1
|
Valerio J, Borro M, Proietti E, Pisciotta L, Olarinde IO, Fernandez Gomez M, Alvarez Pinzon AM. Systematic Review and Clinical Insights: The Role of the Ketogenic Diet in Managing Glioblastoma in Cancer Neuroscience. J Pers Med 2024; 14:929. [PMID: 39338183 PMCID: PMC11433106 DOI: 10.3390/jpm14090929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Recent scientific research has shown that the ketogenic diet may have potential benefits in a variety of medical fields, which has led to the diet receiving a substantial amount of attention. Clinical and experimental research on brain tumors has shown that the ketogenic diet has a satisfactory safety profile. This safety profile has been established in a variety of applications, including the management of obesity and the treatment of drug-resistant epileptic cases. However, in human studies, the impact of ketogenic therapy on the growth of tumors and the life expectancy of patients has not provided results that are well characterized. Consequently, our purpose is to improve the comprehension of these features by succinctly presenting the developments and conclusions that have been gained from the most recent study that pertains to this non-pharmacological technique. According to the findings of our study, patients with brain tumors who stick to a ketogenic diet are more likely to experience improved survival rates. However, it is required to conduct additional research on humans in order to more accurately define the anti-tumor efficiency of this diet as well as the underlying processes that support the therapeutic effects of this dieting regimen.
Collapse
Affiliation(s)
- Jose Valerio
- Neurosurgery Oncology Center of Excellence, Neurosurgery Department, Miami Neuroscience Center at Larkin, South Miami, FL 33143, USA
| | - Matteo Borro
- Internal Medicine Unit, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Elisa Proietti
- Department of Internal Medicine (DIMI), University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Livia Pisciotta
- Department of Internal Medicine (DIMI), University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
- Operative Unit of Dietetics and Clinical Nutrition, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Immanuel O Olarinde
- Neurosurgery Department, Latino America Valerio Foundation, Weston, FL 33331, USA
| | | | - Andres Mauricio Alvarez Pinzon
- MCIFAU Cancer Center of Excellence, Memorial Cancer Institute, Memorial Healthcare System, Hollywood, FL 33021, USA
- Cancer Neuroscience Program, The Institute of Neuroscience of Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute for Human Health and Disease Intervention, Division of Research, FAU Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
2
|
Grube M, Dimmler A, Schmaus A, Saup R, Wagner T, Garvalov BK, Sleeman JP, Thiele W. Ketogenic diet does not promote triple-negative and luminal mammary tumor growth and metastasis in experimental mice. Clin Exp Metastasis 2024; 41:251-266. [PMID: 38066243 PMCID: PMC11213782 DOI: 10.1007/s10585-023-10249-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 06/30/2024]
Abstract
Ketogenic diets (KDs) can improve the well-being and quality of life of breast cancer patients. However, data on the effects of KDs on mammary tumors are inconclusive, and the influence of KDs on metastasis in general remains to be investigated. We therefore assessed the impact of a KD on growth and metastasis of triple negative murine 4T1 mammary tumors, and on the progression of luminal breast tumors in an autochthonous MMTV-PyMT mouse model. We found that KD did not influence the metastasis of 4T1 and MMTV-PyMT mammary tumors, but impaired 4T1 tumor cell proliferation in vivo, and also temporarily reduced 4T1 primary tumor growth. Notably, the ketogenic ratio (the mass of dietary fat in relation to the mass of dietary carbohydrates and protein) that is needed to induce robust ketosis was twice as high in mice as compared to humans. Surprisingly, only female but not male mice responded to KD with a sustained increase in blood β-hydroxybutyrate levels. Together, our data show that ketosis does not foster primary tumor growth and metastasis, suggesting that KDs can be safely applied in the context of luminal breast cancer, and may even be advantageous for patients with triple negative tumors. Furthermore, our data indicate that when performing experiments with KDs in mice, the ketogenic ratio needed to induce ketosis must be verified, and the sex of the mice should also be taken into account.
Collapse
Affiliation(s)
- Meret Grube
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13 - 17, D- 68167, Mannheim, Germany
| | - Arno Dimmler
- Institute of Pathology, Vincentius Kliniken Karlsruhe, Karlsruhe, Germany
| | - Anja Schmaus
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13 - 17, D- 68167, Mannheim, Germany
| | - Rafael Saup
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13 - 17, D- 68167, Mannheim, Germany
| | - Tabea Wagner
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13 - 17, D- 68167, Mannheim, Germany
| | - Boyan K Garvalov
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13 - 17, D- 68167, Mannheim, Germany
| | - Jonathan P Sleeman
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13 - 17, D- 68167, Mannheim, Germany
- Institute for Biological and Chemical Systems, Karlsruhe Institute of Technology (KIT), Campus North, Karlsruhe, Germany
| | - Wilko Thiele
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13 - 17, D- 68167, Mannheim, Germany.
| |
Collapse
|
3
|
Pu K, Feng Y, Tang Q, Yang G, Xu C. Review of dietary patterns and gastric cancer risk: epidemiology and biological evidence. Front Oncol 2024; 14:1333623. [PMID: 38444674 PMCID: PMC10912593 DOI: 10.3389/fonc.2024.1333623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Due to rapid research expansion on dietary factors and development of cancer prevention guidelines, the field of dietary pattern and its relationship to cancer risk has gained more focus. Numerous epidemiology studies have reported associations between Gastric Cancer (GC) and both data-driven posteriori dietary pattern and priori dietary pattern defined by predetermined dietary indexes. As dietary patterns have evolved, a series of patterns based on biological markers has advanced, offering deeper insights into the relationship between diet and the risk of cancer. Although researches on dietary patterns and cancer risk are booming, there is limited body of literature focusing specifically on GC. In this study, we compare the similarities and differences among the specific components of dietary patterns and indices, summarize current state of knowledge regarding dietary patterns related to GC and illustrate their potential mechanisms for GC prevention. In conclusion, we offer suggestions for future research based on the emerging themes within this rapidly evolving field.
Collapse
Affiliation(s)
- Ke Pu
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yang Feng
- Department of Neurosurgery, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
| | - Qian Tang
- Statesboro Office, Southeast Medical Group, Atlanta, GA, United States
| | - Guodong Yang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Vega C, Barnafi E, Sánchez C, Acevedo F, Walbaum B, Parada A, Rivas N, Merino T. Calorie Restriction and Time-Restricted Feeding: Effective Interventions in Overweight or Obese Patients Undergoing Radiotherapy Treatment with Curative Intent for Cancer. Nutrients 2024; 16:477. [PMID: 38398802 PMCID: PMC10892811 DOI: 10.3390/nu16040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
This study assesses the feasibility of calorie restriction (CR) and time-restricted feeding (TRF) in overweight and obese cancer patients who realized little to no physical activity undergoing curative radiotherapy, structured as a prospective, interventional, non-randomized open-label clinical trial. Of the 27 participants initially enrolled, 21 patients with breast cancer were selected for analysis. The participants self-selected into two dietary interventions: TRF, comprising a sugar and saturated fat-free diet calibrated to individual energy needs consumed within an 8 h eating window followed by a 16 h fast, or CR, involving a 25% reduction in total caloric intake from energy expenditure distributed across 4 meals and 1 snack with 55% carbohydrates, 15% protein, and 30% fats, excluding sugars and saturated fats. The primary goal was to evaluate the feasibility of these diets in the specific patient group. The results indicate that both interventions are effective and statistically significant for weight loss and reducing one's waist circumference, with TRF showing a potentially stronger impact and better adherence. Changes in the LDL, HDL, total cholesterol, triglycerides, glucose and insulin were not statistically significant.
Collapse
Affiliation(s)
- Carmen Vega
- Cancer Center UC, Red de Salud Christus-UC, Santiago 8330032, Chile;
| | - Esteban Barnafi
- Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (E.B.); (N.R.)
| | - César Sánchez
- Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile; (C.S.); (F.A.); (B.W.)
| | - Francisco Acevedo
- Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile; (C.S.); (F.A.); (B.W.)
| | - Benjamin Walbaum
- Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile; (C.S.); (F.A.); (B.W.)
| | - Alejandra Parada
- Department of Health Sciences, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Nicolás Rivas
- Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (E.B.); (N.R.)
| | - Tomás Merino
- Cancer Center UC, Red de Salud Christus-UC, Santiago 8330032, Chile;
| |
Collapse
|
5
|
Buga A, Harper DG, Sapper TN, Hyde PN, Fell B, Dickerson R, Stoner JT, Kackley ML, Crabtree CD, Decker DD, Robinson BT, Krystal G, Binzel K, Lustberg MB, Volek JS. Feasibility and metabolic outcomes of a well-formulated ketogenic diet as an adjuvant therapeutic intervention for women with stage IV metastatic breast cancer: The Keto-CARE trial. PLoS One 2024; 19:e0296523. [PMID: 38166036 PMCID: PMC10760925 DOI: 10.1371/journal.pone.0296523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/13/2023] [Indexed: 01/04/2024] Open
Abstract
PURPOSE Ketogenic diets may positively influence cancer through pleiotropic mechanisms, but only a few small and short-term studies have addressed feasibility and efficacy in cancer patients. The primary goals of this study were to evaluate the feasibility and the sustained metabolic effects of a personalized well-formulated ketogenic diet (WFKD) designed to achieve consistent blood beta-hydroxybutyrate (βHB) >0.5 mM in women diagnosed with stage IV metastatic breast cancer (MBC) undergoing chemotherapy. METHODS Women (n = 20) were enrolled in a six month, two-phase, single-arm WFKD intervention (NCT03535701). Phase I was a highly-supervised, ad libitum, personalized WFKD, where women were provided with ketogenic-appropriate food daily for three months. Phase II transitioned women to a self-administered WFKD with ongoing coaching for an additional three months. Fasting capillary βHB and glucose were collected daily; weight, body composition, plasma insulin, and insulin resistance were collected at baseline, three and six months. RESULTS Capillary βHB indicated women achieved nutritional ketosis (Phase I mean: 0.8 mM (n = 15); Phase II mean: 0.7 mM (n = 9)). Body weight decreased 10% after three months, primarily from body fat. Fasting plasma glucose, plasma insulin, and insulin resistance also decreased significantly after three months (p < 0.01), an effect that persisted at six months. CONCLUSIONS Women diagnosed with MBC undergoing chemotherapy can safely achieve and maintain nutritional ketosis, while improving body composition and insulin resistance, out to six months.
Collapse
Affiliation(s)
- Alex Buga
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - David G. Harper
- School of Kinesiology, University of the Fraser Valley, Abbotsford, British Columbia, Canada
| | - Teryn N. Sapper
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Parker N. Hyde
- Department of Kinesiology, University of North Georgia, Dahlonega, Georgia, United States of America
| | - Brandon Fell
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Ryan Dickerson
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Justen T. Stoner
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Madison L. Kackley
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Christopher D. Crabtree
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Drew D. Decker
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Bradley T. Robinson
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Katherine Binzel
- Department of Radiology, Wright Center of Innovation, The Ohio State University, Columbus, Ohio, United States of America
| | - Maryam B. Lustberg
- Breast Cancer Center, Smilow Cancer Hospital, Yale University, New Haven, Connecticut, United States of America
| | - Jeff S. Volek
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
6
|
Kawon K, Rugiel M, Setkowicz Z, Matusiak K, Kubala-Kukus A, Stabrawa I, Szary K, Rauk Z, Chwiej J. Ketogenic diet influence on the elemental homeostasis of internal organs is gender dependent. Sci Rep 2023; 13:18448. [PMID: 37891248 PMCID: PMC10611712 DOI: 10.1038/s41598-023-45611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
The ketogenic diet (KD) is a low-carbohydrate and high-fat diet that gains increasing popularity in the treatment of numerous diseases, including epilepsy, brain cancers, type 2 diabetes and various metabolic syndromes. Although KD is effective in the treatment of mentioned medical conditions, it is unfortunately not without side effects. The most frequently occurring undesired outcomes of this diet are nutrient deficiencies, the formation of kidney stones, loss of bone mineral density, increased LDL (low-density lipoprotein) cholesterol levels and hormonal disturbances. Both the diet itself and the mentioned adverse effects can influence the elemental composition and homeostasis of internal organs. Therefore, the objective of this study was to determine the elemental abnormalities that appear in the liver, kidney, and spleen of rats subjected to long-term KD treatment. The investigation was conducted separately on males and females to determine if observed changes in the elemental composition of organs are gender-dependent. To measure the concentration of P, S, K, Ca, Fe, Cu, Zn and Se in the tissues the method of the total reflection X-ray fluorescence (TXRF) was utilized. The obtained results revealed numerous elemental abnormalities in the organs of animals fed a high-fat diet. Only some of them can be explained by the differences in the composition and intake of the ketogenic and standard diets. Furthermore, in many cases, the observed anomalies differed between male and female rats.
Collapse
Affiliation(s)
- Kamil Kawon
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Kraków, Poland
| | - Marzena Rugiel
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Kraków, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Katarzyna Matusiak
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Kraków, Poland
| | - Aldona Kubala-Kukus
- Institute of Physics, Jan Kochanowski University, Kielce, Poland
- Holy Cross Cancer Center, Kielce, Poland
| | - Ilona Stabrawa
- Institute of Physics, Jan Kochanowski University, Kielce, Poland
- Holy Cross Cancer Center, Kielce, Poland
| | - Karol Szary
- Institute of Physics, Jan Kochanowski University, Kielce, Poland
- Holy Cross Cancer Center, Kielce, Poland
| | - Zuzanna Rauk
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Kraków, Poland.
| |
Collapse
|
7
|
Halma MTJ, Tuszynski JA, Marik PE. Cancer Metabolism as a Therapeutic Target and Review of Interventions. Nutrients 2023; 15:4245. [PMID: 37836529 PMCID: PMC10574675 DOI: 10.3390/nu15194245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer is amenable to low-cost treatments, given that it has a significant metabolic component, which can be affected through diet and lifestyle change at minimal cost. The Warburg hypothesis states that cancer cells have an altered cell metabolism towards anaerobic glycolysis. Given this metabolic reprogramming in cancer cells, it is possible to target cancers metabolically by depriving them of glucose. In addition to dietary and lifestyle modifications which work on tumors metabolically, there are a panoply of nutritional supplements and repurposed drugs associated with cancer prevention and better treatment outcomes. These interventions and their evidentiary basis are covered in the latter half of this review to guide future cancer treatment.
Collapse
Affiliation(s)
- Matthew T. J. Halma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- EbMC Squared CIC, Bath BA2 4BL, UK
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-1029 Turin, Italy
| | - Paul E. Marik
- Frontline COVID-19 Critical Care Alliance, Washington, DC 20036, USA
| |
Collapse
|
8
|
Santangelo A, Corsello A, Spolidoro GCI, Trovato CM, Agostoni C, Orsini A, Milani GP, Peroni DG. The Influence of Ketogenic Diet on Gut Microbiota: Potential Benefits, Risks and Indications. Nutrients 2023; 15:3680. [PMID: 37686712 PMCID: PMC10489661 DOI: 10.3390/nu15173680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The ketogenic diet (KD) restricts carbohydrate consumption, leading to an increase in ketone bodies, such as acetoacetate, β-hydroxybutyrate, and acetone, which are utilized as energy substrates. This dietary approach impacts several biochemical processes, resulting in improved clinical management of various disorders, particularly in childhood. However, the exact mechanisms underlying the efficacy of KD remain unclear. Interestingly, KD may also impact the gut microbiota, which plays a pivotal role in metabolism, nutrition, and the development of the immune and nervous systems. KD has gained popularity for its potential benefits in weight loss, blood sugar control, and certain neurological conditions. This narrative review sums up KD-related studies published over 30 years. While short-term studies have provided valuable insights into the effects of KD on the gut microbiota, persistent uncertainties surround its long-term efficacy and potential for inducing dysbiosis. The significant influence of KD on epigenetic mechanisms, intracellular pathways, and gut microbial composition underscores its potential as a therapeutic choice. However, a judicious consideration of the potential risks associated with the strict adherence to a low-carbohydrate, high-fat, and high-protein regimen over prolonged periods is imperative. As KDs gain popularity among the adolescent and young adult demographic for weight management, it becomes imperative to undertake additional research to comprehensively assess their impact on nutritional status and gut microbiota, ensuring a holistic and sustainable approach to medical nutrition.
Collapse
Affiliation(s)
- Andrea Santangelo
- Department of Pediatrics, Santa Chiara Hospital, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy; (A.S.); (A.O.); (D.G.P.)
| | - Antonio Corsello
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (G.C.I.S.); (C.A.); (G.P.M.)
| | - Giulia Carla Immacolata Spolidoro
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (G.C.I.S.); (C.A.); (G.P.M.)
| | - Chiara Maria Trovato
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, 00165 Rome, Italy;
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (G.C.I.S.); (C.A.); (G.P.M.)
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alessandro Orsini
- Department of Pediatrics, Santa Chiara Hospital, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy; (A.S.); (A.O.); (D.G.P.)
| | - Gregorio Paolo Milani
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (G.C.I.S.); (C.A.); (G.P.M.)
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Diego Giampietro Peroni
- Department of Pediatrics, Santa Chiara Hospital, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy; (A.S.); (A.O.); (D.G.P.)
| |
Collapse
|
9
|
Cecchi N, Romanelli R, Ricevuti F, Amitrano M, Carbone MG, Dinardo M, Burgio E. Current knowledges in pharmaconutrition: " Ketogenics" in pediatric gliomas. Front Nutr 2023; 10:1222908. [PMID: 37614745 PMCID: PMC10442509 DOI: 10.3389/fnut.2023.1222908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Brain tumors account for 20-25% of pediatric cancers. The most frequent type of brain tumor is Glioma from grade I to grade IV according to the rate of malignancy. Current treatments for gliomas use chemotherapy, radiotherapy, tyrosine kinase inhibitors, monoclonal antibodies and surgery, but each of the treatment strategies has several serious side effects. Therefore, to improve treatment efficacy, it is necessary to tailor therapies to patient and tumor characteristics, using appropriate molecular targets. An increasingly popular strategy is pharmaconutrition, which combines a tailored pharmacological treatment with a diet designed to synergize the effects of drugs. In this review we deal in the molecular mechanisms, the epigenetic effects and modulation of the oxidative stress pathway of ketogenic diets, that underlie its possible role, in the treatment of infantile gliomas, as a complementary approach to conventional cancer therapy.
Collapse
Affiliation(s)
- Nicola Cecchi
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Roberta Romanelli
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Flavia Ricevuti
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Marianna Amitrano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Maria Grazia Carbone
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Michele Dinardo
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Ernesto Burgio
- ECERI-European Cancer and Environment Research Institute, Brussels, Belgium
| |
Collapse
|
10
|
Al-Jada DN, Takruri HR, Talib WH. From antiepileptic therapy to promising adjuvant in medical oncology: A historical view of the ketogenic diet. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
11
|
Cramer T. Impact of dietary carbohydrate restriction on the pathobiology of Hepatocellular Carcinoma: The gut-liver axis and beyond. Semin Immunol 2023; 66:101736. [PMID: 36857893 DOI: 10.1016/j.smim.2023.101736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 03/01/2023]
Abstract
Despite decades of fiercely competitive research and colossal financial investments, the majority of patients with advanced solid cancers cannot be treated with curative intent. To improve this situation, conceptually novel treatment approaches are urgently needed. Cancer is increasingly appreciated as a systemic disease and numerous organismal factors are functionally linked to neoplastic growth, e.g. systemic metabolic dysregulation, chronic inflammation, intestinal dysbiosis and disrupted circadian rhythms. It is tempting to hypothesize that interventions targeting these processes could be of significant account for cancer patients. One important driver of tumor-supporting systemic derangements is inordinate consumption of simple and highly processed carbohydrates. This dietary pattern is causally linked to hyperinsulinemia, insulin resistance, chronic inflammation and intestinal dysbiosis, begging the pertinent question whether the adoption of dietary carbohydrate restriction can be beneficial for patients with cancer. This review summarizes the published data on the role of dietary carbohydrate restriction in the pathogenesis of Hepatocellular Carcinoma (HCC), the most frequent type of primary liver cancer. In addition to outlining the functional interplay between diet, the intestinal microbiome and immunity, the review underscores the importance of bile acids as interconnectors between the intestinal microbiota and immune cells.
Collapse
Affiliation(s)
- Thorsten Cramer
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital, 52074 Aachen, Germany; Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands; NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
12
|
Tamraz M, Al Ghossaini N, Temraz S. The Ketogenic Diet in Colorectal Cancer: A Means to an End. Int J Mol Sci 2023; 24:ijms24043683. [PMID: 36835094 PMCID: PMC9965563 DOI: 10.3390/ijms24043683] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Some diets, such as high lipid and high glucose diets, are known to increase the risk of colorectal cancer. On the other hand, little is known about diets that prevent colonic carcinogenesis. The ketogenic diet, which is characterized by high fat and very low carbohydrate content, is one such diet. The ketogenic diet decreases the amount of available glucose for tumors and shifts to the production of ketone bodies as an alternative energy source for healthy cells. Cancer cells are unable to use the ketone bodies for energy thus depriving them of the energy needed for progression and survival. Many studies reported the beneficial effects of the ketogenic diet in several types of cancers. Recently, the ketone body β-hydroxybutyrate has been found to possess anti-tumor potential in colorectal cancer. Despite its beneficial effects, the ketogenic diet also has some drawbacks, some of which are related to gastrointestinal disorders and weight loss. Thus, studies are being directed at this time towards finding alternatives to following a strict ketogenic diet and supplementing patients with the ketone bodies responsible for its beneficial effects in the hope of overcoming some potential setbacks. This article discusses the mechanism by which a ketogenic diet influences growth and proliferation of tumor cells, it sheds the light on the most recent trials regarding its use as an adjunctive measure to chemotherapy in patients with metastatic colorectal cancer, and it explains the limitations of its usage in metastatic patients and the promising role of exogenous ketone supplementation in this setting.
Collapse
Affiliation(s)
- Magie Tamraz
- Department of Nutrition and Dietetics, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon
| | - Najib Al Ghossaini
- Department of Internal Medicine, Ain Wazein Medical Village, Chouf 5841, Lebanon
| | - Sally Temraz
- Department of Internal Medicine, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon
- Correspondence: ; Tel.: +961-1-374374
| |
Collapse
|
13
|
Sadeghmousavi S, Rezaei N, Hanaei S. Nutrition and Diet: A Double-Edged Sword in Development and Treatment of Brain Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:153-180. [PMID: 36587387 DOI: 10.1007/978-3-031-14732-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Brain tumor (BT) is the second most common pediatric cancer, one of the most common cancers among adults, and the major cause of cancer-related morbidity and mortality worldwide. Both genetics and environment can contribute to BT induction. One of the environmental risks is diet which has not been proven as a certain hazard yet. The objective of the current chapter was to review the literature concerning both positive and negative effects of nutrition on BT risk.
Collapse
Affiliation(s)
- Shaghayegh Sadeghmousavi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sara Hanaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
14
|
Suzuki R, Mishima M, Nagane M, Mizugaki H, Suzuki T, Komuro M, Shimizu T, Fukuyama T, Takeda S, Ogata M, Miyamoto T, Aihara N, Kamiie J, Kamisuki S, Yokaryo H, Yamashita T, Satoh T. The novel sustained 3-hydroxybutyrate donor poly-D-3-hydroxybutyric acid prevents inflammatory bowel disease through upregulation of regulatory T-cells. FASEB J 2023; 37:e22708. [PMID: 36562544 DOI: 10.1096/fj.202200919r] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic persistent intestinal disorder, with ulcerative colitis and Crohn's disease being the most common. However, the physio-pathological development of IBD is still unknown. Therefore, research on the etiology and treatment of IBD has been conducted using a variety of approaches. Short-chain fatty acids such as 3-hydroxybutyrate (3-HB) are known to have various physiological activities. In particular, the production of 3-HB by the intestinal microflora is associated with the suppression of various inflammatory diseases. In this study, we investigated whether poly-D-3-hydroxybutyric acid (PHB), a polyester of 3-HB, is degraded by intestinal microbiota and works as a slow-release agent of 3-HB. Further, we examined whether PHB suppresses the pathogenesis of IBD models. As long as a PHB diet increased 3-HB concentrations in the feces and blood, PHB suppressed weight loss and histological inflammation in a dextran sulfate sodium-induced IBD model. Furthermore, PHB increased the accumulation of regulatory T cells in the rectum without affecting T cells in the spleen. These results indicate that PHB has potential applications in treating diseases related to the intestinal microbiota as a sustained 3-HB donor. We show for the first time that biodegradable polyester exhibits intestinal bacteria-mediated bioactivity toward IBD. The use of bioplastics, which are essential materials for sustainable social development, represents a novel approach to diseases related to dysbiosis, including IBD.
Collapse
Affiliation(s)
- Rimina Suzuki
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Mayuko Mishima
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Masaki Nagane
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Japan
| | - Hinano Mizugaki
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Takehito Suzuki
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Japan
| | - Mariko Komuro
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Takuto Shimizu
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Tomoki Fukuyama
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Shiro Takeda
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Japan
| | - Masaya Ogata
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | | | - Naoyuki Aihara
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Junichi Kamiie
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Shinji Kamisuki
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Japan
| | - Hiroto Yokaryo
- Okinawa Prefectural Industrial Technology Center, Okinawa, Japan
| | | | - Takumi Satoh
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Japan
| |
Collapse
|
15
|
Clontz AD. Ketogenic therapies for glioblastoma: Understanding the limitations in transitioning from mice to patients. Front Nutr 2023; 10:1110291. [PMID: 36960210 PMCID: PMC10029602 DOI: 10.3389/fnut.2023.1110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Glioblastoma Multiforme is an aggressive brain cancer affecting children and adults frequently resulting in a short life expectancy. Current cancer therapies include surgery and radiation followed by chemotherapy, which due to their ineffectiveness, requires repeated exposure to the same therapies. Since the 1990s, researchers and doctors have explored other therapies, such as diet therapies, to aid in combating gliomas. The ketogenic diet has gained popularity due to Otto Warburg's theory that tumor cells prefer "aerobic glycolysis" and cannot metabolize ketones. The inability of gliomas to use ketones provides an excellent opportunity to weaken the tumor while protecting healthy cells during cancer treatments. This review will examine some of the current research using the ketogenic diet as a form of cancer therapy to determine if this intervention is manageable and effective in patients with glioblastoma. Peer-reviewed articles from 2009 to 2019 were used. The primary objective is to distinguish differences between pre-clinical and clinical research to determine if the ketogenic diet is reproducible from mouse models into humans to determine its effectiveness. The analysis revealed several limitations of the ketogenic diet as an intervention. The effectiveness is more robust in mice than in human studies. Furthermore, tolerability is marginally supported in human studies requiring more reproducible research to validate that the intervention is manageable and effective in patients with glioblastoma.
Collapse
|
16
|
Hwang CY, Choe W, Yoon KS, Ha J, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms for Ketone Body Metabolism, Signaling Functions, and Therapeutic Potential in Cancer. Nutrients 2022; 14:nu14224932. [PMID: 36432618 PMCID: PMC9694619 DOI: 10.3390/nu14224932] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The ketone bodies (KBs) β-hydroxybutyrate and acetoacetate are important alternative energy sources for glucose during nutrient deprivation. KBs synthesized by hepatic ketogenesis are catabolized to acetyl-CoA through ketolysis in extrahepatic tissues, followed by the tricarboxylic acid cycle and electron transport chain for ATP production. Ketogenesis and ketolysis are regulated by the key rate-limiting enzymes, 3-hydroxy-3-methylglutaryl-CoA synthase 2 and succinyl-CoA:3-oxoacid-CoA transferase, respectively. KBs participate in various cellular processes as signaling molecules. KBs bind to G protein-coupled receptors. The most abundant KB, β-hydroxybutyrate, regulates gene expression and other cellular functions by inducing post-translational modifications. KBs protect tissues by regulating inflammation and oxidative stress. Recently, interest in KBs has been increasing due to their potential for treatment of various diseases such as neurological and cardiovascular diseases and cancer. Cancer cells reprogram their metabolism to maintain rapid cell growth and proliferation. Dysregulation of KB metabolism also plays a role in tumorigenesis in various types of cancer. Targeting metabolic changes through dietary interventions, including fasting and ketogenic diets, has shown beneficial effects in cancer therapy. Here, we review current knowledge of the molecular mechanisms involved in the regulation of KB metabolism and cellular signaling functions, and the therapeutic potential of KBs and ketogenic diets in cancer.
Collapse
Affiliation(s)
- Chi Yeon Hwang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| |
Collapse
|
17
|
Ketogenic Diet in the Treatment of Gliomas and Glioblastomas. Nutrients 2022; 14:nu14183851. [PMID: 36145228 PMCID: PMC9504425 DOI: 10.3390/nu14183851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
In recent years, scientific interest in the use of the ketogenic diet (KD) as a complementary approach to the standard cancer therapy has grown, in particular against those of the central nervous system (CNS). In metabolic terms, there are the following differences between healthy and neoplastic cells: neoplastic cells divert their metabolism to anaerobic glycolysis (Warburg effect), they alter the normal mitochondrial functioning, and they use mainly certain amino acids for their own metabolic needs, to gain an advantage over healthy cells and to lead to a pro-oncogenetic effect. Several works in literature speculate which are the molecular targets of KD used against cancer. The following different mechanisms of action will be explored in this review: metabolic, inflammatory, oncogenic and oncosuppressive, ROS, and epigenetic modulation. Preclinical and clinical studies on the use of KD in CNS tumors have also increased in recent years. An interesting hypothesis emerged from the studies about the possible use of a ketogenic diet as a combination therapy along with chemotherapy (CT) and radiotherapy (RT) for the treatment of cancer. Currently, however, clinical data are still very limited but encouraging, so we need further studies to definitively validate or disprove the role of KD in fighting against cancer.
Collapse
|
18
|
Muscogiuri G, Barrea L, Cantone MC, Guarnotta V, Mazzilli R, Verde L, Vetrani C, Colao A, Faggiano A. Neuroendocrine Tumors: A Comprehensive Review on Nutritional Approaches. Cancers (Basel) 2022; 14:cancers14184402. [PMID: 36139562 PMCID: PMC9496842 DOI: 10.3390/cancers14184402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroendocrine neoplasms are a heterogeneous group of neoplasms with increasing incidence, high prevalence, and survival worldwide. About 90% of cases are well differentiated forms, the so-called neuroendocrine tumors (NETs), with slow proliferation rates and prolonged survival but frequent development of liver metastases and endocrine syndromes. Both the tumor itself and systemic therapy may have an impact on patient nutrition. Malnutrition has a negative impact on outcome in patients with NETs, as well as obesity. In addition, obesity and metabolic syndrome have been shown to be risk factors for both the development and prognosis of NET. Therefore, dietary assessment based on body composition and lifestyle modifications should be an integral part of the treatment of NET patients. Nutrition plans, properly formulated by a dietician, are an integral part of the multidisciplinary treatment team for patients with NETs because they allow an improvement in quality of life, providing a tailored approach based on nutritional needs and nutritional manageable signs and/or symptoms related to pharmacological treatment. The aim of this review is to condense the latest evidence on the role of the most used dietary models, the Mediterranean diet, the ketogenic diet, and intermittent fasting, in the context of NETs, while considering the clinical and molecular mechanisms by which these dietary models act.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia ed Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Cattedra Unesco “Educazione alla Salute e allo Sviluppo Sostenibile”, Università Federico II, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-0817463779; Fax: +39-081-746-3688
| | - Luigi Barrea
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Direzionale, Isola F2, 80143 Naples, Italy
| | - Maria Celeste Cantone
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20157 Milan, Italy
| | - Valentina Guarnotta
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, 90127 Palermo, Italy
| | - Rossella Mazzilli
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Rome, Italy
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
| | - Claudia Vetrani
- Unità di Endocrinologia, Diabetologia ed Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Cattedra Unesco “Educazione alla Salute e allo Sviluppo Sostenibile”, Università Federico II, 80131 Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia ed Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Cattedra Unesco “Educazione alla Salute e allo Sviluppo Sostenibile”, Università Federico II, 80131 Naples, Italy
| | - Antongiulio Faggiano
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
19
|
Khajah MA, Khushaish S, Luqmani YA. Glucose deprivation reduces proliferation and motility, and enhances the anti-proliferative effects of paclitaxel and doxorubicin in breast cell lines in vitro. PLoS One 2022; 17:e0272449. [PMID: 35917304 PMCID: PMC9345370 DOI: 10.1371/journal.pone.0272449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
Background Breast cancer chemotherapy with high dose alkylating agents is severely limited by their collateral toxicity to crucial normal tissues such as immune and gut cells. Taking advantage of the selective dependence of cancer cells on high glucose and combining glucose deprivation with these agents could produce therapeutic synergy. Methods In this study we examined the effect of glucose as well as its deprivation, and antagonism using the non-metabolized analogue 2-deoxy glucose, on the proliferation of several breast cancer cell lines MCF7, MDA-MB-231, YS1.2 and pII and one normal breast cell line, using the MTT assay. Motility was quantitatively assessed using the wound healing assay. Lactate, as the end product of anaerobic glucose metabolism, secreted into culture medium was measured by a biochemical assay. The effect of paclitaxel and doxorubicin on cell proliferation was tested in the absence and presence of low concentrations of glucose using MTT assay. Results In all cell lines, glucose supplementation enhanced while glucose deprivation reduced both their proliferation and motility. Lactate added to the medium could substitute for glucose. The inhibitory effects of paclitaxel and doxorubicin were significantly enhanced when glucose concentration was decreased in the culture medium, requiring 1000-fold lesser concentration to achieve a similar degree of inhibition to that seen in glucose-containing medium. Conclusion Our data show that a synergy was obtained by combining paclitaxel and doxorubicin with glucose reduction to inhibit cancer cell growth, which in vivo, might be achieved by applying a carbohydrate-restricted diet during the limited phase of application of chemotherapy; this could permit a dose reduction of the cytotoxic agents, resulting in greater tolerance and lesser side effects.
Collapse
|
20
|
Evangeliou AE, Spilioti MG, Vassilakou D, Goutsaridou F, Seyfried TN. Restricted Ketogenic Diet Therapy for Primary Lung Cancer With Metastasis to the Brain: A Case Report. Cureus 2022; 14:e27603. [PMID: 36059366 PMCID: PMC9435310 DOI: 10.7759/cureus.27603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/05/2022] Open
Abstract
A high-fat and low-carbohydrate diet was administered as a complementary and alternative therapy to a 54-year-old man suffering from non-small-cell lung cancer (NSCLC) with brain metastasis. Three months after the cessation of chemotherapy and radiotherapy, a ketogenic diet (KD) was initiated. This approach was an attempt to stabilize the disease progression after chemotherapy and radiotherapy. Computed tomography following radiation and chemotherapy showed a reduction in the right frontal lobe lesion from 5.5 cm × 6.2 cm to 4 cm × 2.7 cm, while the mass in the upper-right lung lobe reduced from 6.0 cm × 3.0 cm to 2.0 × 1.8 cm. Two years after KD initiation and without any other therapeutic intervention, the right frontal lobe lesion calcified and decreased in size to 1.9 cm × 1.0 cm, while the size of the lung mass further decreased to 1.7 cm × 1.0 cm. The size of the brain and lung lesion remained stable after nine years of KD therapy. However, dyslipidemia developed after this time which led to the discontinuation of the diet. No tumor relapse or health issues occurred for two years after the discontinuation of the diet. This case report indicates that the inclusion of ketogenic metabolic therapy following radiation and chemotherapy is associated with better clinical and survival outcomes for our patient with metastatic NSCLC.
Collapse
|
21
|
Weber DD, Aminzadeh-Gohari S, Thapa M, Redtenbacher AS, Catalano L, Capelôa T, Vazeille T, Emberger M, Felder TK, Feichtinger RG, Koelblinger P, Dallmann G, Sonveaux P, Lang R, Kofler B. Ketogenic diets slow melanoma growth in vivo regardless of tumor genetics and metabolic plasticity. Cancer Metab 2022; 10:12. [PMID: 35851093 PMCID: PMC9290281 DOI: 10.1186/s40170-022-00288-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Growing evidence supports the use of low-carbohydrate/high-fat ketogenic diets as an adjunctive cancer therapy. However, it is unclear which genetic, metabolic, or immunological factors contribute to the beneficial effect of ketogenic diets. Therefore, we investigated the effect of ketogenic diets on the progression and metabolism of genetically and metabolically heterogeneous melanoma xenografts, as well as on the development of melanoma metastases in mice with a functional immune system. Methods Mice bearing BRAF mutant, NRAS mutant, and wild-type melanoma xenografts as well as mice bearing highly metastatic melanoma allografts were fed with a control diet or ketogenic diets, differing in their triglyceride composition, to evaluate the effect of ketogenic diets on tumor growth and metastasis. We performed an in-depth targeted metabolomics analysis in plasma and xenografts to elucidate potential antitumor mechanisms in vivo. Results We show that ketogenic diets effectively reduced tumor growth in immunocompromised mice bearing genetically and metabolically heterogeneous human melanoma xenografts. Furthermore, the ketogenic diets exerted a metastasis-reducing effect in the immunocompetent syngeneic melanoma mouse model. Targeted analysis of plasma and tumor metabolomes revealed that ketogenic diets induced distinct changes in amino acid metabolism. Interestingly, ketogenic diets reduced the levels of alpha-amino adipic acid, a biomarker of cancer, in circulation to levels observed in tumor-free mice. Additionally, alpha-amino adipic acid was reduced in xenografts by ketogenic diets. Moreover, the ketogenic diets increased sphingomyelin levels in plasma and the hydroxylation of sphingomyelins and acylcarnitines in tumors. Conclusions Ketogenic diets induced antitumor effects toward melanoma regardless of the tumors´ genetic background, its metabolic signature, and the host immune status. Moreover, ketogenic diets simultaneously affected multiple metabolic pathways to create an unfavorable environment for melanoma cell proliferation, supporting their potential as a complementary nutritional approach to melanoma therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-022-00288-7.
Collapse
Affiliation(s)
- Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | | | - Anna-Sophia Redtenbacher
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | - Tânia Capelôa
- Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Thibaut Vazeille
- Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | | | - Thomas K Felder
- Department of Laboratory Medicine, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | - René G Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | - Peter Koelblinger
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | | | - Pierre Sonveaux
- Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Roland Lang
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria.
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria.
| |
Collapse
|
22
|
Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ 2022; 29:1304-1317. [PMID: 35831624 PMCID: PMC9287557 DOI: 10.1038/s41418-022-01022-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
During decades, the research field of cancer metabolism was based on the Warburg effect, described almost one century ago. Lately, the key role of mitochondria in cancer development has been demonstrated. Many mitochondrial pathways including oxidative phosphorylation, fatty acid, glutamine, and one carbon metabolism are altered in tumors, due to mutations in oncogenes and tumor suppressor genes, as well as in metabolic enzymes. This results in metabolic reprogramming that sustains rapid cell proliferation and can lead to an increase in reactive oxygen species used by cancer cells to maintain pro-tumorigenic signaling pathways while avoiding cellular death. The knowledge acquired on the importance of mitochondrial cancer metabolism is now being translated into clinical practice. Detailed genomic, transcriptomic, and metabolomic analysis of tumors are necessary to develop more precise treatments. The successful use of drugs targeting metabolic mitochondrial enzymes has highlighted the potential for their use in precision medicine and many therapeutic candidates are in clinical trials. However, development of efficient personalized drugs has proved challenging and the combination with other strategies such as chemocytotoxic drugs, immunotherapy, and ketogenic or calorie restriction diets is likely necessary to boost their potential. In this review, we summarize the main mitochondrial features, metabolic pathways, and their alterations in different cancer types. We also present an overview of current inhibitors, highlight enzymes that are attractive targets, and discuss challenges with translation of these approaches into clinical practice. The role of mitochondria in cancer is indisputable and presents several attractive targets for both tailored and personalized cancer therapy. ![]()
Collapse
Affiliation(s)
- Lourdes Sainero-Alcolado
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - María Victoria Ruiz-Pérez
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
23
|
Serum metabolomic analysis of men on a low-carbohydrate diet for biochemically recurrent prostate cancer reveals the potential role of ketogenesis to slow tumor growth: a secondary analysis of the CAPS2 diet trial. Prostate Cancer Prostatic Dis 2022; 25:770-777. [PMID: 35338353 DOI: 10.1038/s41391-022-00525-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Systemic treatments for prostate cancer (PC) have significant side effects. Thus, newer alternatives with fewer side effects are urgently needed. Animal and human studies suggest the therapeutic potential of low carbohydrate diet (LCD) for PC. To test this possibility, Carbohydrate and Prostate Study 2 (CAPS2) trial was conducted in PC patients with biochemical recurrence (BCR) after local treatment to determine the effect of a 6-month LCD intervention vs. usual care control on PC growth as measured by PSA doubling time (PSADT). We previously reported the LCD intervention led to significant weight loss, higher HDL, and lower triglycerides and HbA1c with a suggested longer PSADT. However, the metabolic basis of these effects are unknown. METHODS To identify the potential metabolic basis of effects of LCD on PSADT, serum metabolomic analysis was performed using baseline, month 3, and month 6 banked sera to identify the metabolites significantly altered by LCD and that correlated with varying PSADT. RESULTS LCD increased the serum levels of ketone bodies, glycine and hydroxyisocaproic acid. Reciprocally, LCD reduced the serum levels of alanine, cytidine, asymmetric dimethylarginine (ADMA) and 2-oxobutanoate. As high ADMA level is shown to inhibit nitric oxide (NO) signaling and contribute to various cardiovascular diseases, the ADMA repression under LCD may contribute to the LCD-associated health benefit. Regression analysis of the PSADT revealed a correlation between longer PSADT with higher level of 2-hydroxybutyric acids, ketone bodies, citrate and malate. Longer PSADT was also associated with LCD reduced nicotinamide, fructose-1, 6-biphosphate (FBP) and 2-oxobutanoate. CONCLUSION These results suggest a potential association of ketogenesis and TCA metabolites with slower PC growth and conversely glycolysis with faster PC growth. The link of high ketone bodies with longer PSADT supports future studies of ketogenic diets to slow PC growth.
Collapse
|
24
|
Leitner BP, Siebel S, Akingbesote ND, Zhang X, Perry RJ. Insulin and cancer: a tangled web. Biochem J 2022; 479:583-607. [PMID: 35244142 PMCID: PMC9022985 DOI: 10.1042/bcj20210134] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
For a century, since the pioneering work of Otto Warburg, the interwoven relationship between metabolism and cancer has been appreciated. More recently, with obesity rates rising in the U.S. and worldwide, epidemiologic evidence has supported a link between obesity and cancer. A substantial body of work seeks to mechanistically unpack the association between obesity, altered metabolism, and cancer. Without question, these relationships are multifactorial and cannot be distilled to a single obesity- and metabolism-altering hormone, substrate, or factor. However, it is important to understand the hormone-specific associations between metabolism and cancer. Here, we review the links between obesity, metabolic dysregulation, insulin, and cancer, with an emphasis on current investigational metabolic adjuncts to standard-of-care cancer treatment.
Collapse
Affiliation(s)
- Brooks P. Leitner
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Stephan Siebel
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Pediatrics, Yale School of Medicine, New Haven, CT, U.S.A
| | - Ngozi D. Akingbesote
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Xinyi Zhang
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Rachel J. Perry
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| |
Collapse
|
25
|
Kapoor D, Garg D, Sharma S. Emerging Role of the Ketogenic Dietary Therapies beyond Epilepsy in Child Neurology. Ann Indian Acad Neurol 2021; 24:470-480. [PMID: 34728937 PMCID: PMC8513984 DOI: 10.4103/aian.aian_20_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 01/18/2023] Open
Abstract
Ketogenic dietary therapies (KDTs) have been in use for refractory paediatric epilepsy for a century now. Over time, KDTs themselves have undergone various modifications to improve tolerability and clinical feasibility, including the Modified Atkins diet (MAD), medium chain triglyceride (MCT) diet and the low glycaemic index treatment (LGIT). Animal and observational studies indicate numerous benefits of KDTs in paediatric neurological conditions apart from their evident benefits in childhood intractable epilepsy, including neurodevelopmental disorders such as autism spectrum disorder, rarer neurogenetic conditions such as Rett syndrome, Fragile X syndrome and Kabuki syndrome, neurodegenerative conditions such as Pelizaeus-Merzbacher disease, and other conditions such as stroke and migraine. A large proportion of the evidence is derived from individual case reports, case series and some small clinical trials, emphasising the vast scope for research in this avenue. The term 'neuroketotherapeutics' has been coined recently to encompass the rapid strides in this field. In the 100th year of its use for paediatric epilepsy, this review covers the role of the KDTs in non-epilepsy neurological conditions among children.
Collapse
Affiliation(s)
- Dipti Kapoor
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Divyani Garg
- Department of Neurology, Lady Hardinge Medical College and Smt. Sucheta Kriplani Hospital, New Delhi, India
| | - Suvasini Sharma
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| |
Collapse
|
26
|
Römer M, Dörfler J, Huebner J. The use of ketogenic diets in cancer patients: a systematic review. Clin Exp Med 2021; 21:501-536. [PMID: 33813635 PMCID: PMC8505380 DOI: 10.1007/s10238-021-00710-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022]
Abstract
Ketogenic diets are a widely known, yet controversial treatment for cancer patients. In this review, we summarize the clinical evidence for anti-tumor effects, as well as the effects on anthropometry, quality of life, adverse events and adherence in cancer patients. In April 2019, a systematic search was conducted searching five electronic databases (EMBASE, Cochrane, PsychInfo, CINAHL and Medline) to find studies analyzing the use, effectiveness and potential harm of a ketogenic diet in cancer patients of any age as sole or complementary therapy. From all 19.211 search results, 46 publications concerning 39 studies with 770 patients were included in this systematic review. The therapy concepts included all forms of diets with reduced carbohydrate intake, that aimed to achieve ketosis for patients with different types of cancer. Most studies had a low quality, high risk of bias and were highly heterogeneous. There was no conclusive evidence for anti-tumor effects or improved OS. The majority of patients had significant weight loss and mild to moderate side effects. Adherence to the diet was rather low in most studies. Due to the very heterogeneous results and methodological limitations of the included studies, clinical evidence for the effectiveness of ketogenic diets in cancer patients is still lacking.
Collapse
Affiliation(s)
- Maximilian Römer
- Klinik Für Innere Medizin II, Hämatologie Und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Jennifer Dörfler
- Klinik Für Innere Medizin II, Hämatologie Und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jutta Huebner
- Klinik Für Innere Medizin II, Hämatologie Und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
27
|
Lane J, Brown NI, Williams S, Plaisance EP, Fontaine KR. Ketogenic Diet for Cancer: Critical Assessment and Research Recommendations. Nutrients 2021; 13:3562. [PMID: 34684564 PMCID: PMC8539953 DOI: 10.3390/nu13103562] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
Despite remarkable improvements in screening, diagnosis, and targeted therapies, cancer remains the second leading cause of death in the United States. It is increasingly clear that diet and lifestyle practices play a substantial role in cancer development and progression. As such, various dietary compositions have been proposed for reducing cancer risk and as potential adjuvant therapies. In this article, we critically assess the preclinical and human trials on the effects of the ketogenic diet (KD, i.e., high-fat, moderate-to-low protein, and very-low carbohydrate content) for cancer-related outcomes. The mechanisms underlying the hypothesized effects of KD, most notably the Warburg Effect, suggest that restricting carbohydrate content may impede cancer development and progression via several pathways (e.g., tumor metabolism, gene expression). Overall, although preclinical studies suggest that KD has antitumor effects, prolongs survival, and prevents cancer development, human clinical trials are equivocal. Because of the lack of high-quality clinical trials, the effects of KD on cancer and as an adjunctive therapy are essentially unknown. We propose a set of research recommendations for clinical studies examining the effects of KD on cancer development and progression.
Collapse
Affiliation(s)
- Jordin Lane
- Department of Health Behavior, School of Public Health, University of Alabama, Birmingham, AL 35294, USA; (J.L.); (N.I.B.); (S.W.)
| | - Nashira I. Brown
- Department of Health Behavior, School of Public Health, University of Alabama, Birmingham, AL 35294, USA; (J.L.); (N.I.B.); (S.W.)
| | - Shanquela Williams
- Department of Health Behavior, School of Public Health, University of Alabama, Birmingham, AL 35294, USA; (J.L.); (N.I.B.); (S.W.)
| | - Eric P. Plaisance
- Department of Human Studies, School of Education, University of Alabama, Birmingham, AL 35294, USA;
| | - Kevin R. Fontaine
- Department of Health Behavior, School of Public Health, University of Alabama, Birmingham, AL 35294, USA; (J.L.); (N.I.B.); (S.W.)
| |
Collapse
|
28
|
Tulipan J, Kofler B. Implementation of a Low-Carbohydrate Diet Improves the Quality of Life of Cancer Patients - An Online Survey. Front Nutr 2021; 8:661253. [PMID: 34458297 PMCID: PMC8384958 DOI: 10.3389/fnut.2021.661253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Background: The ketogenic diet (KD), a high-fat low-carbohydrate diet, has gained in popularity in recent years, which is reflected by an increasing number of scientific articles, books, websites, and other publications related to low carbohydrate (LC) diets and KDs. Numerous preclinical studies in different animal models of cancer have examined the effect of KDs on cancer growth, but no large randomized controlled studies or prospective cohort studies are available for human cancer patients. Evidence supporting the use of KDs as an adjunct to traditional cancer therapy has come predominantly from anecdotes and case reports. The first KD clinical trials in patients with glioblastoma revealed good acceptance and a possible anti-tumor effect. Metabolic therapy options such as the KD are not yet part of the standard of care in cancer patients. However, many cancer patients have begun implementing a KD or LC diet on their own. The aim of the present study was to gather information, via an online questionnaire, about how cancer patients go about implementing a KD or LC diet, what resources they rely on, whether they perceive benefits from the diet on quality of life (QoL), and what factors influence feasibility and adherence to the diet. Method: Recruitment of participants was carried out via social media platforms, forums and cooperating physicians (April 2018 through November 2018). To be eligible for the study, participants had to be diagnosed with cancer and on a KD or LC diet at the time of participating in the study or been on a KD or LC diet during cancer treatment. Study participants were asked to fill out an online questionnaire. The questionnaire was divided into four parts and contained a total of 64 questions. The questions were focused on the current health status of the participant, type of cancer, time since diagnosis, and treatment regimen. In addition, questions addressed social support, extent of professional counseling, food preferences and QoL. Results: A total of 96 participants (77 F, 17 M) submitted the questionnaire, of which 94 were included in the final data analysis. Ages ranged between 24 and 79 years (mean 50.1 ± 12.1 years). In 73.4% of the participants, the tumor had not formed metastases at the time of initial diagnosis. Twenty-four (26%) participants had a PET-positive tumor, 8 (9%) a PET-negative tumor, and the remainder (66.0%) did not report a PET scan. Eighty seven percent had undergone surgery in the course of their cancer treatment. The most frequent tumor type was breast cancer, followed by cervical cancer, prostate cancer, colorectal cancer and melanoma. Fifty nine percent of the study participants stated that they followed a KD during cancer therapy, 21% followed a low carbohydrate/high fat (LCHF) diet and 12% followed a low glycemic index (LOGI) diet. Sixty nine percent reported an improvement of QoL because of the diet. Almost half of the study participants sourced their initial information on KDs and LC diets from the internet. We found a significant correlation between weight loss upon implementation of a KD and the extent of overweight (p < 0.001). Weight loss in already lean participants was not reported. Overall, 67% of the participants found long-term adherence to the diet to be "easy" and 10.6% described it as being "very easy." Participants who like fatty foods tended to perceive the diet as being easier to follow (p = 0.063). Conclusion: The KD or LC diet improved self-reported QoL in more than two-thirds of study participants. The KD had a normalizing effect on body weight. The majority of the participants rated the diet as easy or very easy to follow long term. There was an obvious gap between patients' desire for professional dietary counseling and what is currently offered by health care providers. In the future, efforts should be made to invest in nutrition experts who are trained in the KD to support cancer patients with implementation of a KD.
Collapse
Affiliation(s)
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
29
|
Talib WH, Mahmod AI, Kamal A, Rashid HM, Alashqar AMD, Khater S, Jamal D, Waly M. Ketogenic Diet in Cancer Prevention and Therapy: Molecular Targets and Therapeutic Opportunities. Curr Issues Mol Biol 2021; 43:558-589. [PMID: 34287243 PMCID: PMC8928964 DOI: 10.3390/cimb43020042] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Although cancer is still one of the most significant global challenges facing public health, the world still lacks complementary approaches that would significantly enhance the efficacy of standard anticancer therapies. One of the essential strategies during cancer treatment is following a healthy diet program. The ketogenic diet (KD) has recently emerged as a metabolic therapy in cancer treatment, targeting cancer cell metabolism rather than a conventional dietary approach. The ketogenic diet (KD), a high-fat and very-low-carbohydrate with adequate amounts of protein, has shown antitumor effects by reducing energy supplies to cells. This low energy supply inhibits tumor growth, explaining the ketogenic diet's therapeutic mechanisms in cancer treatment. This review highlights the crucial mechanisms that explain the ketogenic diet's potential antitumor effects, which probably produces an unfavorable metabolic environment for cancer cells and can be used as a promising adjuvant in cancer therapy. Studies discussed in this review provide a solid background for researchers and physicians to design new combination therapies based on KD and conventional therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Hasan M. Rashid
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Aya M. D. Alashqar
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Duaa Jamal
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Mostafa Waly
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 34-123, Oman;
| |
Collapse
|
30
|
Garcia JH, Jain S, Aghi MK. Metabolic Drivers of Invasion in Glioblastoma. Front Cell Dev Biol 2021; 9:683276. [PMID: 34277624 PMCID: PMC8281286 DOI: 10.3389/fcell.2021.683276] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma is a primary malignant brain tumor with a median survival under 2 years. The poor prognosis glioblastoma caries is largely due to cellular invasion, which enables escape from resection, and drives inevitable recurrence. While most studies to date have focused on pathways that enhance the invasiveness of tumor cells in the brain microenvironment as the primary driving forces behind GBM’s ability to invade adjacent tissues, more recent studies have identified a role for adaptations in cellular metabolism in GBM invasion. Metabolic reprogramming allows invasive cells to generate the energy necessary for colonizing surrounding brain tissue and adapt to new microenvironments with unique nutrient and oxygen availability. Historically, enhanced glycolysis, even in the presence of oxygen (the Warburg effect) has dominated glioblastoma research with respect to tumor metabolism. More recent global profiling experiments, however, have identified roles for lipid, amino acid, and nucleotide metabolism in tumor growth and invasion. A thorough understanding of the metabolic traits that define invasive GBM cells may provide novel therapeutic targets for this devastating disease. In this review, we focus on metabolic alterations that have been characterized in glioblastoma, the dynamic nature of tumor metabolism and how it is shaped by interaction with the brain microenvironment, and how metabolic reprogramming generates vulnerabilities that may be ripe for exploitation.
Collapse
Affiliation(s)
- Joseph H Garcia
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Saket Jain
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
31
|
Zhang Y, Zhang T, Yang W, Chen H, Geng X, Li G, Chen H, Wang Y, Li L, Sun B. Beneficial Diets and Pancreatic Cancer: Molecular Mechanisms and Clinical Practice. Front Oncol 2021; 11:630972. [PMID: 34123787 PMCID: PMC8193730 DOI: 10.3389/fonc.2021.630972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/19/2021] [Indexed: 01/02/2023] Open
Abstract
Pancreatic cancer (PC) is a malignant tumor with high invasiveness, easy metastatic ability, and chemoresistance. Patients with PC have an extremely low survival rate due to the difficulty in early diagnosis. It is estimated that nearly 90% of PC cases are caused by environmental risk factors. Approximately 50% of PC cases are induced by an unhealthy diet, which can be avoided. Given this large attribution to diet, numerous studies have assessed the relationship between various dietary factors and PC. This article reviews three beneficial diets: a ketogenic diet (KD), a Mediterranean diet (MD), and a low-sugar diet. Their composition and impact mechanism are summarized and discussed. The associations between these three diets and PC were analyzed, and we aimed to provide more help and new insights for the prevention and treatment of PC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbo Yang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| |
Collapse
|
32
|
The Chemistry of the Ketogenic Diet: Updates and Opportunities in Organic Synthesis. Int J Mol Sci 2021; 22:ijms22105230. [PMID: 34063366 PMCID: PMC8157195 DOI: 10.3390/ijms22105230] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 01/18/2023] Open
Abstract
The high-fat, low-carbohydrate (ketogenic) diet has grown in popularity in the last decade as a weight loss tool. Research into the diet’s effects on the body have revealed a variety of other health benefits. The use of exogenous ketone supplements to confer the benefits of the diet without strict adherence to it represents an exciting new area of focus. Synthetic ketogenic compounds are of particular interest that has received very little emphasis and is an untapped area of focus for chemical synthesis. In this review, we summarize the chemical basis for ketogenicity and opportunities for further advancement of the field.
Collapse
|
33
|
Perez A, van der Louw E, Nathan J, El-Ayadi M, Golay H, Korff C, Ansari M, Catsman-Berrevoets C, von Bueren AO. Ketogenic diet treatment in diffuse intrinsic pontine glioma in children: Retrospective analysis of feasibility, safety, and survival data. Cancer Rep (Hoboken) 2021; 4:e1383. [PMID: 33939330 PMCID: PMC8551993 DOI: 10.1002/cnr2.1383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022] Open
Abstract
Background Diffuse intrinsic pontine glioma (DIPG) is one of the most devastating diseases among children with cancer, thus novel strategies are urgently needed. Aims We retrospectively evaluated DIPG patients exposed to the carbohydrate restricted ketogenic diet (KD) with regard of feasibility, safety, and overall survival (OS). Methods and results Searches of MEDLINE and Embase identified five hits meeting the search criteria (diagnosis of DIPG and exposure to KD). One additional case was identified by contact with experts. Individual patient data were extracted from publications or obtained from investigators. The inclusion criteria for analysis of the data were defined as DIPG patients who were exposed to the KD for ≥3 months. Feasibility, as described in the literature, was the number of patients able to follow the KD for 3 months out of all DIPG patients identified. OS was estimated by the Kaplan‐Meier method. Five DIPG patients (males, n = 3; median age 4.4 years; range, 2.5‐15 years) meeting the inclusion criteria were identified. Analysis of the available data suggested that the KD is generally relatively well tolerated. Only mild gastro‐intestinal complaints, one borderline hypoglycemia (2.4 mmol/L) and one hyperketosis (max 7.2 mmol/L) were observed. Five out of six DIPG patients identified adhered for ≥3 months (median KD duration, 6.5 months; range, 0.25‐2 years) to the diet. The median OS was 18.7 months. Conclusion Our study provides evidence that it may be feasible for pediatric DIPG patients to adhere for at least 3 months to KD. In particular cases, diet modifications were done. The clinical outcome and OS appear not to be impacted in a negative way. KD might be proposed as adjuvant therapy when large prospective studies have shown feasibility and safety. Future studies might ideally assess the impact of KD on clinical outcome, quality of life, and efficacy.
Collapse
Affiliation(s)
- Alexandre Perez
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland.,Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Hospital of Geneva, Geneva, Switzerland
| | - Elles van der Louw
- Department of Dietetics, Erasmus MC Sophia Children's Hospital, University Medical Centre, Rotterdam, The Netherlands
| | - Janak Nathan
- Department of Neurology, Shushrusha Hospital, Mumbai, India
| | - Moatasem El-Ayadi
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland.,Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hadrien Golay
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Hospital of Geneva, Geneva, Switzerland
| | - Christian Korff
- Department of Pediatrics, Obstetrics and Gynecology, Pediatric Neurology Unit, University Hospital of Geneva, Geneva, Switzerland
| | - Marc Ansari
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland.,Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Hospital of Geneva, Geneva, Switzerland
| | - Coriene Catsman-Berrevoets
- Department of Pediatric Neurology, Erasmus MC Sophia Children's Hospital, University Medical Centre, Rotterdam, The Netherlands
| | - Andre O von Bueren
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland.,Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Travers S, Litofsky NS. Daily Lifestyle Modifications to Improve Quality of Life and Survival in Glioblastoma: A Review. Brain Sci 2021; 11:brainsci11050533. [PMID: 33922443 PMCID: PMC8146925 DOI: 10.3390/brainsci11050533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Survival in glioblastoma remains poor despite advancements in standard-of-care treatment. Some patients wish to take a more active role in their cancer treatment by adopting daily lifestyle changes to improve their quality of life or overall survival. We review the available literature through PubMed and Google Scholar to identify laboratory animal studies, human studies, and ongoing clinical trials. We discuss which health habits patients adopt and which have the most promise in glioblastoma. While results of clinical trials available on these topics are limited, dietary restrictions, exercise, use of supplements and cannabis, and smoking cessation all show some benefit in the comprehensive treatment of glioblastoma. Marital status also has an impact on survival. Further clinical trials combining standard treatments with lifestyle modifications are necessary to quantify their survival advantages.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW In this review, we examine the postulated mechanisms of therapeutic effect of ketogenic diets in the treatment of gliomas, review the completed clinical trials, and discuss further directions in this field. RECENT FINDINGS Cancers including gliomas are characterized by derangements in cellular metabolism. In vitro and animal studies have revealed that dietary interventions to reduce glucose and glycolytic pathways in gliomas may have a therapeutic effect. Early trials in patients with malignant gliomas have shown feasibility, but are not robust enough yet to demonstrate clinical applicability. Therapies for malignant gliomas of the brain are increasingly using a multi-targeted approach. The use of ketogenic diets and its variants may offer a unique and promising anti-glioma treatment by exploiting metabolic alterations seen in cancers including gliomas seen at the cellular level, which may work in concert with other therapies.
Collapse
Affiliation(s)
- Jonathan G Thomas
- Department of Neurosurgery, Global Neurosciences Institute, 3100 Princeton Pike Ste D, Lawrenceville, NJ, 08648, USA.
| | - Erol Veznedaroglu
- Department of Neurosurgery, Global Neurosciences Institute, 3100 Princeton Pike Ste D, Lawrenceville, NJ, 08648, USA
| |
Collapse
|
36
|
Barrea L, Caprio M, Tuccinardi D, Moriconi E, Di Renzo L, Muscogiuri G, Colao A, Savastano S. Could ketogenic diet "starve" cancer? Emerging evidence. Crit Rev Food Sci Nutr 2020; 62:1800-1821. [PMID: 33274644 DOI: 10.1080/10408398.2020.1847030] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer cells (CCs) predominantly use aerobic glycolysis (Warburg effect) for their metabolism. This important characteristic of CCs represents a potential metabolic pathway to be targeted in the context of tumor treatment. Being this mechanism related to nutrient oxidation, dietary manipulation has been hypothesized as an important strategy during tumor treatment. Ketogenic diet (KD) is a dietary pattern characterized by high fat intake, moderate-to-low protein consumption, and very-low-carbohydrate intake (<50 g), which in cancer setting may target CCs metabolism, potentially influencing both tumor treatment and prognosis. Several mechanisms, far beyond the originally proposed inhibition of glucose/insulin signaling, can underpin the effectiveness of KD in cancer management, ranging from oxidative stress, mitochondrial metabolism, and inflammation. The role of a qualified Nutritionist is essential to reduce and manage the short and long-term complications of this dietary therapy, which must be personalized to the individual patient for the planning of tailored KD protocol in cancer patients. In the present review, we summarize the proposed antitumor mechanisms of KD, the application of KD in cancer patients with obesity and cachexia, and the preclinical and clinical evidence on KD therapy in cancer.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Dario Tuccinardi
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Eleonora Moriconi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | | |
Collapse
|
37
|
Zou Y, Fineberg S, Pearlman A, Feinman RD, Fine EJ. The effect of a ketogenic diet and synergy with rapamycin in a mouse model of breast cancer. PLoS One 2020; 15:e0233662. [PMID: 33270630 PMCID: PMC7714189 DOI: 10.1371/journal.pone.0233662] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The effects of diet in cancer, in general, and breast cancer in particular, are not well understood. Insulin inhibition in ketogenic, high fat diets, modulate downstream signaling molecules and are postulated to have therapeutic benefits. Obesity and diabetes have been associated with higher incidence of breast cancer. Addition of anti-cancer drugs together with diet is also not well studied. METHODS Two diets, one ketogenic, the other standard mouse chow, were tested in a spontaneous breast cancer model in 34 mice. Subgroups of 3-9 mice were assigned, in which the diet were implemented either with or without added rapamycin, an mTOR inhibitor and potential anti-cancer drug. RESULTS Blood glucose and insulin concentrations in mice ingesting the ketogenic diet (KD) were significantly lower, whereas beta hydroxybutyrate (BHB) levels were significantly higher, respectively, than in mice on the standard diet (SD). Growth of primary breast tumors and lung metastases were inhibited, and lifespans were longer in the KD mice compared to mice on the SD (p<0.005). Rapamycin improved survival in both mouse diet groups, but when combined with the KD was more effective than when combined with the SD. CONCLUSIONS The study provides proof of principle that a ketogenic diet a) results in serum insulin reduction and ketosis in a spontaneous breast cancer mouse model; b) can serve as a therapeutic anti-cancer agent; and c) can enhance the effects of rapamycin, an anti-cancer drug, permitting dose reduction for comparable effect. Further, the ketogenic diet in this model produces superior cancer control than standard mouse chow whether with or without added rapamycin.
Collapse
Affiliation(s)
- Yiyu Zou
- Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Susan Fineberg
- Montefiore Medical Center, Bronx, NY, United States of America
| | - Alexander Pearlman
- Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Richard D. Feinman
- SUNY Downstate Health Sciences Center, Brooklyn, NY, United States of America
| | - Eugene J. Fine
- Albert Einstein College of Medicine, Bronx, NY, United States of America
- Montefiore Medical Center, Bronx, NY, United States of America
- * E-mail:
| |
Collapse
|
38
|
Maldonado R, Talana CA, Song C, Dixon A, Uehara K, Weichhaus M. β-hydroxybutyrate does not alter the effects of glucose deprivation on breast cancer cells. Oncol Lett 2020; 21:65. [PMID: 33281976 PMCID: PMC7709568 DOI: 10.3892/ol.2020.12326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/29/2020] [Indexed: 12/04/2022] Open
Abstract
Ketogenic diets have the potential to lower glucose availability to cancer cells. However, the effect that the resulting increase in ketone bodies has on cancer cells is not fully understood. The present study explored the effect of β-hydroxybutyrate (BHB) on glucose-deprived MCF-7 and T47D breast cancer cells. Cell proliferation was decreased in response to lower glucose conditions, which could not be rescued consistently by 10 or 25 mM BHB supplementation. In addition, gene expression levels were altered when cells were glucose deprived. Reducing glucose availability of cancer cells to 225 mg/l for 4 days significantly decreased the expression of 113 genes and increased the expression of 100 genes in MCF-7 breast cancer cells, and significantly decreased the expression of 425 genes and increased the expression of 447 genes in T47D breast cancer cells. Pathway enrichment analysis demonstrated that glucose deprivation decreased activity of the Hippo-Yap cell signaling pathway in MCF-7 breast cancer cells, whereas it increased the expression of genes in the NRF2-pathaway and genes regulating ferroptosis in T47D breast cancer cells. Treatment of glucose-deprived cells with 10 or 25 mM BHB significantly changed the expression of 14 genes in MCF-7 breast cancer cells and 40 genes in T47D breast cancer cells. No significant pathway enrichment was detected when glucose-deprived cells were treated with BHB. Both cell lines expressed the enzymes (OXCT1/2, BDH1 and ACAT1/2) responsible for metabolizing BHB to acetyl-CoA, yet expression of these enzymes was not altered by either glucose deprivation or BHB treatment. In the publicly available The Cancer Genome Atlas (TCGA), increased expression of ketone body-catabolizing enzymes was observed in various types of cancer based on mRNA expression z-scores. Increased expression of BDH1 and ACAT1 significantly decreased overall survival of patients with breast cancer in TCGA studies, while decreased OXCT1 expression non-significantly decreased overall survival. In conclusion, neither MCF-7 nor T47D breast cancer cells were affected by BHB during glucose deprivation; however, screening of tumors for activation of ketone body-metabolizing enzymes may be able to identify patients that will benefit from ketogenic diet interventions.
Collapse
Affiliation(s)
- Rylee Maldonado
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA
| | - Chloe Adrienna Talana
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA
| | - Cassaundra Song
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA.,Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marchall University, Huntington, WV 25755, USA
| | - Alyssa Dixon
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA
| | - Kahealani Uehara
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA.,Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael Weichhaus
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA
| |
Collapse
|
39
|
Klein P, Tyrlikova I, Zuccoli G, Tyrlik A, Maroon JC. Treatment of glioblastoma multiforme with "classic" 4:1 ketogenic diet total meal replacement. Cancer Metab 2020; 8:24. [PMID: 33292598 PMCID: PMC7653752 DOI: 10.1186/s40170-020-00230-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Glioblastoma (GBM) has poor survival with standard treatment. Experimental data suggest potential for metabolic treatment with low carbohydrate ketogenic diet (KD). Few human studies of KD in GBM have been done, limited by difficulty and variability of the diet, compliance, and feasibility issues. We have developed a novel KD approach of total meal replacement (TMR) program using standardized recipes with ready-made meals. This pilot study evaluated feasibility, safety, tolerability, and efficacy of GBM treatment using TMR program with “classic” 4:1 KD. Method GBM patients were treated in an open-label study for 6 months with 4:1 [fat]:[protein + carbohydrate] ratio by weight, 10 g CH/day, 1600 kcal/day TMR. Patients were either newly diagnosed (group 1) and treated adjunctively to radiation and temozolomide or had recurrent GBM (group 2). Patients checked blood glucose and blood and urine ketone levels twice daily and had regular MRIs. Primary outcome measures included retention, treatment-emergent adverse events (TEAEs), and TEAE-related discontinuation. Secondary outcome measures were survival time from treatment initiation and time to MRI progression. Results Recruitment was slow, resulting in early termination of the study. Eight patients participated, 4 in group 1 and 4 in group 2. Five (62.5%) subjects completed the 6 months of treatment, 4/4 subjects in group 1 and 1/4 in group 2. Three subjects stopped KD early: 2 (25%) because of GBM progression and one (12.5%) because of diet restrictiveness. Four subjects, all group 1, continued KD on their own, three until shortly before death, for total of 26, 19.3, and 7 months, one ongoing. The diet was well tolerated. TEAEs, all mild and transient, included weight loss and hunger (n = 6) which resolved with caloric increase, nausea (n = 2), dizziness (n = 2), fatigue, and constipation (n = 1 each). No one discontinued KD because of TEAEs. Seven patients died. For these, mean (range) survival time from diet initiation was 20 months for group 1 (9.5–27) and 12.8 months for group 2 (6.3–19.9). Mean survival time from diagnosis was 21.8 months for group 1 (11–29.2) and 25.4 months for group 2 ( 13.9–38.7). One patient with recurrent GBM and progression on bevacizumab experienced a remarkable symptom reversal, tumor shrinkage, and edema resolution 6–8 weeks after KD initiation and survival for 20 months after starting KD. Conclusion Treatment of GBM patients with 4:1 KD using total meal replacement program with standardized recipes was well tolerated. The small sample size limits efficacy conclusions. Trial registration NCT01865162 registered 30 May 2013, and NCT02302235 registered 26 November 2014, https://clinicaltrials.gov/
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA.
| | - Ivana Tyrlikova
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Giulio Zuccoli
- Program for the Study of Neurodevelopment in Rare Disorders (NDRD), University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Adam Tyrlik
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Joseph C Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| |
Collapse
|
40
|
Muscogiuri G, Barrea L, Campolo F, Sbardella E, Sciammarella C, Tarsitano MG, Bottiglieri F, Colao A, Faggiano A. Ketogenic diet: a tool for the management of neuroendocrine neoplasms? Crit Rev Food Sci Nutr 2020; 62:1035-1045. [PMID: 33938778 DOI: 10.1080/10408398.2020.1832955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of neoplasms, whose incidence has rapidly increased in the last years. Nutrition plays an important role in their management; indeed, malnutrition negatively impacts on rates of complications, hospitalization, hospital stay, costs and mortality. Furthermore, it has been reported that a poor nutritional status could influence the outcome of patients with pancreatic NENs. Moreover, obesity, predisposing to insulin resistance and compensatory hyperinsulinemia, could stimulate the growth of these neoplasms. Ketogenic diet (KD), a high-fat, low-carbohydrate diet with adequate amounts of protein, has been reported to be a promising approach for the management of several types of cancer, mostly gynecological and neurological ones. Indeed, it appears to sensitize most cancers to standard treatment by exploiting the reprogramed metabolism of cancer cells and thus resulting in a promising candidate as an adjuvant cancer therapy. Thus, the aim of this review is to provide an overview on the importance of nutrition in cancer management and in particular in NENs' setting. Furthermore, we reported the current evidence on the efficacy of KD in the management of cancer and based on molecular mechanisms; we also hypothesize the potential use of this nutritional pattern in the management of NENs.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Federica Campolo
- Department of Experimental Medicine, University of Rome "La Sapienza," Rome, Italy
| | - Emilia Sbardella
- Department of Experimental Medicine, University of Rome "La Sapienza," Rome, Italy
| | - Concetta Sciammarella
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | | | - Filomena Bottiglieri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,UNESCO Chair "Education for Health and Sustainable Development," Federico II University, Naples, Italy
| | - Antongiulio Faggiano
- Department of Experimental Medicine, University of Rome "La Sapienza," Rome, Italy
| |
Collapse
|
41
|
Bharmal SH, Pendharkar SA, Singh RG, Cameron-Smith D, Petrov MS. Associations between ketone bodies and fasting plasma glucose in individuals with post-pancreatitis prediabetes. Arch Physiol Biochem 2020; 126:308-319. [PMID: 30451544 DOI: 10.1080/13813455.2018.1534242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Context: Levels of ketone bodies are altered in both acute pancreatitis and type 1 and type 2 diabetes. However, the role of ketone bodies in the pathogenesis of abnormal glucose metabolism after pancreatitis is largely unknown.Objective: To investigate the associations between ketone bodies and glucose homeostasis in individuals with post-pancreatitis prediabetes (PPP) versus normoglycaemia after pancreatitis (NAP).Methods: Fasting blood samples were analysed for acetoacetate, β-hydroxybutyrate, and markers of glucose metabolism at a median of 26 months after acute pancreatitis. A series of linear regression analyses were conducted adjusting for patient- and pancreatitis-related characteristics.Results: The study included 27 individuals with PPP and 52 with NAP. β-hydroxybutyrate was significantly associated with fasting plasma glucose (p = .002) and explained 26.2% of its variance in PPP, but not in NAP (p = .814; 0%). Acetoacetate was not significantly associated with fasting plasma glucose in both PPP (p = .681) or NAP (p = .661).Conclusions: An inverse association between β-hydroxybutyrate and fasting plasma glucose characterises PPP and this may have translational implications.
Collapse
Affiliation(s)
- Sakina H Bharmal
- School of Medicine, University of Auckland, Auckland, New Zealand
| | | | - Ruma G Singh
- School of Medicine, University of Auckland, Auckland, New Zealand
| | | | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
42
|
Sperry J, Condro MC, Guo L, Braas D, Vanderveer-Harris N, Kim KK, Pope WB, Divakaruni AS, Lai A, Christofk H, Castro MG, Lowenstein PR, Le Belle JE, Kornblum HI. Glioblastoma Utilizes Fatty Acids and Ketone Bodies for Growth Allowing Progression during Ketogenic Diet Therapy. iScience 2020; 23:101453. [PMID: 32861192 PMCID: PMC7471621 DOI: 10.1016/j.isci.2020.101453] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/28/2020] [Accepted: 08/10/2020] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma (GBM) metabolism has traditionally been characterized by a primary dependence on aerobic glycolysis, prompting the use of the ketogenic diet (KD) as a potential therapy. In this study we evaluated the effectiveness of the KD in GBM and assessed the role of fatty acid oxidation (FAO) in promoting GBM propagation. In vitro assays revealed FA utilization throughout the GBM metabolome and growth inhibition in nearly every cell line in a broad spectrum of patient-derived glioma cells treated with FAO inhibitors. In vivo assessments revealed that knockdown of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme for FAO, reduced the rate of tumor growth and increased survival. However, the unrestricted ketogenic diet did not reduce tumor growth and for some models significantly reduced survival. Altogether, these data highlight important roles for FA and ketone body metabolism that could serve to improve targeted therapies in GBM.
Collapse
Affiliation(s)
- Jantzen Sperry
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Michael C. Condro
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, CA, USA
| | - Lea Guo
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Daniel Braas
- UCLA Metabolomics Center, UCLA, Los Angeles, CA, USA
| | - Nathan Vanderveer-Harris
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, CA, USA
| | - Kristen K.O. Kim
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Whitney B. Pope
- Department of Radiological Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Ajit S. Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Albert Lai
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Heather Christofk
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA
| | - Maria G. Castro
- Department of Neurosurgery, Department of Cell and Developmental Biology, Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, Department of Cell and Developmental Biology, Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Janel E. Le Belle
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, CA, USA
| | - Harley I. Kornblum
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA
| |
Collapse
|
43
|
Cancer diets for cancer patients: Lessons from mouse studies and new insights from the study of fatty acid metabolism in tumors. Biochimie 2020; 178:56-68. [PMID: 32890677 DOI: 10.1016/j.biochi.2020.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 08/30/2020] [Indexed: 12/15/2022]
Abstract
Specific diets for cancer patients have the potential to offer an adjuvant modality to conventional anticancer therapy. If the concept of starving cancer cells from nutrients to inhibit tumor growth is quite simple, the translation into the clinics is not straightforward. Several diets have been described including the Calorie-restricted diet based on a reduction in carbohydrate intake and the Ketogenic diet wherein the low carbohydrate content is compensated by a high fat intake. As for other diets that deviate from normal composition only by one or two amino acids, these diets most often revealed a reduction in tumor growth in mice, in particular when associated with chemo- or radiotherapy. By contrast, in cancer patients, the interest of these diets is almost exclusively supported by case reports precluding any conclusions on their real capacity to influence disease outcome. In parallel, the field of tumor lipid metabolism has emerged in the last decade offering a better understanding of how fatty acids are captured, synthesized or stored as lipid droplets in cancers. Fatty acids participate to cancer cell survival in the hypoxic and acidic tumor microenvironment and also support proliferation and invasiveness. Interestingly, while such addiction for fatty acids may account for cancer progression associated with high fat diet, it could also represent an Achilles heel for tumors. In particular n-3 polyunsaturated fatty acids represent a class of lipids that can exert potent cytotoxic effects in tumors and therefore represent an attractive diet supplementation to improve cancer patient outcomes.
Collapse
|
44
|
Bozzetti F, Stanga Z. Does nutrition for cancer patients feed the tumour? A clinical perspective. Crit Rev Oncol Hematol 2020; 153:103061. [DOI: 10.1016/j.critrevonc.2020.103061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
|
45
|
Augustus E, Granderson I, Rocke KD. The Impact of a Ketogenic Dietary Intervention on the Quality of Life of Stage II and III Cancer Patients: A Randomized Controlled Trial in the Caribbean. Nutr Cancer 2020; 73:1590-1600. [PMID: 32791011 DOI: 10.1080/01635581.2020.1803930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION This study sought to determine the impact of a ketogenic dietary intervention on the quality of life of stage II and III cancer patients. METHODS A randomized controlled trial was implemented whereby patients in the treatment group followed a modified ketogenic diet (KD) utilizing medium chained triglyceride fats during a four-month period, while the control group followed an institutionalized standard traditional diet. Quality of life and mental health status was assessed using The European Organization for Research and Treatment of Cancer current core questionnaire and The Patient Health Questionnaire. Intervention effects were assessed using repeated measures ANCOVA and multiple linear regression models. RESULTS The quality of life and mental health of the cancer patients in the treatment group were greatly increased and improved due to the utilization of the diet. Most of the persons in the treatment group attained and maintained ketosis after 2 weeks. Age, gender, and state of the disease seemed to affect the keto-adaptation period in terms of the time taken to keto-adapt. CONCLUSION The KD was suitable for stage II and III cancer patients in improving their quality of life, nutritional, functional, and psychosocial statuses.
Collapse
Affiliation(s)
- Eden Augustus
- The George Alleyne Chronic Disease Research Centre, Caribbean Institute for Health Research (CAIHR), The University of the West Indies, Bridgetown, Barbados, West Indies.,Faculty of Food and Agriculture, Department of Agricultural Economics and Extension, The University of the West Indies, Trinidad, West Indies
| | - Isabella Granderson
- Faculty of Food and Agriculture, Department of Agricultural Economics and Extension, The University of the West Indies, Trinidad, West Indies
| | - Kern D Rocke
- The George Alleyne Chronic Disease Research Centre, Caribbean Institute for Health Research (CAIHR), The University of the West Indies, Bridgetown, Barbados, West Indies
| |
Collapse
|
46
|
Understanding the Mechanisms of Diet and Outcomes in Colon, Prostate, and Breast Cancer; Malignant Gliomas; and Cancer Patients on Immunotherapy. Nutrients 2020; 12:nu12082226. [PMID: 32722632 PMCID: PMC7468768 DOI: 10.3390/nu12082226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer patients often ask which foods would be best to consume to improve outcomes. This is a difficult question to answer as there are no case-controlled, prospective studies that control for confounding factors. Therefore, a literature review utilizing PubMed was conducted with the goal to find evidence-based support for certain diets in specific cancer patients—specifically, we reviewed data for colon cancer, prostate cancer, breast cancer, malignant gliomas, and cancer patients on immunotherapy. Improved outcomes in colon cancer and patients on immunotherapy were found with high-fiber diets. Improved outcomes in malignant gliomas were found with ketogenic diets. Improved outcomes in prostate cancer and breast cancer were found with plant-based diets. However, the data are not conclusive for breast cancer. Additionally, the increased intake of omega-3 fatty acids were also associated with better outcomes for prostate cancer. While current research, especially in humans, is minimal, the studies discussed in this review provide the groundwork for future research to further investigate the role of dietary intervention in improving cancer outcomes.
Collapse
|
47
|
Icard P, Ollivier L, Forgez P, Otz J, Alifano M, Fournel L, Loi M, Thariat J. Perspective: Do Fasting, Caloric Restriction, and Diets Increase Sensitivity to Radiotherapy? A Literature Review. Adv Nutr 2020; 11:1089-1101. [PMID: 32492154 PMCID: PMC7490158 DOI: 10.1093/advances/nmaa062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/11/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Caloric starvation, as well as various diets, has been proposed to increase the oxidative DNA damage induced by radiotherapy (RT). However, some diets could have dual effects, sometimes promoting cancer growth, whereas proposing caloric restriction may appear counterproductive during RT considering that the maintenance of weight is a major factor for the success of this therapy. A systematic review was performed via a PubMed search on RT and fasting, or caloric restriction, ketogenic diet (>75% of fat-derived energy intake), protein starvation, amino acid restriction, as well as the Warburg effect. Twenty-six eligible original articles (17 preclinical studies and 9 clinical noncontrolled studies on low-carbohydrate, high-fat diets popularized as ketogenic diets, representing a total of 77 patients) were included. Preclinical experiments suggest that a short period of fasting prior to radiation, and/or transient caloric restriction during treatment course, can increase tumor responsiveness. These regimens promote accumulation of oxidative lesions and insufficient repair, subsequently leading to cancer cell death. Due to their more flexible metabolism, healthy cells should be less sensitive, shifting their metabolism to support survival and repair. Interestingly, these regimens might stimulate an acute anticancer immune response, and may be of particular interest in tumors with high glucose uptake on positron emission tomography scan, a phenotype associated with poor survival and resistance to RT. Preclinical studies with ketogenic diets yielded more conflicting results, perhaps because cancer cells can sometimes metabolize fatty acids and/or ketone bodies. Randomized trials are awaited to specify the role of each strategy according to the clinical setting, although more stringent definitions of proposed diet, nutritional status, and consensual criteria for tumor response assessment are needed. In conclusion, dietary interventions during RT could be a simple and medically economical and inexpensive method that may deserve to be tested to improve efficiency of radiation.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, Normandie University, UNICAEN, Medical School, CHU de Caen, Caen, France,Inserm U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Centre de Lutte Contre le Cancer, Centre François Baclesse, Caen, France,Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,Address correspondence to PI (e-mail: )
| | - Luc Ollivier
- Centre Hospitalier de Brest, Université de Bretagne Occidentale, Brest, France,Centre François Baclesse, Radiotherapy Unit, Caen, France
| | - Patricia Forgez
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Joelle Otz
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,INSERM U1138, Integrative Cancer Immunology, University Paris Descartes, Paris, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,INSERM U1138, Integrative Cancer Immunology, University Paris Descartes, Paris, France
| | - Mauro Loi
- Department of Radiation Oncology, Paris Est University Hospitals, AP-HP, Paris, France
| | - Juliette Thariat
- Université Caen Normandie, Normandie University, UNICAEN, Medical School, CHU de Caen, Caen, France,Centre François Baclesse, Radiotherapy Unit, Caen, France,Laboratoire de Physique Corpusculaire, IN2P3, Normandie University/UNICAEN/CNRS, Caen, France
| |
Collapse
|
48
|
Zanecosky R. Pediatric Patients and Dietary Choices: Examining Alternative Options, Decision Making, and Misinformation. Clin J Oncol Nurs 2020; 24:290-295. [PMID: 32441693 DOI: 10.1188/20.cjon.290-295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Nutrition is a key component of oncologic therapies and treatments. Patients and families are interested in the integration of alternative diets to promote therapy response as well as counteract the cancer. With the expansion of online and social media presence comes the endorsement of nonscientific claims. OBJECTIVES The purpose of this article is to review alternative diets and discuss the basis of good nutrition in pediatric patients with cancer. This article will also explore where patients and families are likely to seek their information and assess their level of trust in the information. METHODS Five alternative diets and two supplements were assessed through a literature review for their effect on pediatric patients with cancer. FINDINGS Additional research is needed to prove consistent and definitive dietary benefits for pediatric patients with cancer; however, some diets have demonstrated promising results. A general diet for pediatric patients with cancer consists of an appropriate distribution of nutritious carbohydrates, proteins, and fats. However, unregulated sources of information remain a risk.
Collapse
|
49
|
Panhans CM, Gresham G, Amaral LJ, Hu J. Exploring the Feasibility and Effects of a Ketogenic Diet in Patients With CNS Malignancies: A Retrospective Case Series. Front Neurosci 2020; 14:390. [PMID: 32508561 PMCID: PMC7248360 DOI: 10.3389/fnins.2020.00390] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Recently, the ketogenic diet has been proposed as an adjunct treatment for a range of medical conditions including weight loss, diabetes, cancer, and neurodegenerative diseases. Because malignant CNS tumors are highly dependent on glucose, the use of a ketogenic diet as an adjunct therapy is currently being explored. This case series summarizes our experience implementing a ketogenic diet for patients with CNS malignancies. Methods: Patients diagnosed with CNS malignancies following a ketogenic diet were identified between 2015 and 2017. Malignancies included confirmed diagnoses of glioblastoma (GBM), astrocytoma, or oligodendroglioma. With guidance from a registered dietitian, ketone levels, glucose levels, and weight were regularly collected for several patients along with patient-reported symptoms and adverse effects. Interested patients were asked to follow a 3:1 ketogenic diet for 120 days. The ketogenic diet is a high-fat, moderate protein, and very low carbohydrate diet, where patients limited carbohydrate intake to ≤20 g per day. Brain imaging was reviewed. A series of descriptive analyses were conducted. Results: The ketogenic diet was initiated in 12 patients of which 8 patients contributed data on their blood glucose and ketone levels. The majority of patients were male (n = 10) with a median age of 45 (range 32–62). Diagnoses included GBM (n = 6), grade 2/3 astrocytomas (n = 5) and one patient with a grade 2 spinal cord astrocytoma. Ten of the 12 patients were receiving concurrent treatment; two received supportive care only. The majority of patients with evaluable data (n = 8) maintained ketone levels above 0.5 mM for the duration of 120-day period. Ketone levels generally increased from baseline while glucose levels and BMI decreased. Overall, patients reported improved symptoms over the course of the diet. Imaging also suggested improved disease control and reduction in vasogenic edema. Conclusion: Taking advantage of a tumor’s metabolic inflexibility can have a positive impact on patients, particularly those with CNS malignancies. More structured and statistically planned clinical trials are needed to determine the margin of impact of a ketogenic diet.
Collapse
Affiliation(s)
- Cristina M Panhans
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Gillian Gresham
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Center, Los Angeles, CA, United States
| | - L J Amaral
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Jethro Hu
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
50
|
Weber DD, Aminzadeh-Gohari S, Tulipan J, Catalano L, Feichtinger RG, Kofler B. Ketogenic diet in the treatment of cancer - Where do we stand? Mol Metab 2020; 33:102-121. [PMID: 31399389 PMCID: PMC7056920 DOI: 10.1016/j.molmet.2019.06.026] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cancer is one of the greatest public health challenges worldwide, and we still lack complementary approaches to significantly enhance the efficacy of standard anticancer therapies. The ketogenic diet, a high-fat, low-carbohydrate diet with adequate amounts of protein, appears to sensitize most cancers to standard treatment by exploiting the reprogramed metabolism of cancer cells, making the diet a promising candidate as an adjuvant cancer therapy. SCOPE OF REVIEW To critically evaluate available preclinical and clinical evidence regarding the ketogenic diet in the context of cancer therapy. Furthermore, we highlight important mechanisms that could explain the potential antitumor effects of the ketogenic diet. MAJOR CONCLUSIONS The ketogenic diet probably creates an unfavorable metabolic environment for cancer cells and thus can be regarded as a promising adjuvant as a patient-specific multifactorial therapy. The majority of preclinical and several clinical studies argue for the use of the ketogenic diet in combination with standard therapies based on its potential to enhance the antitumor effects of classic chemo- and radiotherapy, its overall good safety and tolerability and increase in quality of life. However, to further elucidate the mechanisms of the ketogenic diet as a therapy and evaluate its application in clinical practice, more molecular studies as well as uniformly controlled clinical trials are needed.
Collapse
Affiliation(s)
- Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Julia Tulipan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - René G Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| |
Collapse
|