1
|
Peña-Martín MC, Marcos-Vadillo E, García-Berrocal B, Heredero-Jung DH, García-Salgado MJ, Lorenzo-Hernández SM, Larrue R, Lenski M, Drevin G, Sanz C, Isidoro-García M. A Comparison of Molecular Techniques for Improving the Methodology in the Laboratory of Pharmacogenetics. Int J Mol Sci 2024; 25:11505. [PMID: 39519058 PMCID: PMC11546559 DOI: 10.3390/ijms252111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
One of the most critical goals in healthcare is safe and effective drug therapy, which is directly related to an individual's response to treatment. Precision medicine can improve drug safety in many scenarios, including polypharmacy, and it requires the development of new genetic characterization methods. In this report, we use real-time PCR, microarray techniques, and mass spectrometry (MALDI-TOF), which allows us to compare them and identify the potential benefits of technological improvements, leading to better quality medical care. These comparative studies, as part of our pharmacogenetic Five-Step Precision Medicine (5SPM) approach, reveal the superiority of mass spectrometry over the other methods analyzed and highlight the importance of updating the laboratory's pharmacogenetic methodology to identify new variants with clinical impact.
Collapse
Affiliation(s)
- María Celsa Peña-Martín
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Pharmacology-Toxicology and Pharmacovigilance Department, Angers University Hospital, F-49100 Angers, France;
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Elena Marcos-Vadillo
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Belén García-Berrocal
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - David Hansoe Heredero-Jung
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - María Jesús García-Salgado
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Sandra Milagros Lorenzo-Hernández
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Romain Larrue
- CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France;
| | - Marie Lenski
- CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS-IMPact of the Chemical Environment on Health, University of Lille, F-59000 Lille, France;
| | - Guillaume Drevin
- Pharmacology-Toxicology and Pharmacovigilance Department, Angers University Hospital, F-49100 Angers, France;
| | - Catalina Sanz
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain
| | - María Isidoro-García
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Hu J, Xia H, Chen X, Xu X, Wu HL, Shen Y, Xu RA, Wu W. Effect of isavuconazole on the pharmacokinetics of sunitinib and its mechanism. BMC Cancer 2024; 24:1131. [PMID: 39261851 PMCID: PMC11389264 DOI: 10.1186/s12885-024-12904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Sunitinib, a newly developed multi-targeted tyrosine kinase inhibitor (TKI), has become a common therapeutic option for managing advanced renal cell carcinoma (RCC). Examining the mechanism underlying the interaction between sunitinib and isavuconazole was the aim of this effort. METHODS The concentrations of sunitinib and its primary metabolite, N-desethyl sunitinib, were analyzed and quantified using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Our study evaluated the potential interaction between isavuconazole and sunitinib using rat liver microsomes (RLM), human liver microsomes (HLM), and in vivo rat models. For the in vivo study, two groups (n = 5) of Sprague-Dawley (SD) rats were randomly allocated to receive sunitinib either with or without co-administration of isavuconazole. Additionally, the effects of isavuconazole on the metabolic stability of sunitinib and N-desethyl sunitinib were studied in RLM in vitro. RESULTS Our findings demonstrated that in RLM, isavuconazole exhibited a mixed non-competitive and competitive inhibition mechanism, with an IC50 (half maximal inhibitory concentration) value of 1.33 µM. Meanwhile, in HLM, isavuconazole demonstrated a competitive inhibition mechanism, with an IC50 of 5.30 µM. In vivo studies showed that the presence of isavuconazole significantly increased the pharmacokinetic characteristics of sunitinib, with the AUC(0→t), AUC(0→∞), and Tmax rising to approximately 211.38%, 203.92%, and 288.89%, respectively, in contrast to the control group (5 mg/kg sunitinib alone). The pharmacokinetic characteristics of the metabolite N-desethyl sunitinib in the presence of isavuconazole remained largely unchanged compared to the control group. Furthermore, in vitro metabolic stability experiments revealed that isavuconazole inhibited the metabolic processing of both sunitinib and N-desethyl sunitinib. CONCLUSIONS Isavuconazole had a major impact on sunitinib metabolism, providing fundamental information for the precise therapeutic administration of sunitinib.
Collapse
Affiliation(s)
- Jinyu Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hailun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohai Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinhao Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hua-Lu Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxin Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wenzhi Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Sun S, Zhang R, Chen Y, Xu Y, Li X, Liu C, Chen G, Wei X. E4bp4-Cyp3a11 axis in high-fat diet-induced obese mice with weight fluctuation. Nutr Metab (Lond) 2024; 21:30. [PMID: 38802929 PMCID: PMC11131204 DOI: 10.1186/s12986-024-00803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE Weight regain after weight loss is a challenge in obesity management. The metabolic changes and underlying mechanisms in obese people with weight fluctuation remain to be elucidated. In the present study, we aimed to profile the features and clinical significance of liver transcriptome in obese mice with weight regain after weight loss. METHODS The male C57BL/6J mice were fed with standard chow diet or high-fat diet (HFD). After 9 weeks, the HFD-induced obese mice were randomly divided into weight gain (WG), weight loss (WL) and weight regain (WR) group. After 10 weeks of dietary intervention, body weight, fasting blood glucose (FBG), intraperitoneal glucose tolerance, triglycerides (TG), total cholesterol (T-CHO) and low-density lipoprotein cholesterol (LDL-C) were measured. Morphological structure and lipid droplet accumulation in the liver were observed by H&E staining and oil red O staining, respectively. The liver transcriptome was detected by RNA sequencing. Protein expressions of liver cytochrome P450 3a11 (Cyp3a11) and E4 promoter-binding protein 4 (E4bp4) were determined by Western blot. RESULTS After 10 weeks of dietary intervention, the body weight, FBG, glucose area under the curve, T-CHO and LDL-C in WL group were significantly lower than those in WG group (P < 0.05). At 4 weeks of HFD re-feeding, the mice in WR group presented body weight and T-CHO significantly lower than those in WG group, whereas higher than those in WL group (P < 0.05). Hepatic vacuolar degeneration and lipid droplet accumulation in the liver were significantly alleviated in WL group and WR group, compared to those in WG group. The liver transcriptome associated with lipid metabolism was significantly altered during weight fluctuation in obese mice. Compared with those in WG group, Cyp3a11 in the liver was significantly upregulated, and E4bp4 was significantly downregulated in WL and WR groups. CONCLUSION Obese mice experience weight regain after weight loss by HFD re-feeding, but their glucose and lipid metabolism disorders are milder than those induced by the persistence of obesity. Downregulated E4bp4 and upregulated Cyp3a11 are detected in obese mice after weight loss, suggesting that the E4bp4-Cyp3a11 axis may involved in metabolic mechanisms underlying weight regulation.
Collapse
Affiliation(s)
- Shuoshuo Sun
- Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Ruixiang Zhang
- Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Yu Chen
- Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Yijiao Xu
- Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Xingjia Li
- Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Chao Liu
- Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Guofang Chen
- Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China.
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China.
| | - Xiao Wei
- Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China.
| |
Collapse
|
4
|
Hu Z, Wang W, Yang H, Zhao F, Sha C, Mi W, Yin S, Wang H, Tian J, Ye L. Metabolism, Disposition, Excretion, and Potential Transporter Inhibition of 7-16, an Improving 5-HT 2A Receptor Antagonist and Inverse Agonist for Parkinson's Disease. Molecules 2024; 29:2184. [PMID: 38792047 PMCID: PMC11124362 DOI: 10.3390/molecules29102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Compound 7-16 was designed and synthesized in our previous study and was identified as a more potential selective 5-HT2A receptor antagonist and inverse agonist for treating Parkinson's disease psychosis (PDP). Then, the metabolism, disposition, and excretion properties of 7-16 and its potential inhibition on transporters were investigated in this study to highlight advancements in the understanding of its therapeutic mechanisms. The results indicate that a total of 10 metabolites of 7-16/[14C]7-16 were identified and determined in five species of liver microsomes and in rats using UPLC-Q Exactive high-resolution mass spectrometry combined with radioanalysis. Metabolites formed in human liver microsomes could be covered by animal species. 7-16 is mainly metabolized through mono-oxidation (M470-2) and N-demethylation (M440), and the CYP3A4 isozyme was responsible for both metabolic reactions. Based on the excretion data in bile and urine, the absorption rate of 7-16 was at least 74.7%. 7-16 had weak inhibition on P-glycoprotein and no effect on the transport activity of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 transporters. The comprehensive pharmacokinetic properties indicate that 7-16 deserves further development as a new treatment drug for PDP.
Collapse
Affiliation(s)
- Zhengping Hu
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (W.W.)
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Huijie Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Fengjuan Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Chunjie Sha
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Wei Mi
- School of Public Health, Binzhou Medical University, Yantai 264003, China
| | - Shuying Yin
- School of Public Health, Binzhou Medical University, Yantai 264003, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (W.W.)
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (W.W.)
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Liang Ye
- School of Public Health, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
5
|
Shi B, Jiang Y, Yang J, Zhao R, Wang T, Su G, Ding Y, Li Q, Meng J, Hu M. Ecological risks induced by consumption and emission of Pharmaceutical and personal care products in Qinghai-Tibet Plateau: Insights from the polar regions. ENVIRONMENT INTERNATIONAL 2023; 178:108125. [PMID: 37552929 DOI: 10.1016/j.envint.2023.108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
As the third pole of the world and Asia's water tower, the Tibetan Plateau experiences daily release of pharmaceutical and personal care products (PPCPs) due to increasing human activity. This study aimed to explore the potential relationship between the concentration and composition of PPCPs and human activity, by assessing the occurrence of PPCPs in areas of typical human activity on the Qinghai-Tibet Plateau and evaluating their ecological risk. The results indicate that 28 out of 30 substances were detected in concentrations ranging from less than 1 ng/L to hundreds of ng/L, with the average concentration of most PPCPs in the Tibet Autonomous Region being higher than that in Qinghai Province. Among the detected substances, CAF, NOR, CTC, CIP, TCN, OTC, AZN, and DOX accounted for over 90% of the total concentration. The emission sources of PPCPs were identified by analyzing the correlation coefficients of soil and water samples, with excess PPCPs used by livestock breeding discharged directly into soil and then into surface water through leaching or runoff. By comparing the concentration and composition of PPCPs with those in other regions, this study found that CIP, ENR, LOM, NOR, CTC, DOX, OTC, and TCN were the most commonly used PPCPs in the Qinghai-Tibet Plateau. To assess the ecological risk of PPCPs, organisms at different trophic levels, including algae, crustaceans, fish, and insects, were selected. The prediction of the no effect concentration of each PPCP showed that NOR, CTC, TCN, CAF, and CBZ may have deleterious effects on water biota. This study can assist in identifying the emission characteristics of PPCPs from different types and intensities of human activities, as well as their occurrence and fate during the natural decay of aquatic systems.
Collapse
Affiliation(s)
- Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjian Jiang
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Renxin Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanpeng Ding
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Hu
- Command Center of Natural Resources Comprehensive Survey, China Geological Survey, Beijing 100055, China
| |
Collapse
|
6
|
Yang J, Bai X, Liu G, Li X. A transcriptional regulatory network of HNF4α and HNF1α involved in human diseases and drug metabolism. Drug Metab Rev 2022; 54:361-385. [PMID: 35892182 DOI: 10.1080/03602532.2022.2103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
HNF4α and HNF1α are core transcription factors involved in the development and progression of a variety of human diseases and drug metabolism. They play critical roles in maintaining the normal growth and function of multiple organs, mainly the liver, and in the metabolism of endogenous and exogenous substances. The twelve isoforms of HNF4α may exhibit different physiological functions, and HNF4α and HNF1α show varying or even opposing effects in different types of diseases, particularly cancer. Additionally, the regulation of CYP450, phase II drug-metabolizing enzymes, and drug transporters is affected by several factors. This article aims to review the role of HNF4α and HNF1α in human diseases and drug metabolism, including their structures and physiological functions, affected diseases, regulated drug metabolism genes, influencing factors, and related mechanisms. We also propose a transcriptional regulatory network of HNF4α and HNF1α that regulates the expression of target genes related to disease and drug metabolism.
Collapse
Affiliation(s)
- Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
7
|
Shi H, Zhao J, Li Y, Li J, Li Y, Zhang J, Qiu Z, Wu C, Qin M, Liu C, Zeng Z, Zhang C, Gao L. Ginsenosides Rg1 regulate lipid metabolism and temperature adaptation in Caenorhabditis elegans. J Ginseng Res 2022. [DOI: 10.1016/j.jgr.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Zhai Q, van der Lee M, van Gelder T, Swen JJ. Why We Need to Take a Closer Look at Genetic Contributions to CYP3A Activity. Front Pharmacol 2022; 13:912618. [PMID: 35784699 PMCID: PMC9243486 DOI: 10.3389/fphar.2022.912618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cytochrome P450 3A (CYP3A) subfamily enzymes are involved in the metabolism of 40% of drugs in clinical use. Twin studies have indicated that 66% of the variability in CYP3A4 activity is hereditary. Yet, the complexity of the CYP3A locus and the lack of distinct drug metabolizer phenotypes has limited the identification and clinical application of CYP3A genetic variants compared to other Cytochrome P450 enzymes. In recent years evidence has emerged indicating that a substantial part of the missing heritability is caused by low frequency genetic variation. In this review, we outline the current pharmacogenomics knowledge of CYP3A activity and discuss potential future directions to improve our genetic knowledge and ability to explain CYP3A variability.
Collapse
|
9
|
Tie D, Fan Z, Chen D, Chen X, Chen Q, Chen J, Bo H. Mechanisms of Danggui Buxue Tang on Hematopoiesis via Multiple Targets and Multiple Components: Metabonomics Combined with Database Mining Technology. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1155-1171. [PMID: 35475977 DOI: 10.1142/s0192415x22500471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study aimed to explore the mechanism of action of Danggui Buxue Tang (DBT) with its multiple components and targets in the synergistic regulation of hematopoiesis. Mouse models of hematopoiesis were established using antibiotics. Metabolomics was used to detect body metabolites and enriched pathways. The active ingredients, targets, and pathways of DBT were analyzed using system pharmacology. The results of metabolomics and system pharmacology were integrated to identify the key pathways and targets. A total of 515 metabolites were identified using metabolomics. After the action of antibiotics, 49 metabolites were markedly changed: 23 were increased, 26 were decreased, and 11 were significantly reversed after DBT administration. Pathway enrichment analysis showed that these 11 metabolites were related to bile secretion, cofactor biosynthesis, and fatty acid biosynthesis. The results of the pharmacological analysis showed that 616 targets were related to DBT-induced anemia, which were mainly enriched in biological processes, such as bile secretion, biosynthesis of cofactors, and cholesterol metabolism. Combined with the results of metabolomics and system pharmacology, we found that bile acid metabolism and biotin synthesis were the key pathways for DBT. Forty-two targets of DBT were related to these two metabolic pathways. PPI analysis revealed that the top 10 targets were CYP3A4, ABCG2, and UGT1A8. Twenty-one components interacted with these 10 targets. In one case, a target corresponds to multiple components, and a component corresponds to multiple targets. DBT acts on multiple targets of ABCG2, UGT1A8, and CYP3A4 through multiple components, affecting the biosynthesis of cofactors and bile secretion pathways to regulate hematopoiesis.
Collapse
Affiliation(s)
- Defu Tie
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Zhaohui Fan
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Dan Chen
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Xiao Chen
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Qizhu Chen
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Jun Chen
- College of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, P. R. China
| | - Huaben Bo
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| |
Collapse
|
10
|
Zhang J, Wang R. Changes in CYP3A4 Enzyme Expression and Biochemical Markers Under Acute Hypoxia Affect the Pharmacokinetics of Sildenafil. Front Physiol 2022; 13:755769. [PMID: 35153825 PMCID: PMC8829446 DOI: 10.3389/fphys.2022.755769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
To investigate the effects of pathological, physiological, biochemical and metabolic enzymes CYP3A4 on the pharmacokinetics of sildenafil under acute hypoxia, rats were randomly divided into the plain group (50 m above sea level), acute plateau group 1 (2300 m above sea level), and acute plateau group 2 (4300 m above sea level), and blood samples and liver tissues were collected. Our results showed that the blood gas, physiological and biochemical indexes of rats changed under acute hypoxia, and the protein expression of CYP3A4 enzyme decreased. The process of absorption, distribution, metabolism and excretion of sildenafil in rats has changed. Compared with the P group, the area under the drug-time curve and the average resident in the H2 group increased to 213.32 and 72.34%, respectively. The half-life and peak concentration increased by 44.27 and 133.67%, respectively. The clearance rate and apparent distribution volume decreased to 69.13 and 46.75%, respectively. There were no statistical differences in the pharmacokinetic parameters between the P group and the H1 group. In conclusion, the pharmacokinetic changes of sildenafil have a multi-factor regulation mechanism, and changes in blood gas, pathology, and biochemical indicators and metabolic enzymes affect the absorption, distribution, excretion, and metabolism of sildenafil, respectively. This study provides experimental evidence and new ideas for the rational use of sildenafil under acute hypoxic conditions.
Collapse
Affiliation(s)
- Juanhong Zhang
- College of Life Science, Northwest Normal University, Lanzhou, China.,Key Laboratory for Prevention and Remediation of Plateau Environmental Damage, 940th Hospital of Joint Logistics Support Force of CPLA, Lanzhou, China.,School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Rong Wang
- College of Life Science, Northwest Normal University, Lanzhou, China.,Key Laboratory for Prevention and Remediation of Plateau Environmental Damage, 940th Hospital of Joint Logistics Support Force of CPLA, Lanzhou, China.,School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Zhao N, Zhang Y, Cheng R, Zhang D, Li F, Guo Y, Qiu Z, Dong X, Ban X, Sun B, Zhao X. Spatial maps of hepatocellular carcinoma transcriptomes highlight an unexplored landscape of heterogeneity and a novel gene signature for survival. Cancer Cell Int 2022; 22:57. [PMID: 35109839 PMCID: PMC8812006 DOI: 10.1186/s12935-021-02430-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/24/2021] [Indexed: 01/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) often presents with satellite nodules, rendering current curative treatments ineffective in many patients. The heterogeneity of HCC is a major challenge in personalized medicine. The emergence of spatial transcriptomics (ST) provides a powerful strategy for delineating the complex molecular landscapes of tumours. Methods In this study, the heterogeneity of tissue-wide gene expression in tumour and adjacent nonneoplastic tissues using ST technology were investigated. The transcriptomes of nearly 10,820 tissue regions and identified the main gene expression clusters and their specific marker genes (differentially expressed genes, DEGs) in patients were analysed. The DEGs were analysed from two perspectives. First, two distinct gene profiles were identified to be associated with satellite nodules and conducted a more comprehensive analysis of both gene profiles. Their clinical relevance in human HCC was validated with Kaplan–Meier (KM) Plotter. Second, DEGs were screened with The Cancer Genome Atlas (TCGA) database to divide the HCC cohort into high- and low-risk groups according to Cox analysis. HCC patients from the International Cancer Genome Consortium (ICGC) cohort were used for validation. KM analysis was used to compare the overall survival (OS) between the high- and low-risk groups. Univariate and multivariate Cox analyses were applied to determine the independent predictors for OS. Results Novel markers for the prediction of satellite nodules were identified and a tumour clusters-specific marker gene signature model (6 genes) for HCC prognosis was constructed. Conclusion The establishment of marker gene profiles may be an important step towards an unbiased view of HCC, and the 6-gene signature can be used for prognostic prediction in HCC. This analysis will help us to clarify one of the possible sources of HCC heterogeneity and uncover pathogenic mechanisms and novel antitumour drug targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02430-9.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Runfen Cheng
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yuhong Guo
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Zhiqiang Qiu
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Xinchao Ban
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China. .,Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
12
|
Özkan A, Stolley DL, Cressman ENK, McMillin M, DeMorrow S, Yankeelov TE, Rylander MN. Tumor Microenvironment Alters Chemoresistance of Hepatocellular Carcinoma Through CYP3A4 Metabolic Activity. Front Oncol 2021; 11:662135. [PMID: 34262860 PMCID: PMC8273608 DOI: 10.3389/fonc.2021.662135] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
Variations in tumor biology from patient to patient combined with the low overall survival rate of hepatocellular carcinoma (HCC) present significant clinical challenges. During the progression of chronic liver diseases from inflammation to the development of HCC, microenvironmental properties, including tissue stiffness and oxygen concentration, change over time. This can potentially impact drug metabolism and subsequent therapy response to commonly utilized therapeutics, such as doxorubicin, multi-kinase inhibitors (e.g., sorafenib), and other drugs, including immunotherapies. In this study, we utilized four common HCC cell lines embedded in 3D collagen type-I gels of varying stiffnesses to mimic normal and cirrhotic livers with environmental oxygen regulation to quantify the impact of these microenvironmental factors on HCC chemoresistance. In general, we found that HCC cells with higher baseline levels of cytochrome p450-3A4 (CYP3A4) enzyme expression, HepG2 and C3Asub28, exhibited a cirrhosis-dependent increase in doxorubicin chemoresistance. Under the same conditions, HCC cell lines with lower CYP3A4 expression, HuH-7 and Hep3B2, showed a decrease in doxorubicin chemoresistance in response to an increase in microenvironmental stiffness. This differential therapeutic response was correlated with the regulation of CYP3A4 expression levels under the influence of stiffness and oxygen variation. In all tested HCC cell lines, the addition of sorafenib lowered the required doxorubicin dose to induce significant levels of cell death, demonstrating its potential to help reduce systemic doxorubicin toxicity when used in combination. These results suggest that patient-specific tumor microenvironmental factors, including tissue stiffness, hypoxia, and CYP3A4 activity levels, may need to be considered for more effective use of chemotherapeutics in HCC patients.
Collapse
Affiliation(s)
- Alican Özkan
- Department of Mechanical Engineering, The University of Texas, Austin, TX, United States
| | - Danielle L. Stolley
- Department of Biomedical Engineering, The University of Texas, Austin, TX, United States
| | - Erik N. K. Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Matthew McMillin
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Central Texas Veterans Health Care System, Temple, TX, United States
| | - Sharon DeMorrow
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Central Texas Veterans Health Care System, Temple, TX, United States
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas, Austin, TX, United States
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX, United States
- Departments of Diagnostic Medicine, The University of Texas, Austin, TX, United States
- Department of Oncology, The University of Texas, Austin, TX, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas, Austin, TX, United States
| | - Marissa Nichole Rylander
- Department of Mechanical Engineering, The University of Texas, Austin, TX, United States
- Department of Biomedical Engineering, The University of Texas, Austin, TX, United States
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX, United States
| |
Collapse
|
13
|
Sun Y, He M, Sun Y, Wei J. 4-O-galloylalbiflorin inhibits the activity of CYP3A, 2C9, and 2D in human liver microsomes. Xenobiotica 2021; 51:871-876. [PMID: 34082641 DOI: 10.1080/00498254.2021.1936688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The effect of 4-O-galloylalbiflorin on the activity of cytochrome P450 enzymes (CYP450s) is an important factor that may induce drug-drug interaction.The effect of 4-O-galloylalbiflorin on the activity of CYP450s was evaluated in the presence of 0, 2.5, 5, 10, 25, 50, and 100 μM 4-O-galloylalbiflorin in pooled human liver microsomes. The inhibition model and corresponding parameters were assessed b fitting with Lineweaver-Burk plots. The time-dependent study was performed with the incubation time of 0, 5, 10, 15, and 30 min.4-O-galloylalbiflorin significantly inhibited the activity of CYP3A, 2C9, and 2 D in a concentration-dependent manner with the IC50 values of 8.2, 13, and 11 μM, respectively. The inhibition of CYP3A was found to be non-competitive and time-dependent with the Ki value of 4.0 μM and the KI/Kinact value of 2.2/0.030 (μM·min). The inhibition of CYP2C9 and 2 D was not affected by the incubation time but was found to be competitive with the Ki values of 6.7 and 6.6 μM, respectively.The inhibitory effect of 4-O-galloylalbiflorin on the activity of CYP3A, 2C9, and 2 D implying the potential drug-drug interaction between 4-O-galloylalbiflorin and the drugs metabolized by these CYP450s.
Collapse
Affiliation(s)
- Yu Sun
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Mengya He
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Yanling Sun
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Jianhong Wei
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, China
| |
Collapse
|