1
|
McInvale JJ, Canoll P, Hargus G. Induced pluripotent stem cell models as a tool to investigate and test fluid biomarkers in Alzheimer's disease and frontotemporal dementia. Brain Pathol 2024; 34:e13231. [PMID: 38246596 PMCID: PMC11189780 DOI: 10.1111/bpa.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024] Open
Abstract
Neurodegenerative diseases are increasing in prevalence and comprise a large socioeconomic burden on patients and their caretakers. The need for effective therapies and avenues for disease prevention and monitoring is of paramount importance. Fluid biomarkers for neurodegenerative diseases have gained a variety of uses, including informing participant selection for clinical trials, lending confidence to clinical diagnosis and disease staging, determining prognosis, and monitoring therapeutic response. Their role is expected to grow as disease-modifying therapies start to be available to a broader range of patients and as prevention strategies become established. Many of the underlying molecular mechanisms of currently used biomarkers are incompletely understood. Animal models and in vitro systems using cell lines have been extensively employed but face important translatability limitations. Induced pluripotent stem cell (iPSC) technology, where a theoretically unlimited range of cell types can be reprogrammed from peripheral cells sampled from patients or healthy individuals, has gained prominence over the last decade. It is a promising avenue to study physiological and pathological biomarker function and response to experimental therapeutics. Such systems are amenable to high-throughput drug screening or multiomics readouts such as transcriptomics, lipidomics, and proteomics for biomarker discovery, investigation, and validation. The present review describes the current state of biomarkers in the clinical context of neurodegenerative diseases, with a focus on Alzheimer's disease and frontotemporal dementia. We include a discussion of how iPSC models have been used to investigate and test biomarkers such as amyloid-β, phosphorylated tau, neurofilament light chain or complement proteins, and even nominate novel biomarkers. We discuss the limitations of current iPSC methods, mentioning alternatives such as coculture systems and three-dimensional organoids which address some of these concerns. Finally, we propose exciting prospects for stem cell transplantation paradigms using animal models as a preclinical tool to study biomarkers in the in vivo context.
Collapse
Affiliation(s)
- Julie J. McInvale
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia UniversityNew YorkNew YorkUSA
- Medical Scientist Training Program, Columbia UniversityNew YorkNew YorkUSA
| | - Peter Canoll
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Gunnar Hargus
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
2
|
Li S, Jiang J, Zhu W, Wang D, Dong C, Bu Y, Zhang J, Gao D, Hu X, Wan C. Increased cell-free DNA is associated with oxidative damage in patients with schizophrenia. J Psychiatr Res 2024; 175:20-28. [PMID: 38701608 DOI: 10.1016/j.jpsychires.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Cell-free DNA (cfDNA) has been found to be elevated in patients with schizophrenia (SZ), potentially derived from activated apoptosis, but the underlying mechanisms remain unknown. Moreover, whether the concentrations of cfDNA are altered with disease stage has not been investigated, which limits its clinical application as an auxiliary diagnostic marker for SZ. Using an improved fluorescence correlation spectroscopy (FCS) method that does not require DNA extraction, we measured the molar concentrations of cfDNA in plasma samples of 191 patients with SZ, 78 patients with mood disorders (MD) and 65 healthy controls (HC). We also analyzed the cfDNA composition from either the nucleus or mitochondria, oxidation markers and biochemical indexes to explore the potential mechanistic associations of the increased cfDNA levels. We found that in SZ patients, the cfDNA levels were significantly increased (P = 0.003) regardless of the different disease stages or antipsychotic medication use. Furthermore, qPCR revealed that cell-free nuclear DNA (cf-nDNA) (P = 0.041) but not cell-free mitochondrial DNA (cf-mtDNA) was elevated in SZ patients. Moreover, decreased SOD activity in SZ patients (P = 0.005) was negatively correlated with cfDNA levels (P = 0.047), and fasting blood glucose was positively correlated with cfDNA levels in SZ patients (P = 0.013). Our study provides evidence to support that the elevated cfDNA may be a convenient, effective and stable trait indicator of SZ. Further analysis showed that it mainly came from nucleus, suggesting increased apoptosis, and potentially related to oxidative stress and high blood glucose levels in patients.
Collapse
Affiliation(s)
- Shuhui Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wenli Zhu
- The Fourth People's Hospital of Wuhu, Wuhu, 241003, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangying Bu
- The Fourth People's Hospital of Wuhu, Wuhu, 241003, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Daiyutong Gao
- Department of Mathematics, Nanjing University, Nanjing, 210093, China
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
3
|
Cardelli M, Marchegiani F, Stripoli P, Piacenza F, Recchioni R, Di Rosa M, Giacconi R, Malavolta M, Galeazzi R, Arosio B, Cafarelli F, Spannella F, Cherubini A, Lattanzio F, Olivieri F. Plasma cfDNA abundance as a prognostic biomarker for higher risk of death in geriatric cardiovascular patients. Mech Ageing Dev 2024; 219:111934. [PMID: 38604436 DOI: 10.1016/j.mad.2024.111934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The management of geriatric cardiovascular disease (CVD) patients with multimorbidity remains challenging and could potentially be improved by integrating clinical data with innovative prognostic biomarkers. In this context, the analysis of circulating analytes, including cell-free DNA (cfDNA), appears particularly promising. Here, we investigated circulating cfDNA (measured through the quantification of 247 bp and 115 bp Alu genomic fragments) in a cohort of 244 geriatric CVD patients with multimorbidity hospitalised for acute CVD or non-CVD events. Survival analysis showed a direct association between Alu 247 cfDNA abundance and risk of death, particularly evident in the first six months after admission for acute CVD events. Higher plasma cfDNA concentration was associated with mortality in the same period of time. The cfDNA integrity (Alu 247/115), although not associated with outcome, appeared to be useful in discriminating patients in whom Alu 247 cfDNA abundance is most effective as a prognostic biomarker. The cfDNA parameters were associated with several biochemical markers of inflammation and myocardial damage. In conclusion, an increase in plasma cfDNA abundance at hospital admission is indicative of a higher risk of death in geriatric CVD patients, especially after acute CVD events, and its analysis may be potentially useful for risk stratification.
Collapse
Affiliation(s)
- Maurizio Cardelli
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona 60121, Italy
| | | | - Pierpaolo Stripoli
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona 60121, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona 60121, Italy
| | - Rina Recchioni
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona 60121, Italy
| | - Mirko Di Rosa
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, IRCCS INRCA, Ancona 60124, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona 60121, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona 60121, Italy
| | - Roberta Galeazzi
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona 60121, Italy
| | - Beatrice Arosio
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Francesco Spannella
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, Ancona 60127, Italy; Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per L'invecchiamento, IRCCS INRCA, Ancona 60127, Italy
| | | | - Fabiola Olivieri
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona 60121, Italy; Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona 60126, Italy; Scientific Direction, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
4
|
Dennhardt S, Ceanga IA, Baumbach P, Amiratashani M, Kröller S, Coldewey SM. Cell-free DNA in patients with sepsis: long term trajectory and association with 28-day mortality and sepsis-associated acute kidney injury. Front Immunol 2024; 15:1382003. [PMID: 38803503 PMCID: PMC11128621 DOI: 10.3389/fimmu.2024.1382003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Outcome-prediction in patients with sepsis is challenging and currently relies on the serial measurement of many parameters. Standard diagnostic tools, such as serum creatinine (SCr), lack sensitivity and specificity for acute kidney injury (AKI). Circulating cell-free DNA (cfDNA), which can be obtained from liquid biopsies, can potentially contribute to the quantification of tissue damage and the prediction of sepsis mortality and sepsis-associated AKI (SA-AKI). Methods We investigated the clinical significance of cfDNA levels as a predictor of 28-day mortality, the occurrence of SA-AKI and the initiation of renal replacement therapy (RRT) in patients with sepsis. Furthermore, we investigated the long-term course of cfDNA levels in sepsis survivors at 6 and 12 months after sepsis onset. Specifically, we measured mitochondrial DNA (mitochondrially encoded NADH-ubiquinone oxidoreductase chain 1, mt-ND1, and mitochondrially encoded cytochrome C oxidase subunit III, mt-CO3) and nuclear DNA (nuclear ribosomal protein S18, n-Rps18) in 81 healthy controls and all available samples of 150 intensive care unit patients with sepsis obtained at 3 ± 1 days, 7 ± 1 days, 6 ± 2 months and 12 ± 2 months after sepsis onset. Results Our analysis revealed that, at day 3, patients with sepsis had elevated levels of cfDNA (mt-ND1, and n-Rps18, all p<0.001) which decreased after the acute phase of sepsis. 28-day non-survivors of sepsis (16%) had higher levels of cfDNA (all p<0.05) compared with 28-day survivors (84%). Patients with SA-AKI had higher levels of cfDNA compared to patients without AKI (all p<0.05). Cell-free DNA was also significantly increased in patients requiring RRT (all p<0.05). All parameters improved the AUC for SCr in predicting RRT (AUC=0.88) as well as APACHE II in predicting mortality (AUC=0.86). Conclusion In summary, cfDNA could potentially improve risk prediction models for mortality, SA-AKI and RRT in patients with sepsis. The predictive value of cfDNA, even with a single measurement at the onset of sepsis, could offer a significant advantage over conventional diagnostic methods that require repeated measurements or a baseline value for risk assessment. Considering that our data show that cfDNA levels decrease after the first insult, future studies could investigate cfDNA as a "memoryless" marker and thus bring further innovation to the complex field of SA-AKI diagnostics.
Collapse
Affiliation(s)
- Sophie Dennhardt
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Iuliana-Andreea Ceanga
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Philipp Baumbach
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Mona Amiratashani
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Sarah Kröller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
5
|
Kapriniotis K, Tzelves L, Lazarou L, Mitsogianni M, Mitsogiannis I. Circulating Tumour DNA and Its Prognostic Role in Management of Muscle Invasive Bladder Cancer: A Narrative Review of the Literature. Biomedicines 2024; 12:921. [PMID: 38672275 PMCID: PMC11048625 DOI: 10.3390/biomedicines12040921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Current management of non-metastatic muscle invasive bladder cancer (MIBC) includes radical cystectomy and cisplatin-based neoadjuvant chemotherapy (NAC), offers a 5-year survival rate of approximately 50% and is associated with significant toxicities. A growing body of evidence supports the role of liquid biopsies including circulating tumour DNA (ctDNA) as a prognostic and predictive marker that could stratify patients according to individualised risk of progression/recurrence. Detectable ctDNA levels prior to radical cystectomy have been shown to be correlated with higher risk of recurrence and worse overall prognosis after cystectomy. In addition, ctDNA status after NAC/neoadjuvant immunotherapy is predictive of the pathological response to these treatments, with persistently detectable ctDNA being associated with residual bladder tumour at cystectomy. Finally, detectable ctDNA levels post-cystectomy have been associated with disease relapse and worse disease-free (DFS) and overall survival (OS) and might identify a population with survival benefit from adjuvant immunotherapy.
Collapse
Affiliation(s)
| | - Lazaros Tzelves
- 2nd Department of Urology, Sismanogleio Hospital, National and Kapodistrian University of Athens (NKUA), 115 27 Athens, Greece; (L.L.); (I.M.)
| | - Lazaros Lazarou
- 2nd Department of Urology, Sismanogleio Hospital, National and Kapodistrian University of Athens (NKUA), 115 27 Athens, Greece; (L.L.); (I.M.)
| | - Maria Mitsogianni
- 4th Department of Medical Oncology, “Hygeia” Hospital, 151 23 Athens, Greece;
| | - Iraklis Mitsogiannis
- 2nd Department of Urology, Sismanogleio Hospital, National and Kapodistrian University of Athens (NKUA), 115 27 Athens, Greece; (L.L.); (I.M.)
| |
Collapse
|
6
|
Isola G, Polizzi A, Mascitti M, Santonocito S, Ronsivalle V, Cicciù M, Pesce P. Impact of periodontitis on circulating cell-free DNA levels as a measure of cardiovascular disease. Clin Oral Investig 2023; 27:6855-6863. [PMID: 37814162 PMCID: PMC10630221 DOI: 10.1007/s00784-023-05300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVES The present study aims to assess the serum circulating cell-free (cfDNA) concentrations in patients with periodontitis and cardiovascular disease (CVD) and to evaluate the impact of periodontitis on circulating cfDNA levels and the confounding factors that might mediated the possible relationship. MATERIALS AND METHODS Healthy controls (n=30) and patients with CVD (n=31), periodontitis (n=31), and periodontitis + CVD (n=30) were enrolled in the present study. All subjects underwent regular periodontal examination and blood sampling and cfDNA evaluation. The analysis of the plasma cfDNA concentrations was performed using a dsDNA Assay Kit. RESULTS In comparison with healthy controls and CVD patients, periodontitis and periodontitis+CVD exhibited significantly higher expression of circulating cfDNA (p<0.05). There was a positive correlation among plasma cfDNA and clinical attachment loss (CAL) (p=0.019), high sensitivity C-reactive protein (hs-CRP) (p=0.027), and periodontal inflamed surface area (PISA) (p=0.003). Furthermore, the multivariate regression analysis evidenced that PISA (p<0.001), hs-CRP (p=0.014), and full-mouth bleeding score (FMBS) (p=0.004) were significant predictors of circulating cfDNA concentrations. CONCLUSIONS The results of the study highlighted that the periodontitis and periodontitis + CVD group showed higher circulating cfDNA expression in comparison with healthy controls and CVD patients. Moreover, the extent of periodontitis was correlated with the increased cfDNA levels and represented a significant predictor of the increased circulating cfDNA concentrations. CLINICAL RELEVANCE Unbalanced circulating cfDNA concentrations have been indicated to represent a possible risk of CVD and endothelial dysfunction. Periodontitis and periodontitis + CVD patients showed higher circulating cfDNA expression; moreover, the extent of periodontitis significantly predicted higher circulating cfDNA concentrations, suggesting the potential increased risk of developing CVD in periodontitis patients.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Via S. Sofia 78, 95123, Catania, Italy.
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Marco Mascitti
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Vincenzo Ronsivalle
- Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Marco Cicciù
- Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Paolo Pesce
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| |
Collapse
|
7
|
Zhu Z, Lu H, Jin L, Gao Y, Qian Z, Lu P, Tong W, Lo PK, Mao Z, Shi H. C-176 loaded Ce DNase nanoparticles synergistically inhibit the cGAS-STING pathway for ischemic stroke treatment. Bioact Mater 2023; 29:230-240. [PMID: 37502677 PMCID: PMC10371767 DOI: 10.1016/j.bioactmat.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
The neuroinflammatory responses following ischemic stroke cause irreversible nerve cell death. Cell free-double strand DNA (dsDNA) segments from ischemic tissue debris are engulfed by microglia and sensed by their cyclic GMP-AMP synthase (cGAS), which triggers robust activation of the innate immune stimulator of interferon genes (STING) pathway and initiate the chronic inflammatory cascade. The decomposition of immunogenic dsDNA and inhibition of the innate immune STING are synergistic immunologic targets for ameliorating neuroinflammation. To combine the anti-inflammatory strategies of STING inhibition and dsDNA elimination, we constructed a DNase-mimetic artificial enzyme loaded with C-176. Nanoparticles are self-assembled by amphiphilic copolymers (P[CL35-b-(OEGMA20.7-co-NTAMA14.3)]), C-176, and Ce4+ which is coordinated with nitrilotriacetic acid (NTA) group to form corresponding catalytic structures. Our work developed a new nano-drug that balances the cGAS-STING axis to enhance the therapeutic impact of stroke by combining the DNase-memetic Ce4+ enzyme and STING inhibitor synergistically. In conclusion, it is a novel approach to modulating central nervus system (CNS) inflammatory signaling pathways and improving stroke prognosis.
Collapse
Affiliation(s)
- Zhixin Zhu
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 31000, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haipeng Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhefeng Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pan Lu
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 31000, China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pik Kwan Lo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haifei Shi
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 31000, China
| |
Collapse
|
8
|
Hoeter K, Neuberger E, Fischer S, Herbst M, Juškevičiūtė E, Enders K, Rossmann H, Sprinzl MF, Simon P, Bodenstein M, Schaefer M. Evidence for the utility of cfDNA plasma concentrations to predict disease severity in COVID-19: a retrospective pilot study. PeerJ 2023; 11:e16072. [PMID: 37744227 PMCID: PMC10512938 DOI: 10.7717/peerj.16072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/20/2023] [Indexed: 09/26/2023] Open
Abstract
Background COVID-19 is a worldwide pandemic caused by the highly infective SARS-CoV-2. There is a need for biomarkers not only for overall prognosis but also for predicting the response to treatments and thus for improvements in the clinical management of patients with COVID-19. Circulating cell-free DNA (cfDNA) has emerged as a promising biomarker in the assessment of various pathological conditions. The aim of this retrospective and observational pilot study was to investigate the range of cfDNA plasma concentrations in hospitalized COVID-19 patients during the first wave of SARS-CoV-2 infection, to relate them to established inflammatory parameters as a correlative biomarker for disease severity, and to compare them with plasma levels in a healthy control group. Methods Lithium-Heparin plasma samples were obtained from COVID-19 patients (n = 21) during hospitalization in the University Medical Centre of Mainz, Germany between March and June 2020, and the cfDNA concentrations were determined by quantitative PCR yielding amplicons of long interspersed nuclear elements (LINE-1). The cfDNA levels were compared with those of an uninfected control group (n = 19). Results Plasma cfDNA levels in COVID-19 patients ranged from 247.5 to 6,346.25 ng/ml and the mean concentration was 1,831 ± 1,388 ng/ml (± standard deviation), which was significantly different from the levels of the uninfected control group (p < 0.001). Regarding clinical complications, the highest correlation was found between cfDNA levels and the myositis (p = 0.049). In addition, cfDNA levels correlated with the "WHO clinical progression scale". D-Dimer and C-reactive protein (CRP) were the clinical laboratory parameters with the highest correlations with cfDNA levels. Conclusion The results of this observational pilot study show a wide range in cfDNA plasma concentrations in patients with COVID-19 during the first wave of infection and confirm that cfDNA plasma concentrations serve as a predictive biomarker of disease severity in COVID-19.
Collapse
Affiliation(s)
- Katharina Hoeter
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Elmo Neuberger
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Susanne Fischer
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Manuel Herbst
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Ema Juškevičiūtė
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes-Gutenberg Universität Mainz, Mainz, Germany
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Kira Enders
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Martin F. Sprinzl
- Department of Internal Medicine I, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Marc Bodenstein
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael Schaefer
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immunotherapy, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
9
|
Roth S, Wernsdorf SR, Liesz A. The role of circulating cell-free DNA as an inflammatory mediator after stroke. Semin Immunopathol 2023:10.1007/s00281-023-00993-5. [PMID: 37212886 DOI: 10.1007/s00281-023-00993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/23/2023]
Abstract
Stroke is the second leading cause of death worldwide and a leading cause of disability. Clinical and experimental studies highlighted the complex role of the immune system in the pathophysiology of stroke. Ischemic brain injury leads to the release of cell-free DNA, a damage-associated molecular pattern, which binds to pattern recognition receptors on immune cells such as toll-like receptors and cytosolic inflammasome sensors. The downstream signaling cascade then induces a rapid inflammatory response. In this review, we are highlighting the characteristics of cell-free DNA and how these can affect a local as well as a systemic response after stroke. For this purpose, we screened literature on clinical studies investigating cell-free DNA concentration and properties after brain ischemia. We report the current understanding for mechanisms of DNA uptake and sensing in the context of post-stroke inflammation. Moreover, we compare possible treatment options targeting cell-free DNA, DNA-sensing pathways, and the downstream mediators. Finally, we describe clinical implications of this inflammatory pathway for stroke patients, open questions, and potential future research directions.
Collapse
Affiliation(s)
- Stefan Roth
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Saskia R Wernsdorf
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
10
|
Gaitsch H, Franklin RJM, Reich DS. Cell-free DNA-based liquid biopsies in neurology. Brain 2023; 146:1758-1774. [PMID: 36408894 PMCID: PMC10151188 DOI: 10.1093/brain/awac438] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
This article reviews recent developments in the application of cell-free DNA-based liquid biopsies to neurological diseases. Over the past few decades, an explosion of interest in the use of accessible biofluids to identify and track molecular disease has revolutionized the fields of oncology, prenatal medicine and others. More recently, technological advances in signal detection have allowed for informative analysis of biofluids that are typically sparse in cells and other circulating components, such as CSF. In parallel, advancements in epigenetic profiling have allowed for novel applications of liquid biopsies to diseases without characteristic mutational profiles, including many degenerative, autoimmune, inflammatory, ischaemic and infectious disorders. These events have paved the way for a wide array of neurological conditions to benefit from enhanced diagnostic, prognostic, and treatment abilities through the use of liquid biomarkers: a 'liquid biopsy' approach. This review includes an overview of types of liquid biopsy targets with a focus on circulating cell-free DNA, methods used to identify and probe potential liquid biomarkers, and recent applications of such biomarkers to a variety of complex neurological conditions including CNS tumours, stroke, traumatic brain injury, Alzheimer's disease, epilepsy, multiple sclerosis and neuroinfectious disease. Finally, the challenges of translating liquid biopsies to use in clinical neurology settings-and the opportunities for improvement in disease management that such translation may provide-are discussed.
Collapse
Affiliation(s)
- Hallie Gaitsch
- NIH-Oxford-Cambridge Scholars Program, Wellcome-MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | | | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Verebi C, Nectoux J, Gorwood P, Le Strat Y, Duriez P, Ramoz N, Bienvenu T. A systematic literature review and meta-analysis of circulating nucleic acids as biomarkers in psychiatry. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110770. [PMID: 37068545 DOI: 10.1016/j.pnpbp.2023.110770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Common mental disorders (CMDs) such as depression, anxiety and post-traumatic stress disorders account for 40% of the global burden of disease. In most psychiatric disorders, both diagnosis and monitoring can be challenging, frequently requiring long-term investigation and follow-up. The discovery of better methods to facilitate accurate and fast diagnosis and monitoring of psychiatric disorders is therefore crucial. Circulating nucleic acids (CNAs) are among these new tools. CNAs (DNA or RNA) can be found circulating in body biofluids, and can be isolated from biological samples such as plasma. They can serve as biomarkers for diagnosis and prognoses. They appear to be promising for disorders (such as psychiatric disorders) that involve organs or structures that are difficult to assess. This review presents an accurate assessment of the current literature about the use of plasma and serum cell-free DNA (cfDNA) as biomarkers for several aspects of psychiatric disorders: diagnosis, prognosis, treatment response, and monitor disease progression. For each psychiatric disorder, we examine the effect sizes to give insights on the efficacy of CNAs as biomarkers. The global effect size for plasma nuclear and mitochondrial cfDNA studies was generally moderate for psychiatric disorders. In addition, we discuss future applications of CNAs and particularly cfDNA as non-invasive biomarkers for these diseases.
Collapse
Affiliation(s)
- Camille Verebi
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, AP.HP.CUP, Paris, France; INSERM U1266, Institut de Psychiatrie et de Neurosciences de Paris, Paris, France
| | - Juliette Nectoux
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, AP.HP.CUP, Paris, France
| | - Philip Gorwood
- INSERM U1266, Institut de Psychiatrie et de Neurosciences de Paris, Paris, France; Université Paris Cité, GHU Paris Psychiatrie et Neurosciences (CMME), Paris, France
| | - Yann Le Strat
- AP-HP, Department of Psychiatry, Louis Mourier Hospital, Université Paris Cité, Faculté de Médecine, Colombes, France
| | - Philibert Duriez
- INSERM U1266, Institut de Psychiatrie et de Neurosciences de Paris, Paris, France; Université Paris Cité, GHU Paris Psychiatrie et Neurosciences (CMME), Paris, France
| | - Nicolas Ramoz
- INSERM U1266, Institut de Psychiatrie et de Neurosciences de Paris, Paris, France
| | - Thierry Bienvenu
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, AP.HP.CUP, Paris, France; INSERM U1266, Institut de Psychiatrie et de Neurosciences de Paris, Paris, France.
| |
Collapse
|
12
|
Cell-Free DNA in Plasma and Serum Indicates Disease Severity and Prognosis in Blunt Trauma Patients. Diagnostics (Basel) 2023; 13:diagnostics13061150. [PMID: 36980458 PMCID: PMC10047705 DOI: 10.3390/diagnostics13061150] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Background: Trauma is still a major cause of mortality in people < 50 years of age. Biomarkers are needed to estimate the severity of the condition and the patient outcome. Methods: Cell-free DNA (cfDNA) and further laboratory markers were determined in plasma and serum of 164 patients at time of admission to the emergency room. Among them were 64 patients with severe trauma (Injury Severity Score (ISS) ≥ 16), 51 patients with moderate trauma (ISS < 16) and 49 patients with single fractures (24 femur neck and 25 ankle fractures). Disease severity was objectified by ISS and Glasgow Coma Scale (GCS). Results: cfDNA levels in plasma and serum were significantly higher in patients with severe multiple trauma (SMT) than in those with moderate trauma (p = 0.002, p = 0.003, respectively) or with single fractures (each p < 0.001). CfDNA in plasma and serum correlated very strongly with each other (R = 0.91; p < 0.001). The AUC in ROC curves for identification of SMT patients was 0.76 and 0.74 for cfDNA in plasma and serum, respectively—this was further increased to 0.84 by the combination of cfDNA and hemoglobin. Within the group of multiple trauma patients, cfDNA levels were significantly higher in more severely injured patients and patients with severe traumatic brain injury (GCS ≤ 8 versus GCS > 8). Thirteen (20.3%) of the multiple trauma patients died during the first week after trauma. Levels of cfDNA were significantly higher in non-surviving patients than in survivors (p < 0.001), reaching an AUC of 0.81 for cfDNA in both, plasma and serum, which was further increased by the combination with hemoglobin and leukocytes. Conclusions: cfDNA is valuable for estimation of trauma severity and prognosis of trauma patients.
Collapse
|
13
|
Krämer TJ, Pickart F, Pöttker B, Gölz C, Neulen A, Pantel T, Goetz H, Ritter K, Schäfer MKE, Thal SC. Early DNase-I therapy delays secondary brain damage after traumatic brain injury in adult mice. Sci Rep 2023; 13:4348. [PMID: 36928073 PMCID: PMC10018640 DOI: 10.1038/s41598-023-30421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Traumatic brain injury (TBI) causes the release of danger-associated molecular patterns (DAMP) from damaged or dead cells, which contribute to secondary brain damage after TBI. Cell-free DNA (cfDNA) is a DAMP known to cause disruption of the blood-brain barrier (BBB), promote procoagulant processes, brain edema, and neuroinflammation. This study tested the hypothesis that administration of deoxyribonuclease-I (DNase-I) has a beneficial effect after TBI. Mice (n = 84) were subjected to controlled cortical impact (CCI) and posttraumatic intraperitoneal injections of low dose (LD) or high dose (HD) of DNase-I or vehicle solution at 30 min and 12 h after CCI. LD was most effective to reduce lesion volume (p = 0.003), brain water content (p < 0.0001) and to stabilize BBB integrity (p = 0.019) 1 day post-injury (dpi). At 6 h post injury LD-treated animals showed less cleavage of fibrin (p = 0.0014), and enhanced perfusion as assessed by micro-computer-tomography (p = 0.027). At 5 dpi the number of Iba1-positive cells (p = 0.037) were reduced, but the number of CD45-positive cells, motoric function and brain lesion volume was not different. Posttraumatic-treatment with DNase-I therefore stabilizes the BBB, reduces the formation of brain edema, immune response, and delays secondary brain damage. DNase-I might be a new approach to extend the treatment window after TBI.
Collapse
Affiliation(s)
- Tobias J Krämer
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany.
- Faculty of Health, University Witten/Herdecke, Witten, Germany.
| | - Florian Pickart
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Bruno Pöttker
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Christina Gölz
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Axel Neulen
- Department of Neurosurgery, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tobias Pantel
- Department of Neurosurgery, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Hermann Goetz
- Cell Biology Unit, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Katharina Ritter
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Center for Molecular Surgical Research, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Center for Molecular Surgical Research, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Department of Anesthesiology, Helios University Hospital Wuppertal, University Witten/Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany
| |
Collapse
|
14
|
Gkalea V, Fotiou D, Dimopoulos MA, Kastritis E. Monoclonal Gammopathy of Thrombotic Significance. Cancers (Basel) 2023; 15:cancers15020480. [PMID: 36672429 PMCID: PMC9856365 DOI: 10.3390/cancers15020480] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The current review provides an overview of the thrombotic risk observed in patients with MG who do not otherwise require treatment. We discuss clinical and biomarker studies that highlight the heterogenous hemostatic profile observed in these patients and how knowledge has evolved over the past 20 years. Biomarker studies suggest shared biologic features between multiple myeloma and monoclonal gammopathy of undetermined significance (MGUS), which involves both hypercoagulability and platelet activation. Hemostatic abnormalities identified in MGUS patients cannot be translated into clinical practice as they lack correlation to clinical events. The prothrombotic phenotype of MGUS patients has not been ascertained yet, but novel data on coagulation markers are promising. We also review rare conditions associated with the thrombogenic properties of the monoclonal protein that predispose to arterial, venous or microthrombotic events and demonstrate that the M-protein can be linked to clinically significant thrombotic events. Cryoglobulinemia, cryofibrinogenemia, cryo-crystaloglobulinemia and MG-related antiphospholipid syndrome are reviewed. We propose the new umbrella term "monoclonal gammopathy of thrombotic significance" (MGTS) to refer to significant, recurrent thrombotic events in patients with MGUS that provide a rationale for targeting the underlying plasma cell clone. Identifying MGUS patients at high risk for thrombotic events is currently a challenge.
Collapse
|
15
|
Fotiou D, Dimopoulos MA, Kastritis E. Approach to Contemporary Risk Assessment, Prevention and Management of Thrombotic Complications in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14246216. [PMID: 36551701 PMCID: PMC9777181 DOI: 10.3390/cancers14246216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma (MM) is associated with an increased risk of thrombotic complications, which remains substantial despite the implementation of thromboprophylaxis. The procoagulant state that characterizes the disease is multifactorial, and a greater understanding of the underlying pathophysiology is required to inform appropriate thrombosis prevention. Currently, there is a shift towards using direct oral anticoagulants (DOACs) in this setting; head-to-head comparisons in the context of controlled clinical trials between class agents are still missing. MM-specific VTE risk assessment scores have been developed to optimize management and minimize the associated mortality/morbidity. Their clinical utility remains to be evaluated. The value of adding biomarkers to clinical scores to optimize their performance and increase their discriminatory power is also under assessment.
Collapse
|
16
|
Xu X, Wu Y, Xu S, Yin Y, Ageno W, De Stefano V, Zhao Q, Qi X. Clinical significance of neutrophil extracellular traps biomarkers in thrombosis. Thromb J 2022; 20:63. [PMID: 36224604 PMCID: PMC9555260 DOI: 10.1186/s12959-022-00421-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Neutrophil extracellular traps (NETs) may be associated with the development of thrombosis. Experimental studies have confirmed the presence of NETs in thrombi specimens and potential role of NETs in the mechanisms of thrombosis. Clinical studies also have demonstrated significant changes in the levels of serum or plasma NETs biomarkers, such as citrullinated histones, myeloperoxidase, neutrophil elastase, nucleosomes, DNA, and their complexes in patients with thrombosis. This paper aims to comprehensively review the currently available evidence regarding the change in the levels of NETs biomarkers in patients with thrombosis, summarize the role of NETs and its biomarkers in the development and prognostic assessment of venous thromboembolism, coronary artery diseases, ischemic stroke, cancer-associated thromboembolism, and coronavirus disease 2019-associated thromboembolism, explore the potential therapeutic implications of NETs, and further discuss the shortcomings of existing NETs biomarkers in serum and plasma and their detection methods.
Collapse
Affiliation(s)
- Xiangbo Xu
- Department of Gastroenterology, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmacy, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China
| | - Yuting Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmacy, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China
| | - Shixue Xu
- Department of Gastroenterology, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China
| | - Yue Yin
- Department of Gastroenterology, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China
| | - Walter Ageno
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Valerio De Stefano
- Department of Radiological and Hematological Sciences, Catholic University, Fondazione Policlinico A. Gemelli IRCCS, Section of Hematology, Rome, Italy
| | - Qingchun Zhao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China. .,Department of Pharmacy, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China.
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China. .,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
17
|
Fathima N, Manorenj S, Vishwakarma SK, Khan AA. Role of cell-free DNA for predicting incidence and outcome of patients with ischemic stroke. World J Neurol 2022; 8:1-9. [DOI: 10.5316/wjn.v8.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/11/2022] [Accepted: 07/31/2022] [Indexed: 02/08/2023] Open
Abstract
Early diagnosis and prognosis of ischemic stroke remains a critical challenge in clinical settings. A blood biomarker can be a promising quantitative tool to represent the clinical manifestations in ischemic stroke. Cell-free DNA (cfDNA) has recently turned out to be a popular circulating biomarker due to its potential relevance for diagnostic applications in a variety of disorders. Despite bright outlook of cfDNA in clinical applications, very less is known about its origin, composition, or function. Several recent studies have identified cell-derived mitochondrial components including mitochondrial DNA (mtDNA) in the extracellular spaces including blood and cerebrospinal fluid. However, the time course of alterations in plasma mtDNA concentrations in patients after an ischemic stroke is poorly understood. DNA is thought to be freed into the plasma shortly after the commencement of an ischemic stroke and then gradually decreased. However, the importance of cell-free mtDNA (cf-mtDNA) in ischemic stroke is still unknown. This review summarizes about the utility of biomarkers which has been standardized in clinical settings and role of cfDNA including cf-mtDNA as a non-invasive potential biomarker of ischemic stroke.
Collapse
Affiliation(s)
- Nusrath Fathima
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Sandhya Manorenj
- Department of Neurology, Princess Esra Hospital, Deccan College of Medical Sciences, Hyderabad 500002, Telangana, India
| | - Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| |
Collapse
|
18
|
Sarvari P, Sarvari P, Ramírez-Díaz I, Mahjoubi F, Rubio K. Advances of Epigenetic Biomarkers and Epigenome Editing for Early Diagnosis in Breast Cancer. Int J Mol Sci 2022; 23:ijms23179521. [PMID: 36076918 PMCID: PMC9455804 DOI: 10.3390/ijms23179521] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Epigenetic modifications are known to regulate cell phenotype during cancer progression, including breast cancer. Unlike genetic alterations, changes in the epigenome are reversible, thus potentially reversed by epi-drugs. Breast cancer, the most common cause of cancer death worldwide in women, encompasses multiple histopathological and molecular subtypes. Several lines of evidence demonstrated distortion of the epigenetic landscape in breast cancer. Interestingly, mammary cells isolated from breast cancer patients and cultured ex vivo maintained the tumorigenic phenotype and exhibited aberrant epigenetic modifications. Recent studies indicated that the therapeutic efficiency for breast cancer regimens has increased over time, resulting in reduced mortality. Future medical treatment for breast cancer patients, however, will likely depend upon a better understanding of epigenetic modifications. The present review aims to outline different epigenetic mechanisms including DNA methylation, histone modifications, and ncRNAs with their impact on breast cancer, as well as to discuss studies highlighting the central role of epigenetic mechanisms in breast cancer pathogenesis. We propose new research areas that may facilitate locus-specific epigenome editing as breast cancer therapeutics.
Collapse
Affiliation(s)
- Pourya Sarvari
- Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran P.O. Box 14965/161, Iran
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Frouzandeh Mahjoubi
- Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran P.O. Box 14965/161, Iran
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Correspondence:
| |
Collapse
|
19
|
Simats A, Liesz A. Systemic inflammation after stroke: implications for post-stroke comorbidities. EMBO Mol Med 2022; 14:e16269. [PMID: 35971650 PMCID: PMC9449596 DOI: 10.15252/emmm.202216269] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 12/21/2022] Open
Abstract
Immunological mechanisms have come into the focus of current translational stroke research, and the modulation of neuroinflammatory pathways has been identified as a promising therapeutic approach to protect the ischemic brain. However, stroke not only induces a local neuroinflammatory response but also has a profound impact on systemic immunity. In this review, we will summarize the consequences of ischemic stroke on systemic immunity at all stages of the disease, from onset to long‐term outcome, and discuss underlying mechanisms of systemic brain‐immune communication. Furthermore, since stroke commonly occurs in patients with multiple comorbidities, we will also overview the current understanding of the potential role of systemic immunity in common stroke‐related comorbidities, such as cardiac dysfunction, atherosclerosis, diabetes, and infections. Finally, we will highlight how targeting systemic immunity after stroke could improve long‐term outcomes and alleviate comorbidities of stroke patients.
Collapse
Affiliation(s)
- Alba Simats
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
20
|
Fathima N, Manorenj S, Vishwakarma SK, Khan AA. Cell-free mitochondrial DNA quantification in ischemic stroke patients for non-invasive and real-time monitoring of disease status. World J Transl Med 2022; 10:14-28. [DOI: 10.5528/wjtm.v10.i2.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/14/2022] [Accepted: 07/17/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Acute ischemic stroke (AIS) is one of the major causes of the continuous increasing rate of global mortality due to the lack of timely diagnosis, prognosis, and management. This study provides a primitive platform for non-invasive and cost-effective diagnosis and prognosis of patients with AIS using circulating cell-free mitochondrial DNA (cf-mtDNA) quantification and validation.
AIM To evaluate the role of cf-mtDNA as s non-invasive, and affordable tool for real-time monitoring and prognosticating AIS patients at disease onset and during treatment.
METHODS This study enrolled 88 participants including 44 patients with AIS and 44 healthy controls with almost similar mean age group at stroke onset, and at 24 h and 72 h of treatment. Peripheral blood samples were collected from each study participant and plasma was separated using centrifugation. The cf-mtDNA concentration was quantified using nanodrop reading and validated through real-time quantitative polymerase chain reaction (RT-qPCR) of NADH-ubiquinone oxidoreductase chain 1 (ND1) relative transcript expression levels.
RESULTS Comparative analysis of cf-mtDNA concentration in patients at disease onset showed significantly increased levels compared to control individuals for both nanodrop reading, as well as ND1 relative expression levels (P < 0.0001). Intergroup analysis of cf-mtDNA concentration using nanodrop showed significantly reduced levels in patients at 72 h of treatment compared to onset (P < 0.01). However, RT-qPCR analysis showed a significant reduction at 24 h and 72 h of treatment compared to the disease onset (P < 0.001). The sensitivity and specificity were relatively higher for RT-qPCR than nanodrop-based cf-mtDNA quantification. Correlation analysis of both cf-mtDNA concentration as well as ND1 relative expression with National Institute of Health Stroke Scale score at baseline showed a positive trend.
CONCLUSION In summary, quantitative estimation of highly pure cf-mtDNA provides a simple, highly sensitive and specific, non-invasive, and affordable approach for real-time monitoring and prognosticating AIS patients at onset and during treatment.
Collapse
Affiliation(s)
- Nusrath Fathima
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Sandhya Manorenj
- Department of Neurology, Princess Esra Hospital, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| |
Collapse
|
21
|
Liu Y, Cheng L, Wang G, Lv J, He Y, Shao PL, Hu R, Xiao H, Tang J, Niu D, Yang J, Tang Z, Xu Z, Liu Y, Li Y, Song K, Wu B, Zhang B. A nano-magnetic size selective cfDNA extraction platform for liquid biopsy with enhanced precision. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1199:123236. [DOI: 10.1016/j.jchromb.2022.123236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
22
|
Yin L, Guo Z, Wang T, Wang X. Increase of circulating cfDNA by chronic training or overtraining in human and rat and its possible mechanisms. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Filev AD, Kostyuk SV, Umriukhin PE, Pisarev VM. Oxidized Cell-Free DNA Rapidly Skews the Transcriptional Profile of Brain Cells toward Boosting Neurogenesis and Neuroplasticity. Curr Issues Mol Biol 2021; 43:1583-1591. [PMID: 34698136 PMCID: PMC8929019 DOI: 10.3390/cimb43030112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Cell-free DNA (cfDNA) is liberated and accumulated in neural tissue due to cell damage. The oxidative and nitrosative stress in the brain that accompanies various pathological conditions has been shown to increase the oxidation of cellular and cell-free DNA. Whether the high concentration of non-oxidized and oxidized cfDNA may affect the transcriptome response of brain cells has not been studied. In the current work, we studied whether cfDNA fragments affect several key pathways, including neurogenesis, at the level of gene expression in brain cells. In the study, primary rat cerebellum cell cultures were used to assess the effects of oxidized and non-oxidized cfDNA on the expression of 91 genes in brain cells. We found that only oxidized cfDNA, not non-oxidized cfDNA, significantly altered the transcription in brain cells in 3 h. The pattern of change included all 10 upregulated genes (S100A8, S100A9, S100b, TrkB, Ngf, Pink1, Aqp4, Nmdar, Kcnk2, Mapk1) belonging to genes associated with neurogenesis and neuroplasticity. The expression of inflammatory and apoptosis genes, which oppose neurogenesis, decreased. The results show that the oxidized form of cfDNA positively regulates early gene expression of neurogenesis and neuroplasticity. At the same time, the question of whether chronic elevation of cfDNA concentration alters brain cells remains unexplored.
Collapse
Affiliation(s)
- Anton D. Filev
- Research Centre for Medical Genetics (RCMG), 115478 Moscow, Russia; (S.V.K.); (P.E.U.); (V.M.P.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
- Correspondence:
| | - Svetlana V. Kostyuk
- Research Centre for Medical Genetics (RCMG), 115478 Moscow, Russia; (S.V.K.); (P.E.U.); (V.M.P.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Pavel E. Umriukhin
- Research Centre for Medical Genetics (RCMG), 115478 Moscow, Russia; (S.V.K.); (P.E.U.); (V.M.P.)
- Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Vladimir M. Pisarev
- Research Centre for Medical Genetics (RCMG), 115478 Moscow, Russia; (S.V.K.); (P.E.U.); (V.M.P.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| |
Collapse
|
24
|
de Miranda FS, Barauna VG, dos Santos L, Costa G, Vassallo PF, Campos LCG. Properties and Application of Cell-Free DNA as a Clinical Biomarker. Int J Mol Sci 2021; 22:9110. [PMID: 34502023 PMCID: PMC8431421 DOI: 10.3390/ijms22179110] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
Biomarkers are valuable tools in clinical practice. In 2001, the National Institutes of Health (NIH) standardized the definition of a biomarker as a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. A biomarker has clinical relevance when it presents precision, standardization and reproducibility, suitability to the patient, straightforward interpretation by clinicians, and high sensitivity and/or specificity by the parameter it proposes to identify. Thus, serum biomarkers should have advantages related to the simplicity of the procedures and to the fact that venous blood collection is commonplace in clinical practice. We described the potentiality of cfDNA as a general clinical biomarker and focused on endothelial dysfunction. Circulating cell-free DNA (cfDNA) refers to extracellular DNA present in body fluid that may be derived from both normal and diseased cells. An increasing number of studies demonstrate the potential use of cfDNA as a noninvasive biomarker to determine physiologic and pathologic conditions. However, although still scarce, increasing evidence has been reported regarding using cfDNA in cardiovascular diseases. Here, we have reviewed the history of cfDNA, its source, molecular features, and release mechanism. We also show recent studies that have investigated cfDNA as a possible marker of endothelial damage in clinical settings. In the cardiovascular system, the studies are quite new, and although interesting, stronger evidence is still needed. However, some drawbacks in cfDNA methodologies should be overcome before its recommendation as a biomarker in the clinical setting.
Collapse
Affiliation(s)
- Felipe Silva de Miranda
- Post Graduation Program in Biology and Biotechnology of Microorganisms, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Department of Biological Science, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
| | - Valério Garrone Barauna
- Post Graduation Program in Health Sciences, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Molecular Physiology Laboratory of Exercise Science, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
| | - Leandro dos Santos
- Academic Unit of Serra Talhada, Rural Federal University of Pernambuco, Serra Talhada 56909-535, Pernambuco, Brazil;
| | - Gustavo Costa
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
| | - Paula Frizera Vassallo
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
- Clinical Hospital, Federal University of Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Luciene Cristina Gastalho Campos
- Post Graduation Program in Biology and Biotechnology of Microorganisms, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Department of Biological Science, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Post Graduation Program in Health Sciences, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
| |
Collapse
|
25
|
Translational Utility of Liquid Biopsies in Thyroid Cancer Management. Cancers (Basel) 2021; 13:cancers13143443. [PMID: 34298656 PMCID: PMC8306718 DOI: 10.3390/cancers13143443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/21/2022] Open
Abstract
Liquid biopsies are a novel technique to assess for either circulating tumor cells (CTC) or circulating tumor DNA (ctDNA and microRNA (miRNA)) in peripheral blood samples of cancer patients. The diagnostic role of liquid biopsy in oncology has expanded in recent years, particularly in lung, colorectal and breast cancer. In thyroid cancer, the role of liquid biopsy in either diagnosis or prognosis is beginning to translate from the lab to the clinic. In this review, we describe the evolution of liquid biopsies in detecting CTC, ctDNA and miRNA in thyroid cancer patients, together with its limitations and future directions in clinical practice.
Collapse
|
26
|
Orbán-Kálmándi R, Szegedi I, Sarkady F, Fekete I, Fekete K, Vasas N, Berényi E, Csiba L, Bagoly Z. A modified in vitro clot lysis assay predicts outcomes and safety in acute ischemic stroke patients undergoing intravenous thrombolysis. Sci Rep 2021; 11:12713. [PMID: 34135389 PMCID: PMC8208992 DOI: 10.1038/s41598-021-92041-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 12/27/2022] Open
Abstract
The outcome of intravenous thrombolysis using recombinant tissue plasminogen activator (rt-PA) is only favorable in ≈ 40% of acute ischemic stroke (AIS) patients. Moreover, in ≈ 6-8% of cases, intracerebral hemorrhage (ICH) develops. We tested whether a modification of clot lysis assay (CLA), might predict therapy outcomes and safety. In this prospective observational study, blood samples of 231 AIS patients, all receiving intravenous rt-PA, were taken before thrombolysis. Cell-free DNA (cfDNA), CLA and CLA supplemented with cfDNA and histones (mCLA) were determined from the blood samples. Stroke severity was determined by NIHSS on admission. ICH was classified according to ECASSII. Short- and long-term outcomes were defined at 7 and 90 days post-event according to ΔNIHSS and by the modified Rankin Scale, respectively. Stroke severity demonstrated a step-wise positive association with cfDNA levels, while a negative association was found with the time to reach 50% lysis (50%CLT) parameter of CLA and mCLA. ROC analysis showed improved diagnostic performance of the mCLA. Logistic regression analysis proved that 50%CLT is a predictor of short-term therapy failure, while the AUC parameter predicts ICH occurrence. A modified CLA, supplemented with cfDNA and histones, might be a promising tool to predict short-term AIS outcomes and post-lysis ICH.
Collapse
Affiliation(s)
- Rita Orbán-Kálmándi
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary
| | - István Szegedi
- Department of Neurology, Faculty of Medicine, University of Debrecen, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary
| | - Ferenc Sarkady
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary
| | - István Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary
| | - Klára Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary
| | - Nikolett Vasas
- Department of Radiology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary
| | - Ervin Berényi
- Department of Radiology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary
| | - László Csiba
- Department of Neurology, Faculty of Medicine, University of Debrecen, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary.,ELKH-DE Cerebrovascular and Neurodegenerative Research Group, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary
| | - Zsuzsa Bagoly
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary. .,ELKH-DE Cerebrovascular and Neurodegenerative Research Group, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary.
| |
Collapse
|
27
|
Ogawa M, Yokoyama K, Imoto S, Tojo A. Role of Circulating Tumor DNA in Hematological Malignancy. Cancers (Basel) 2021; 13:2078. [PMID: 33923024 PMCID: PMC8123338 DOI: 10.3390/cancers13092078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
With the recent advances in noninvasive approaches for cancer diagnosis and surveillance, the term "liquid biopsy" has become more familiar to clinicians, including hematologists. Liquid biopsy provides a variety of clinically useful genetic data. In this era of personalized medicine, genetic information is critical to early diagnosis, aiding risk stratification, directing therapeutic options, and monitoring disease relapse. The validity of circulating tumor DNA (ctDNA)-mediated liquid biopsies has received increasing attention. This review summarizes the current knowledge of liquid biopsy ctDNA in hematological malignancies, focusing on the feasibility, limitations, and key areas of clinical application. We also highlight recent advances in the minimal residual disease monitoring of leukemia using ctDNA. This article will be useful to those involved in the clinical practice of hematopoietic oncology.
Collapse
Affiliation(s)
- Miho Ogawa
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (M.O.); (A.T.)
| | - Kazuaki Yokoyama
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan;
| | - Arinobu Tojo
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (M.O.); (A.T.)
| |
Collapse
|
28
|
Ørntoft MBW, Jensen SØ, Øgaard N, Henriksen TV, Ferm L, Christensen IJ, Reinert T, Larsen OH, Nielsen HJ, Andersen CL. Age-stratified reference intervals unlock the clinical potential of circulating cell-free DNA as a biomarker of poor outcome for healthy individuals and patients with colorectal cancer. Int J Cancer 2020; 148:1665-1675. [PMID: 33320961 PMCID: PMC7898909 DOI: 10.1002/ijc.33434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
Circulating cell-free DNA (cfDNA) has spurred much interest as a biomarker in oncology. However, inter- and intra-individual cfDNA levels vary greatly. Consequently, in order to base clinical decisions on cfDNA measurements, normal reference intervals are essential to avoid that ordinary variation is confused with clinically relevant change. The lack of reference intervals may potentially explain the ambiguous results reported in the field. Our study aimed to establish reference intervals and to evaluate the association between cfDNA and demographic and clinical variables, including colorectal cancer (CRC). Plasma samples and clinical data from 2817 subjects were collected including 1930 noncancer individuals and 887 CRC patients. cfDNA was measured using droplet digital polymerase chain reaction (PCR). The large cohort combined with robust cfDNA quantification enabled establishment of reference intervals (<67 years: 775-4860 copies/mL; ≥67 years: 807-6561 copies/mL). A cfDNA level above the age-stratified 90% percentile was prognostic of reduced survival in both noncancer individuals and CRC patients, with HR values of 2.56 and 2.01, respectively. Moreover, cfDNA levels increased significantly with age, elevated BMI and chronic diseases. In CRC, the cfDNA level was increased for Stage IV, but not Stage I to Stage III cancer. In summary, the use of reference intervals revealed that high cfDNA levels were predictive of shorter survival in both noncancer individuals and CRC patients, and that CRC development did not affect the cfDNA level until metastatic dissemination. Furthermore, cfDNA levels were impacted by age and chronic diseases. Conclusively, our study presents reference intervals that will help pave the way for clinical utilization of cfDNA.
Collapse
Affiliation(s)
- Mai-Britt Worm Ørntoft
- Department of Surgery, Herning Regional Hospital, Herning, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Sarah Østrup Jensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nadia Øgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tenna Vesterman Henriksen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Linnea Ferm
- Department of Surgical Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark
| | | | - Thomas Reinert
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole Halfdan Larsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Jørgen Nielsen
- Department of Surgical Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Claus Lindbjerg Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
29
|
Bryzgunova OE, Konoshenko MY, Laktionov PP. Concentration of cell-free DNA in different tumor types. Expert Rev Mol Diagn 2020; 21:63-75. [PMID: 33270495 DOI: 10.1080/14737159.2020.1860021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Cell-free DNA (cfDNA) circulates in the blood for a long time. The levels of cfDNA in the blood are assayed in cancer diagnostics because they are closely related to the tumor burden of patients.Areas covered: cfDNA escapes the action of DNA-hydrolyzing enzymes, being a part of supramolecular complexes or interacting with the plasma membrane of blood cells. cfDNA has heterogeneous size and composition, which impose various restrictions on both isolation methods and subsequent analysis. cfDNA concentration and structural changes with the development of diseases highlight the high potential of cfDNA as a diagnostic and prognostic marker. The concentration of cfDNA released in the blood by tumor cells determines the specificity of such diagnostics and the required blood volume. The present review aimed to synthesize the available data on cfDNA concentration in the cancer patient's blood as well as pre-analytical, analytical, and biological factors, which interfere with cfDNA concentration.Expert opinion: The concentration of cfDNA and tumor cell DNA (ctDNA), and the over-presentation of DNA loci in cfDNA must be considered when looking for tumor markers. Some inconsistent data on cfDNA concentrations (like those obtained by different methods) suggest that the study of cfDNA should be continued.
Collapse
Affiliation(s)
- O E Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, Novosibirsk, Russia
| | - M Yu Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, Novosibirsk, Russia
| | - P P Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
30
|
Vasilyeva I, Bespalov V, Baranova A, Voznyuk I, Baranenko D. Differential Dynamics of the Levels of Low Molecular Weight DNA Fragments in the Plasma of Patients With Ischemic and Hemorrhagic Strokes. Basic Clin Neurosci 2020; 11:805-810. [PMID: 33850617 PMCID: PMC8019841 DOI: 10.32598/bcn.11.6.1639.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/10/2019] [Accepted: 02/16/2019] [Indexed: 11/23/2022] Open
Abstract
Introduction: To evaluate Low-Molecular-weight (LMW) DNA as a possible prognostic biomarker in acute ischemic and hemorrhagic stroke. Methods: LMW DNA samples were isolated from plasma and cerebrospinal fluid by phenol deproteinization, analyzed by gradient polyacrylamide electrophoresis and quantified by spectrophotometry. Results: Two common types of stroke, i.e. ischemic and hemorrhagic, differ by the temporal dynamics of cell-free DNA (cfDNA) accumulation. In hemorrhagic stroke, an initial increase in LMW DNA levels, most likely reflects an extent of the tissue damage, while in ischemic patients, the LMW DNA levels increase in parallel with the damage caused by hypoxia and subsequent compensatory reperfusion. Conclusion: These time-course data specify optimal assessment windows with maximum differentiating power for stroke outcomes: 24–48 hours post-event for ischemic stroke, and as close as possible to the moment of hospital admission for hemorrhagic stroke. These data also indicate the role of apoptosis in the formation of ischemic focus.
Collapse
Affiliation(s)
- Irina Vasilyeva
- Laboratory of Cancer Chemoprevention and Oncopharmacology, N.N.Petrov National Medical Research Center of Oncology, St.-Petersburg, Russia.,International Research Center 'Biotechnologies of the Third Millennium' ITMO University, St.-Petersburg, Russia
| | - Vladimir Bespalov
- Laboratory of Cancer Chemoprevention and Oncopharmacology, N.N.Petrov National Medical Research Center of Oncology, St.-Petersburg, Russia.,International Research Center 'Biotechnologies of the Third Millennium' ITMO University, St.-Petersburg, Russia
| | - Ancha Baranova
- Department of George, School of Systemic Biology, George Mason University, Fairfax, VA, USA.,Laboratory of Functional Genomics, Research Center for Medical Genetics, Moscow, Russia.,Scientific Council, Atlas Biomed Group, Moscow, Russia
| | - Igor Voznyuk
- Department of Acute Cerebrovascular Pathology and Emergency Neurology, Saint-Petersburg I.I. Dzhanelidze Research Institute for Emergency Medicine, St.-Petersburg, Russia
| | - Denis Baranenko
- Department of Acute Cerebrovascular Pathology and Emergency Neurology, Saint-Petersburg I.I. Dzhanelidze Research Institute for Emergency Medicine, St.-Petersburg, Russia
| |
Collapse
|
31
|
Bruno DCF, Donatti A, Martin M, Almeida VS, Geraldis JC, Oliveira FS, Dogini DB, Lopes-Cendes I. Circulating nucleic acids in the plasma and serum as potential biomarkers in neurological disorders. ACTA ACUST UNITED AC 2020; 53:e9881. [PMID: 32813850 PMCID: PMC7446710 DOI: 10.1590/1414-431x20209881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Neurological diseases are responsible for approximately 6.8 million deaths every year. They affect up to 1 billion people worldwide and cause significant disability and reduced quality of life. In most neurological disorders, the diagnosis can be challenging; it frequently requires long-term investigation. Thus, the discovery of better diagnostic methods to help in the accurate and fast diagnosis of neurological disorders is crucial. Circulating nucleic acids (CNAs) are defined as any type of DNA or RNA that is present in body biofluids. They can be found within extracellular vesicles or as cell-free DNA and RNA. Currently, CNAs are being explored as potential biomarkers for diseases because they can be obtained using non-invasive methods and may reflect unique characteristics of the biological processes involved in several diseases. CNAs can be especially useful as biomarkers for conditions that involve organs or structures that are difficult to assess, such as the central nervous system. This review presents a critical assessment of the most current literature about the use of plasma and serum CNAs as biomarkers for several aspects of neurological disorders: defining a diagnosis, establishing a prognosis, and monitoring the disease progression and response to therapy. We explored the biological origin, types, and general mechanisms involved in the generation of CNAs in physiological and pathological processes, with specific attention to neurological disorders. In addition, we present some of the future applications of CNAs as non-invasive biomarkers for these diseases.
Collapse
Affiliation(s)
- D C F Bruno
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - A Donatti
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - M Martin
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - V S Almeida
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - J C Geraldis
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - F S Oliveira
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - D B Dogini
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - I Lopes-Cendes
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
32
|
O'Connell GC, Alder ML, Smothers CG, Still CH, Webel AR, Moore SM. Diagnosis of ischemic stroke using circulating levels of brain-specific proteins measured via high-sensitivity digital ELISA. Brain Res 2020; 1739:146861. [PMID: 32353434 DOI: 10.1016/j.brainres.2020.146861] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/26/2020] [Accepted: 04/25/2020] [Indexed: 12/31/2022]
Abstract
Limited lower detection ranges associated with traditional immunoassay techniques have prevented the use of brain-specific proteins as blood biomarkers of stroke in the acute phase of care, as these proteins are often only present in circulation at low concentrations. Digital ELISA is a newly developed technique with allows for quantification of proteins in biofluids with up to 1000 times greater sensitivity than conventional ELISA techniques. The purpose of this study was to determine whether the extended lower limits of detection associated with digital ELISA could enable the use of brain-specific proteins as blood biomarkers of ischemic stroke during triage. Blood was sampled from ischemic stroke patients (n = 14) at emergency department admission, as well as from neurologically normal controls matched in terms of risk factors for cardiovascular disease (n = 33). Plasma levels of two brain-specific axonal proteins, neurofilament light chain (NfL) and tau, were measured via digital ELISA, and receiver-operating characteristic analysis was used to determine their ability to discriminate between groups. Plasma levels of NfL and tau were both significantly elevated in stroke patients versus controls, and could respectively discriminate between groups with 92.9% sensitivity / 84.9% specificity, and 85.7% sensitivity / 54.6% specificity. Furthermore, adjustment of measured NfL and Tau levels according to the lower-limits of detection associated with commercially-available conventional ELISA assays resulted in a dramatic and statistically significant decrease in diagnostic performance. Collectively, our results suggest that the increased analytical sensitivity of digital ELISA could enable the use of brain-specific proteins as blood biomarkers of ischemic stroke during triage.
Collapse
Affiliation(s)
- Grant C O'Connell
- School of Nursing, Case Western Reserve University, Cleveland, OH, United States.
| | - Megan L Alder
- School of Nursing, Case Western Reserve University, Cleveland, OH, United States
| | - Christine G Smothers
- School of Nursing, Case Western Reserve University, Cleveland, OH, United States
| | - Carolyn H Still
- School of Nursing, Case Western Reserve University, Cleveland, OH, United States
| | - Allison R Webel
- School of Nursing, Case Western Reserve University, Cleveland, OH, United States
| | - Shirley M Moore
- School of Nursing, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
33
|
Castner J. The Symptom Science Model: A Shared Mental Model to Advance the Next Generation of Knowledge in the Emergency Nursing Specialty. J Emerg Nurs 2020; 45:349-351. [PMID: 31280765 DOI: 10.1016/j.jen.2019.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 11/15/2022]
|
34
|
Abstract
Abstract
It is well documented that in the chain from sample to the result in a clinical laboratory, the pre-analytical phase is the weakest and most vulnerable link. This also holds for the use and analysis of extracellular nucleic acids. In this short review, we will summarize and critically evaluate the most important steps of the pre-analytical phase, i.e. the choice of the best control population for the patients to be analyzed, the actual blood draw, the choice of tubes for blood drawing, the impact of delayed processing of blood samples, the best method for getting rid of cells and debris, the choice of matrix, i.e. plasma vs. serum vs. other body fluids, and the impact of long-term storage of cell-free liquids on the outcome. Even if the analysis of cell-free nucleic acids has already become a routine application in the area of non-invasive prenatal screening (NIPS) and in the care of cancer patients (search for resistance mutations in the EGFR gene), there are still many unresolved issues of the pre-analytical phase which need to be urgently tackled.
Collapse
Affiliation(s)
- Michael Fleischhacker
- DRK Kliniken Berlin Mitte , Klinik für Innere Medizin – Pneumologie und Schlafmedizin , Drontheimer Str. 39 – 40 , 13359 Berlin , Germany
| | - Bernd Schmidt
- DRK Kliniken Berlin Mitte , Klinik für Innere Medizin – Pneumologie und Schlafmedizin , Berlin , Germany
| |
Collapse
|
35
|
McGuire AL, Hughesman CB, McConechy MK, Melosky B, Lam S, Myers R, Yee J, Tang E, Yip S. Optimizing molecular residual disease detection using liquid biopsy postoperatively in early stage lung cancer. Lung Cancer Manag 2020; 9:LMT24. [PMID: 32346401 PMCID: PMC7186850 DOI: 10.2217/lmt-2019-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Anna L McGuire
- Department of Surgery, Division of Thoracic Surgery, Vancouver General Hospital, University of British Columbia, Vancouver V5Z1M9, BC, Canada
| | - Curtis B Hughesman
- Department of Pathology and Laboratory Medicine, BC Cancer, Cancer Genetics & Genomics Laboratory, Vancouver, BC, Canada
| | | | - Barb Melosky
- Department of Medical Oncology, BC Cancer Agency, Vancouver, British Columbia, Vancouver, BC, Canada.,Medical Oncology, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Medical Oncology, BC Cancer Agency, Vancouver, British Columbia, Vancouver, BC, Canada.,Department of Medicine, Divisions of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Renelle Myers
- Department of Medical Oncology, BC Cancer Agency, Vancouver, British Columbia, Vancouver, BC, Canada.,Department of Medicine, Divisions of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - John Yee
- Department of Surgery, Division of Thoracic Surgery, Vancouver General Hospital, University of British Columbia, Vancouver V5Z1M9, BC, Canada
| | - Ernest Tang
- Department of Surgery, Division of Thoracic Surgery, Vancouver General Hospital, University of British Columbia, Vancouver V5Z1M9, BC, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, BC Cancer, Cancer Genetics & Genomics Laboratory, Vancouver, BC, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
36
|
Lim HH, Jeong IH, An GD, Woo KS, Kim KH, Kim JM, Yun SH, Park JI, Cha JK, Kim MH, Han JY. Evaluation of neutrophil extracellular traps as the circulating marker for patients with acute coronary syndrome and acute ischemic stroke. J Clin Lab Anal 2020; 34:e23190. [PMID: 31907963 PMCID: PMC7246366 DOI: 10.1002/jcla.23190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) are known to be induced by various factors. In this study, we tried to identify circulating levels of NETs in patients with acute coronary syndrome (ACS) and acute ischemic stroke (AIS) and to confirm its suitability as a new circulating marker in their detection. Methods We prospectively enrolled 95 patients with a diagnosis of ACS (N = 37) or AIS (N = 58) in Dong‐A University Hospital, Busan, Korea. The control group was selected from healthy adults (N = 25) who visited the hospital for health screening. Circulating levels of NETs were evaluated by measuring plasma concentrations of double‐stranded DNA (dsDNA) and DNA‐histone complex. Results The concentrations of dsDNA were statistically higher in patients with ACS or AIS than those in the control group (both P < .001). In the univariable and multivariable analyses, statistically significant risk factors were troponin I (TnI) level and dsDNA concentration in the ACS group (P = .046 and P = .015, respectively) and only dsDNA concentration in the AIS group (P = .002). In the receiver operating characteristic curve analyses, the area under the curve values for TnI level and dsDNA concentration in the ACS group were 0.878 and 0.968, respectively, and the value for dsDNA concentration in the AIS group was 0.859. Conclusions In this study, it was confirmed that the circulating level of NETs was increased in patients with ACS and AIS at initial presentation. Findings in this study show that NETs could be used as a new circulating marker for the initial diagnosis of ACS or AIS.
Collapse
Affiliation(s)
- Hyeon-Ho Lim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - In-Hwa Jeong
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Gyu-Dae An
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Kwang-Sook Woo
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Kyeong-Hee Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Jeong-Man Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Seong-Hoon Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Korea
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Korea
| | - Jae-Kwan Cha
- Department of Neurology, Dong-A University College of Medicine, Busan, Korea
| | - Moo-Hyun Kim
- Department of Cardiology, Dong-A University College of Medicine, Busan, Korea
| | - Jin-Yeong Han
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| |
Collapse
|
37
|
Fujihara J, Takinami Y, Ueki M, Kimura-Kataoka K, Yasuda T, Takeshita H. Circulating cell-free DNA fragment analysis by microchip electrophoresis and its relationship with DNase I in cardiac diseases. Clin Chim Acta 2019; 497:61-66. [PMID: 31302100 DOI: 10.1016/j.cca.2019.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 11/29/2022]
Abstract
Circulating cell-free DNA (cfDNA) has been directly related to cancer, diabetes, stroke, systemic lupus erythematosus, trauma, rheumatoid arthritis, inflammation, infection, and myocardial infarction (MI). In this study, plasma cfDNA was extracted from the plasma of cardiac disease patients and the cfDNA fragment distribution as well as the relationships between cfDNA concentration and deoxyribonuclease I (DNase I) activity enzyme implicated in double-stranded DNA processing were examined. Results revealed that the cfDNA concentrations in patients with MI and cardiac angina were significantly higher than that in healthy control subjects. Microchip electrophoresis of plasma cfDNA revealed a single fragment (150-200 bp) in some healthy control subjects and three fragments (150-200 bp, 300-400 bp, and 500-600 bp) in all cardiac patient samples. Moreover, a cfDNA ratio of 150-200 bp/500-600 bp was significantly more prevalent in MI patients than in patients with other cardiac diseases (chest pain, cardiac angina, atrial fibrillation and cardiac failure). In addition, a positive correlation between DNase I activity and cfDNA concentration was observed. These results suggest that the plasma cfDNA in cardiac disease patients may originate from apoptosis and that the 150-200 bp/500-600 bp ratio for cfDNA may be a novel diagnostic indicator for MI.
Collapse
Affiliation(s)
- Junko Fujihara
- Department of Legal Medicine, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8501, Japan.
| | - Yoshikazu Takinami
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| | - Misuzu Ueki
- Division of Medical Genetics and Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kaori Kimura-Kataoka
- Department of Legal Medicine, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| | - Toshihiro Yasuda
- Organization for Life Science Advancement Programs, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Haruo Takeshita
- Department of Legal Medicine, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
38
|
Chin RI, Chen K, Usmani A, Chua C, Harris PK, Binkley MS, Azad TD, Dudley JC, Chaudhuri AA. Detection of Solid Tumor Molecular Residual Disease (MRD) Using Circulating Tumor DNA (ctDNA). Mol Diagn Ther 2019; 23:311-331. [PMID: 30941670 PMCID: PMC6561896 DOI: 10.1007/s40291-019-00390-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Circulating tumor DNA (ctDNA) is a component of cell-free DNA that is shed by malignant tumors into the bloodstream and other bodily fluids. Levels of ctDNA are typically low, particularly in patients with localized disease, requiring highly sophisticated methods for detection and quantification. Multiple liquid biopsy methods have been developed for ctDNA analysis in solid tumor malignancies and are now enabling detection and assessment of earlier stages of disease, post-treatment molecular residual disease (MRD), resistance to targeted systemic therapy, and tumor mutational burden. Understanding ctDNA biology, mechanisms of release, and clearance and size characteristics, in conjunction with the application of molecular barcoding and targeted error correction, have increased the sensitivity and specificity of ctDNA detection techniques. Combinatorial approaches including integration of ctDNA data with circulating protein biomarkers may further improve assay sensitivity and broaden the scope of ctDNA applications. Circulating viral DNA may be utilized to monitor disease in some virally induced malignancies. In spite of increasingly accurate methods of ctDNA detection, results need to be interpreted with caution given that somatic mosaicisms such as clonal hematopoiesis of indeterminate potential (CHIP) may give rise to genetic variants in the bloodstream unrelated to solid tumors, and the limited concordance observed between different commercial platforms. Overall, highly precise ctDNA detection and quantification methods have the potential to transform clinical practice via non-invasive monitoring of solid tumor malignancies, residual disease detection at earlier timepoints than standard clinical and/or imaging surveillance, and treatment personalization based on real-time assessment of the tumor genomic landscape.
Collapse
Affiliation(s)
- Re-I Chin
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin Chen
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abul Usmani
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chanelle Chua
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter K Harris
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S Binkley
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tej D Azad
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan C Dudley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aadel A Chaudhuri
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Computer Science and Engineering, Washington University, St. Louis, MO, USA.
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
39
|
Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther 2019; 20:1057-1067. [PMID: 30990132 PMCID: PMC6606043 DOI: 10.1080/15384047.2019.1598759] [Citation(s) in RCA: 329] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/24/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor-specific, circulating cell-free DNA in liquid biopsies is a promising source of biomarkers for minimally invasive serial monitoring of treatment responses in cancer management. We will review the current understanding of the origin of circulating cell-free DNA and different forms of DNA release (including various types of cell death and active secretion processes) and clearance routes. The dynamics of extracellular DNA in blood during therapy and the role of circulating DNA in pathophysiological processes (tumor-associated inflammation, NETosis, and pre-metastatic niche development) provide insights into the mechanisms that contribute to tumor development and metastases formation. Better knowledge of circulating tumor-specific cell-free DNA could facilitate the development of new therapeutic and diagnostic options for cancer management.
Collapse
Affiliation(s)
- Anatoli Kustanovich
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ruth Schwartz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Albert Grinshpun
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
40
|
Abstract
The interest about circulating cell-free DNA (cfDNA) concentration increased from several years because of its correlation with various conditions like osteoarthritis, cancers, stroke, and sepsis; recently it has become an important marker for overtraining syndrome or performance diagnostics.Several studies have demonstrated that cfDNA increases in vigorous and exhausting exercise but also endurance exercise. Acute effect of exercise on cfDNA concentration seems to be correlated to stress factor, while chronic effect is associated with necrosis and apoptosis.The intensity and duration seem to have effects on the variation of cfDNA concentration that is strongly correlated with other metabolic markers like acid lactate and creatine kinase, recognized as markers of muscle damage. Variation of cfDNA value could be used to predict overtraining syndrome.
Collapse
Affiliation(s)
- Leydi Natalia Vittori
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | |
Collapse
|
41
|
Regner A, Meirelles LDS, Ikuta N, Cecchini A, Simon D. Prognostic utility of circulating nucleic acids in acute brain injuries. Expert Rev Mol Diagn 2018; 18:925-938. [PMID: 30307786 DOI: 10.1080/14737159.2018.1535904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Acute brain injuries represent major causes of morbidity and mortality worldwide. Nevertheless, therapeutic options are centered mainly on supportive care, and accurate prognosis prediction following traumatic brain injury (TBI) or stroke remains a challenge in clinical settings. Areas covered: Circulating DNA and RNA have shown potential as predictive molecules in acute brain injuries. In particular, plasma cell-free DNA (cfDNA) levels have been correlated to severity, mortality, and outcome after TBI and stroke. The real-time quantitative polymerase chain reaction (qPCR) is the most widely used technique for determination of cfDNA in brain injuries; however, to consider the use of cfDNA in emergency settings, a quicker and easier methodology for detection should be established. A recent study proposed detection of cfDNA applying a rapid fluorescent test that showed compatible results with qPCR. Expert commentary: As a promising perspective, detection of cfDNA levels using simple, rapid, and cheap methodology has potential to translate to clinic as a point-of-care marker, supporting the clinical decision-making in emergency care settings. Conversely, miRNA profiles may be used as signatures to determine the type and severity of injuries. Additionally, in the future, some miRNAs may constitute innovative neurorestorative therapies without the common hurdles associated with cell therapy.
Collapse
Affiliation(s)
- Andrea Regner
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| | - Lindolfo da Silva Meirelles
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| | - Nilo Ikuta
- b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| | - Andre Cecchini
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil.,c Neurosurgery Service , Cristo Redentor Hospital , Porto Alegre , Brazil
| | - Daniel Simon
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| |
Collapse
|
42
|
O'Connell GC, Walsh KB, Burrage E, Adeoye O, Chantler PD, Barr TL. High-throughput profiling of the circulating proteome suggests sexually dimorphic corticosteroid signaling following ischemic stroke. Physiol Genomics 2018; 50:876-883. [PMID: 30029587 DOI: 10.1152/physiolgenomics.00058.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence suggests that there are innate differences between sexes with respect to stroke pathophysiology; however, the molecular mechanisms underlying these differences remain unclear. In this investigation, we employed a shotgun approach to broadly profile sex-associated differences in the plasma proteomes of a small group of male ( n = 6) and female ( n = 4) ischemic stroke patients. Peripheral blood was sampled during the acute phase of care, and liquid chromatography electrospray ionization mass spectrometry was used to quantify plasma proteins. We observed widespread differences in plasma composition, as 77 out of 294 detected proteins were significantly differentially expressed between sexes. Corticosteroid-binding globulin (CBG), a negative acute-phase reactant that inversely regulates levels of bioactive free cortisol, was the most dramatically differentially regulated, exhibiting 16-fold higher abundance in plasma from women relative to men. Furthermore, functional annotation analysis revealed that the remaining differentially expressed proteins were significantly enriched for those involved in response to corticosteroid signaling. Plasma CBG levels were further examined in an additional group of male ( n = 19) and female ( n = 28) ischemic stroke patients, as well as a group of male ( n = 13) and female ( n = 18) neurologically normal controls. CBG levels were significantly reduced in male stroke patients relative to male controls; however, no differences were observed between female stroke patients and female controls, suggesting that women may exhibit an attenuated cortisol response to stroke. Collectively, our findings reinforce the idea that there are sex-associated differences in stroke pathophysiology and suggest that cortisol signaling should be investigated further as a potential molecular mediator.
Collapse
Affiliation(s)
- Grant C O'Connell
- School of Nursing, Case Western Reserve University , Cleveland, Ohio
| | - Kyle B Walsh
- Department of Emergency Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio.,Gardner Neuroscience Institute, University of Cincinnati , Cincinnati, Ohio
| | - Emily Burrage
- Gardner Neuroscience Institute, University of Cincinnati , Cincinnati, Ohio
| | - Opeolu Adeoye
- Department of Emergency Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio.,Gardner Neuroscience Institute, University of Cincinnati , Cincinnati, Ohio
| | - Paul D Chantler
- Division of Exercise Physiology, School of Medicine, West Virginia University , Morgantown, West Virginia
| | - Taura L Barr
- Valtari Bio Incorporated, Morgantown, West Virginia
| |
Collapse
|
43
|
O'Connell GC, Chantler PD, Barr TL. High Interspecimen Variability in Nucleic Acid Extraction Efficiency Necessitates the Use of Spike-In Control for Accurate qPCR-based Measurement of Plasma Cell-Free DNA Levels. Lab Med 2018; 48:332-338. [PMID: 29036313 DOI: 10.1093/labmed/lmx043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Objective To assess the interspecimen variability associated with plasma DNA extraction in order to provide insight regarding the necessity to use an exogenous spike-in control when measuring cell-free DNA (cfDNA) levels using quantitative polymerase chain reaction (qPCR). Methods Plasma specimens were obtained from 8 healthy individuals, 20 patients with cardiovascular disease risk factors, and 54 patients diagnosed with acute stroke. Specimens were spiked with an exogenous oligonucleotide fragment, and total DNA was extracted via automated solid phase anion exchange. We determined recovery of the exogenous fragment via qPCR and used this information to calculate DNA extraction efficiency. Results Plasma DNA extraction efficiencies varied dramatically between specimens, ranging from 22.9% to 88.1%, with a coefficient of variance of 28.9%. No significant differences in DNA extraction efficiencies were observed between patient populations. Conclusions We strongly recommend the use of an exogenous spike-in control to account for variance in plasma DNA extraction efficiency when assessing cell free DNA (cfDNA) levels by qPCR in future biomarker investigations.
Collapse
Affiliation(s)
- Grant C O'Connell
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia.,Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia
| | - Paul D Chantler
- Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia.,Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Taura L Barr
- Valtari Bio Incorporated, Morgantown, West Virginia
| |
Collapse
|
44
|
Glebova KV, Veiko NN, Nikonov AA, Porokhovnik LN, Kostuyk SV. Cell-free DNA as a biomarker in stroke: Current status, problems and perspectives. Crit Rev Clin Lab Sci 2018; 55:55-70. [PMID: 29303618 DOI: 10.1080/10408363.2017.1420032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is currently no proposed stroke biomarker with consistent application in clinical practice. A number of studies have examined cell-free DNA (cfDNA), which circulates in biological fluids during stroke, as a potential biomarker of this disease. The data available suggest that dynamically-determined levels of blood cfDNA may provide new prognostic information for assessment of stroke severity and outcome. However, such an approach has its own difficulties and limitations. This review covers the potential role of cfDNA as a biomarker in stroke, and includes evidence from both animal models and clinical studies, protocols used to analyze cfDNA, and hypotheses on the origin of cfDNA.
Collapse
Affiliation(s)
- Kristina V Glebova
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| | - Natalya N Veiko
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| | - Aleksey A Nikonov
- b Department of Neurology, Neurosurgery and Medical Genetics , Pirogov Russian National Research Medical University , Moscow , Russia
| | - Lev N Porokhovnik
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| | - Svetlana V Kostuyk
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| |
Collapse
|