1
|
Greene ES, Ramser A, Wideman R, Bedford M, Dridi S. Dietary inclusion of phytase and stimbiotic decreases mortality and lameness in a wire ramp challenge model in broilers. Avian Pathol 2024; 53:474-491. [PMID: 38776101 DOI: 10.1080/03079457.2024.2359592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
RESEARCH HIGHLIGHTS Wire ramp model reproducibly induced lameness/BCO in broilers.Treatments did not affect growth, but phytase with stimbiotic significantly reduced BCO.Phytase increased circulating inositol, and wire flooring decreased bone inositol.
Collapse
Affiliation(s)
- Elizabeth S Greene
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| | - Alison Ramser
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| | - Robert Wideman
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| | | | - Sami Dridi
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| |
Collapse
|
2
|
Jensen LK, Hartmann KT, Witzmann F, Asbach P, Stewart PS. Bone infection evolution. Injury 2024; 55 Suppl 6:111826. [PMID: 39482026 DOI: 10.1016/j.injury.2024.111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 11/03/2024]
Abstract
The present minireview aims to provide a context for imagination of the timespan for bone infection evolution from the origin of cellular bone tissue to modern orthopedic surgery. From a phylogenetic osteomyelitis-bracketing perspective, and due to the time of osteocyte origin, bacteria might have been able to infect the skeleton for approximately 400 million years. Thereby, bone infections happened simultaneously with central expansions of the immune system and development of terrestrial bone structure. This co-evolution might aid in explaining the many immune evasion strategies seen in the field of bone infections. Bone infection patients with long disease-free periods followed by sudden recurrence and anamnesis of long-term and low-grade infections indicate that bacteria can perform silent parasitism within bone tissue (parasitism; one organism lives on another organism, the host, causing it harm and is structurally adapted to it). The silence seems to be disturbed by immunosuppression and the present minireview shows that a compromised immune system has been associated with bone infection development across all species in the phylogenetic tree. Orthopedic surgery, including arthroplasty and osteosynthesis, favor introduction of bacteria and prosthesis/implant related infections are thus anthropogenic infections (anthropogenic; resulting from the influence of human beings on nature). In that light it is important to remember that the skeleton and immune system have not evolved for millions of years to protect titanium alloys and other metals, commonly used for orthopedic devices from bacterial invasion. Therefore, these relatively new orthopedic infection types must be seen as distinct with unique implant/prosthesis related pathophysiology and immunology.
Collapse
Affiliation(s)
- Louise Kruse Jensen
- Department of Veterinary and Animal Science, Faculty of Health and Medical Science, University of Copenhagen, Denmark.
| | - Katrine Top Hartmann
- Department of Veterinary and Animal Science, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Florian Witzmann
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Patrick Asbach
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Philip S Stewart
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| |
Collapse
|
3
|
Liu G, Gui Y, Shi W, Yang H, Feng S, Liang S, Zhou C, Zhou Q, Li H, Li G, Si H, Ou C. Therapeutic efficacy of compound organic acids administration on methicillin-resistant Staphylococcus aureus-induced arthritis in broilers. Poult Sci 2024; 103:104219. [PMID: 39278110 PMCID: PMC11419824 DOI: 10.1016/j.psj.2024.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/17/2024] Open
Abstract
Avian arthritis is a common disease in the poultry industry, and the etiology is complex. Bacterial arthritis is usually caused by Staphylococcus aureus (S. aureus) infection. This study explored the minimum inhibitory concentration (MIC) of different organic acids against S. aureus MRSA85 and found that vanillic acid, suberic acid, itaconic acid, salicylic acid, and other organic acids had significant inhibitory effects on this strain, especially cinnamic acid, which exhibited the best inhibitory effect. The Fractional Inhibitory Concentration Index (FICI) test further revealed the synergistic effect among some compound organic acids, which can significantly enhance the antibacterial efficiency against MRSA85 while reducing the risk of bacterial resistance. Under the low concentrations (1/2 or 1/4 MIC) conditions, the MIC of the compound organic acids against S. aureus remains unchanged, and it can even enhance the sensitivity of antibiotic-resistant S. aureus to Oxacillin. Furthermore, the compound organic acids could effectively promote the recovery of S. aureus-induced arthritis in broiler models, reduce inflammatory responses, and lower down bacterial loads and inflammatory cytokine levels in joints, which indicated that the effects of the Compound 2 is comparable to that of the trimethoprim-sulfamethoxazole group. These results support the potential and application value of organic acids and their compounds, including Compound 1 to 3, as novel antibacterial agents in the treatment of S. aureus infections.
Collapse
Affiliation(s)
- Gengsong Liu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yanyao Gui
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Wen Shi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hongchun Yang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Shufeng Feng
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Si Liang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Congcong Zhou
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Qiaoyan Zhou
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Haizhu Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Gonghe Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530004, China
| | - Changbo Ou
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530004, China.
| |
Collapse
|
4
|
Anthney A, Do ADT, Alrubaye AAK. Bacterial chondronecrosis with osteomyelitis lameness in broiler chickens and its implications for welfare, meat safety, and quality: a review. Front Physiol 2024; 15:1452318. [PMID: 39268189 PMCID: PMC11390708 DOI: 10.3389/fphys.2024.1452318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
The exponential increase in global population continues to present an ongoing challenge for livestock producers worldwide to consistently provide a safe, high-quality, and affordable source of protein for consumers. In the last 50 years, the poultry industry has spearheaded this effort thanks to focused genetic and genomic selection for feed-efficient, high-yielding broilers. However, such intense selection for productive traits, along with conventional industry farming practices, has also presented the industry with a myriad of serious issues that negatively impacted animal health, welfare, and productivity-such as woody breast and virulent diseases commonly associated with poultry farming. Bacterial chondronecrosis with osteomyelitis (BCO) lameness is one such issue, having rapidly become a key issue affecting the poultry industry with serious impacts on broiler welfare, meat quality, production, food safety, and economic losses since its discovery in 1972. This review focuses on hallmark clinical symptoms, diagnosis, etiology, and impact of BCO lameness on key issues facing the poultry industry.
Collapse
Affiliation(s)
- Amanda Anthney
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Anh Dang Trieu Do
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Adnan A K Alrubaye
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
5
|
White RT, Bakker S, Burton M, Castro ML, Couldrey C, Dyet K, Eustace A, Harland C, Hutton S, Macartney-Coxson D, Tarring C, Velasco C, Voss EM, Williamson J, Bloomfield M. Rapid identification and subsequent contextualization of an outbreak of methicillin-resistant Staphylococcus aureus in a neonatal intensive care unit using nanopore sequencing. Microb Genom 2024; 10:001273. [PMID: 38967541 PMCID: PMC11316549 DOI: 10.1099/mgen.0.001273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Outbreaks of methicillin-resistant Staphylococcus aureus (MRSA) are well described in the neonatal intensive care unit (NICU) setting. Genomics has revolutionized the investigation of such outbreaks; however, to date, this has largely been completed retrospectively and has typically relied on short-read platforms. In 2022, our laboratory established a prospective genomic surveillance system using Oxford Nanopore Technologies sequencing for rapid outbreak detection. Herein, using this system, we describe the detection and control of an outbreak of sequence-type (ST)97 MRSA in our NICU. The outbreak was identified 13 days after the first MRSA-positive culture and at a point where there were only two known cases. Ward screening rapidly defined the extent of the outbreak, with six other infants found to be colonized. There was minimal transmission once the outbreak had been detected and appropriate infection control measures had been instituted; only two further ST97 cases were detected, along with three unrelated non-ST97 MRSA cases. To contextualize the outbreak, core-genome single-nucleotide variants were identified for phylogenetic analysis after de novo assembly of nanopore data. Comparisons with global (n=45) and national surveillance (n=35) ST97 genomes revealed the stepwise evolution of methicillin resistance within this ST97 subset. A distinct cluster comprising nine of the ten ST97-IVa genomes from the NICU was identified, with strains from 2020 to 2022 national surveillance serving as outgroups to this cluster. One ST97-IVa genome presumed to be part of the outbreak formed an outgroup and was retrospectively excluded. A second phylogeny was created using Illumina sequencing, which considerably reduced the branch lengths of the NICU isolates on the phylogenetic tree. However, the overall tree topology and conclusions were unchanged, with the exception of the NICU outbreak cluster, where differences in branch lengths were observed. This analysis demonstrated the ability of a nanopore-only prospective genomic surveillance system to rapidly identify and contextualize an outbreak of MRSA in a NICU.
Collapse
Affiliation(s)
- Rhys T. White
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Sarah Bakker
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Megan Burton
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington 6021, New Zealand
| | - M. Leticia Castro
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Christine Couldrey
- Livestock Improvement Corporation, Research and Development, Newstead 3286, New Zealand
| | - Kristin Dyet
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Alexandra Eustace
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Chad Harland
- Livestock Improvement Corporation, Research and Development, Newstead 3286, New Zealand
| | - Samantha Hutton
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington 6021, New Zealand
| | - Donia Macartney-Coxson
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Claire Tarring
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington 6021, New Zealand
| | - Charles Velasco
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington 6021, New Zealand
| | - Emma M. Voss
- Livestock Improvement Corporation, Research and Development, Newstead 3286, New Zealand
- University of Otago, Department of Microbiology and Immunology, Dunedin 9016, New Zealand
| | - John Williamson
- University of Otago, Department of Microbiology and Immunology, Dunedin 9016, New Zealand
| | - Max Bloomfield
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington 6021, New Zealand
- Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast & Hutt Valley, Wellington 6021, New Zealand
| |
Collapse
|
6
|
Alharbi K, Asnayanti A, Do ADT, Perera R, Al-Mitib L, Shwani A, Rebollo MA, Kidd MT, Alrubaye AAK. Identifying Dietary Timing of Organic Trace Minerals to Reduce the Incidence of Osteomyelitis Lameness in Broiler Chickens Using the Aerosol Transmission Model. Animals (Basel) 2024; 14:1526. [PMID: 38891572 PMCID: PMC11171233 DOI: 10.3390/ani14111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Our prior research demonstrated a 20% to 25% reduction in bacterial chondronecrosis with osteomyelitis (BCO) lameness in broilers with organic Zn, Mn, and Cu (Availa® ZMC) supplementation. Expanding on this, we investigated the optimal timing for Availa® ZMC feeding to mitigate BCO lameness and reduce feed additive costs in the poultry industry. In this study, we compared the application of 0.15% Availa® ZMC for 56 days, the first 28 days, and the last 28 days. The experimental design was a randomized block design involving 1560 one-day-old chicks distributed across two wire-floor pens as BCO source infection and four treatment groups with six replicates. The source of BCO infection exhibited a cumulative lameness incidence of 83%, whereas the negative control group showed a 77% cumulative incidence of lameness (p = 0.125). Administering 0.15% of Availa® ZMC during the initial 28 d resulted in a 41.3% reduction in BCO incidence, significantly different from the supplementation during the last 28 d (p < 0.05). However, this reduction did not differ substantially (p > 0.05) from the 56d application period. Hence, administering 0.15% Availa® ZMC during the first four weeks emerges as the optimal timing protocol, providing a defense against lameness comparable to the continuous supplementation throughout the complete production duration. Implementing this feeding approach reduces the cost of feed additive, promotes the health of skeletal bones, and effectively protects against BCO lameness in broilers, offering a valuable consideration for producers seeking optimal outcomes in the poultry industry.
Collapse
Affiliation(s)
- Khawla Alharbi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (K.A.); (A.A.); (A.D.T.D.); (R.P.); (L.A.-M.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Andi Asnayanti
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (K.A.); (A.A.); (A.D.T.D.); (R.P.); (L.A.-M.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- National Agency of Drug and Food Control, Jakarta 10520, Indonesia
| | - Anh Dang Trieu Do
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (K.A.); (A.A.); (A.D.T.D.); (R.P.); (L.A.-M.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Ruvindu Perera
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (K.A.); (A.A.); (A.D.T.D.); (R.P.); (L.A.-M.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Layla Al-Mitib
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (K.A.); (A.A.); (A.D.T.D.); (R.P.); (L.A.-M.)
| | - Abdulkarim Shwani
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, Athens, GA 30605, USA;
| | | | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Adnan Ali Khalaf Alrubaye
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (K.A.); (A.A.); (A.D.T.D.); (R.P.); (L.A.-M.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
7
|
Ramser A, Greene ES, Wideman R, Dridi S. Potential non-invasive detection of lesions in broiler femur heads: application of the DXA imaging system. Front Physiol 2024; 15:1363992. [PMID: 38827990 PMCID: PMC11140573 DOI: 10.3389/fphys.2024.1363992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Leg health is a significant economic and welfare concern for the poultry industry. Current methods of detection rely on visual assessment of the legs and gait scores and bone scoring during necropsy for full characterization. Additionally, the current scoring of femurs only examines the external surface of the femoral head. Through the use of the dual-energy X-ray absorptiometry (DXA) imaging system, we show the presence of a necrotic region in the femurs that would otherwise be considered healthy based on the current evaluation procedures. Importantly, these lesions were present in almost 60% (22 of 37) of femurs that scored normal for femoral head necrosis (FHN). Additionally, these femurs showed greater bone mineral content (BMC) relative to weight compared to their counterparts with no lucent lesions (6.95% ± 0.20% vs. 6.26% ± 0.25; p = 0.038). Identification of these lesions presents both a challenge and an opportunity. These subclinical lesions are likely to be missed in routine scoring procedures for FHN and can inadvertently impact the characterization of the disease and genetic selection programs. Furthermore, this imaging system can be used for in vivo, ex vivo, and embryonic (egg) studies and, therefore, constitutes a potential non-invasive method for early detection of bone lesions in chickens and other avian species.
Collapse
Affiliation(s)
| | | | | | - Sami Dridi
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR, United States
| |
Collapse
|
8
|
Adriaensen V, Van Immerseel F, Ducatelle R, Kettunen H, Vuorenmaa J, Goossens E. Enterobacteriaceae and Enterococcaceae are the dominant bacterial families translocating to femur heads in broiler chicks. Avian Pathol 2024; 53:115-123. [PMID: 38096268 DOI: 10.1080/03079457.2023.2288872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
RESEARCH HIGHLIGHTS Large number of bacteria isolated from femoral heads of clinically healthy broilers.The prevailing taxa in femoral heads were Escherichia/Shigella and Enterococcus spp.Continuous presence of bacteria in blood and liver of clinically healthy broilers.Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae prevail in blood and liver.
Collapse
Affiliation(s)
| | | | - Richard Ducatelle
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Evy Goossens
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
9
|
Saei HD, McClure JA, Kashif A, Chen S, Conly JM, Zhang K. The Role of Prophage ϕSa3 in the Adaption of Staphylococcus aureus ST398 Sublineages from Human to Animal Hosts. Antibiotics (Basel) 2024; 13:112. [PMID: 38391498 PMCID: PMC10886223 DOI: 10.3390/antibiotics13020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024] Open
Abstract
Staphylococcus aureus sequence type (ST) 398 is a lineage affecting both humans and livestock worldwide. However, the mechanisms underlying its clonal evolution are still not clearly elucidated. We applied whole-genome sequencing (WGS) typing to 45 S. aureus strains from China and Canada between 2005 and 2014, in order to gain insight into their evolutionary pathway. Based on WGS phylogenetic analysis, 42 isolates were assigned to the human-associated clade (I/II-GOI) and 3 isolates to livestock-associated clade (IIa). Phylogeny of ϕSa3 sequences revealed five phage groups (Groups 1-5), with Group 1 carrying ϕSa3-Group 1 (ϕSa3-G1), Group 2 carrying ϕSa3-G2, Group 3 carrying ϕSa3-G3, Group 4 carrying ϕSa3-G4 and Group 5 lacking ϕSa3. ϕSa3-G1 was only found in strains that accounted for the most ancestral human clade I, while ϕSa3-G2, ϕSa3-G3 and ϕSa3-G4 were found restricted to sublineages within clade II-GOI. Some isolates of clade II-GOI were also found to be ϕSa3-negative or resistant to methicillin which are unusual characteristics for human-adapted isolates. This study demonstrated a strong association between phylogenetic grouping and phage type, suggesting an important role of ϕSa3 prophage in the evolution of human-adapted ST398 subclones. In addition, our results suggest that this subclone slowly began to adapt to animal hosts by losing ϕSa3 and acquiring methicillin resistance, which was observed in some strains of human-associated clade II-GOI, an intermediate human to livestock transmission clade.
Collapse
Affiliation(s)
- Habib Dastmalchi Saei
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Jo-Ann McClure
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
- Centre for Antimicrobial Resistance, Alberta Health Services/Alberta Precision Laboratories/University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ayesha Kashif
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
| | - Sidong Chen
- Department of Epidemiology, Public Health College, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - John M Conly
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
- Centre for Antimicrobial Resistance, Alberta Health Services/Alberta Precision Laboratories/University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
| | - Kunyan Zhang
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
- Centre for Antimicrobial Resistance, Alberta Health Services/Alberta Precision Laboratories/University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
10
|
Rao RT, Madhavan V, Kumar P, Muniraj G, Sivakumar N, Kannan J. Epidemiology and zoonotic potential of Livestock-associated Staphylococcus aureus isolated at Tamil Nadu, India. BMC Microbiol 2023; 23:326. [PMID: 37923998 PMCID: PMC10625228 DOI: 10.1186/s12866-023-03024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/15/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is part of normal flora and also an opportunistic pathogen responsible for a wide range of infections in both humans and animals. Livestock-associated S. aureus (LA-SA) has gained importance in recent years due to its increased prevalence in recent years, becoming a worry in public health view. This study aimed to study the epidemiology of LA-SA strains in Madurai district, Tamil Nadu, India. METHODS A total of 255 samples were collected from bovine and other small ruminants like goats and sheep nares (n = 129 and n = 126 respectively). Nasal swab samples were collected from study animals with sterile sample collecting cotton swabs (Hi-Media, Mumbai). Samples were transported to the lab in Cary-Blair Transport media for further analysis. The samples were tested for S. aureus using antibiotic selection and PCR-based assays. The pathogenicity of the bacteria was assessed using chicken embryo models and liver cross-sections were used for histopathology studies. RESULTS The prevalence rate in bovine-associated samples was 42.63% but relatively low in the case of small ruminants associated samples with 28.57% only. The overall prevalence of S. aureus is found to 35.6% and MRSA 10.98% among the study samples. The antibiogram results that LA-SA isolates were susceptible to aminoglycosides and tetracyclines but resistant to β-lactam drugs. The biofilm formation results showed that the LA-SA isolates are weak to high-capacity biofilm formers. The enterotoxigenic patterns revealed that most of the isolated strains are enterotoxigenic and possess classical enterotoxins. The survival analysis of chicken embryos suggested that the Bovine-associated strains were moderately pathogenic. CONCLUSION The study concluded that economically important livestock animals can act as reservoirs for multi-drug resistant and pathogenic which in-turn is a concern for public health as well as livestock health.
Collapse
Affiliation(s)
- Relangi Tulasi Rao
- Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Vinoth Madhavan
- Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Pavitra Kumar
- Vascular Biology Laboratory, AU-KBC Research Centre, Anna University, Tamil Nadu, Chennai, 600044, India
| | - Gnanaraj Muniraj
- Department of Biotechnology, Bishop Heber College, Tamil Nadu, Tiruchirapalli, 620017, India
| | - Natesan Sivakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Jayakumar Kannan
- Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India.
| |
Collapse
|
11
|
Jiang X, He D, Gao L, Wei F, Wu B, Niu X, Tian M, Tang Y, Diao Y. Synergistic pathogenicity of avian orthoreovirus and Staphylococcus aureus on SPF chickens. Poult Sci 2023; 102:102996. [PMID: 37573844 PMCID: PMC10448332 DOI: 10.1016/j.psj.2023.102996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
Avian arthritis is a relatively common disease in the poultry industry, the cause of which is complex. Bacterial arthritis is often caused by infection of Staphylococcus aureus (S. aureus), whereas viral arthritis is caused by avian orthoreovirus (ARV). To investigate the infection of S. aureus and ARV in cases of avian arthritis, a total of 77 samples characterized by arthritis were collected and detection. The results showed that 68.83% of the samples were positive for ARV, and 66.23% were positive for S. aureus. Among them, the ARV mono-infection rate was 22.08%, the S. aureus mono-infection rate was 19.48%, and ARV and S. aureus co-infection rate was 45.45%, indicating that ARV and S. aureus co-infection is common in arthritis cases. To further investigate the synergistic pathogenicity of ARV and S. aureus, ARV and S. aureus were used to mono-infect, co-infect, and (or) sequential infect SPF chickens and the clinical indications, pathologic changes, ARV load, S. aureus bacterial distribution, and cytokine level of the challenged chickens were evaluated. Decreased weight gain, increased mortality, and difficulties in standing were observed in all dual-infected groups and the singular-infected group. There were significantly more severe macroscopic and microscopic hock lesions, and larger amounts of a wider range of tissue distribution of ARV antigens and S. aureus bacterial distribution in the dual-infected groups compared to the single-infected and control groups. Cytokine detection showed a significant change in IFN-γ, IL-1β, and IL-6 levels in the infected groups, especially in the ARV-S. aureus co-infection, and (or) sequential infection groups, compared with the control group. Hence, ARV and S. aureus synergistically increased mortality in infected chickens, potentiated the severity of arthritis, and increased the amount of ARV RNA in tendons.
Collapse
Affiliation(s)
- Xiaoning Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Dalin He
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Ling Gao
- Laoling Animal Husbandry Development Center, De'zhou, Shandong 253600, China
| | - Feng Wei
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Bingrong Wu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Xing Niu
- Linyi Vocational University of Science and Technology, Linyi, Shandong, 276000, China
| | - Maoquan Tian
- Laoling Animal Husbandry Development Center, De'zhou, Shandong 253600, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China.
| |
Collapse
|
12
|
Cheung GYC, Otto M. Virulence Mechanisms of Staphylococcal Animal Pathogens. Int J Mol Sci 2023; 24:14587. [PMID: 37834035 PMCID: PMC10572719 DOI: 10.3390/ijms241914587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Staphylococci are major causes of infections in mammals. Mammals are colonized by diverse staphylococcal species, often with moderate to strong host specificity, and colonization is a common source of infection. Staphylococcal infections of animals not only are of major importance for animal well-being but have considerable economic consequences, such as in the case of staphylococcal mastitis, which costs billions of dollars annually. Furthermore, pet animals can be temporary carriers of strains infectious to humans. Moreover, antimicrobial resistance is a great concern in livestock infections, as there is considerable antibiotic overuse, and resistant strains can be transferred to humans. With the number of working antibiotics continuously becoming smaller due to the concomitant spread of resistant strains, alternative approaches, such as anti-virulence, are increasingly being investigated to treat staphylococcal infections. For this, understanding the virulence mechanisms of animal staphylococcal pathogens is crucial. While many virulence factors have similar functions in humans as animals, there are increasingly frequent reports of host-specific virulence factors and mechanisms. Furthermore, we are only beginning to understand virulence mechanisms in animal-specific staphylococcal pathogens. This review gives an overview of animal infections caused by staphylococci and our knowledge about the virulence mechanisms involved.
Collapse
Affiliation(s)
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA;
| |
Collapse
|
13
|
Choppa VSR, Kim WK. A Review on Pathophysiology, and Molecular Mechanisms of Bacterial Chondronecrosis and Osteomyelitis in Commercial Broilers. Biomolecules 2023; 13:1032. [PMID: 37509068 PMCID: PMC10377700 DOI: 10.3390/biom13071032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Modern day broilers have a great genetic potential to gain heavy bodyweights with a huge metabolic demand prior to their fully mature ages. Moreover, this made the broilers prone to opportunistic pathogens which may enter the locomotory organs under stress causing bacterial chondronecrosis and osteomyelitis (BCO). Such pathogenic colonization is further accelerated by microfractures and clefts that are formed in the bones due to rapid growth rate of the broilers along with ischemia of blood vessels. Furthermore, there are several pathways which alter bone homeostasis like acute phase response, and intrinsic and extrinsic cell death pathways. In contrast, all the affected birds may not exhibit clinical lameness even with the presence of lameness associated factors causing infection. Although Staphylococcus, E. coli, and Enterococcus are considered as common bacterial pathogens involved in BCO, but there exist several other non-culturable bacteria. Any deviation from maintaining a homeostatic environment in the gut might lead to bacterial translocation through blood followed by proliferation of pathogenic bacteria in respective organs including bones. It is important to alleviate dysbiosis of the blood which is analogous to dysbiosis in the gut. This can be achieved by supplementing pro, pre, and synbiotics which helps in providing a eubiotic environment abating the bacterial translocation that was studied to the incidence of BCO. This review focused on potential and novel biomarkers, pathophysiological mechanism, the economic significance of BCO, immune mechanisms, and miscellaneous factors causing BCO. In addition, the role of gut microbiomes along with their diversity and cell culture models from compact bones of chicken in better understanding of BCO were explored.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
14
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
15
|
Szafraniec GM, Szeleszczuk P, Dolka B. Review on skeletal disorders caused by Staphylococcus spp. in poultry. Vet Q 2022; 42:21-40. [PMID: 35076352 PMCID: PMC8843168 DOI: 10.1080/01652176.2022.2033880] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/03/2021] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
Lameness or leg weakness is the main cause of poor poultry welfare and serious economic losses in meat-type poultry production worldwide. Disorders related to the legs are often associated with multifactorial aetiology which makes diagnosis and proper treatment difficult. Among the infectious agents, bacteria of genus Staphylococcus are one of the most common causes of bone infections in poultry and are some of the oldest bacterial infections described in poultry. Staphylococci readily infect bones and joints and are associated with bacterial chondronecrosis with osteomyelitis (BCO), spondylitis, arthritis, tendinitis, tenosynovitis, osteomyelitis, turkey osteomyelitis complex (TOC), bumblefoot, dyschondroplasia with osteomyelitis and amyloid arthropathy. Overall, 61 staphylococcal species have been described so far, and 56% of them (34/61) have been isolated from clinical cases in poultry. Although Staphylococcus aureus is the principal cause of poultry staphylococcosis, other Staphylococcus species, such as S. agnetis, S. cohnii, S. epidermidis, S. hyicus, S. simulans, have also been isolated from skeletal lesions. Antimicrobial treatment of staphylococcosis is usually ineffective due to the location and type of lesion, as well as the possible occurrence of multidrug-resistant strains. Increasing demand for antibiotic-free farming has contributed to the use of alternatives to antibiotics. Other prevention methods, such as better management strategies, early feed restriction or use of slow growing broilers should be implemented to avoid rapid growth rate, which is associated with locomotor problems. This review aims to summarise and address current knowledge on skeletal disorders associated with Staphylococcus spp. infection in poultry.
Collapse
Affiliation(s)
- Gustaw M. Szafraniec
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Piotr Szeleszczuk
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Beata Dolka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| |
Collapse
|
16
|
Ibelli AMG, Peixoto JDO, Zanella R, Gouveia JJDS, Cantão ME, Coutinho LL, Marchesi JAP, Pizzol MSD, Marcelino DEP, Ledur MC. Downregulation of growth plate genes involved with the onset of femoral head separation in young broilers. Front Physiol 2022; 13:941134. [PMID: 36003650 PMCID: PMC9393217 DOI: 10.3389/fphys.2022.941134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Femoral head separation (FHS) is characterized by the detachment of growth plate (GP) and articular cartilage, occurring in tibia and femur. However, the molecular mechanisms involved with this condition are not completely understood. Therefore, genes and biological processes (BP) involved with FHS were identified in 21-day-old broilers through RNA sequencing of the femoral GP. 13,487 genes were expressed in the chicken femoral head transcriptome of normal and FHS-affected broilers. From those, 34 were differentially expressed (DE; FDR ≤0.05) between groups, where all of them were downregulated in FHS-affected broilers. The main BP were enriched in receptor signaling pathways, ossification, bone mineralization and formation, skeletal morphogenesis, and vascularization. RNA-Seq datasets comparison of normal and FHS-affected broilers with 21, 35 and 42 days of age has shown three shared DE genes (FBN2, C1QTNF8, and XYLT1) in GP among ages. Twelve genes were exclusively DE at 21 days, where 10 have already been characterized (SHISA3, FNDC1, ANGPTL7, LEPR, ENSGALG00000049529, OXTR, ENSGALG00000045154, COL16A1, RASD2, BOC, GDF10, and THSD7B). Twelve SNPs were associated with FHS (p < 0.0001). Out of those, 5 were novel and 7 were existing variants located in 7 genes (RARS, TFPI2, TTI1, MAP4K3, LINK54, and AREL1). We have shown that genes related to chondrogenesis and bone differentiation were downregulated in the GP of FHS-affected young broilers. Therefore, these findings evince that candidate genes pointed out in our study are probably related to the onset of FHS in broilers.
Collapse
Affiliation(s)
- Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Concórdia, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil
| | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Concórdia, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil
| | | | | | | | - Luiz Lehmann Coutinho
- Laboratório de Biotecnologia Animal, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de SP, Piracicaba, Brazil
| | | | | | | | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia, Brazil
- Programa de Pós-Graduação Em Zootecnia, Universidade do Estado de SC, UDESC-Oeste, Chapecó, Brazil
- *Correspondence: Mônica Corrêa Ledur,
| |
Collapse
|
17
|
Discrimination and Characterization of Escherichia coli Originating from Clinical Cases of Femoral Head Necrosis in Broilers by MALDI-TOF Mass Spectrometry Confirms Great Heterogeneity of Isolates. Microorganisms 2022; 10:microorganisms10071472. [PMID: 35889191 PMCID: PMC9323188 DOI: 10.3390/microorganisms10071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Escherichia coli, a major pathogen in poultry production, is involved in femoral head necrosis (FHN) in broiler birds. So far, the characterization and relationship of isolates in context with this disease are mainly based on phenotypic and genotypic characteristics. Previously, an involvement of diverse E. coli isolates was reported. MALDI-TOF MS has been successfully applied investigating the clonality of different bacteria. Therefore, its application to characterize a well-defined selection of E. coli isolates beyond the species level was tested. The isolates were derived from clinical cases of FHN as well as from healthy birds. Reproducibility studies to perform a standardized protocol were done, and LB agar as well as the usage of fresh bacterial cultures proved most appropriate. No distinct clustering in context with the origin of isolates, association with lesions, serotype, or PFGE profile was found. Most of the isolates belonging to phylogroup B2 revealed a characteristic peak shift at 9716 m/z and could be attributed to the same MALDI-TOF MS cluster. The present study confirmed the previously found pheno- and genotypic heterogeneity of E. coli involved in FHN on the proteomic level. The study also highlights the need for standardized protocols when using MALDI-TOF MS for bacterial typing, especially beyond species level.
Collapse
|
18
|
Ramser A, Greene E, Wideman R, Dridi S. Local and Systemic Cytokine, Chemokine, and FGF Profile in Bacterial Chondronecrosis with Osteomyelitis (BCO)-Affected Broilers. Cells 2021; 10:3174. [PMID: 34831397 PMCID: PMC8620240 DOI: 10.3390/cells10113174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Complex disease states, like bacterial chondronecrosis with osteomyelitis (BCO), not only result in physiological symptoms, such as lameness, but also a complex systemic reaction involving immune and growth factor responses. For the modern broiler (meat-type) chickens, BCO is an animal welfare, production, and economic concern involving bacterial infection, inflammation, and bone attrition with a poorly defined etiology. It is, therefore, critical to define the key inflammatory and bone-related factors involved in BCO. In this study, the local bone and systemic blood profile of inflammatory modulators, cytokines, and chemokines was elucidated along with inflammasome and key FGF genes. BCO-affected bone showed increased expression of cytokines IL-1β, while BCO-affected blood expressed upregulated TNFα and IL-12. The chemokine profile revealed increased IL-8 expression in both BCO-affected bone and blood in addition to inflammasome NLRC5 being upregulated in circulation. The key FGF receptor, FGFR1, was significantly downregulated in BCO-affected bone. The exposure of two different bone cell types, hFOB and chicken primary chondrocytes, to plasma from BCO-affected birds, as well as recombinant TNFα, resulted in significantly decreased cell viability. These results demonstrate an expression of proinflammatory and bone-resorptive factors and their potential contribution to BCO etiology through their impact on bone cell viability. This unique profile could be used for improved non-invasive detection of BCO and provides potential targets for treatments.
Collapse
Affiliation(s)
- Alison Ramser
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (E.G.); (R.W.)
- Department of Poultry Science, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (E.G.); (R.W.)
| | - Robert Wideman
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (E.G.); (R.W.)
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (E.G.); (R.W.)
- Department of Poultry Science, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
19
|
Weimer SL, Wideman RF, Scanes CG, Mauromoustakos A, Christensen KD, Vizzier-Thaxton Y. Impact of experimentally induced bacterial chondronecrosis with osteomyelitis (BCO) lameness on health, stress, and leg health parameters in broilers. Poult Sci 2021; 100:101457. [PMID: 34607149 PMCID: PMC8496169 DOI: 10.1016/j.psj.2021.101457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 11/09/2022] Open
Abstract
Stress and lameness negatively affect the health, production, and welfare of broilers. Bacterial chondronecrosis with osteomyelitis (BCO) is a leading cause of stress and lameness in commercial broilers. External changes in skin temperature related to changes in blood flow can be detected with infrared thermography (IRT), offering a noninvasive tool to assess the health of animals. This study compared physiological and noninvasive measures of stress and lameness in clinically healthy and lame male broiler chickens between 25 and 56 d. Birds were raised in pens within separate environmental chambers containing either litter flooring (sound) or wire flooring, with the latter established to induce BCO lameness (lame). Physiological and noninvasive measures of stress and lameness were collected: body weight, (BW), relative bursa weight, core body temperature, corticosterone (CORT) concentrations in serum and feathers, surface temperatures of the head (eye and beak) and leg (hock, shank, and foot) regions by infrared thermography (IRT), leg blood oxygen saturation (leg O2), and BCO lesion severity scores of tibial head necrosis (THN) and femoral head necrosis (FHN). Lame birds exhibited greater FHN and THN lesion severities, core body temperatures, and serum CORT (P < 0.05), but had lower BW, relative bursa weight, leg O2, and IRT surface temperatures of the beak, hock, shank, and foot compared with sound birds (P < 0.05). The difference in THN lesion severity between sound and lame birds decreased with age. Linear relationships between leg O2 with IRT leg surface temperatures were positive and negative between leg O2 with BCO lesion severity (P < 0.05). There were negative correlations between serum CORT with hock, shank and foot temperatures (P < 0.001), indicating that BCO is stressful. These results indicate that birds lame from BCO are stressed, have reduced oxygen saturation of blood in their legs, and that IRT surface temperatures can be used as noninvasive indicators of stress and lameness in broilers.
Collapse
Affiliation(s)
- Shawna L Weimer
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| | - Robert F Wideman
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Colin G Scanes
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Andy Mauromoustakos
- Agricultural Statistics Lab, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | |
Collapse
|
20
|
Wilson FD, Wyatt CL, Stayer PA, Schrader JS, Burchfield KA, Hoerr FJ. A Field Study of Histologic and Bacteriologic Characterization of Femoral Head Separation and Femoral Head Necrosis. Avian Dis 2021; 64:571-581. [PMID: 33647154 DOI: 10.1637/0005-2086-64.4.571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/11/2020] [Indexed: 11/05/2022]
Abstract
Histologic and bacteriologic features for groups of average 31-day-old broilers displaying three gross categories of femoral head alterations were documented. Categories included simple femoral head separation (FHS), femoral head transitional changes (FHT), and femoral head necrosis (FHN). Groups with grossly normal (NORM) femoral heads and cull birds with FHN and having gross signs of sepsis (Cull-FHN) were also included in the study. There was a 10% occurrence of positive bacterial cultures for all birds tested. Most positive cultures (33%) were found in the Cull-FHN group, while only a 12% occurrence was seen in the FHS group, and no positives were present in the FHT or FHN groups. A 14% total occurrence of femoral bacterial chondronecrosis with osteomyelitis or simple osteomyelitis (BCO-O) was observed. A progressive increase in the prevalence of BCO-O was apparent between groups going from NORM (0%), FHS (4%), FHT (14%), FHN (13%), and reaching a maximum of 67% in the Cull-FHN group. Minimal to mild femoral head cartilage necrosis was present in 40% of NORM broilers and 100% of the FHS, FHT, and FHN groups, but at moderate severity in 20% of the Cull-FHN group. Thus, the majority of FHN cases were associated with aseptic cartilage necrosis rather than BCO-O. These findings suggest that aseptic cartilage necrosis may be as important as septic necrosis as a cause of gross femoral head disease. A 26% overall occurrence was seen for hip synovitis-arthritis, but group differences were not statistically significant. Synovitis was not seen in the NORM group and was present in some (12%) of the FHS group but was observed at a high rate in both the FHN (43%) and the Cull-FHN (50%) groups. Morphometric measurements demonstrated that the area size of femoral fibrous cortical defects or "cutback zones" were generally larger for all gross categories relative to NORM, with a significant difference between NORM and FHS groups. This study underscores the multifactorial etiology of FHN and the importance of conducting both histologic and bacteriologic evaluations in which gross evidence of FHN or BCO-O occurs.
Collapse
Affiliation(s)
- Floyd D Wilson
- Mississippi State Veterinary Research Diagnostic Laboratory, 3137 Highway 468 West, Pearl, MS 39208
| | - Craig L Wyatt
- AB Vista Inc., 17885 Nall Avenue, Stilwell, KS 66085
| | - Philip A Stayer
- Sanderson Farms, Inc. P.O. Box 988, 225 North 13th Avenue, Laurel, MS 39441
| | - Joan S Schrader
- Poultry Veterinary Consultant, 447 County Road J, Ashland, NE 68003
| | - Katie A Burchfield
- Texas A&M College of Veterinary Medicine & Biomedical Sciences, 4461 TAMU, College Station, TX 77843
| | - Frederic J Hoerr
- Veterinary Diagnostic Pathology, LLC, 638 South Fort Valley Road, Fort Valley, VA 22652
| |
Collapse
|
21
|
Bonvegna M, Grego E, Sona B, Stella MC, Nebbia P, Mannelli A, Tomassone L. Occurrence of Methicillin-Resistant Coagulase-Negative Staphylococci (MRCoNS) and Methicillin-Resistant Staphylococcus aureus (MRSA) from Pigs and Farm Environment in Northwestern Italy. Antibiotics (Basel) 2021; 10:antibiotics10060676. [PMID: 34198805 PMCID: PMC8227741 DOI: 10.3390/antibiotics10060676] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Swine farming as a source of methicillin-resistant Staphylococcus aureus (MRSA) has been well documented. Methicillin-resistant coagulase-negative staphylococci (MRCoNS) have been less studied, but their importance as pathogens is increasing. MRCoNS are indeed considered relevant nosocomial pathogens; identifying putative sources of MRCoNS is thus gaining importance to prevent human health hazards. In the present study, we investigated MRSA and MRCoNS in animals and environment in five pigsties in a high farm-density area of northwestern Italy. Farms were three intensive, one intensive with antibiotic-free finishing, and one organic. We tested nasal swabs from 195 animals and 26 environmental samples from three production phases: post-weaning, finishing and female breeders. Phenotypic tests, including MALDI-TOF MS, were used for the identification of Staphylococcus species; PCR and nucleotide sequencing confirmed resistance and bacterial species. MRCoNS were recovered in 64.5% of nasal swabs, in all farms and animal categories, while MRSA was detected only in one post-weaning sample in one farm. The lowest prevalence of MRCoNS was detected in pigs from the organic farm and in the finishing of the antibiotic-free farm. MRCoNS were mainly Staphylococcus sciuri, but we also recovered S. pasteuri, S. haemolyticus, S. cohnii, S. equorum and S. xylosus. Fifteen environmental samples were positive for MRCoNS, which were mainly S. sciuri; no MRSA was found in the farms’ environment. The analyses of the mecA gene and the PBP2-a protein highlighted the same mecA fragment in strains of S. aureus, S. sciuri and S. haemolyticus. Our results show the emergence of MRCoNS carrying the mecA gene in swine farms. Moreover, they suggest that this gene might be horizontally transferred from MRCoNS to bacterial species more relevant for human health, such as S. aureus.
Collapse
Affiliation(s)
- Miryam Bonvegna
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
- Correspondence:
| | - Elena Grego
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| | - Bruno Sona
- Local Veterinary Service, Animal Health, ASL CN1, Via Torino, 137, 12038 Savigliano, Italy;
| | - Maria Cristina Stella
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| | - Patrizia Nebbia
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| | - Alessandro Mannelli
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| | - Laura Tomassone
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| |
Collapse
|
22
|
Riber AB, Herskin MS, Foldager L, Sandercock DA, Murrell J, Tahamtani FM. Post-mortem examination of fast-growing broilers with different degrees of identifiable gait defects. Vet Rec 2021; 189:e454. [PMID: 34008173 DOI: 10.1002/vetr.454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The walking ability of many broilers is characterised by slight or definite defects categorised as gait scores (GS) 1 and 2. The present study aimed to examine potential relationships between GSs and indicators of body morphology, leg pathology, tibia strength and wooden breast in Ross 308 broilers assessed as GS ≤ 2. METHODS At 38 days of age, GS and live body weight of 179 birds was recorded. Each bird was examined post-mortem for signs of wooden breast, contact dermatitis and a range of leg pathologies. Weights of different body parts and tibia strength were quantified. RESULTS Within sex, GS increased with increasing live body weight (p = 0.020). There was a tendency for an effect of GS on prevalence of footpad dermatitis (p = 0.086) and dislocated femoral joint cartilage (p = 0.059) where both pathologies increased in frequency with increasing GS. Greater load was required to fracture tibia from GS2 than GS0 birds (p = 0.040). CONCLUSIONS Within this relatively small data set, no strong relationships between GS ≤ 2 and indicators of body morphology, leg pathology, tibia strength and wooden breast in Ross 308 broilers were found, except for the live terminal body weight. Further studies, involving larger data sets are required for full clarification.
Collapse
Affiliation(s)
- Anja B Riber
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Mette S Herskin
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Leslie Foldager
- Department of Animal Science, Aarhus University, Tjele, Denmark.,Bioinformatics Research Centre, Aarhus University, Aarhus C, Denmark
| | - Dale A Sandercock
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Jo Murrell
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Fernanda M Tahamtani
- Department of Animal Science, Aarhus University, Tjele, Denmark.,Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
23
|
Park S, Ronholm J. Staphylococcus aureus in Agriculture: Lessons in Evolution from a Multispecies Pathogen. Clin Microbiol Rev 2021; 34:e00182-20. [PMID: 33568553 PMCID: PMC7950364 DOI: 10.1128/cmr.00182-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a formidable bacterial pathogen that is responsible for infections in humans and various species of wild, companion, and agricultural animals. The ability of S. aureus to move between humans and livestock is due to specific characteristics of this bacterium as well as modern agricultural practices. Pathoadaptive clonal lineages of S. aureus have emerged and caused significant economic losses in the agricultural sector. While humans appear to be a primary reservoir for S. aureus, the continued expansion of the livestock industry, globalization, and ubiquitous use of antibiotics has increased the dissemination of pathoadaptive S. aureus in this environment. This review comprehensively summarizes the available literature on the epidemiology, pathophysiology, genomics, antibiotic resistance (ABR), and clinical manifestations of S. aureus infections in domesticated livestock. The availability of S. aureus whole-genome sequence data has provided insight into the mechanisms of host adaptation and host specificity. Several lineages of S. aureus are specifically adapted to a narrow host range on a short evolutionary time scale. However, on a longer evolutionary time scale, host-specific S. aureus has jumped the species barrier between livestock and humans in both directions several times. S. aureus illustrates how close contact between humans and animals in high-density environments can drive evolution. The use of antibiotics in agriculture also drives the emergence of antibiotic-resistant strains, making the possible emergence of human-adapted ABR strains from agricultural practices concerning. Addressing the concerns of ABR S. aureus, without negatively affecting agricultural productivity, is a challenging priority.
Collapse
Affiliation(s)
- Soyoun Park
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
24
|
Biofilm-Formation Ability and the Presence of Adhesion Genes in Coagulase-Negative Staphylococci Isolates from Chicken Broilers. Animals (Basel) 2021; 11:ani11030728. [PMID: 33800098 PMCID: PMC7999041 DOI: 10.3390/ani11030728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Bacteria of the genus Staphylococcus are universally present on the mucous membranes and skin of warm-blooded animals. They are divided into two groups on the basis of their ability to clot blood plasma: the coagulase-positive (CoPS) and coagulase-negative staphylococci (CoNS). Some species can cause opportunistic infections in poultry. Identification and characterization of strains of the genus Staphylococcus isolated from farm animals are crucial in epidemiological research and for developing effective methods to treat infections and food poisoning induced by these bacteria. The main virulence factor of coagulase-negative staphylococci is considered to be their ability to form complex biofilm structures on the surfaces of damaged tissues. Biofilms increase the invasive properties of CoNS and their ability to cause infection. The purpose of this study was to determine the biofilm-forming potential of coagulase-negative Staphylococcus strains isolated from poultry. The frequency of selected genes potentially playing a role in the biofilm formation process was also determined. The results of the study indicate that the majority (79.3%) of CoNS isolated from broiler chickens in this study were capable of producing a biofilm. Abstract The aim of the study was to analyze the biofilm-production capacity of 87 coagulase-negative Staphylococcus strains (CoNS) isolated from broiler chickens and to determine the occurrence of biofilm-associated genes. The biofilm production capacity of staphylococci was assessed using the microtiter plate method (MTP), and the frequency of genes was determined by PCR. The ability to form a biofilm in vitro was shown in 79.3% of examined strains. Strong biofilm capacity was demonstrated in 26.4% of strains, moderate capacity in 25.3%, weak capacity in 27.6%, and a complete lack of biofilm production capacity in 20.7% of strains. The icaAB gene responsible for the production of extracellular polysaccharide adhesins was detected in 6.9% of strains. The other four genes, i.e., bap (encoding biofilm-associated protein), atlE (encoding cell surface protein exhibiting vitronectin-binding activity), fbe (encoding fibrinogen-binding protein), and eno (encoding laminin-binding protein) were detected in 5.7%, 19.5%, 8%, and 70.1% of strains, respectively. Demonstration of genes that play a role in bacterial biofilm formation may serve as a genetic basis to distinguish between symbiotic and potentially invasive coagulase-negative staphylococcal strains.
Collapse
|
25
|
Grafl B, Gaußmann B, Sulejmanovic T, Hess C, Hess M. Risks and disease aetiologies of compromised performance in commercial broilers kept at lower stocking density and limited antimicrobial use. Avian Pathol 2020; 49:621-630. [PMID: 32746625 DOI: 10.1080/03079457.2020.1805411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The health status of broilers raised at lower stocking density and limited antimicrobial use (but routine anticoccidials) was assessed in order to identify prevalent causes of disease, mortality and reduced performance. "Dead-on-farm"(DOF) broilers from 145 commercial flocks were investigated at two different time points (TP1:7-14 and TP2:28-35 days of age); per sampling, 6-10 DOF broilers were selected for post-mortem investigation and gross pathomorphological changes were assessed from 2717 birds in total. Post-mortem findings were substantiated by bacteriological, virological and parasitological investigations. Furthermore, production data of all flocks were collected and used to perform comprehensive statistical analysis. Overall, colibacillosis was found most important with a significant negative impact on flock health, productivity and profitability through all ages of broiler production. At TP1, primary reasons for mortality comprised yolk sac infections, generally found together with fibrinous polyserositis due to E. coli. Furthermore, femoral lesions, which correlated with increased flock mortality, were associated with detection of E. coli. At TP2, ascites was detected frequently in DOF broilers, correlating with increased production losses in the fourth and fifth weeks of life. No aetiological link between the presence of ascites and the detection of the investigated pathogens was observed, instead a positive correlation was noticed with altitude above sea level of the farm, and with the sex of the birds. Disease conditions could not be linked with the housing system. Presence of infectious bronchitis virus, avian reovirus and fowl adenovirus did not correlate with macroscopic lesions or a specific disease. RESEARCH HIGHLIGHTS In young broilers lesions of visceral organs due to bacterial infections dominated. Colibacillosis impacts broiler health, productivity and profitability independent of the age of birds. Disorders of the locomotor system were frequently observed throughout production. Older broilers frequently showed pathologic changes due to metabolic disorders. Overall, a shift from infectious towards metabolic disease conditions was noticed.
Collapse
Affiliation(s)
- Beatrice Grafl
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Gaußmann
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tarik Sulejmanovic
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claudia Hess
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael Hess
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
26
|
Szafraniec GM, Szeleszczuk P, Dolka B. A Review of Current Knowledge on Staphylococcus agnetis in Poultry. Animals (Basel) 2020; 10:ani10081421. [PMID: 32823920 PMCID: PMC7460464 DOI: 10.3390/ani10081421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This literature review provides a synthesis and evaluation of the current knowledge on Staphylococcus agnetis (S. agnetis) and its implications in poultry pathology. Recent studies revealed that S. agnetis can cause bacterial chondronecrosis with osteomyelitis (BCO), endocarditis, and septicemia in broiler chickens. Lameness constitutes one of the major health and welfare problems causing huge economic losses in the poultry industry. To date, a range of infectious and non-infectious factors have been associated with lameness in poultry. Among bacteria of the genus Staphylococcus, Staphylococcus aureus is the main species associated with locomotor problems. This contrasts with S. agnetis, which until recently had not been considered as a poultry pathogen. Previously only reported in cattle, S. agnetis has expanded its host range to chickens, and due to its unique characteristics has become recognized as a new emerging pathogen. The genotypic and phenotypic similarities between S. agnetis and other two staphylococci (S. hyicus and S. chromogenes) make this pathogen capable of escaping recognition due to misidentification. Although a significant amount of research on S. agnetis has been conducted, many facts about this novel species are still unknown and further studies are required to understand its full significance in poultry pathology. Abstract This review aims to summarize recent discoveries and advancements regarding the characteristics of Staphylococcus agnetis (S. agnetis) and its role in poultry pathology. S. agnetis is an emerging pathogen that was primarily associated with mastitis in dairy cattle. After a presumed host jump from cattle to poultry, it was identified as a pathological agent in broiler chickens (Gallus gallus domesticus), causing lameness induced by bacterial chondronecrosis with osteomyelitis (BCO), septicemia, and valvular endocarditis. Economic and welfare losses caused by lameness are global problems in the poultry industry, and S. agnetis has been shown to have a potential to induce high incidences of lameness in broiler chickens. S. agnetis exhibits a distinct repertoire of virulence factors found in many different staphylococci. It is closely related to S. hyicus and S. chromogenes, hence infections caused by S. agnetis may be misdiagnosed or even undiagnosed. As there are very few reports on S. agnetis in poultry, many facts about its pathogenesis, epidemiology, routes of transmission, and the potential impacts on the poultry industry remain unknown.
Collapse
|
27
|
Dinev I, Kanakov D, Kalkanov I, Nikolov S, Denev S. Comparative Pathomorphologic Studies on the Incidence of Fractures Associated with Leg Skeletal Pathology in Commercial Broiler Chickens. Avian Dis 2020; 63:641-650. [PMID: 31865679 DOI: 10.1637/aviandiseases-d-19-00108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/12/2019] [Indexed: 11/05/2022]
Abstract
The aim of the present investigation is to report the prevalence of spontaneous fractures associated with leg skeletal pathology and compromised welfare in commercial broiler chickens. Our studies focused on fractures of different leg segments (femur, tibiotarsus, tarsometatarsus) detected as incidental findings during pathoanatomic examinations in cases of rickets, tibial dyschondroplasia (TD), and femoral head necrosis (FHN). The morphogenetic and etiopathogenetic aspects of the findings were further investigated through histopathologic, bacteriologic, and bone mineral analyses. The gross anatomy study showed that in about 10% of bones affected by rickets-specific lesions, fractures of the proximal tibiotarsus were present. A relatively low percentage (6.5%) of fractures of the same anatomic location could be attributed to TD lesions. The highest prevalence of fractures (68.5%), mainly of the proximal femur, was associated with FHN and osteomyelites. The results from the large-scale field surveys allowed us to confirm that the prevalence of spontaneous bone fractures of the legs in broiler chickens was largely associated with FHN, rickets, and TD. The poor vascularization of the grown prehypertrophic cartilage in cases of rickets and TD, as well as the osteolytic lesions in FHN, resulted in degenerative, necrobiotic processes which may entail bone fractures.
Collapse
Affiliation(s)
- Ivan Dinev
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria,
| | - Dian Kanakov
- Department of Internal Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Ismet Kalkanov
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Slavko Nikolov
- Department of Internal Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Stefan Denev
- Department of Biochemistry and Microbiology, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
28
|
RNA-seq reveals downregulated osteochondral genes potentially related to tibia bacterial chondronecrosis with osteomyelitis in broilers. BMC Genet 2020; 21:58. [PMID: 32493207 PMCID: PMC7271470 DOI: 10.1186/s12863-020-00862-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background Bacterial chondronecrosis with osteomyelitis (BCO) develops in the growth plate (GP) of the proximal femur and tibia and is initiated by damage to the less mineralized chondrocytes followed by colonization of opportunistic bacteria. This condition affects approximately 1% of all birds housed, being considered one of the major causes of lameness in fast growing broilers. Although several studies have been previously performed aiming to understand its pathogenesis, the molecular mechanisms involved with BCO remains to be elucidated. Therefore, this study aimed to generate a profile of global differential gene expression involved with BCO in the tibia of commercial broilers, through RNA sequencing analysis to identity genes and molecular pathways involved with BCO in chickens. Results Our data showed 192 differentially expressed (DE) genes: 63 upregulated and 129 downregulated in the GP of the tibia proximal epiphysis of BCO-affected broilers. Using all DE genes, six Biological Processes (BP) were associated with bone development (connective tissue development, cartilage development, skeletal system development, organ morphogenesis, system development and skeletal system morphogenesis). The analyses of the upregulated genes did not indicate any significant BP (FDR < 0.05). However, with the downregulated genes, the same BP were identified when using all DE genes in the analysis, with a total of 26 coding genes explaining BCO in the tibia: ACAN, ALDH1A2, CDH7, CHAD, CHADL, COL11A1, COMP, CSGALNACT1, CYR61, FRZB, GAL3ST1, HAPLN1, IHH, KIF26B, LECT1, LPPR1, PDE6B, RBP4A, SERINC5, SFRP1, SOX8, SOX9, TENM2, THBS1, UCHL1 and WFIKKN2. In addition, seven transcription factors were also associated to BCO: NFATC2, MAFB, HIF1A-ARNT, EWSR1-FLI1, NFIC, TCF3 and NF-KAPPAB. Conclusions Our data show that osteochondral downregulated genes are potential molecular causes of BCO in broilers, and the bacterial process seems to be, in fact, a secondary condition. Sixteen genes responsible for bone and cartilage formation were downregulated in BCO-affected broilers being strong candidate genes to trigger this disorder.
Collapse
|
29
|
Wilson FD, Stayer P, Pace LW, Hoerr FJ, Magee DL. Disarticulation-Associated Femoral Head Separation in Clinically Normal Broilers: Histologic Documentation of Underlying and Predisposing Cartilage Abnormalities. Avian Dis 2020; 63:495-505. [PMID: 31967434 DOI: 10.1637/19-00090.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/10/2019] [Indexed: 11/05/2022]
Abstract
Routine and quantitative histologic studies on femoral head separation (FHS) associated with coxofemoral joint disarticulation at necropsy were conducted on 125 femoral heads collected from 21- to 50-day-old clinically normal broilers. The study compared groups demonstrating grossly detached femoral heads (DFHs) with those having attached femoral heads (AFHs). Marked microscopic lesions compatible with osteochondrosis (OCD) consistently occurred along the separation surface in the DFH population. The histologic changes consisted of cartilage degeneration and necrosis sometimes forming small clefts or microfractures. Hemorrhage and less frequent inflammatory cells were often present along the separation surfaces. Small foci of OCD in the femur occurred in the AFH group with lesser frequency and severity. The histologic changes were mainly found within the proximal proliferative zone of the physis near the epiphyseal junction. Histomorphometry disclosed significant quantitative reductions in chondrocyte density with increased pyknosis occurring adjacent to the separation site and to a lesser extent in deeper regions of the growth plate for the DFH compared with AFH. Measurements made along the separation surface of the percentage length occupied by osteochondrotic defects and actual separated cartilage disclosed significant differences between evaluation groups. However, determinations of vascular canal areas present within two or more regions of the growth plate revealed a slight and significant increased area for DFH compared with AFH. Severity scores for the occurrence of microthrombi within the growth plate showed no difference between the groups. The pathogenesis of FHS in broilers is related to defective cartilage production or degeneration resulting in increased fragility. This contrasts with the proposed pathogenesis of OCD in mammals, which involves ischemic necrosis due to underlying vascular defects. The results for the FHS-disarticulation model also differ from those reported for glucorticoid-induced femoral head necrosis in broilers. The FHS-associated lesions occurred without histologic evidence of bacterial chondritis or osteomyelitis.
Collapse
Affiliation(s)
- Floyd D Wilson
- Mississippi Veterinary Research Diagnostic Laboratory, CVM, MSU, West Pearl, MS 39208,
| | | | - Lanny W Pace
- Mississippi Veterinary Research Diagnostic Laboratory, CVM, MSU, West Pearl, MS 39208
| | | | - Danny L Magee
- Mississippi Poultry Research and Diagnostic Laboratory, CVM, MSU, Pearl, MS 39157
| |
Collapse
|
30
|
Complete Genome Sequence of Community-Acquired Methicillin-Resistant Staphylococcus aureus Strain RJ1267, Isolated in Shanghai, China. Microbiol Resour Announc 2020; 9:9/18/e00244-20. [PMID: 32354977 PMCID: PMC7193932 DOI: 10.1128/mra.00244-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Staphylococcal pathogens, especially multidrug-resistant Staphylococcus aureus, are responsible for various clinical infections. Multilocus sequence type 630 (ST630) methicillin-resistant Staphylococcus aureus has been shown to have augmented pathogenicity in humans. In this announcement, we report the complete genome sequence of community-acquired methicillin-resistant strain RJ1267 of Staphylococcus aureus ST630. Staphylococcal pathogens, especially multidrug-resistant Staphylococcus aureus, are responsible for various clinical infections. Multilocus sequence type 630 (ST630) methicillin-resistant Staphylococcus aureus has been shown to have augmented pathogenicity in humans. In this announcement, we report the complete genome sequence of community-acquired methicillin-resistant strain RJ1267 of Staphylococcus aureus ST630.
Collapse
|
31
|
Pedersen IJ, Tahamtani FM, Forkman B, Young JF, Poulsen HD, Riber AB. Effects of environmental enrichment on health and bone characteristics of fast growing broiler chickens. Poult Sci 2020; 99:1946-1955. [PMID: 32241475 PMCID: PMC7587693 DOI: 10.1016/j.psj.2019.11.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 11/24/2022] Open
Abstract
Providing environmental enrichment for broilers is a potential strategy to increase welfare, activity, and health. The aim of this study was to evaluate the effect of environmental enrichment on health and leg bone characteristics of broilers. One control and 8 types of enrichment were included: 2 distances between food and water (7 and 3.5 m), roughage, vertical panels, straw bales, 2 platforms (30 and 5 cm), and a lowered stocking density (34 kg/m2). Birds were kept according to conventional Danish guidelines. The study included 58 pens with approximately 500 birds each. On day 35 of age, 25 birds per pen were killed and included in a postmortem analysis of wooden breast, body condition scores, pathological conditions (femoral head necrosis, arthritis, tenosynovitis, fractures, tibial dyschondroplasia, and twisted tibiotarsus), muscle width of the lower leg, and tibiotarsus properties (bone strength, weight, length, and proximal diameter, middle diameter, and distal diameter). It was predicted that environmental enrichment would have a positive effect on pathology with the exceptions that environmental enrichment that increased activity would pose a risk factor for wooden breast development, and straw bales would be a risk factor for bacterial infections (arthritis, tenosynovitis, and femoral head necrosis). Furthermore, it was hypothesized that enriched groups would have increased muscle width, bone strength, and dimensions of the tibiotarsus. Broilers with 7 m between food and water had a longer distal diameter of the tibiotarsus than those with straw bales (P = 0.04). The birds provided with vertical panels had wider leg muscle than the treatments with roughage (P = 0.045), 3.5 m distance (P = 0.049), and straw bales (P = 0.044). No effects were found for the remaining outcomes. These results suggest that provision of vertical panels and increased distance between resources can result in larger muscle and bone dimension, possibly having a positive effect on leg health. Furthermore, the provision of environmental enrichment does not appear to be a risk factor for wooden breast or bacterial infection.
Collapse
Affiliation(s)
- Ida J Pedersen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg 1870, Denmark.
| | | | - Björn Forkman
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Jette F Young
- Department of Food Science, Aarhus University, Tjele 8830, Denmark
| | - Hanne D Poulsen
- Department of Animal Science, Aarhus University, Tjele 8830, Denmark
| | - Anja B Riber
- Department of Animal Science, Aarhus University, Tjele 8830, Denmark
| |
Collapse
|
32
|
Incidence of Bacterial Chondronecrosis with Osteomyelitis (Femoral Head Necrosis) Induced by a Model of Skeletal Stress and its Correlation with Subclinical Necrotic Enteritis. Microorganisms 2020; 8:microorganisms8020205. [PMID: 32024196 PMCID: PMC7074720 DOI: 10.3390/microorganisms8020205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/25/2022] Open
Abstract
Bacterial chondronecrosis with osteomyelitis (BCO) is a septic necrosis of the skeletal system of unknown origin and an important cause of lameness in broiler chickens. Epithelial inflammation has been proposed as an avenue for bacterial translocation leading to BCO. We evaluated the effect of subclinical necrotic enteritis (SNE), an intestinal inflammatory event, with the development of BCO. In each of two experiments, chickens were divided into three treatments: (1) SNE challenge, including both dietary (wheat- and fish-based diet) and intestinal pathogenic challenges (Eimeria maxima and Clostridium perfringens), (2) dietary challenge only, and (3) control diet (corn-and soy-based diet). Floor ramps were introduced as part of an established method for increasing the frequency of BCO. The efficacy of the SNE challenge was corroborated by necropsy evaluation of a representative sample of the population. At the end of each experiment, all birds were evaluated for BCO. A high incidence of BCO was found, even in birds with no external signs of lameness. However, the incidence of BCO was not correlated with the intestinal challenge. Conclusions: under the conditions used in these studies, a treatment that is associated with severe damage to the intestinal mucosa does not change the incidence of BCO in broiler chickens.
Collapse
|
33
|
Lu Y, Lu Q, Cheng Y, Wen G, Luo Q, Shao H, Zhang T. High concentration of coagulase-negative staphylococci carriage among bioaerosols of henhouses in Central China. BMC Microbiol 2020; 20:21. [PMID: 31992193 PMCID: PMC6986044 DOI: 10.1186/s12866-020-1709-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background Coagulase-negative staphylococci (CoNS) are a group of opportunistic pathogens, which are widely spread in the environment. Animal breeding is an important source of pathogen spreading. However, the concentration and characteristics of CoNS in the bioaerosols of henhouses are unclear. Results In this study, we showed that CoNS were significantly increased in bioaerosols of henhouses during the first 60 days, and reached 2.0 × 106 CFU/m3, which account for 75.4% of total bacteria. One hundred and two CoNS isolates from bioaerosols and nasal swabs of farmers were further identified, covering seven species. Among these, 41.2% isolates were Staphylococcus sciuri, which was the predominant species, followed by S. equorum, S. saprophyticus, S. haemolyticus, S. xylosus, S. arlettae and S. gallinarum. There were high rates of resistance to oxacillin in CoNS (49.0%), which were defined as Methicillin-Resistant CoNS (MRCoNS), and 36.3% isolates contained resistance gene mecA. Bioaerosol infection models showed that, chickens exposed to aerosolized S. sciuri had significant induction of inflammatory cytokines interleukin (IL)-1β, IL-6, IL-8 and IL-10 at 5 days post-infection (dpi) in lungs and at 7 dpi in spleens. Conclusions We reported a high concentration of CoNS in henhouses, and S. sciuri was the preponderant CoNS species. Antibiotic resistance analysis and bioaerosols infection of CoNS further highlighted its hazards on resistance and immunological challenge. These results suggested that, CoNS in bioaerosols could be one serious factor in the henhouses for not only poultry industry but also public health.
Collapse
Affiliation(s)
- Yuanqing Lu
- Key laboratory of prevention and control agents for animal bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Qin Lu
- Key laboratory of prevention and control agents for animal bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yiluo Cheng
- Key laboratory of prevention and control agents for animal bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Guoyuan Wen
- Key laboratory of prevention and control agents for animal bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Qingping Luo
- Key laboratory of prevention and control agents for animal bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Huabin Shao
- Key laboratory of prevention and control agents for animal bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Tengfei Zhang
- Key laboratory of prevention and control agents for animal bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| |
Collapse
|
34
|
Newstead LL, Varjonen K, Nuttall T, Paterson GK. Staphylococcal-Produced Bacteriocins and Antimicrobial Peptides: Their Potential as Alternative Treatments for Staphylococcus aureus Infections. Antibiotics (Basel) 2020; 9:antibiotics9020040. [PMID: 31973108 PMCID: PMC7168290 DOI: 10.3390/antibiotics9020040] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/05/2022] Open
Abstract
Staphylococcus aureus is an important pathogen of both humans and animals, implicated in a wide range of infections. The emergence of antibiotic resistance has resulted in S. aureus strains that are resistant to almost all available antibiotics, making treatment a clinical challenge. Development of novel antimicrobial approaches is now a priority worldwide. Bacteria produce a range of antimicrobial peptides; the most diverse of these being bacteriocins. Bacteriocins are ribosomally synthesised peptides, displaying potent antimicrobial activity usually against bacteria phylogenetically related to the producer strain. Several bacteriocins have been isolated from commensal coagulase-negative staphylococci, many of which display inhibitory activity against S. aureus in vitro and in vivo. The ability of these bacteriocins to target biofilm formation and their novel mechanisms of action with efficacy against antibiotic-resistant bacteria make them strong candidates as novel therapeutic antimicrobials. The use of genome-mining tools will help to advance identification and classification of bacteriocins. This review discusses the staphylococcal-derived antimicrobial peptides displaying promise as novel treatments for S. aureus infections.
Collapse
Affiliation(s)
- Logan L. Newstead
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.L.N.); (T.N.)
| | - Katarina Varjonen
- AniCura Djursjukhuset Albano, Rinkebyvägen 21A, 182 36 Danderyd, Sweden;
| | - Tim Nuttall
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.L.N.); (T.N.)
| | - Gavin K. Paterson
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.L.N.); (T.N.)
- Correspondence:
| |
Collapse
|
35
|
de Oliveira Peixoto J, Savoldi IR, Ibelli AMG, Cantão ME, Jaenisch FRF, Giachetto PF, Settles ML, Zanella R, Marchesi JAP, Pandolfi JR, Coutinho LL, Ledur MC. Proximal femoral head transcriptome reveals novel candidate genes related to epiphysiolysis in broiler chickens. BMC Genomics 2019; 20:1031. [PMID: 31888477 PMCID: PMC6937697 DOI: 10.1186/s12864-019-6411-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The proximal femoral head separation (FHS) or epiphysiolysis is a prevalent disorder affecting the chicken femur epiphysis, being considered a risk factor to infection which can cause bacterial chondronecrosis with osteomyelitis in broilers. To identify the genetic mechanisms involved in epiphysiolysis, differentially expressed (DE) genes in the femur of normal and FHS-affected broilers were identified using RNA-Seq technology. Femoral growth plate (GP) samples from 35-day-old commercial male broilers were collected from 4 healthy and 4 FHS-affected broilers. Sequencing was performed using an Illumina paired-end protocol. Differentially expressed genes were obtained using the edgeR package based on the False Discovery Rate (FDR < 0.05). RESULTS Approximately 16 million reads/sample were generated with 2 × 100 bp paired-end reads. After data quality control, approximately 12 million reads/sample were mapped to the reference chicken genome (Galgal5). A total of 12,645 genes were expressed in the femur GP. Out of those, 314 were DE between groups, being 154 upregulated and 160 downregulated in FHS-affected broilers. In the functional analyses, several biological processes (BP) were overrepresented. Among them, those related to cell adhesion, extracellular matrix (ECM), bone development, blood circulation and lipid metabolism, which are more related to chicken growth, are possibly involved with the onset of FHS. On the other hand, BP associated to apoptosis or cell death and immune response, which were also found in our study, could be related to the consequence of the FHS. CONCLUSIONS Genes with potential role in the epiphysiolysis were identified through the femur head transcriptome analysis, providing a better understanding of the mechanisms that regulate bone development in fast-growing chickens. In this study, we highlighted the importance of cell adhesion and extracellular matrix related genes in triggering FHS. Furthermore, we have shown new insights on the involvement of lipidemia and immune response/inflammation with FHS in broilers. Understanding the changes in the GP transcriptome might support breeding strategies to address poultry robustness and to obtain more resilient broilers.
Collapse
Affiliation(s)
- Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
| | - Igor Ricardo Savoldi
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Universidade do Contestado, Concórdia, Santa Catarina Brazil
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Chapecó, SC Brazil
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
- Universidade do Contestado, Concórdia, Santa Catarina Brazil
| | - Maurício Egídio Cantão
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
| | - Fátima Regina Ferreira Jaenisch
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
| | | | | | - Ricardo Zanella
- Universidade de Passo Fundo, Passo Fundo, RS Brazil
- Programa de Mestrado em BioExperimentação, UPF, Passo Fundo, RS Brazil
| | - Jorge Augusto Petroli Marchesi
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - José Rodrigo Pandolfi
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
| | | | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Chapecó, SC Brazil
| |
Collapse
|
36
|
Giovagnoni G, Tugnoli B, Piva A, Grilli E. Organic Acids and Nature Identical Compounds Can Increase the Activity of Conventional Antibiotics Against Clostridium Perfringens and Enterococcus Cecorum In Vitro. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfz101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
37
|
Kashif A, McClure JA, Lakhundi S, Pham M, Chen S, Conly JM, Zhang K. Staphylococcus aureus ST398 Virulence Is Associated With Factors Carried on Prophage ϕSa3. Front Microbiol 2019; 10:2219. [PMID: 31608039 PMCID: PMC6771273 DOI: 10.3389/fmicb.2019.02219] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/11/2019] [Indexed: 02/01/2023] Open
Abstract
An increasing number of severe infections caused by Staphylococcus aureus ST398 strains has been observed. However, it has not been elucidated whether all ST398 strains are equally virulent. We collected 13 strains from China and Canada to test in a Caenorhabditis elegans infection model and compared their whole genome sequences (WGS) to explore potential insights into their virulence. All isolates belonged to ST398-methicillin-susceptible S. aureus (MSSA) with variant spa types (t034, t571, t1451, t1250). Pulsed field gel electrophoresis (PFGE) and WGS analyses showed that the 13 isolates clustered into 3 genomic types (Types A-C). WGS and prophage phylogenetic analyses also revealed that the strains could be divided into 3 phage groups (Groups 1–3), which correlated with high-, moderate-, and low-nematocidal activities, with mean killing rates of 94, 67, and 40%, respectively. Group 1 carried ϕSa3-Group 1 (ϕSa3-G1), Group 2 carried ϕSa3-G2, and Group 3 lacked ϕSa3. Interestingly, strain GD1706 (that genetically clustered within Type C) and strain GD487 (within Type B) both carried ϕSa3-G1 like phages and killed 92% of the nematodes, similar to the Type A strains carrying ϕSa3-G1. This study demonstrated that different ST398 sub-lineages possess variable virulence capacities, depending on the presence or absence, as well as the structure of the prophage ϕSa3 that carries virulence factors.
Collapse
Affiliation(s)
- Ayesha Kashif
- Centre for Antimicrobial Resistance, Alberta Health Services/Alberta Public Laboratories/University of Calgary, Calgary, AB, Canada
| | - Jo-Ann McClure
- Centre for Antimicrobial Resistance, Alberta Health Services/Alberta Public Laboratories/University of Calgary, Calgary, AB, Canada
| | - Sahreena Lakhundi
- Centre for Antimicrobial Resistance, Alberta Health Services/Alberta Public Laboratories/University of Calgary, Calgary, AB, Canada
| | - Michael Pham
- Centre for Antimicrobial Resistance, Alberta Health Services/Alberta Public Laboratories/University of Calgary, Calgary, AB, Canada
| | - Sidong Chen
- Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou, China
| | - John M Conly
- Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kunyan Zhang
- Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
38
|
How Safe is Chicken Litter for Land Application as an Organic Fertilizer? A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193521. [PMID: 31547196 PMCID: PMC6801513 DOI: 10.3390/ijerph16193521] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
Chicken litter application on land as an organic fertilizer is the cheapest and most environmentally safe method of disposing of the volume generated from the rapidly expanding poultry industry worldwide. However, little is known about the safety of chicken litter for land application and general release into the environment. Bridging this knowledge gap is crucial for maximizing the benefits of chicken litter as an organic fertilizer and mitigating negative impacts on human and environmental health. The key safety concerns of chicken litter are its contamination with pathogens, including bacteria, fungi, helminthes, parasitic protozoa, and viruses; antibiotics and antibiotic-resistant genes; growth hormones such as egg and meat boosters; heavy metals; and pesticides. Despite the paucity of literature about chicken litter safety for land application, the existing information was scattered and disjointed in various sources, thus making them not easily accessible and difficult to interpret. We consolidated scattered pieces of information about known contaminants found in chicken litter that are of potential risk to human, animal, and environmental health and how they are spread. This review tested the hypothesis that in its current form, chicken litter does not meet the minimum standards for application as organic fertilizer. The review entails a meta-analysis of technical reports, conference proceedings, peer-reviewed journal articles, and internet texts. Our findings indicate that direct land application of chicken litter could be harming animal, human, and environmental health. For example, counts of pathogenic strains of Eschericiacoli (105–1010 CFU g−1) and Coliform bacteria (106–108 CFU g−1) exceeded the maximum permissible limits (MPLs) for land application. In Australia, 100% of broiler litter tested was contaminated with Actinobacillus and re-used broiler litter was more contaminated with Salmonella than non-re-used broiler litter. Similarly, in the US, all (100%) broiler litter was contaminated with Eschericiacoli containing genes resistant to over seven antibiotics, particularly amoxicillin, ceftiofur, tetracycline, and sulfonamide. Chicken litter is also contaminated with a vast array of antibiotics and heavy metals. There are no standards set specifically for chicken litter for most of its known contaminants. Even where standards exist for related products such as compost, there is wide variation across countries and bodies mandated to set standards for safe disposal of organic wastes. More rigorous studies are needed to ascertain the level of contamination in chicken litter from both broilers and layers, especially in developing countries where there is hardly any data; set standards for all the contaminants; and standardize these standards across all agencies, for safe disposal of chicken litter on land.
Collapse
|
39
|
Complete Genome Sequence of GD1108, a Moderate-Virulence Strain of Human-Associated ST398 Methicillin-Susceptible Staphylococcus aureus. Microbiol Resour Announc 2019; 8:8/28/e00687-19. [PMID: 31296689 PMCID: PMC6624772 DOI: 10.1128/mra.00687-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus multilocus sequence type 398 (ST398) is responsible for an increasing number of severe infections in humans. There are no reports detailing if all ST398 strains are equally virulent. We present the genome sequence of the moderate-virulence ST398 methicillin-susceptible Staphylococcus aureus strain GD1108, determined in a Caenorhabditis elegans infection model, to reveal the ST398 sublineage virulence.
Collapse
|
40
|
Complete Genome Sequence of GD487, a High-Virulence Strain of Human-Associated ST398 Methicillin-Susceptible Staphylococcus aureus. Microbiol Resour Announc 2019; 8:8/27/e00686-19. [PMID: 31270205 PMCID: PMC6606919 DOI: 10.1128/mra.00686-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Multilocus sequence type 398 (ST398) methicillin-susceptible Staphylococcus aureus (MSSA) has been shown to have augmented pathogenicity in humans. However, it has not been determined whether all ST398 strains are equally virulent. We present here the genome sequence of a high-virulence ST398 MSSA strain, GD487, to explore potential insights into ST398 virulence. Multilocus sequence type 398 (ST398) methicillin-susceptible Staphylococcus aureus (MSSA) has been shown to have augmented pathogenicity in humans. However, it has not been determined whether all ST398 strains are equally virulent. We present here the genome sequence of a high-virulence ST398 MSSA strain, GD487, to explore potential insights into ST398 virulence.
Collapse
|
41
|
Detection of Antibiotic Resistance and Classical Enterotoxin Genes in Coagulase -negative Staphylococci Isolated from Poultry in Poland. J Vet Res 2019; 63:183-190. [PMID: 31276057 PMCID: PMC6598191 DOI: 10.2478/jvetres-2019-0023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/09/2019] [Indexed: 11/30/2022] Open
Abstract
Introduction The study sought to characterise antimicrobial resistance among coagulase-negative Staphylococcus (CNS) species recovered from broiler chickens and turkeys in Poland including the presence of 12 antimicrobial resistance genes and five classical genes of staphylococcal enterotoxins. Material and Methods A panel of 11 antimicrobial disks evaluated the phenotypic sensitivity of the tested strains to antibiotics. Five multiplex PCR assays were performed using primer pairs for specific detection of antibiotic resistance genes and staphylococcal enterotoxin A to E genes. Results Selected antimicrobial agent susceptibility testing revealed 100% of such in in vitro conditions to cefoxitin among strains of Staphylococcus sciuri and S. chromogenes. The blaZ (for ß-lactam) and mecA (for methicillin resistance) genes were in 58.3% and 27.5% of strains, respectively. Among genes resistant to tetracyclines, tetK was most frequent. Fewer (CNS) strains showed genes resistant to macrolides, lincosamides, and florfenicol/chloramphenicol. Multiplex PCR for classical enterotoxins (A-E) detected the see gene in two S. hominis strains, while the seb gene producing enterotoxin B was found in one strain of S. epidermidis. Conclusion CNS strains of Staphylococcus isolated from poultry were either phenotypically or genotypically multidrug resistant. Testing for the presence of the five classical enterotoxin genes showed that CNS strains, as in the case of S. aureus strains, can be a source of food intoxications.
Collapse
|
42
|
Weimer SL, Wideman RF, Scanes CG, Mauromoustakos A, Christensen KD, Vizzier-Thaxton Y. The utility of infrared thermography for evaluating lameness attributable to bacterial chondronecrosis with osteomyelitis. Poult Sci 2019; 98:1575-1588. [PMID: 30508160 DOI: 10.3382/ps/pey538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023] Open
Abstract
Bacterial chondronecrosis with osteomyelitis (BCO) is a leading cause of lameness in broilers. Infrared thermography (IRT) is a noninvasive technique for measuring infrared radiation from an object and can be used to evaluate clinical health. Two replicated studies compared the effect of light intensity on broilers grown on a wire flooring model that experimentally increased their susceptibility to and incidence of BCO lameness. Day-of-hatch male broiler chickens were placed into 6 pens on wood shavings litter, and at 1 wk one of 3 light intensity treatments (2, 5, or 10 lux) was allotted. At 4 wk half of the population from each pen was moved to a pen with wire flooring and the same light intensity. At 1, 4, 5, and 8 wk, an IRT image of the legs of 5 clinically healthy broilers from each pen was taken. The right and left proximal femora and tibiae of sound and lame broilers were scored for femoral head necrosis (FHN) and tibial head necrosis (THN) lesion severity. There were minimal effects of light intensity and flooring. In Study 1, but not Study 2, broilers on wire flooring weighed less on day 38 (P = 0.007) and days 57 to 58 (P = 0.003) compared to those on litter. The proportion of broilers that became lame on wire flooring was 52% in Study 1 and 14% in Study 2. The proportion of sound broilers from litter and wire flooring pens with subclinical signs of BCO in their right or left proximal growth plates was over 45% for FHN and 92% for THN, and lame broilers had more severe (P < 0.0001) FHN and THN compared to sound broilers. IRT surface temperatures of the hock joint, shank, and foot were consistently lower (P < 0.0001) in broilers that became lame when compared to sound. Therefore, IRT surface temperatures of broiler leg regions may be useful for detecting lesions attributed to BCO.
Collapse
Affiliation(s)
- Shawna L Weimer
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Robert F Wideman
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Colin G Scanes
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Andy Mauromoustakos
- Agricultural Statistics Lab, University of Arkansas, Fayetteville, AR 72701, USA
| | - Karen D Christensen
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | |
Collapse
|
43
|
Song H, Bae Y, Kwon H, Kwon Y, Joh S. Loop-mediated isothermal amplification assays for Enterococcussp., Escherichiacoli and Staphylococcusaureus in chicken. FEMS Microbiol Lett 2019; 366:5365398. [PMID: 30806654 PMCID: PMC6483310 DOI: 10.1093/femsle/fnz042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/24/2019] [Indexed: 12/03/2022] Open
Abstract
Bacterial chondronecrosis with osteomyelitis (BCO) is a major cause of lameness in broiler chicken, and results in serious economic losses worldwide. Although the pathogenesis mechanism leading to lameness is not entirely understood, some strains of Enterococcussp., avian pathogenic Escherichia coli or Staphylococcus aureus have been long recognized as important causative pathogens. To prevent the progression of Enterococcussp., avian pathogenic E. coli or S. aureus infections, we developed rapid, sensitive and convenient diagnostic assays using loop-mediated isothermal amplification (LAMP). Entero-Common-LAMP assays were developed for simultaneous detection of eight Enterococcus species. To target specific microorganisms, seven Entero-Specific-LAMP assays for E. faecalis, E. faecium, E. hirae, E. gallinarum, E. avium, E. duransand E. cecorum were developed, as well as E. coli-LAMP and S. aureus-LAMP assays. Considering the prevalence and economic impact of Enterococcussp., E. coli and S. aureus, the 10 different LAMP assays which were developed have considerable potential as routine diagnostic methods in the field or in resource-limited environments.
Collapse
Affiliation(s)
- HyeSoon Song
- Avian disease division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea
| | - YouChan Bae
- Avian disease division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea
| | - HyukMan Kwon
- Avian disease division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea
| | - YongKuk Kwon
- Avian disease division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea
| | - SeongJoon Joh
- Avian disease division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea
| |
Collapse
|
44
|
Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev 2018; 31:e00020-18. [PMID: 30209034 PMCID: PMC6148192 DOI: 10.1128/cmr.00020-18] [Citation(s) in RCA: 785] [Impact Index Per Article: 130.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus, a major human pathogen, has a collection of virulence factors and the ability to acquire resistance to most antibiotics. This ability is further augmented by constant emergence of new clones, making S. aureus a "superbug." Clinical use of methicillin has led to the appearance of methicillin-resistant S. aureus (MRSA). The past few decades have witnessed the existence of new MRSA clones. Unlike traditional MRSA residing in hospitals, the new clones can invade community settings and infect people without predisposing risk factors. This evolution continues with the buildup of the MRSA reservoir in companion and food animals. This review focuses on imparting a better understanding of MRSA evolution and its molecular characterization and epidemiology. We first describe the origin of MRSA, with emphasis on the diverse nature of staphylococcal cassette chromosome mec (SCCmec). mecA and its new homologues (mecB, mecC, and mecD), SCCmec types (13 SCCmec types have been discovered to date), and their classification criteria are discussed. The review then describes various typing methods applied to study the molecular epidemiology and evolutionary nature of MRSA. Starting with the historical methods and continuing to the advanced whole-genome approaches, typing of collections of MRSA has shed light on the origin, spread, and evolutionary pathways of MRSA clones.
Collapse
Affiliation(s)
- Sahreena Lakhundi
- Centre for Antimicrobial Resistance, Alberta Health Services/Calgary Laboratory Services/University of Calgary, Calgary, Alberta, Canada
| | - Kunyan Zhang
- Centre for Antimicrobial Resistance, Alberta Health Services/Calgary Laboratory Services/University of Calgary, Calgary, Alberta, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
45
|
Braga JFV, Martins NRS, Ecco R. Vertebral Osteomyelitis in Broilers: A Review. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- JFV Braga
- Universidade Federal de Minas Gerais, Brazil; Universidade Federal Rural do Semi-árido, Brazil
| | - NRS Martins
- Universidade Federal de Minas Gerais, Brazil
| | - R Ecco
- Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
46
|
Sexton TY, Geornaras I, Belk KE, Bunning M, Martin JN. Salmonella Contamination in Broiler Synovial Fluid: Are We Missing a Potential Reservoir? J Food Prot 2018; 81:1425-1431. [PMID: 30067383 DOI: 10.4315/0362-028x.jfp-17-431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to assess the presence and characteristics of Salmonella enterica found in the synovial fluid of broiler carcasses. The synovial fluid of three individual joints from 500 broiler carcasses was individually sampled from five broiler processing facilities located in the Southeast and West regions of the United States (1,500 total samples). The external surface of broiler carcass was decontaminated before sampling of the shoulder, coxofemoral, and tibiofemoral joints. Individual samples were enriched, composited, and subjected to rapid PCR-based detection of Salmonella. Individual samples from any positive composites were also enriched before determination of Salmonella presence in the same manner. Positive individual samples were subjected to secondary enrichment before plating onto selective agar for isolation of Salmonella. Salmonella isolates were serotyped before determination of antimicrobial susceptibility. Overall, 1.00% (5 of 500 broiler carcasses) of composite samples and 0.47% (7 of 1,500 samples) of individual samples were positive for Salmonella. Five of the seven isolates were susceptible to all drugs tested and determined to be Salmonella Enteritidis. The remaining two isolates, identified as Salmonella Typhimurium, were resistant to streptomycin. To our knowledge, no previous assessments of Salmonella in the synovial fluid of broilers has been reported; however, results of the present study suggested that the synovial fluid may be a reservoir for Salmonella in broilers. Although the prevalence of Salmonella is low, this information provides valuable insight into potential poultry contamination pathways and warrants further exploration.
Collapse
Affiliation(s)
- T Y Sexton
- 1 Center for Meat Safety & Quality, Department of Animal Sciences (ORCID: http://orcid.org/0000-0002-0761-0720 [J.N.M.]), and
| | - Ifigenia Geornaras
- 1 Center for Meat Safety & Quality, Department of Animal Sciences (ORCID: http://orcid.org/0000-0002-0761-0720 [J.N.M.]), and
| | - Keith E Belk
- 1 Center for Meat Safety & Quality, Department of Animal Sciences (ORCID: http://orcid.org/0000-0002-0761-0720 [J.N.M.]), and
| | - Marisa Bunning
- 2 Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, Colorado 80525, USA
| | - Jennifer N Martin
- 1 Center for Meat Safety & Quality, Department of Animal Sciences (ORCID: http://orcid.org/0000-0002-0761-0720 [J.N.M.]), and
| |
Collapse
|
47
|
Raehtz S, Hargis BM, Kuttappan VA, Pamukcu R, Bielke LR, McCabe LR. High Molecular Weight Polymer Promotes Bone Health and Prevents Bone Loss Under Salmonella Challenge in Broiler Chickens. Front Physiol 2018; 9:384. [PMID: 29706903 PMCID: PMC5908899 DOI: 10.3389/fphys.2018.00384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
As a consequence of rapid growth, broiler chickens are more susceptible to infection as well as bone fractures that result in birds being culled. Intestinal infection/inflammation has been demonstrated to promote bone loss in mice and humans. Given this link, we hypothesize that therapeutics that target the gut can benefit bone health. To test this, we infected broiler chickens (7 days old) with Salmonella and treated the birds with or without MDY, a non-absorbable mucus supplement known to benefit intestinal health, from day 1–21 or from day 14–21. Chicken femoral trabecular and cortical bone parameters were analyzed by microcomputed tomography at 21 days. Birds infected with Salmonella displayed significant trabecular bone loss and bone microarchitecture abnormalities that were specific to the femoral neck region, a common site of fracture in chickens. Histological analyses of the chicken bone indicated an increase in osteoclast surface/bone surface in this area indicating that infection-induced bone resorption likely causes the bone loss. Of great interest, treatment with MDY effectively prevented broiler chicken bone loss and architectural changes when given chronically throughout the experiment or for only a week after infection. The latter suggests that MDY may not only prevent bone loss but reverse bone loss. MDY also increased cortical bone mineral density in Salmonella-treated chickens. Taken together, our studies demonstrate that Salmonella-induced bone loss in broiler chickens is prevented by oral MDY.
Collapse
Affiliation(s)
- Sandi Raehtz
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Vivek A Kuttappan
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Rifat Pamukcu
- Midway Pharmaceuticals, Spring House, PA, United States
| | - Lisa R Bielke
- Department of Animal Science, Ohio State University, Columbus, OH, United States
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, MI, United States.,Department of Radiology, Michigan State University, East Lansing, MI, United States.,Biomedical Imaging Research Centre, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
48
|
Frediani MH, Pizzutto CS, Alves MBR, Pereira RJG. Effect of simple and low-cost enrichment items on behavioral, clinical, and productive variables of caged laying hens. J APPL ANIM WELF SCI 2018; 22:139-148. [PMID: 29607700 DOI: 10.1080/10888705.2018.1448984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Housing layers in battery cages is a practice still used by many countries but it has been criticized because of its influence on behavioral repertoire of birds. We investigated whether simple and affordable enrichment devices alone impact behavior, foot condition and performance of laying hens housed in conventional cages. Hens were divided into plain cages (CON), cages with perches (PER), and cages with tassels and scratch-pads (ENR), and parameters were evaluated before and after enrichment placement. After perch placement inactivity, drinking and competition for space reduced 35.6%, 40.8% and 70.3%, respectively, whereas social interaction increased 19.3%. Both modifications decreased locomotion (75.0% and 42.4% for PER and ENR respectively) and abnormal behaviors (62.5% and 43.9.4% for PER and ENR respectively). None of the performance variables were affected by ENR or PER. Thermography was more efficient than visual inspection in detecting subclinical bumblefoot, and it confirmed that PER reduced subclinical and clinical cases. Our findings indicate that perches increased welfare-related behaviors and foot health of hens, supporting the use of these inexpensive and highly adaptable alternatives for the enrichment of battery cages.
Collapse
Affiliation(s)
- Mayra H Frediani
- a Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia , Universidade de São Paulo , São Paulo , Brazil
| | - Cristiane S Pizzutto
- a Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia , Universidade de São Paulo , São Paulo , Brazil
| | - Maíra B R Alves
- a Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia , Universidade de São Paulo , São Paulo , Brazil
| | - Ricardo J G Pereira
- a Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia , Universidade de São Paulo , São Paulo , Brazil
| |
Collapse
|
49
|
Gaußmann B, Hess C, Grafl B, Kovacs M, Troxler S, Stessl B, Hess M, Paudel S. Escherichia coli isolates from femoral bone marrow of broilers exhibit diverse pheno- and genotypic characteristics that do not correlate with macroscopic lesions of bacterial chondronecrosis with osteomyelitis. Avian Pathol 2018; 47:271-280. [DOI: 10.1080/03079457.2018.1440065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Barbara Gaußmann
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Beatrice Grafl
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Mercedes Kovacs
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Salome Troxler
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Beatrix Stessl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Surya Paudel
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
50
|
Petry B, Savoldi IR, Ibelli AMG, Paludo E, de Oliveira Peixoto J, Jaenisch FRF, de Córdova Cucco D, Ledur MC. New genes involved in the Bacterial Chondronecrosis with Osteomyelitis in commercial broilers. Livest Sci 2018. [DOI: 10.1016/j.livsci.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|