushik G. Food grade plastics and Bisphenol A: Associated risks, toxicity, and bioremediation approaches. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133474. [PMID: 38244457 DOI: 10.1016/j.jhazmat.2024.133474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Bisphenols' widespread use in day to day life has enabled its existence in various compartments of the environment. Bisphenol A (BPA) is utilized as a monomer in manufacturing polycarbonate plastics, epoxy resins, as well as flame retardants and is also considered as an endocrine disruptor. This study focuses on determining BPA concentration in daily-use food-grade plastic containers, in addition to its toxicity evaluation in environmental samples contaminated by BPA leachates. The highest concentration of BPA was observed in black poly bags (42.78 ppm), followed by slice juice bottles and infant milk bottles. Toxicity tests revealed significant impacts on Rhizobium and Chlorella sp. as a representative species of soil and aquatic environment respectively. To biodegrade the BPA, two potential strains, Brucella sp. and Brevibacillus parabrevis, were isolated from a landfill site. Qualitative and quantitative evaluation of biodegraded BPA through U-HPLC and GC-MSMS showed various metabolites of BPA. Results indicate the native bacterial isolates as potential candidates for BPA degradation while transforming this contaminant to a less toxic and hazardous form. The study also proposes the risk associated with food-grade plastic containers and recommends to establish a sustainable way for plastic waste management.
Collapse
Affiliation(s)
- Preksha Palsania
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Kirti Singhal
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Mohd Ashaf Dar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India
| | - Garima Kaushik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, BandarSindri, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
2
|
Songue Same O, Nobosse P, Ngolong Ngea GL, Piveteau C, Lemdani M, Kamga R, Deprez B. Migration study of phthalates from non-food plastic containers used in food preservation. Heliyon 2023; 9:e20002. [PMID: 37809712 PMCID: PMC10559742 DOI: 10.1016/j.heliyon.2023.e20002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Phthalate acid esters (PAE) are used as additives in the formulation of plastics, to increase their flexibility and transparency. They can migrate from plastic packaging to food, then cause endocrine disruption in consumers. This migration depends on the conditions of use defined for each plastic. Non-food plastics are likely to release more PAE than food-grade plastics. In Cameroon, non-food grade plastics such as old paint buckets are used by people to preserve liquid food. The present work aimed at studying the conditions and mechanism of migration of total PAE from paint buckets to pap. For this purpose, the effects of seven factors were determined through Plackett-Burman experimental design. The interactions of the most influential factors were determined through a full factorial design. The conditions of the migration of total PAE were obtained via face-centered composite design. Then experimental results of migration kinetics were modelled according to equations of pseudo-first order, pseudo-second order and intra-particle diffusion. The results revealed that the most influential factors were pH, temperature and contact time. The effects of these factors are non-linear, and their interactions have to be considered. When pap is preserved in paint buckets according to the conditions: temperature of pap >70 °C, pH of pap ≤4 or ≥10 and contact time > 2 h, as is the case in donut shops in Cameroon, the amount of total PAE released is greater than 50 μg/L. Migration of total PAE from paint buckets to pap is best described by the pseudo-second order model.
Collapse
Affiliation(s)
- Olivier Songue Same
- Centre Pasteur du Cameroun, Physicochemical Section of Hygiene and Environment Department, PO Box 1274, Yaounde, Cameroon
- University of Ngaoundere, National School of Agro-Industrial Sciences, Department of Applied Chemistry, P.O. Box 455, Ngaoundere, Cameroon
- University of Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Pierre Nobosse
- University of Ngaoundere, National School of Agro-Industrial Sciences, Department of Food Science and Nutrition, P.O. Box 455, Ngaoundere, Cameroon
| | - Guillaume Legrand Ngolong Ngea
- Université de Douala à Yabassi, Institut des Sciences Halieutiques, Département de Trasformation et Contrôle de Qualité des Produits Halieutiques, P.O. Box 7236, Douala-Bassa, Cameroon
| | - Catherine Piveteau
- University of Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Mohamed Lemdani
- University of Lille, Faculty of Pharmacy, Lab. Biomaths Metrics, 59006, Lille, France
| | - Richard Kamga
- University of Ngaoundere, National School of Agro-Industrial Sciences, Department of Applied Chemistry, P.O. Box 455, Ngaoundere, Cameroon
| | - Benoit Deprez
- University of Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000, Lille, France
| |
Collapse
|
3
|
Khalili Sadrabad E, Hashemi SA, Nadjarzadeh A, Askari E, Akrami Mohajeri F, Ramroudi F. Bisphenol A release from food and beverage containers - A review. Food Sci Nutr 2023; 11:3718-3728. [PMID: 37457148 PMCID: PMC10345686 DOI: 10.1002/fsn3.3398] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 07/18/2023] Open
Abstract
Dietary exposure was introduced as the primary way Bisphenol A (BPA) enters the human body. Although significant efforts have been made to analyze BPA's presence in different foodstuffs, less attention has been given to introducing the conditions that facilitate BPA release. This review aimed to mention possible factors affecting BPA release into foods and beverages. According to the results, the critical factors in BPA release are temperature, manufacturing process, food and packaging type, pH, mineral elements, repeated use, irradiation, washing, contact time, and using detergents. It showed that using PC containers, high temperature and pH, storage under solar irradiation, alkaline detergents, water hardness, and repeated use could increase the BPA release from containers into foodstuff. During various conditions, hydrolysis of the carbonate linkage and d-spacing will increase. Considering these parameters and limiting the use of PC containers, the potential risk of BPA exposure could be eliminated.
Collapse
Affiliation(s)
- Elham Khalili Sadrabad
- Research Center for Food Hygiene and Safety, Department of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | | | - Azadeh Nadjarzadeh
- Nutrition and Food Security Research Center, Department of Nutrition, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Elaheh Askari
- Nutritional Health Research Center, School of Health and NutritionLorestan University of Medical SciencesKhorramabadIran
| | - Fateme Akrami Mohajeri
- Infectious Diseases Research Center, Shahid Sadoughi HospitalShahid Sadoughi University of Medical SciencesYazdIran
| | - Fereshteh Ramroudi
- Nutritional Health Research Center, School of Health and NutritionLorestan University of Medical SciencesKhorramabadIran
| |
Collapse
|
4
|
Liu L, Zhang X, Jia P, He S, Dai H, Deng S, Han J. Release of microplastics from breastmilk storage bags and assessment of intake by infants: A preliminary study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121197. [PMID: 36736818 DOI: 10.1016/j.envpol.2023.121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/07/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The occurrence of microplastic contaminants in food intended for human consumption has been widely explored. Yet, investigations on plastic and other particle debris in baby food packaging remain scarce to date. Our study shows the release of abundant micro-sized and submicron-sized particles, floccules (<300 μm), and fragments (1-50 μm) during the simulated use of commercially available single-use breastmilk storage bags. Six best-selling products of breastmilk storage bags were selected in our study. Most of the particles released from breastmilk storage bags that were identified as plastics were found to be polyethylene (PE), polyethylene terephthalate (PET), and nylon-6 using micro-Raman spectroscopy. The weight of the particles released from three randomly selected bags of the same product type was determined to be in the range of 0.22 and 0.47 mg. Submicron-sized particles (<0.8 μm) with irregular spherical or oval shapes were present. Microplastics and other particles ingested by infants from the use of breastmilk storage bags were estimated to be 0.61-0.89 mg/day based on the average daily breastmilk intake by infants. This study provides new insights into the exposure to microplastics and other particle debris in commonly used infant products.
Collapse
Affiliation(s)
- Liping Liu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xue Zhang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Puqi Jia
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China; College of Science and Technology, Hebei Agricultural University, Huanghua, 061100, People's Republic of China
| | - Shanshan He
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Han Dai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Shihai Deng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
5
|
Krivohlavek A, Mikulec N, Budeč M, Barušić L, Bošnir J, Šikić S, Jakasa I, Begović T, Janda R, Vitale K. Migration of BPA from Food Packaging and Household Products on the Croatian Market. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2877. [PMID: 36833573 PMCID: PMC9957217 DOI: 10.3390/ijerph20042877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
BPA is a plasticizer for the production of polycarbonate plastics and epoxy resins and is widely used in the production of household goods, including food packaging. Free BPA is known to migrate from packaging to food, and its uptake has been associated with adverse health effect, particularly the disruption of endocrine activity. The presence and migration of BPA from plastic consumer products are subject to strict regulation in the EU. The aim of this study is to analyse the migration of BPA from different packaging items and household products sold on the Croatian market. To simulate real life exposure, we treated samples with a food simulant. The analytical performance was confirmed with the EU requirements. BPA levels were assessed in 61 samples by HPLC-FLD and the LOQ of the method was 0.005 mg kg-1 for the food simulant. These results showed that the levels of BPA that migrated to the food simulant were below LOQ and in accordance with the specific migration limit into food, which was defined as 0.05 mg kg-1 for all samples. None of the analysed products presented a health hazard. However, these regulations do not refer to products intended for children's use, in which BPA is banned. Furthermore, regulations require testing before putting products on the market, and previous research shows that possible BPA migration occurs due to various uses, along with a cumulative effect of exposure from even very small concentrations. Therefore, for accurate BPA consumer exposure evaluation and possible health risks, a comprehensive approach is needed.
Collapse
Affiliation(s)
- Adela Krivohlavek
- Teaching Institute for Public Health “Dr. Andrija Štampar”, 10000 Zagreb, Croatia
| | - Nataša Mikulec
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Maja Budeč
- Teaching Institute for Public Health “Dr. Andrija Štampar”, 10000 Zagreb, Croatia
| | - Lidija Barušić
- Teaching Institute for Public Health “Dr. Andrija Štampar”, 10000 Zagreb, Croatia
| | - Jasna Bošnir
- Teaching Institute for Public Health “Dr. Andrija Štampar”, 10000 Zagreb, Croatia
| | - Sandra Šikić
- Teaching Institute for Public Health “Dr. Andrija Štampar”, 10000 Zagreb, Croatia
| | - Ivone Jakasa
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Tajana Begović
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Rea Janda
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ksenija Vitale
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Dehdashti B, Nikaeen M, Amin MM, Mohammadi F. Health Risk Assessment of Exposure to Bisphenol A in Polymeric Baby Bottles. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231151531. [PMID: 36726789 PMCID: PMC9885033 DOI: 10.1177/11786302231151531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
In recent decades, paying attention to bisphenol A (BPA), as one of the endocrine disruptor compounds, has increased due to its harmful effects. Although, scattered studies have been conducted in order to measure BPA concentration migrated into polymeric baby bottles in different countries of the world, there are no review studies and evaluation with a global perspective in the field of BPA risk. Some of these studies indicated the potential risks and estrogenic effects associated with BPA in babies' daily intake. For this purpose, we reviewed the information on the migration levels of BPA into baby bottles has been reported in 10 countries. The potential risks associated with BPA through the daily intake as well as the estrogenic effect on 3 age groups of babies which include 0 to 6, 6 to 12, and 12 to 24 months were analyzed using the Monte Carlo simulation. Also, kinetic models were applied to predict the kinetics of the migration process of BPA. The median daily intake for 3 age groups was obtained as 191.1, 161.37, and 153.76 µg/kg/day, respectively; which indicated Hazard Index (HI) > 1. The median estrogenic effect for the 3 groups was estimated to be 0.021 ngE2/L. The kinetics of contaminant transfer with Polynomial model at 2 temperatures of 24°C and 40°C showed a better fit with R 2 = 0.99 and 0.91, respectively. Based on the risk assessment analysis conducted in the present study, the BPA migration in baby bottles appeared to be a health concern for babies. Therefore, it is needed to increase the safety level of bottles for babies as they are sensitive and vulnerable members of every society. Furthermore, in this study, only the investigation of the global situation of BPA in polymeric baby bottles was stated; therefore, more investigation about another potential sources of BPA in food chain is needed.
Collapse
Affiliation(s)
- Bahare Dehdashti
- Department of Environmental Health
Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan,
Iran
- Student Research Committee, School of
Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research
Institute for Primordial Prevention of Non-communicable Disease, Isfahan University
of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health
Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan,
Iran
| | - Mohammad Mehdi Amin
- Department of Environmental Health
Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan,
Iran
- Environment Research Center, Research
Institute for Primordial Prevention of Non-communicable Disease, Isfahan University
of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health
Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan,
Iran
| |
Collapse
|
7
|
Hahladakis JN, Iacovidou E, Gerassimidou S. An overview of the occurrence, fate, and human risks of the bisphenol-A present in plastic materials, components, and products. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:45-62. [PMID: 35362236 DOI: 10.1002/ieam.4611] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
With over 95% of bisphenol-A (BPA) used in the production of polycarbonate (PC) and epoxy resins, termed here as BPA-based plastic materials, components, and products (MCPs), an investigation of human exposure to BPA over the whole lifecycle of BPA-based plastic MCPs is necessary. This mini-review unpacks the implications arising from the long-term human exposure to BPA and its potential accumulation across the lifecycle of BPA-based plastics (production, use, and management). This investigation is timely and necessary in promoting a sustainable circular economy model. Restrictions of BPA in the form of bans and safety standards are often specific to products, while safety limits rely on traditional toxicological and biomonitoring methods that may underestimate human health implications and therefore the "safety" of BPA exposure. Controversies in regards to the: (a) dose-response curves; (b) the complexity of sources, release mechanisms, and pathways of exposure; and/or (c) the quality and reliability of toxicological studies, appear to currently stifle progress toward the regulation of BPA-based plastic MCPs. Due to the abundance of BPA in our MCPs production, consumption, and management systems, there is partial and inadequate evidence on the contribution of BPA-based plastic MCPs to human exposure to BPA. Yet, the production, use, and end-of-life management of plastic MCPs constitute the most critical BPA source and potential exposure pathways that require further investigation. Active collaboration among risk assessors, government, policy-makers, and researchers is needed to explore the impacts of BPA in the long term and introduce restrictions to BPA-based MCPs. Integr Environ Assess Manag 2023;19:45-62. © 2022 SETAC.
Collapse
Affiliation(s)
- John N Hahladakis
- Waste Management (FEWS) Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Eleni Iacovidou
- Sustainable Plastics Research Group (SPlasH), Brunel University London, London, UK
- Division of Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| | | |
Collapse
|
8
|
Kholová A, Lhotská I, Erben J, Chvojka J, Švec F, Solich P, Šatínský D. Comparing adsorption performance of microfibers and nanofibers with commercial molecularly imprinted polymers and restricted access media for extraction of bisphenols from milk coupled with liquid chromatography. Talanta 2023; 252:123822. [DOI: 10.1016/j.talanta.2022.123822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
|
9
|
Dobrzyńska MM, Gajowik A, Radzikowska J. The impact of preconceptional exposure of F0 male mice to bisphenol A alone or in combination with X-rays on the intrauterine development of F2 progeny. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503480. [PMID: 35649674 DOI: 10.1016/j.mrgentox.2022.503480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is used for the production of polycarbonates and epoxy resins. Exposure to chemical and physical environmental factors may influence the health of exposed individuals, and of the next generations. This paper describes the prenatal effects in the F2 generation of mice after exposure of F0 pubescent or mature males to BPA (5 mg/kg bw, 10 mg/kg bw, 20 mg/kg bw), X-rays (0.05 Gy) or a combination of both factors in low doses (0.05 Gy + 5 mg/kg bw BPA) for 8 weeks. F1 males were mated with females from the same group but from a different litter. The females were sacrificed before parturition and examined for the number of implantations, live foetuses, as well as early and late post-implantation deaths. The fertility of males and the percentage of pregnant females in each group were also assessed. Exposure of pubescent F0 males to 10 mg/kg bw of BPA decreased the frequency of fertile males. Following exposure of pubescent males, the frequency of pregnant females decreased in the groups of 10 mg/kg bw and 20 mg/kg bw of BPA, whereas after exposure of adult F0 males in the groups of 5 mg/kg bw and 20 mg/kg bw of BPA, no significant changes in the frequency of total, live and dead implantations in all the experimental groups were found. The results observed in regard to prenatal development of the F2 generation suggest that sperm of the sons of F0 pubescent males exposed to BPA contains genetic defects that affect the possibility of fertilization. The results of both pubescent and mature males exposed to BPA showed that fertilized eggs died before implantation, probably due to defects induced in the sperm. This confirmed that BPA induced transgenerational effects in male germ cells.
Collapse
Affiliation(s)
- Małgorzata M Dobrzyńska
- National Institute of Public Heath NIH - National Research Institute, Department of Radiation Hygiene and Radiobiology, Chocimska 24, 00-791 Warszawa, Poland.
| | - Aneta Gajowik
- National Institute of Public Heath NIH - National Research Institute, Department of Radiation Hygiene and Radiobiology, Chocimska 24, 00-791 Warszawa, Poland
| | - Joanna Radzikowska
- National Institute of Public Heath NIH - National Research Institute, Department of Radiation Hygiene and Radiobiology, Chocimska 24, 00-791 Warszawa, Poland
| |
Collapse
|
10
|
Brandsma SH, Leonards PEG, Koekkoek JC, Samsonek J, Puype F. Migration of hazardous contaminants from WEEE contaminated polymeric toy material by mouthing. CHEMOSPHERE 2022; 294:133774. [PMID: 35104545 DOI: 10.1016/j.chemosphere.2022.133774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the migration of brominated flame retardants (BFRs), phosphate flame retardants (PFRs), bisphenols (BPA, BPF), and phthalate ester-based plasticizers from recycled polymeric toy material, containing waste electrical and electronic equipment (WEEE), in artificial saliva simulating 1 h of mouthing. In total 12 parts of 9 different toys were tested in triplicate after confirming WEEE specific contamination. Up to 11 contaminants were detected in saliva from one toy sample. The highest migration rate up to 128 ng/(cm2 x h) was found for BPA followed by bis(2-ethylhexyl) phthalate (DEHP) and diisobutyl phthalate (DIBP) with migration rates up to 25.5 and 8.27 ng/(cm2 x h), respectively. In addition to DecaBDE, which was detected in 3 saliva samples at migration rates between 0.09 and 0.31 ng/(cm2 x h), the decaBDE replacements 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ), decabromodiphenyl ethane (DBDPE), resorcinol bis(diphenyl phosphate) (RDP), and hexabromocyclododecane (HBCDD) were detected as well with comparable migration rates. 2,4,6-tribromphenol (246-TBP) reached migration rates up to 1.15 ng/(cm2 x h) in correspondence to the presence of TTBP-TAZ. Tetrabromobisphenol A (TBBPA), BPA, 246-TBP, DEHP, DIBP and triphenyl phosphate (TPHP) were predominantly observed in saliva with a detection frequency between 50 and 75%. Daily intake (DI) values were calculated for relevant analytes and compared to tolerable daily intake (TDI) values. The highest DI values of 72.4, 14.3, 5.74, 2.28 and 2.09 ng/(kg BW x day), were obtained for BPA, DEHP, DIBP, TBBPA, and TPHP, respectively. None of them exceed the TDI value or respective reference dose (RfD).
Collapse
Affiliation(s)
- Sicco H Brandsma
- Department of Environment and Health, Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands.
| | - Pim E G Leonards
- Department of Environment and Health, Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Jacco C Koekkoek
- Department of Environment and Health, Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Jíří Samsonek
- Institute for Testing and Certification, Inc., Trida Tomase Bati 299, Louky, 76302, Zlín, Czech Republic
| | - Franky Puype
- Institute for Testing and Certification, Inc., Trida Tomase Bati 299, Louky, 76302, Zlín, Czech Republic
| |
Collapse
|
11
|
Sukuroglu AA, Battal D, Kocadal K, Sungur MA, Cok İ, Unlusayin I. Biomonitoring of bisphenol A, 4-nonylphenol, and 4-t-octylphenol in Turkish population: exposure and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26250-26262. [PMID: 34850348 DOI: 10.1007/s11356-021-17796-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Biomonitoring studies are important tools to understand the effects of endocrine-disrupting compounds on human health. Up to now, there have been no biomonitoring and risk assessment studies conducted in Turkish population in which urinary bisphenol A (BPA), 4-nonylphenol (4-NP), and 4-t-octylphenol (4-t-OP) levels were measured simultaneously. The aim of this study is to measure urinary BPA, 4-NP, and 4-t-OP on Turkish population and conduct a risk assessment using urinary levels of chemicals of interest. During the study, liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to measure urinary levels of above-mentioned chemicals, and human biomonitoring was used as a risk assessment tool in 103 volunteers, living in Mersin Region, Turkey. Urinary BPA, 4-NP, and 4-t-OP were founded as 0.0079 μg/g creatinine, 0.0177 μg/g creatinine, and 0.0114 μg/g creatinine, respectively. The obtained estimated daily intakes (EDIs) were calculated as 0.095 μg/kg bw/day, 0.041 μg/kg bw/day, and 0.091 μg/kg bw/day, for BPA, 4-NP, and 4-t-OP, respectively. In conclusion, although no potential health risk due to BPA and 4-NP exposure was observed, there might be health risks associated with 4-t-OP exposure in the Turkish population.
Collapse
Affiliation(s)
- Ayca Aktas Sukuroglu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Mersin University, 33169, Mersin, Turkey.
| | - Dilek Battal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Mersin University, 33169, Mersin, Turkey
- Department of Toxicology, Faculty of Pharmacy, Near East University, Nicosia, 99138, Turkey
| | - Kumsal Kocadal
- Department of Toxicology, Faculty of Pharmacy, Near East University, Nicosia, 99138, Turkey
| | - Mehmet Ali Sungur
- Department of Biostatistics, Faculty of Medicine, Duzce University, Duzce, 81620, Turkey
| | - İsmet Cok
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Gazi University, Ankara, 06330, Turkey
| | - Irfan Unlusayin
- Acibadem Lab Med Research and Development Laboratory, Istanbul, 34662, Turkey
| |
Collapse
|
12
|
Poly(1,5-pentylene-co-2,2,4,4-tetramethyl cyclobutylene terephthalate) copolyesters with high Tg and improved ductility and thermal stability. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Farooq MU, Jalees MI, Hussain G, Anis M, Islam U. Health risk assessment of endocrine disruptor bisphenol A leaching from plastic bottles of milk and soft drinks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57090-57098. [PMID: 34081284 DOI: 10.1007/s11356-021-14653-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is of major concern to public health due to its toxic potential and xenoestrogenic endocrine-disrupting effect. One of the major sources of BPA comes from the plastic bottles used to pack milk and soft drinks. The purpose of the present study was to assess and compare the risk associated with BPA transfer from plastic bottles to milk and soft drinks being stored in summer and winter conditions. A sensitive and reliable method of solid phase extraction cartridge packed with multi-walled carbon nanotubes (MWCNTs) was employed. In milk samples (supplied in plastic bottles) of winter season, BPA levels were 0.17-0.32 mg/ kg. In milk samples of summer season, BPA levels were 0.77-1.59 mg/ kg. In soft drink samples of winter, BPA levels were between 0.14 and 0.3 mg/kg. While in 4-month-aged summer soft drink samples, BPA levels were 0.7-1.02 mg/kg of food. The daily exposure dose (DED) of BPA in milk samples of winter season was 1.42-2.67 μg/kg which was below the standard tolerable daily intake (TDI) of 50 μg of BPA/kg of body weight as per USEPA. The DED of BPA in milk samples of summer season was 5.58-10 μg/kg of body weight which was also less than TDI. For soft drink samples, BPA from winter samples was ranged from 1.17 to 1.67 μg/kg of body weight while for summer 4-month-aged samples was 2.5-7.08 μg/kg of body weight. Both types of samples were still less than TDI of BPA.
Collapse
Affiliation(s)
- Muhammad Umar Farooq
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, 54890, Pakistan.
| | - Muhammad Irfan Jalees
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Ghulam Hussain
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Mehwish Anis
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Ummara Islam
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, 54890, Pakistan
| |
Collapse
|
14
|
Rahman MS, Adegoke EO, Pang MG. Drivers of owning more BPA. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126076. [PMID: 34004580 DOI: 10.1016/j.jhazmat.2021.126076] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin worldwide. Despite the many studies documenting the toxicity of this substance, it remains a popular choice for consumer products. The internet, magazine articles, and newspaper reports are replete with tips on how to avoid BPA exposure, which mostly spread contradictory and often unscientific information. Therefore, based on a comprehensive search of the available biomedical literature, we summarized several confounding factors that may be directly or indirectly related to human BPA exposure. We found that the unique properties of BPA materials (i.e. low cost, light-weight, resistance to corrosion, and water/air-tightness), lack of personal health and hygiene education, fear of BPA-substitutes (with yet unknown risks), inappropriate production, processing, and marketing of materials containing BPA, as well as the state of regulatory guidance are influencing the increased exposure to BPA. Besides, we detailed the disparities between scientifically derived safe dosages of BPA and those designated as "safe" by government regulatory agencies. Therefore, in addition to providing a current assessment of the states of academic research, government policies, and consumer behaviors, we make several reasonable and actionable recommendations for limiting human exposure to BPA through improved labeling, science-based dosage limits, and public awareness campaigns.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
15
|
Liguori F, Moreno-Marrodan C, Barbaro P. Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis. Chem Soc Rev 2021; 49:6329-6363. [PMID: 32749443 DOI: 10.1039/d0cs00179a] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bisphenol A is an oil-derived, large market volume chemical with a wide spectrum of applications in plastics, adhesives and thermal papers. However, bisphenol A is not considered safe due to its endocrine disrupting properties and reproductive toxicity. Several functional substitutes of bisphenol A have been proposed in the literature, produced from plant biomass. Unless otherwise specified, the present review covers the most significant contributions that appeared in the time span January 2015-August 2019, describing the sustainable catalytic synthesis of rigid diols from biomass derivatives. The focus is thereupon on heterogeneous catalysis, use of green solvents and mild conditions, cascade processes in one-pot, and continuous flow setups. More than 500 up-to-date references describe the various substitutes proposed and the catalytic methods for their manufacture, broken down according to the main biomass types from which they originate.
Collapse
Affiliation(s)
- Francesca Liguori
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Carmen Moreno-Marrodan
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
16
|
Gill S, Kumara VMR. Comparative Neurodevelopment Effects of Bisphenol A and Bisphenol F on Rat Fetal Neural Stem Cell Models. Cells 2021; 10:793. [PMID: 33918242 PMCID: PMC8103521 DOI: 10.3390/cells10040793] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA) is considered as one of the most extensively synthesized and used chemicals for industrial and consumer products. Previous investigations have established that exposure to BPA has been linked to developmental, reproductive, cardiovascular, immune, and metabolic effects. Several jurisdictions have imposed restrictions and/or have banned the use of BPA in packaging material and other consumer goods. Hence, manufacturers have replaced BPA with its analogues that have a similar chemical structure. Some of these analogues have shown similar endocrine effects as BPA, while others have not been assessed. In this investigation, we compared the neurodevelopmental effects of BPA and its major replacement Bisphenol F (BPF) on rat fetal neural stem cells (rNSCs). rNSCs were exposed to cell-specific differentiation media with non-cytotoxic doses of BPA or BPF at the range of 0.05 M to 100 M concentrations and measured the degree of cell proliferation, differentiation, and morphometric parameters. Both of these compounds increased cell proliferation and impacted the differentiation rates of oligodendrocytes and neurons, in a concentration-dependent manner. Further, there were concentration-dependent decreases in the maturation of oligodendrocytes and neurons, with a concomitant increase in immature oligodendrocytes and neurons. In contrast, neither BPA nor BPF had any overall effect on cellular proliferation or the cytotoxicity of astrocytes. However, there was a concentration-dependent increase in astrocyte differentiation and morphological changes. Morphometric analysis for the astrocytes, oligodendrocytes, and neurons showed a reduction in the arborization. These data show that fetal rNSCs exposed to either BPA or BPF lead to comparable changes in the cellular differentiation, proliferation, and arborization processes.
Collapse
Affiliation(s)
- Santokh Gill
- Regulatory Toxicology Research Division, Health Products and Food Branch, Tunney’s Pasture, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada;
| | | |
Collapse
|
17
|
Rigourd V, Mouadh B, Poupon J, Langrand J, Goutard A, Droguet C, Bille E, Frange P, Bahri Y, Pasquier D, Lapillonne A, Skurnik D. Chlorine Solutions for a Safe Method of Decontamination of Breast Pump Milk Collection Kits Before and After the Coronavirus Disease 2019 Pandemic. Front Nutr 2021; 8:574311. [PMID: 33748168 PMCID: PMC7969643 DOI: 10.3389/fnut.2021.574311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
To promote breast feeding and breast pumping is essential for the most vulnerable infants even if the current coronavirus disease 2019 (COVID-19) pandemic sanitary crisis imposes more stringent hygienic measures. As recommended by the Centers for Disease Control and Prevention, World Health Organization, and Milk Bank Association, "after each pumping session, all pump part that come into contact with breast milk should be appropriately disinfected." The present study proposed different methods than can be used and focus on the safety analysis of chlorine solution (CS) in terms of residual hypochlorous acid (HCA) and total trihalomethanes (THM). We also performed an efficacy testing of the CS approach to decontaminate the devices used to collect the milk (breast pumps and bottles). The bacteriologic results of 1,982 breast pump milk samples collected in three different settings showed a major decrease of the microbial contamination using either sterile device or decontamination with CS compared to a simple soap washing. The main messages from our study are to propose a guideline for the safe use of CS and to define situations when breast pump decontamination might be necessary: vulnerable babies for which sterile device is recommended; special circumstances, for example the current COVID-19 pandemic; special situations, for example women living in precarious conditions; or women pumping their milk at work but that would have low or no access to boiled water. Overall, cold decontamination reduced losses of milk for bacteriological reasons in human milk banks and may also be interesting to prevent horizontal contamination by virus like COVID-19.
Collapse
Affiliation(s)
- Virginie Rigourd
- Human Milk Bank, Hôpital Necker-Enfants Malades, Assistance Publique Hopitaux De Paris, Paris, France
| | - Benali Mouadh
- Department of Neonatology, Charles Nicolle University Hospital, Tunis, Tunisia
| | - Joel Poupon
- Biological Toxicology Laboratory, Hôpital Lariboisière, Paris, France
| | - Jerome Langrand
- Antipoison Center of Paris, Service de Pharmacie, Hôpital Fernand Widal, Paris, France
| | | | | | - Emmanuel Bille
- Department of Microbiology, Hôpital Necker-Enfants Malades, Assistance Publique Hopitaux De Paris, Paris, France
- INSERM U1151-Equipe 1, Institut Necker-Enfants Malades, Université de Paris, Paris, France
- Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Pierre Frange
- Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
- Hôpital Necker-Enfants Malades, Assistance Publique Hopitaux De Paris, Paris, France
- EHU 7328 PACT, Imagine Institute, Institut Necker-Enfants Malades, Université de Paris, Paris, France
| | - Yasmina Bahri
- Human Milk Bank, Hôpital Necker-Enfants Malades, Assistance Publique Hopitaux De Paris, Paris, France
| | | | - Alexandre Lapillonne
- Department of Neonatalogy, Hôpital Necker-Enfants Malades, Assistance Publique Hopitaux De Paris, Paris, France
| | - David Skurnik
- Hôpital Necker-Enfants Malades, Assistance Publique Hopitaux De Paris, Paris, France
- Division of Infectious Diseases, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- INSERM U1151-Equipe 1, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| |
Collapse
|
18
|
Theodoridis G, Pechlivanis A, Thomaidis NS, Spyros A, Georgiou CA, Albanis T, Skoufos I, Kalogiannis S, Tsangaris GT, Stasinakis AS, Konstantinou I, Triantafyllidis A, Gkagkavouzis K, Kritikou AS, Dasenaki ME, Gika H, Virgiliou C, Kodra D, Nenadis N, Sampsonidis I, Arsenos G, Halabalaki M, Mikros E. FoodOmicsGR_RI. A Consortium for Comprehensive Molecular Characterisation of Food Products. Metabolites 2021; 11:74. [PMID: 33513809 PMCID: PMC7911248 DOI: 10.3390/metabo11020074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The national infrastructure FoodOmicsGR_RI coordinates research efforts from eight Greek Universities and Research Centers in a network aiming to support research and development (R&D) in the agri-food sector. The goals of FoodOmicsGR_RI are the comprehensive in-depth characterization of foods using cutting-edge omics technologies and the support of dietary/nutrition studies. The network combines strong omics expertise with expert field/application scientists (food/nutrition sciences, plant protection/plant growth, animal husbandry, apiculture and 10 other fields). Human resources involve more than 60 staff scientists and more than 30 recruits. State-of-the-art technologies and instrumentation is available for the comprehensive mapping of the food composition and available genetic resources, the assessment of the distinct value of foods, and the effect of nutritional intervention on the metabolic profile of biological samples of consumers and animal models. The consortium has the know-how and expertise that covers the breadth of the Greek agri-food sector. Metabolomics teams have developed and implemented a variety of methods for profiling and quantitative analysis. The implementation plan includes the following research axes: development of a detailed database of Greek food constituents; exploitation of "omics" technologies to assess domestic agricultural biodiversity aiding authenticity-traceability control/certification of geographical/genetic origin; highlighting unique characteristics of Greek products with an emphasis on quality, sustainability and food safety; assessment of diet's effect on health and well-being; creating added value from agri-food waste. FoodOmicsGR_RI develops new tools to evaluate the nutritional value of Greek foods, study the role of traditional foods and Greek functional foods in the prevention of chronic diseases and support health claims of Greek traditional products. FoodOmicsGR_RI provides access to state-of-the-art facilities, unique, well-characterised sample sets, obtained from precision/experimental farming/breeding (milk, honey, meat, olive oil and so forth) along with more than 20 complementary scientific disciplines. FoodOmicsGR_RI is open for collaboration with national and international stakeholders.
Collapse
Affiliation(s)
- Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Alexandros Pechlivanis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Apostolos Spyros
- Department of Chemistry, University of Crete, Voutes Campus, 71003 Heraklion, Greece;
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Triantafyllos Albanis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.A.); (I.K.)
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece;
| | - Stavros Kalogiannis
- Department of Nutritional Sciences & Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece; (S.K.); (I.S.)
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | | | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.A.); (I.K.)
| | - Alexander Triantafyllidis
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Gkagkavouzis
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia S. Kritikou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Marilena E. Dasenaki
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Helen Gika
- Department of Medicine, Laboratory of Forensic Medicine & Toxicology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christina Virgiliou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Dritan Kodra
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences & Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece; (S.K.); (I.S.)
| | - Georgios Arsenos
- Department of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria Halabalaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (M.H.); (E.M.)
| | - Emmanuel Mikros
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (M.H.); (E.M.)
| | | |
Collapse
|
19
|
Gestational Exposure to Bisphenol A Affects Testicular Morphology, Germ Cell Associations, and Functions of Spermatogonial Stem Cells in Male Offspring. Int J Mol Sci 2020; 21:ijms21228644. [PMID: 33212759 PMCID: PMC7696188 DOI: 10.3390/ijms21228644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Exposure to bisphenol A (BPA) in the gestational period damages the reproductive health of offspring; detailed evidence regarding BPA-induced damage in testicular germ cells of offspring is still limited. In this study, pregnant mice (F0) were gavaged with three BPA doses (50 μg, 5 mg, and 50 mg/kg body weight (bw)/day; tolerable daily intake (TDI), no-observed-adverse-effect-level (NOAEL), and lowest-observed-adverse-effect level (LOAEL), respectively) on embryonic days 7 to 14, followed by investigation of the transgenerational effects of such exposure in male offspring. We observed that the NOAEL- and LOAEL-exposed F1 offspring had abnormalities in anogenital distance, nipple retention, and pubertal onset (days), together with differences in seminiferous epithelial stages and testis morphology. These effects were eradicated in the next F2 and F3 generations. Moreover, there was an alteration in the ratio of germ cell population and the apoptosis rate in germ cells increased in F1 offspring at the LOAEL dose. However, the total number of spermatogonia remained unchanged. Finally, a reduction in the stemness properties of spermatogonial stem cells in F1 offspring was observed upon LOAEL exposure. Therefore, we provide evidence of BPA-induced disruption of physiology and functions in male germ cells during the gestational period. This may lead to several reproductive health issues and infertility in offspring.
Collapse
|
20
|
Karmakar PC, Ahn JS, Kim YH, Jung SE, Kim BJ, Lee HS, Kim SU, Rahman MS, Pang MG, Ryu BY. Paternal Exposure to Bisphenol-A Transgenerationally Impairs Testis Morphology, Germ Cell Associations, and Stemness Properties of Mouse Spermatogonial Stem Cells. Int J Mol Sci 2020; 21:ijms21155408. [PMID: 32751382 PMCID: PMC7432732 DOI: 10.3390/ijms21155408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
Abstract
Bisphenol-A (BPA) exposure in an adult male can affect the reproductive system, which may also adversely affect the next generation. However, there is a lack of comprehensive data on the BPA-induced disruption of the association and functional characteristics of the testicular germ cells, which the present study sought to investigate. Adult male mice were administered BPA doses by gavage for six consecutive weeks and allowed to breed, producing generations F1-F4. Testis samples from each generation were evaluated for several parameters, including abnormal structure, alterations in germ cell proportions, apoptosis, and loss of functional properties of spermatogonial stem cells (SSCs). We observed that at the lowest-observed-adverse-effect level (LOAEL) dose, the testicular abnormalities and alterations in seminiferous epithelium staging persisted in F0-F2 generations, although a reduced total spermatogonia count was found only in F0. However, abnormalities in the proportions of germ cells were observed until F2. Exposure of the male mice (F0) to BPA alters the morphology of the testis along with the association of germ cells and stemness properties of SSCs, with the effects persisting up to F2. Therefore, we conclude that BPA induces physiological and functional disruption in male germ cells, which may lead to reproductive health issues in the next generation.
Collapse
Affiliation(s)
- Polash Chandra Karmakar
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Jin Seop Ahn
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Yong-Hee Kim
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Sang-Eun Jung
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hee-Seok Lee
- Department of Food Science & Technology, Chung-Ang University, Anseong 17546, Korea;
| | - Sun-Uk Kim
- National Primate Research Center and Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea;
| | - Md Saidur Rahman
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Myung-Geol Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Buom-Yong Ryu
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
- Correspondence: ; Tel.: +82-31-670-4687; Fax: +82-31-670-0062
| |
Collapse
|
21
|
Liu X, Shi H, Xie B, Dionysiou DD, Zhao Y. Microplastics as Both a Sink and a Source of Bisphenol A in the Marine Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10188-10196. [PMID: 31393116 DOI: 10.1021/acs.est.9b02834] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microplastics were demonstrated to be an environmental sink for hydrophobic organic pollutants, while they can also serve as a potential source of such pollutants. In this study, the sorption and release of bisphenol A in marine water were investigated through laboratory experiments. Sorption and desorption isotherms were developed, and the results reveal that sorption and desorption depend on the crystallinity, elasticity, and hydrophobicity of the polymer concerned. The adsorption and partition of bisphenol A can be quantified using a dual-mode model of the sorption mechanisms. Polyamide and polyurethane were found to exhibit the highest sorption capacity for bisphenol A, and it was almost irreversible, probably due to hydrogen bonding. Polyethylenes and polypropylene exhibited high and reversible sorption without noticeable desorption hysteresis. Glassy polystyrene, poly(vinyl chloride), poly(methyl methacrylate), and poly(ethylene terephthalate) exhibited low sorption capacity and only partial reversibility. Low-density polyethylene and polycarbonate microplastic particles were for the first time proved to be a persistent source releasing bisphenol A into aquatic environments. Salinity, pH, coexisting estrogens, and water chemistry influence the sorption/desorption behaviors to different degrees. Plastic particles can serve as transportation vectors for bisphenol A, which may constitute an ecological risk.
Collapse
Affiliation(s)
| | | | | | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DChEE) , University of Cincinnati , 705 Engineering Research Center , Cincinnati , Ohio , United States
| | | |
Collapse
|
22
|
Vilarinho F, Sendón R, van der Kellen A, Vaz M, Silva AS. Bisphenol A in food as a result of its migration from food packaging. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Tian L, Lin L, Bayen S. Optimization of the post-acquisition data processing for the non-targeted screening of trace leachable residues from reusable plastic bottles by high performance liquid chromatography coupled to hybrid quadrupole time of flight mass spectrometry. Talanta 2019; 193:70-76. [DOI: 10.1016/j.talanta.2018.09.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
|
24
|
Ali M, Jaghbir M, Salam M, Al-Kadamany G, Damsees R, Al-Rawashdeh N. Testing baby bottles for the presence of residual and migrated bisphenol A. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 191:7. [PMID: 30535565 DOI: 10.1007/s10661-018-7126-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/23/2018] [Indexed: 05/10/2023]
Abstract
Plastic made with bisphenol A (BPA) produces trans-generational changes in genes and behavior. It has been positively linked to obesity and thyroid dysfunction. This study aimed to detect the presence of BPA in polycarbonate plastic (PC) baby bottles. Fifteen PC baby bottles with a clear indication of BPA free/safe/clear were randomly selected. High-performance liquid chromatography (HPLC) tests were used to detect residual or migrating BPA post three stress tests. An estimated intake of BPA among children was calculated then compared to the universal tolerable daily intake (TDI). Around 27% of bottles had detectable amounts of residual BPA in the first test, 100% released migrating BPA in the second and third tests. A significant positive linear trend in migrated BPA levels was observed over the three consecutive tests P < 0.0001. Approximately 73.5% of the accounted variability in BPA levels was due to these stress tests P < 0.0001. Babies from 0 to 3 months are expected to consume 0.8 to 23.8% of their safe TDI of BPA just by using plastic bottles between the first time of usage and after 60 washes (estimated 15 to 20 days of usage). Although no bottles have shown a risk of BPA intake exceeding TDI, the combined use of BPA bottles with other plastic utensils might result in reaching it. It is advisable to refrain from using BPA-containing plastic bottles or be cautious about usage duration. Manufacturers should indicate a clear margin of usage duration. Four baby bottle brands showed the least BPA leaking (Baby King, Camera, Sweet Baby, and Farlin).
Collapse
Affiliation(s)
- Manal Ali
- Department of Family and Community Medicine, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Madi Jaghbir
- Department of Family and Community Medicine, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Mahmoud Salam
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, PO Box 22490 Mail Code 1515, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Ghada Al-Kadamany
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, PO Box 22490 Mail Code 1515, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Rana Damsees
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, PO Box 22490 Mail Code 1515, Riyadh, 11426, Kingdom of Saudi Arabia
- The Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
| | - Nedal Al-Rawashdeh
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, PO Box 22490 Mail Code 1515, Riyadh, 11426, Kingdom of Saudi Arabia.
- The Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan.
| |
Collapse
|
25
|
Akbar MU, Zia KM, Akash MSH, Nazir A, Zuber M, Ibrahim M. In-vivo anti-diabetic and wound healing potential of chitosan/alginate/maltodextrin/pluronic-based mixed polymeric micelles: Curcumin therapeutic potential. Int J Biol Macromol 2018; 120:2418-2430. [DOI: 10.1016/j.ijbiomac.2018.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022]
|
26
|
Nepalia A, Singh A, Mathur N, Kamath R, Pareek S. Assessment of mutagenicity caused by popular baby foods and baby plastic-ware products: An imperative study using microbial bioassays and migration analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:391-399. [PMID: 30015184 DOI: 10.1016/j.ecoenv.2018.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/28/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Specialized products for infants have become every parent's first choice. Although these products claim to be safe and mild for infant use, yet there is a need to monitor them using different tools for mutagenicity detection to ensure further safety. In this study, a range of popular ready to eat and powdered baby foods, formula milk powders and attractive plasticware for infants were picked from the Indian market and tested for their mutagenicity using two microbial bioassays based on Salmonella typhimurium, viz., Ames bacterial reversion assay and fluctuation assay. Furthermore, chemical migration analysis was done on the most toxic baby food and baby plasticware samples as shown by the bioassays to detect possible leaching of Bisphenol a (BPA), lead and Di-2 ethyl hexyl phthalate (DEHP). It was surprising to find that the products made for the most risk-prone group in the society, i.e., infants have a significant potential to cause mutagenicity.
Collapse
Affiliation(s)
- Amrita Nepalia
- Environmental Molecular Microbiology Lab (EMM), Department of Zoology, University of Rajasthan, Jaipur 302004, India.
| | - Anuradha Singh
- EMM Lab, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| | - Nupur Mathur
- EMM Lab, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| | - Rajashree Kamath
- Economics and Quantitative Techniques Group, CHRIST (Deemed to be University), Bengaluru 560074, India
| | - Smita Pareek
- Environmental Molecular Microbiology Lab (EMM), Department of Zoology, University of Rajasthan, Jaipur 302004, India
| |
Collapse
|
27
|
Almeida S, Raposo A, Almeida-González M, Carrascosa C. Bisphenol A: Food Exposure and Impact on Human Health. Compr Rev Food Sci Food Saf 2018; 17:1503-1517. [PMID: 33350146 DOI: 10.1111/1541-4337.12388] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022]
Abstract
Bisphenol A (BPA) is an industrial compound used extensively to produce synthetic polymers, such as epoxy resins, which are incorporated into the inner coating of metal cans, and also to manufacture polycarbonates with applications in bottles, including bottles of water. Several studies have reported on the transfer of this compound to food. Regarding human exposure to BPA, food intake can be considered the most serious among all the routes, not only because it potentially reaches more people in different age groups (including infants, an especially vulnerable group), but also because it inadvertently occurs over long time periods. BPA is considered an endocrine disruptor and several studies have proposed a relationship between exposure to BPA and the appearance of adverse health effects, such as cancer, infertility, diabetes, and obesity, among others. In 2015 however, the European Food Safety Authority concluded in its last scientific opinion that this compound does not pose any risk to the exposed population's health. Therefore, the EU regards BPA as an authorized product to be used as food contact material. Although BPA intake through food is apparently below the set limits, research into BPA and its potential negative effects is still ongoing. This review contains the most recent in vitro and in vivo studies on BPA toxicity and its harmful effects on health, and it intends to address human exposure to BPA, namely through dietary exposure and its impact on human health.
Collapse
Affiliation(s)
- Susana Almeida
- CBIOS (Research Center for Biosciences and Health Technologies), Univ. Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Univ. Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Maira Almeida-González
- Toxicology Unit, Research Inst. of Biomedical and Health Sciences (IUIBS), Univ. de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Conrado Carrascosa
- Dept. of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Univ. de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413, Arucas, Spain
| |
Collapse
|
28
|
Park SR, Park SJ, Jeong MJ, Choi JC, Kim M. Fast and simple determination and exposure assessment of bisphenol A, phenol, p-tert-butylphenol, and diphenylcarbonate transferred from polycarbonate food-contact materials to food simulants. CHEMOSPHERE 2018; 203:300-306. [PMID: 29625319 DOI: 10.1016/j.chemosphere.2018.03.185] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/28/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Polycarbonate (PC) plastics find extensive use in baby bottles, food storage containers, and various kitchen items. Possibly hazardous chemicals, bisphenol A (BPA), phenol, p-tert-butylphenol (TBP), and diphenylcarbonate (DPC), are source materials or by-products from PC production. Therefore, a fast and simple analytical method was developed to determine and assess the exposure of BPA, phenol, TBP, and DPC transferred from PC food-contact materials to four different food simulants (water, 4% acetic acid, 50% ethanol, and n-heptane) at different temperatures. The method was validated in terms of limit of detection (LOD) and quantification (LOQ), recovery, and precision for the detection of BPA, phenol, and TBP using HPLC-FLD and of DPC using HPLC-UV. BPA, phenol, TBP, and DPC concentrations transferred from 200 PC samples to food simulants were determined. The highest migration levels of BPA (54.3 μg L-1) and phenol (43.8 μg L-1) were found in 50% ethanol at 70 °C. TBP did not migrate to any simulant. DPC did not show any migration from PC samples into water and only migrated from a cup to 4% acetic acid at 70 °C and 100 °C, whereas migration occurred from several cups, ladles, spoons, and tongs to 50% ethanol and to n-heptane at 25 °C. Food simulants and temperature were the crucial factors for the migration of BPA and phenol from PC samples. Estimated daily intakes (EDIs), based on food consumption and food-type distribution factors, for BPA, phenol, and DPC were calculated to be 0.007, 0.001, and 2.5 × 10-4 μg kg-1 bw day-1, respectively.
Collapse
Affiliation(s)
- So-Ra Park
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, Cheongju, 28159, Republic of Korea.
| | - Se-Jong Park
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, Cheongju, 28159, Republic of Korea.
| | - Mi-Jin Jeong
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, Cheongju, 28159, Republic of Korea.
| | - Jae Chun Choi
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, Cheongju, 28159, Republic of Korea.
| | - MeeKyung Kim
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, Cheongju, 28159, Republic of Korea.
| |
Collapse
|
29
|
Negev M, Berman T, Reicher S, Sadeh M, Ardi R, Shammai Y. Concentrations of trace metals, phthalates, bisphenol A and flame-retardants in toys and other children's products in Israel. CHEMOSPHERE 2018; 192:217-224. [PMID: 29102866 DOI: 10.1016/j.chemosphere.2017.10.132] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Trace metals and synthetic chemicals including phthalates, bisphenol A and flame retardants, are widely used in toys and childcare products, and may pose acute or chronic adverse health effects in children. In Israel, certain chemicals are regulated in childcare products, but there are still regulatory gaps. We tested regulated and unregulated contaminants in 174 item parts from 70 childcare items with potentially high oral or dermal exposure, including 22 children's jewelry items, 14 toys, 7 diaper-changing mats, 6 baby mattresses, 7 baby textiles and 14 feeding and bathing items. In children's jewelry, an unregulated product in Israel, 23% of samples exceeded the US standard for lead. In toys, a regulated product, we did not detect trace metals above the Israeli standard. In textiles, baby mattresses and diaper-changing mats, phthalates exceeded the European Union standard in 14-45% of tests with a mean of 6.74% by mass for diisononyl phthalate, and 1.32% by mass for di(2-ethylhexyl) phthalate. BPA migration exceeded the EU standard in 14-45% of tests with a mean of 1.03 ppm. The flame retardants polybrominated biphenyls, pentabromodiphenyl, octabromodiphenyl ether, tris(2,3-dibromopropyl) phosphate and tris-(aziridinyl)-phosphine oxide were not detected. For products regulated in Israel, our findings suggest general compliance with mandatory standards. However, a lack of comprehensive chemical regulation means that there are regulatory gaps, and products not regulated in Israel may contain high levels of chemical contamination, exceeding US or EU regulations. The results of this study have prompted the development of an Israeli safety standard for children's jewelry.
Collapse
Affiliation(s)
- Maya Negev
- School of Public Health, University of Haifa, Mt. Carmel, 3498838 Israel.
| | - Tamar Berman
- Ministry of Health, 39 Jeremiya St., Jerusalem, 9446724 Israel.
| | - Shay Reicher
- Ministry of Health, 39 Jeremiya St., Jerusalem, 9446724 Israel.
| | - Maya Sadeh
- School of Public Health, Tel Aviv University, 30 Chaim Levanon St., Tel Aviv, 69978 Israel.
| | - Ruti Ardi
- The Chemistry, Health & Environment Laboratory, The Standards Institution of Israel, 42 Chaim Levanon St., Tel Aviv, 69977 Israel.
| | - Yaniv Shammai
- The Chemistry, Health & Environment Laboratory, The Standards Institution of Israel, 42 Chaim Levanon St., Tel Aviv, 69977 Israel.
| |
Collapse
|
30
|
Lin PY, Hsieh CW, Hsieh S. Rapid and Sensitive SERS Detection of Bisphenol A Using Self-assembled Graphitic Substrates. Sci Rep 2017; 7:16698. [PMID: 29196740 PMCID: PMC5711794 DOI: 10.1038/s41598-017-17030-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022] Open
Abstract
We have prepared and tested a new surface enhanced Raman scattering (SERS) substrate based on self-assembled graphitic sheets to detect bisphenol A (BPA) in plastic consumer goods. Transmission electron microscopy (TEM) and atomic-force microscopy (AFM) were used to characterize the structure of the graphitic sheets and showed a lattice spacing of 0.24 nm and layer height of 0.34 nm. These values were comparable to single monolayer graphene. The effective SERS detection limit of this method is 1 μM BPA, which is lower than the European Union specific migration limit for BPA of 0.6 mg/kg (2.6 μM). When used in salt solutions, graphitic sheets exhibited ultra-sensitivity toward BPA of 0.025 M to 2 M, which was broader than physiological ionic strength (0.14 M) and urinary NaCl (0.17 M). Our results demonstrated that this graphitic sheet based SERS detection platform can be used to determine BPA levels leached from commercial polycarbonate plastic products and for on-site rapid analysis with good results.
Collapse
Affiliation(s)
- Pei-Ying Lin
- Department of Chemistry and Nanoscience and Nanotechnology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chiung-Wen Hsieh
- Department of Chemistry and Nanoscience and Nanotechnology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry and Nanoscience and Nanotechnology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
31
|
Karmakar PC, Kang HG, Kim YH, Jung SE, Rahman MS, Lee HS, Kim YH, Pang MG, Ryu BY. Bisphenol A Affects on the Functional Properties and Proteome of Testicular Germ Cells and Spermatogonial Stem Cells in vitro Culture Model. Sci Rep 2017; 7:11858. [PMID: 28928476 PMCID: PMC5605497 DOI: 10.1038/s41598-017-12195-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022] Open
Abstract
The endocrine disruptor bisphenol A (BPA) is well known for its adverse effect on male fertility. Growing evidence suggests that BPA may interact with testicular germ cells and cause infertility as a result of its estrogenic activity. Objective of current in vitro study was to investigate the proliferation, survivability and stemness properties of mouse testicular germ cells exposed to BPA, and to evaluate possible expression of cellular proteome. Our results showed that germ cell viability and proliferation were not affected by low concentrations (0.01, 0.1, 1, and 10 µM) although significant reduction observed at 100 µM BPA. Germ cell self-renewal and differentiation related marker proteins expression found unchanged at those concentrations. When BPA-exposed germ cells were transplanted into recipient testes, we observed fewer colonies at higher concentrations (10 and 100 µM). Additionally, a significant frequency of recombination failure during meiosis was observed in 10 µM BPA-exposed germ cell transplanted recipient. Moreover, experiment on continuous BPA-exposed and 100 µM BPA-recovered germ cells suggested that spermatogonial stem cells are more potential to survive in adverse environment. Finally, scrutinizing differentially expressed cellular proteins resulted from our proteomic analysis, we conclude that BPA exposure might be associated with several health risks and infertility.
Collapse
Affiliation(s)
- Polash Chandra Karmakar
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Hyun-Gu Kang
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Yong-Hee Kim
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Sang-Eun Jung
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Hee-Seok Lee
- Food Safety Risk Assessment Division, National Institute of Food & Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk-do, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Chungcheongnam-do, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
32
|
Screening of endocrine activity of compounds migrating from plastic baby bottles using a multi-receptor panel of in vitro bioassays. Toxicol In Vitro 2016; 37:121-133. [DOI: 10.1016/j.tiv.2016.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 08/01/2016] [Accepted: 09/09/2016] [Indexed: 11/18/2022]
|
33
|
Česen M, Lambropoulou D, Laimou-Geraniou M, Kosjek T, Blaznik U, Heath D, Heath E. Determination of Bisphenols and Related Compounds in Honey and Their Migration from Selected Food Contact Materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8866-8875. [PMID: 27792318 DOI: 10.1021/acs.jafc.6b03924] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study reports the analysis of nine bisphenols (BPA, BPAF, BPAP, BPB, BPC, BPE, BPF, BPS, and BPZ) and related compounds (4-cumylphenol and dihydroxybenzophenone) in honey and food simulant. After sample preconcentration with Oasis HLB cartridges, analytes were silylated and analyzed by GC-MS. The validated methods with LODs in sub ng g-1 were applied to 36 honey samples from European and non-European countries and food simulant stored in selected corresponding containers. Honey samples contained BPA, BPAF, BPE, BPF, BPS, and BPZ in amounts up to 107, 53.5, 12.8, 31.6, 302, and 28.4 ng g-1, respectively. Under simulating conditions, BPA and BPAF were detected in food simulant up to 42.2 and 19.8 ng mL-1, respectively. In certain cases, the detected bisphenols in honey probably derive from a source other than the final packaging.
Collapse
Affiliation(s)
- Marjeta Česen
- Department of Environmental Sciences, Jožef Stefan Institute , Jamova cesta 39, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School , Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Dimitra Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki , University Campus, 54124 Thessaloniki, Greece
| | - Maria Laimou-Geraniou
- Department of Chemistry, Aristotle University of Thessaloniki , University Campus, 54124 Thessaloniki, Greece
| | - Tina Kosjek
- Department of Environmental Sciences, Jožef Stefan Institute , Jamova cesta 39, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School , Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Urška Blaznik
- National Institute of Public Health , Trubarjeva cesta 2, 1000 Ljubljana, Slovenia
| | - David Heath
- Department of Environmental Sciences, Jožef Stefan Institute , Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Ester Heath
- Department of Environmental Sciences, Jožef Stefan Institute , Jamova cesta 39, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School , Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
34
|
Fu KY, Cheng YH, Chio CP, Liao CM. Probabilistic integrated risk assessment of human exposure risk to environmental bisphenol A pollution sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19897-19910. [PMID: 27424203 DOI: 10.1007/s11356-016-7207-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
Environmental bisphenol A (BPA) exposure has been linked to a variety of adverse health effects such as developmental and reproductive issues. However, establishing a clear association between BPA and the likelihood of human health is complex yet fundamentally uncertain. The purpose of this study was to assess the potential exposure risks from environmental BPA among Chinese population based on five human health outcomes, namely immune response, uterotrophic assay, cardiovascular disease (CVD), diabetes, and behavior change. We addressed these health concerns by using a stochastic integrated risk assessment approach. The BPA dose-dependent likelihood of effects was reconstructed by a series of Hill models based on animal models or epidemiological data. We developed a physiologically based pharmacokinetic (PBPK) model that allows estimation of urinary BPA concentration from external exposures. Here we showed that the daily average exposure concentrations of BPA and urinary BPA estimates were consistent with the published data. We found that BPA exposures were less likely to pose significant risks for infants (0-1 year) and adults (male and female >20 years) with <10(-6)-fold increase in uterus weight and immune response outcomes, respectively. Moreover, our results indicated that there was 50 % risk probability that the response outcomes of CVD, diabetes, and behavior change with or without skin absorption would increase 10(-4)-10(-2)-fold. We conclude that our approach provides a powerful tool for tracking and managing human long-term BPA susceptibility in relation to multiple exposure pathways, and for informing the public of the negligible magnitude of environmental BPA pollution impacts on human health.
Collapse
Affiliation(s)
- Keng-Yen Fu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, 11490, Republic of China
| | - Yi-Hsien Cheng
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, 10617, Republic of China
| | - Chia-Pin Chio
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taipei, Taiwan, 10055, Republic of China
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, 10617, Republic of China.
| |
Collapse
|
35
|
Onghena M, Van Hoeck E, Negreira N, Quirynen L, Van Loco J, Covaci A. Evaluation of the migration of chemicals from baby bottles under standardised and duration testing conditions. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:893-904. [DOI: 10.1080/19440049.2016.1171914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthias Onghena
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk-Antwerp, Belgium
| | - Els Van Hoeck
- Department of Food, Medicines and Consumer Safety, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Noelia Negreira
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk-Antwerp, Belgium
| | - Laurent Quirynen
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk-Antwerp, Belgium
| | - Joris Van Loco
- Department of Food, Medicines and Consumer Safety, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk-Antwerp, Belgium
| |
Collapse
|
36
|
Quantitative Determination of Migrating compounds from Plastic Baby Bottles by Validated GC-QqQ-MS and LC-QqQ-MS Methods. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0451-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Ballesteros-Gómez A, Jonkers T, Covaci A, de Boer J. Screening of additives in plastics with high resolution time-of-flight mass spectrometry and different ionization sources: direct probe injection (DIP)-APCI, LC-APCI, and LC-ion booster ESI. Anal Bioanal Chem 2016; 408:2945-53. [PMID: 26758596 PMCID: PMC4819935 DOI: 10.1007/s00216-015-9238-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022]
Abstract
Plastics are complex mixtures consisting of a polymer and additives with different physico-chemical properties. We developed a broad screening method to elucidate the nature of compounds present in plastics used in electrical/electronic equipment commonly found at homes (e.g., electrical adaptors, computer casings, heaters). The analysis was done by (a) solvent extraction followed by liquid chromatography coupled to high accuracy/resolution time-of-flight mass spectrometry (TOFMS) with different ionization sources or (b) direct analysis of the solid by ambient mass spectrometry high accuracy/resolution TOFMS. The different ionization methods showed different selectivity and sensitivity for the different compound classes and were complementary. A variety of antioxidants, phthalates, UV filters, and flame retardants were found in most samples. Furthermore, some recently reported impurities or degradation products derived from flame retardants were identified, such as hydroxylated triphenyl phosphate and tetrabromobisphenol A monoglycidyl ether. Wide screening of plastic additives by direct probe injection (DIP)-APCI, LC-APCI and LC-ion booster ESI ![]()
Collapse
Affiliation(s)
- Ana Ballesteros-Gómez
- Institute for Environmental Studies, VU University Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| | - Tim Jonkers
- Institute for Environmental Studies, VU University Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Wilrijk, Belgium
| | - Jacob de Boer
- Institute for Environmental Studies, VU University Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Healy BF, English KR, Jagals P, Sly PD. Bisphenol A exposure pathways in early childhood: Reviewing the need for improved risk assessment models. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2015; 25:544-556. [PMID: 26350983 DOI: 10.1038/jes.2015.49] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/20/2015] [Indexed: 06/05/2023]
Abstract
Bisphenol A (BPA) is a plasticiser found in a number of household plastics, electronics, and food-packaging materials. Over the past 5 years, several human epidemiological studies have reported a positive association between BPA exposure and adverse health outcomes in children, including obesity, asthma, preterm birth, and neuro-behavioural disturbances. These findings are in conflict with international environmental risk assessment models, which predict daily exposure levels to BPA should not pose a risk to child health. The aim of this review is to provide an overview of the evidence for different exposure sources and potential exposure pathways of BPA in early childhood. By collating the findings from experimental models and exposure associations observed in human bio-monitoring studies, we affirm the potential for non-dietary sources to make a substantial contribution to total daily exposure in young children. Infants and toddlers have distinctive exposure sources, physiology, and metabolism of endocrine-disrupting chemicals. We recommend risk-assessment models implement new frameworks, which specifically address exposure and hazard in early childhood. This is particularly important for BPA, which is present in numerous products in the home and day-care environments, and for which animal studies report contradictory findings on its safety at environmentally relevant levels of exposure.
Collapse
Affiliation(s)
- Bridget F Healy
- Children's Health and Environment Program, Queensland Children's Medical Research Institute, Brisbane, Queensland, Australia
- School of Public Health, University of Queensland, Brisbane, Queensland, Australia
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Karin R English
- Children's Health and Environment Program, Queensland Children's Medical Research Institute, Brisbane, Queensland, Australia
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Paul Jagals
- School of Public Health, University of Queensland, Brisbane, Queensland, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Queensland Children's Medical Research Institute, Brisbane, Queensland, Australia
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
39
|
Pivnenko K, Pedersen GA, Eriksson E, Astrup TF. Bisphenol A and its structural analogues in household waste paper. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 44:39-47. [PMID: 26194879 DOI: 10.1016/j.wasman.2015.07.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/13/2015] [Accepted: 07/13/2015] [Indexed: 05/26/2023]
Abstract
Bisphenol A (BPA) is an industrial chemical produced in large volumes. Its main use is associated with polycarbonate plastic, epoxy resins and thermal paper. In contrast to other applications, thermal paper contains BPA in its un-reacted form as an additive, which is subjected to migration. Receiving a significant amount of attention from the scientific community and beyond, due to its controversial endocrine-disrupting effects, the industry is attempting to substitute BPA in variety of applications. Alternative phenolic compounds have been proposed for use in thermal paper; however, information to what extent BPA alternatives have been used in paper is sparse. The aim of the present work was to quantify BPA and its alternatives (bisphenol S (BPS), bisphenol E (BPE), bisphenol B (BPB), 4-cumylphenol (HPP) and bisphenol F (BPF)) in waste paper and board from Danish households, thermal paper receipts, non-carbon copy paper and conventional printer paper. BPA was found in all waste paper samples analysed, while BPS was identified in 73% of them. Only BPB was not identified in any of the samples. BPA and BPS were found in the majority of the receipts, which contained no measurable concentrations of the remaining alternatives. Although receipts showed the highest concentrations of BPA and BPS, office paper, flyers and corrugated boxes, together with receipts, represented the major flux of the two compounds in waste paper streams.
Collapse
Affiliation(s)
- K Pivnenko
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - G A Pedersen
- National Food Institute, Technical University of Denmark, DK-2860 Søborg, Denmark
| | - E Eriksson
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - T F Astrup
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
40
|
Exposure assessment of Bisphenol A intake from polymeric baby bottles in formula-fed infants aged less than one year. Toxicol Rep 2015; 2:1273-1280. [PMID: 28962470 PMCID: PMC5598354 DOI: 10.1016/j.toxrep.2015.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/25/2015] [Accepted: 09/11/2015] [Indexed: 11/30/2022] Open
Abstract
BisphenolA (BPA) or 2,2-bis(4-hydroxyphenyl)propanepresent in polycarbonate baby bottles may have harmful effects for formula-fed infants. This study evaluated the risks associated with exposure to BPA among Iranian formula-fed infants in an urban society in Isfahan. New and used baby bottles (n = 7 and 8, respectively) as well as BPA-free marked bottles (n = 2) were collected from a retail outlet, and leaching of BPA was examined by conducting a migration test. Concentrations of BPA released from the new and used baby bottles were in the range of 0.498.58 and 0.632.47 μg/l, respectively. Next, probabilistic exposure estimation was performed. In all, 200 mothers registered with 11 health centres in Isfahan were interviewed. Data on feeding pattern, washing and sterilization practices, bottles types and manufacturers as well as the sex and weight of the infants were collected using a questionnaire. The results showed that majority of the surveyed infants were exposed to 0.10.3 μg/kg body weight (bw)/d of BPA, which corresponded to approximately 27.5% of the defined t-TDI (4 μg/kgbw/d). These results suggested that the risk of the adverse effects caused by exposure to BPA was very low in formula-fed Iranian infants even in the worst-case scenario.
Collapse
|
41
|
Benhamada M, Bouzid D, Boyron O, Taam M. The relationship between the aging of polycarbonate characterized by SEC and the release of bisphenol A quantified by HPLC–UV. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2534-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
UHPLC-high-resolution mass spectrometry determination of bisphenol A and plastic additives released by polycarbonate tableware: influence of ageing and surface damage. Anal Bioanal Chem 2015; 407:7917-24. [DOI: 10.1007/s00216-015-8958-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/08/2015] [Accepted: 08/04/2015] [Indexed: 11/26/2022]
|
43
|
Xia Y, Rubino M. Kinetic Study of Bisphenol A Migration from Low-Density Polyethylene Films into Food Simulants. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yining Xia
- School of Packaging, Michigan State University, East Lansing, Michigan 48824, United States
| | - Maria Rubino
- School of Packaging, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
44
|
Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.3978] [Citation(s) in RCA: 528] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
45
|
Bignardi C, Cavazza A, Corradini C, Salvadeo P. Targeted and untargeted data-dependent experiments for characterization of polycarbonate food-contact plastics by ultra high performance chromatography coupled to quadrupole orbitrap tandem mass spectrometry. J Chromatogr A 2014; 1372C:133-144. [DOI: 10.1016/j.chroma.2014.10.104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
|
46
|
Errico S, Bianco M, Mita L, Migliaccio M, Rossi S, Nicolucci C, Menale C, Portaccio M, Gallo P, Mita DG, Diano N. Migration of bisphenol A into canned tomatoes produced in Italy: Dependence on temperature and storage conditions. Food Chem 2014; 160:157-64. [DOI: 10.1016/j.foodchem.2014.03.085] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/11/2014] [Accepted: 03/15/2014] [Indexed: 01/24/2023]
|
47
|
Pouokam GB, Ajaezi GC, Mantovani A, Orisakwe OE, Frazzoli C. Use of Bisphenol A-containing baby bottles in Cameroon and Nigeria and possible risk management and mitigation measures: community as milestone for prevention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 481:296-302. [PMID: 24602914 DOI: 10.1016/j.scitotenv.2014.02.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
The plasticizer Bisphenol A (BPA) is banned in baby bottles in many industrialized countries due to safety concerns. We provide a pilot view on the potential BPA exposure of bottle-fed children in sub-Saharan Africa through an enquiry on availability, accessibility and affordability of plastic baby bottles, usage pattern, and risk perception. An observational survey was conducted in a randomized group of vending sites (34 pharmacies; 87 shops and markets), in three cities (Yaoundé, Foumbot, Bafoussam) in Cameroon (two regions), and in two cities (Lagos, Port Harcourt) in Nigeria (two states). Interviews in vending sites and group discussions were conducted with 248 mothers. Cameroon and Nigeria showed a largely comparable situation. Plastic baby bottles are largely imported from industrialized countries, where a label indicates the presence/absence of BPA. In pharmacies most plastic baby bottles are labeled as BPA-free, whereas most bottles sold in shops are not BPA-free. BPA-containing bottles are more accessible and affordable, due to sale in common shops and lower costs. The meaning of the label BPA-free is unknown to both vendors and customers: the BPA issue is also largely unknown to policy makers and media and no regulation exists on food contact materials. The wide availability of BPA-containing baby bottles, lack of information and usage patterns (e.g. temperature and duration of heating) suggest a likely widespread exposure of African infants. Possible usage recommendations to mitigate exposure are indicated. Risk communication to policy makers, sellers and citizens is paramount to raise awareness and to oppose possible dumping from countries where BPA-containing materials are banned. Our pilot study points out relevant global health issues such as the capacity building of African communities on informed choices and usage of baby products, and the exploitation of international knowledge by African scientists and risk managers.
Collapse
Affiliation(s)
- Guy Bertrand Pouokam
- Laboratory of Food Sciences and Metabolism, University of Yaoundé I, PO Box 812, Cameroon
| | - Godwin Chukwuebuka Ajaezi
- Department of Medical Laboratory Science, Rivers State University of Science and Technology, Port Harcourt, Nigeria
| | - Alberto Mantovani
- Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Orish Ebere Orisakwe
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Port Harcourt, East/West Road PMB 5323, Choba, Nigeria
| | - Chiara Frazzoli
- Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
48
|
Influence of microwave heating time on the structure and properties of chitosan films. J Appl Polym Sci 2014. [DOI: 10.1002/app.40779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
49
|
Adamusova H, Bosakova Z, Coufal P, Pacakova V. Analysis of estrogens and estrogen mimics in edible matrices--a review. J Sep Sci 2014; 37:885-905. [PMID: 24488827 DOI: 10.1002/jssc.201301234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/23/2014] [Accepted: 01/23/2014] [Indexed: 01/12/2023]
Abstract
This review provides a brief survey of the biological effects of selected endocrine-disrupting compounds that are formed after internal exposure of organisms. Further, the present analytical methods available for the determination of these compounds in foodstuffs are critically evaluated. The attention is primarily devoted to the methods for sample pretreatment, which are the main source of errors and are usually the most time-consuming step of the whole analysis. This review is focused on selected natural and synthetic estrogens, estrogen conjugates, and chemical additives used in the plastic industry that can act as estrogen mimics.
Collapse
Affiliation(s)
- Hana Adamusova
- Department of Analytical Chemistry, Charles University in Prague, Prague, Czech Republic
| | | | | | | |
Collapse
|
50
|
Maiolini E, Ferri E, Pitasi AL, Montoya A, Di Giovanni M, Errani E, Girotti S. Bisphenol A determination in baby bottles by chemiluminescence enzyme-linked immunosorbent assay, lateral flow immunoassay and liquid chromatography tandem mass spectrometry. Analyst 2014; 139:318-24. [DOI: 10.1039/c3an00552f] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|