1
|
Sharma KB, Subramani C, Ganesh K, Sharma A, Basu B, Balyan S, Sharma G, KA S, Deb A, Srivastava M, Chugh S, Sehrawat S, Bharadwaj K, Rout A, Sahoo PK, Saurav S, Motiani RK, Singh R, Jain D, Asthana S, Wadhwa R, Vrati S. Withaferin A inhibits Chikungunya virus nsP2 protease and shows antiviral activity in the cell culture and mouse model of virus infection. PLoS Pathog 2024; 20:e1012816. [PMID: 39775571 PMCID: PMC11723598 DOI: 10.1371/journal.ppat.1012816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 01/10/2025] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus causing fever, myalgia, and debilitating joint swelling and pain, which in many patients becomes chronic. The frequent epidemics of CHIKV across the world pose a significant public health burden necessitating the development of effective antiviral therapeutics. A cellular imaging-based high-content screening of natural compounds identified withaferin A (WFA), a steroidal lactone isolated from the plant Withania somnifera, as a potent antiviral against CHIKV. In the ERMS cells, WFA inhibited CHIKV replication early during the life cycle by binding the CHIKV non-structural protein nsP2 and inhibiting its protease activity. This inhibited the viral polyprotein processing and the minus-sense viral RNA synthesis. WFA mounted the nsP2 protease inhibitory activity through its oxidising property as the reducing agents N-acetylcysteine and Glutathione-monoethyl ester effectively reversed the WFA-mediated protease inhibition in vitro and abolished the WFA-mediated antiviral activity in cultured cells. WFA inhibited CHIKV replication in the C57BL/6 mouse model of chikungunya disease, resulting in significantly lower viremia. Importantly, CHIKV-infected mice showed significant joint swelling which was not seen in WFA-treated mice. These data demonstrate the potential of WFA as a novel CHIKV antiviral.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shouri KA
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Mitul Srivastava
- Translational Health Science and Technology Institute, Faridabad, India
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, Faridabad, India
| | | | | | - Archana Rout
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Suman Saurav
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Ramandeep Singh
- Translational Health Science and Technology Institute, Faridabad, India
| | - Deepti Jain
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | | |
Collapse
|
2
|
Al Balawi AN, Eldiasty JG, Mosallam SAER, El-Alosey AR, Elmetwalli A. Assessing multi-target antiviral and antioxidant activities of natural compounds against SARS-CoV-2: an integrated in vitro and in silico study. BIORESOUR BIOPROCESS 2024; 11:108. [PMID: 39604740 PMCID: PMC11602940 DOI: 10.1186/s40643-024-00822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
There is an urgent need for preventive and therapeutic drugs to effectively treat and prevent viral diseases from resurfacing as they emerge during the COVID-19 pandemic. This study aims to assess the antiviral effects of four natural compounds commonly used in traditional medicine to treat SARS-CoV-2 infection. A cytotoxicity, dose-dependent, and plaque reduction assay was performed on Vero CCL-81 cells to figure out their effects on the cells. Quantification of cytokines was assessed. In silico analysis for the selected compound was also evaluated. Results revealed that the compounds could disrupt the viral replication cycle through direct inhibition of the virus or immune system stimulation. The cytotoxicity assay results revealed that the compounds were well tolerated by the cells, indicating that the compounds were not toxic to the cells. This study evaluated the antioxidant capacities of propolis, curcumin, quercetin, and ginseng using ABTS, FRAP, and CUPRAC assays, revealing that propolis exhibited the highest antioxidant activity of ABTS with 1250.40 ± 17.10 μmol Trolox eq/g, with FRAP values reaching 1200.55 ± 15.90 μmol Fe2⁺ eq/g and CUPRAC values of 1150.80 ± 14.20 μmol Trolox eq/g at 1000 µg/mL, highlighting its potential as a potent natural antioxidant. The results of the plaque reduction assay revealed that the compounds could reduce the size and number of plaques, indicating that the compounds could inhibit the virus replication cycle. Subsequently, using molecular docking to analyze the effect of propolis, curcumin, quercetin, and ginseng as inhibitors, it was unveiled that the four compounds are likely to have the potential to inhibit the protease activity, spike protein S1, and RNA polymerase of SARS-CoV-2 and the virus titer was reduced by 100% after post-infection using propolis as an inhibitor control.
Collapse
Affiliation(s)
- Aisha Nawaf Al Balawi
- Biology Department, University College of Haql, "University of Tabuk", Tabuk, Saudi Arabia.
| | - Jayda G Eldiasty
- Biology Department, University College of Haql, "University of Tabuk", Tabuk, Saudi Arabia
| | | | - Alaa R El-Alosey
- Department of Mathematics, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| |
Collapse
|
3
|
Manole F, Hoermann K, Passali D, Rombaux P, Maria Bellussi L, Rudenko M, Milkov M, Kopacheva-Barsova G, Prokopakis E, Chabolle F, Doulaptsi M, Bal C, Cingi C. A Prospective, Multicenter European Study on the Effects of Anatolian Propolis and Hypertonic Saline Combination Nasal Spray on Allergic Rhinitis Symptoms. EAR, NOSE & THROAT JOURNAL 2024; 103:168S-175S. [PMID: 39491482 DOI: 10.1177/01455613241290502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Objectives: The current study examined the effectiveness of Rhinapi, a hypertonic saline nasal spray with Anatolian propolis added, on allergic rhinitis (AR) symptoms in a European population. Methods: Four hundred and forty AR patients (251 males and 189 females) from various European centers were enrolled. Nasal examination, overall symptom scores, individual AR symptoms (nasal discharge, sneezing, nasal itching, and nasal obstruction), and quality of life (QoL) were assessed before and after 3 weeks of treatment with Rhinapi, the nasal spray made of hypertonic saline with Anatolian propolis added (Bee&You, Istanbul, Turkey). Results: Rhinapi nasal drop use was associated with a substantial decrease (P < .05) in AR symptom ratings, including nasal discharge, sneezing, nasal itching, and nasal obstruction. QoL scores showed a significant improvement (P < .05), and the spray also alleviated swelling and improved concha color (P < .05). Conclusion: Rhinapi, Anatolian propolis-added hypertonic saline nasal spray (Bee&You, Istanbul, Turkey), when used for 3 weeks, reduced AR symptom scores and improved QoL. Both the concha color and the edema were also enhanced.
Collapse
Affiliation(s)
- Felicia Manole
- Faculty of Medicine, Department of ENT, University of Oradea, Oradea, Romania
| | - Karl Hoermann
- Mannheim Medical Faculty, Department of Otorhinolaryngology, Head, and Neck Surgery, University Hospital Mannheim, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
| | - Desiderio Passali
- IFOS Former President, ORL Head and Neck Surgery, University of Siena, Siena, Italy
| | - Philippe Rombaux
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Michael Rudenko
- Section of Allergy and Immunology, The London Allergy and Immunology Center, London, UK
| | - Mario Milkov
- Faculty of Dental Medicine, Medical University of Varna, Varna, Bulgaria
| | | | - Emmanuel Prokopakis
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Crete School of Medicine, Heraklion, Greece
| | - Frédéric Chabolle
- Department of Otolaryngology, Head, and Neck Surgery, Foch Hospital, Suresnes, France
| | - Maria Doulaptsi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Crete School of Medicine, Heraklion, Greece
| | - Cengiz Bal
- Faculty of Medicine, Department of Biostatistics, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Cemal Cingi
- Faculty of Medicine, Department of Otorhinolaryngology, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
4
|
Bailly C. Covalent binding of withanolides to cysteines of protein targets. Biochem Pharmacol 2024; 226:116405. [PMID: 38969301 DOI: 10.1016/j.bcp.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Withanolides represent an important category of natural products with a steroidal lactone core. Many of them contain an α,β-unsaturated carbonyl moiety with a high reactivity toward sulfhydryl groups, including protein cysteine thiols. Different withanolides endowed with marked antitumor and anti-inflammatory have been shown to form stable covalent complexes with exposed cysteines present in the active site of oncogenic kinases (BTK, IKKβ, Zap70), metabolism enzymes (Prdx-1/6, Pin1, PHGDH), transcription factors (Nrf2, NFκB, C/EBPβ) and other structural and signaling molecules (GFAP, β-tubulin, p97, Hsp90, vimentin, Mpro, IPO5, NEMO, …). The present review analyzed the covalent complexes formed through Michael addition alkylation reactions between six major withanolides (withaferin A, physalin A, withangulatin A, 4β-hydroxywithanolide E, withanone and tubocapsanolide A) and key cysteine residues of about 20 proteins and the resulting biological effects. The covalent conjugation of the α,β-unsaturated carbonyl system of withanolides with reactive protein thiols can occur with a large set of soluble and membrane proteins. It points to a general mechanism, well described with the leading natural product withaferin A, but likely valid for most withanolides harboring a reactive (electrophilic) enone moiety susceptible to react covalently with cysteinyl residues of proteins. The multiplicity of reactive proteins should be taken into account when studying the mechanism of action of new withanolides. Proteomic and network analyses shall be implemented to capture and compare the cysteine covalent-binding map for the major withanolides, so as to identify the protein targets at the origin of their activity and/or unwanted effects. Screening of the cysteinome will help understanding the mechanism of action and designing cysteine-reactive electrophilic drug candidates.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
5
|
Mandal SK, Puri S, Kumar BK, Muzaffar-Ur-Rehman M, Sharma PK, Sankaranarayanan M, Deepa PR. Targeting lipid-sensing nuclear receptors PPAR (α, γ, β/δ): HTVS and molecular docking/dynamics analysis of pharmacological ligands as potential pan-PPAR agonists. Mol Divers 2024; 28:1423-1438. [PMID: 37280404 DOI: 10.1007/s11030-023-10666-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
The global prevalence of obesity-related systemic disorders, including non-alcoholic fatty liver disease (NAFLD), and cancers are rapidly rising. Several of these disorders involve peroxisome proliferator-activated receptors (PPARs) as one of the key cell signaling pathways. PPARs are nuclear receptors that play a central role in lipid metabolism and glucose homeostasis. They can activate or suppress the genes responsible for inflammation, adipogenesis, and energy balance, making them promising therapeutic targets for treating metabolic disorders. In this study, an attempt has been made to screen novel PPAR pan-agonists from the ZINC database targeting the three PPAR family of receptors (α, γ, β/δ), using molecular docking and molecular dynamics (MD) simulations. The top scoring five ligands with strong binding affinity against all the three PPAR isoforms were eprosartan, canagliflozin, pralatrexate, sacubitril, olaparib. The ADMET analysis was performed to assess the pharmacokinetic profile of the top 5 molecules. On the basis of ADMET analysis, the top ligand was subjected to MD simulations, and compared with lanifibranor (reference PPAR pan-agonist). Comparatively, the top-scoring ligand showed better protein-ligand complex (PLC) stability with all the PPARs (α, γ, β/δ). When experimentally tested in in vitro cell culture model of NAFLD, eprosartan showed dose dependent decrease in lipid accumulation and oxidative damage. These outcomes suggest potential PPAR pan-agonist molecules for further experimental validation and pharmacological development, towards treatment of PPAR-mediated metabolic disorders.
Collapse
Affiliation(s)
- Sumit Kumar Mandal
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333 031, India
| | - Sonakshi Puri
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333 031, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333 031, India
| | - Mohammed Muzaffar-Ur-Rehman
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333 031, India
| | - Pankaj Kumar Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333 031, India
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333 031, India
| | - P R Deepa
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333 031, India.
| |
Collapse
|
6
|
Cui Z, Zhang J, Wang J, Liu J, Sun P, Li J, Li G, Sun Y, Ying J, Li K, Zhao Z, Yuan H, Bai X, Ma X, Li P, Fu Y, Bao H, Li D, Zhang Q, Liu Z, Cao Y, Lu Z. Caffeic acid phenethyl ester: an effective antiviral agent against porcine reproductive and Respiratory Syndrome Virus. Antiviral Res 2024; 225:105868. [PMID: 38490343 DOI: 10.1016/j.antiviral.2024.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) presents a formidable viral challenge in swine husbandry. Confronting the constraints of existing veterinary pharmaceuticals and vaccines, this investigation centers on Caffeic Acid Phenethyl Ester (CAPE) as a prospective clinical suppressant for the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). The study adopts an integrated methodology to evaluate CAPE's antiviral attributes. This encompasses a dual-phase analysis of CAPE's interaction with PRRSV, both in vitro and in vivo, and an examination of its influence on viral replication. Varied dosages of CAPE were subjected to empirical testing in animal models to quantify its efficacy in combating PRRSV infections. The findings reveal a pronounced antiviral potency, notably in prophylactic scenarios. As a predominant component of propolis, CAPE stands out as a promising candidate for clinical suppression, showing exceptional effectiveness in pre-exposure prophylaxis regimes. This highlights the potential of CAPE in spearheading cutting-edge strategies for the management of future PRRSV outbreaks.
Collapse
Affiliation(s)
- Zhanding Cui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Jinlong Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jinlong Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Jiaoyang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Guoxiu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Ying Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; College of Veterinary Medicine, South China Agricultural University, No483 Wushan Road, TianheDistrict, Guangzhou, 510642, China
| | - Juanbin Ying
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Kun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Hong Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xingwen Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xueqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yuanfang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Huifang Bao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Dong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Qiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zaixin Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yimei Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Ozeer FZ, Nagandran S, Wu YS, Wong LS, Stephen A, Lee MF, Kijsomporn J, Guad RM, Batumalaie K, Oyewusi HA, Verma A, Yadav E, Afzal S, Sekar M, Subramaniyan V, Fuloria NK, Fuloria S, Sarker MMR. A comprehensive review of phytochemicals of Withania somnifera (L.) Dunal (Solanaceae) as antiviral therapeutics. DISCOVER APPLIED SCIENCES 2024; 6:187. [DOI: 10.1007/s42452-024-05845-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/20/2024] [Indexed: 11/22/2024]
Abstract
AbstractViruses have caused millions and billions of infections and high mortality rates without successful immunization due to a lack of antiviral drugs approved for clinical use. Therefore, the discovery of novel antiviral drugs is impertinent and natural products are excellent alternative sources. Withania somnifera (L.) Dunal (Solanaceae) is recognized as one of the most significant herbs in the Ayurvedic system and it had been utilized in various biological actions for more than 3000 years. This review aimed to discuss the therapeutic effects and associated molecular mechanisms of Withania somnifera (WS) and its phytochemicals, withanolides against various viruses in preclinical and clinical settings towards developing potential inhibitors which could target virus proteins or their respective host cell receptors. WS was reported to attenuate coronavirus disease 2019 (COVID-19), serve as a potential ligand against the herpes simplex virus (HSV) DNA polymerase, suppress Alzheimer’s disease progression by inhibiting the cytotoxicity induced by the human immunodeficiency virus 1 (HIV-1)-activated beta-amyloid (Aβ), and attenuate the neuraminidase activity of H1N1 influenza. WS root extracts have also reduced the mortality rates and stress levels in tilapia infected with tilapia lake virus (TiLV), and stimulated antiviral nitric oxide formation in chicks infected with infectious bursal disease (IBD). With increasing evidence from previous literatures, further in vitro and in vivo investigations of WS against other viral infections may provide promising results.
Graphical Abstract
Collapse
|
8
|
Srivastava A, Ahmad R, Wani IA, Siddiqui S, Yadav K, Trivedi A, Upadhyay S, Husain I, Ahamad T, Dudhagi SS. Steroidal lactones from Withania somnifera effectively target Beta, Gamma, Delta and Omicron variants of SARS-CoV-2 and reveal a decreased susceptibility to viral infection and perpetuation: a polypharmacology approach. In Silico Pharmacol 2024; 12:14. [PMID: 38419919 PMCID: PMC10897645 DOI: 10.1007/s40203-023-00184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024] Open
Abstract
Prevention from disease is presently the cornerstone of the fight against COVID-19. With the rapid emergence of novel SARS-CoV-2 variants, there is an urgent need for novel or repurposed agents to strengthen and fortify the immune system. Existing vaccines induce several systemic and local side-effects that can lead to severe consequences. Moreover, elevated cytokines in COVID-19 patients with cancer as co-morbidity represent a significant bottleneck in disease prognosis and therapy. Withania somnifera (WS) and its phytoconstituent(s) have immense untapped immunomodulatory and therapeutic potential and the anticancer potential of WS is well documented. To this effect, WS methanolic extract (WSME) was characterized using HPLC. Withanolides were identified as the major phytoconstituents. In vitro cytotoxicity of WSME was determined against human breast MDA-MB-231 and normal Vero cells using MTT assay. WSME displayed potent cytotoxicity against MDA-MB-231 cells (IC50: 66 µg/mL) and no effect on Vero cells in the above range. MD simulations of Withanolide A with SARS-CoV-2 main protease and spike receptor-binding domain as well as Withanolide B with SARS-CoV spike glycoprotein and SARS-CoV-2 papain-like protease were performed using Schrödinger. Stability of complexes followed the order 6M0J-Withanolide A > 6W9C-Withnaolide B > 5WRG-Withanolide B > 6LU7-Withanolide A. Maximum stable interaction(s) were observed between Withanolides A and B with SARS-CoV-2 and SARS-CoV spike glycoproteins, respectively. Withanolides A and B also displayed potent binding to pro-inflammatory markers viz. serum ferritin and IL-6. Thus, WS phytoconstituents have the potential to be tested further in vitro and in vivo as novel antiviral agents against COVID-19 patients having cancer as a co-morbidity. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00184-y.
Collapse
Affiliation(s)
- Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Irshad A. Wani
- Department of Cardiology, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, UP 226007 India
| | - Anchal Trivedi
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Shivbrat Upadhyay
- Department of Biotechnology, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Ishrat Husain
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Tanveer Ahamad
- Department of Biotechnology, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Shivanand S. Dudhagi
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, UP 226001 India
| |
Collapse
|
9
|
Kumar V, Meidinna HN, Kaul SC, Gupta D, Ishida Y, Terao K, Vrati S, Sundar D, Wadhwa R. Molecular insights to the anti-COVID-19 potential of α-, β- and γ-cyclodextrins. J Biomol Struct Dyn 2023:1-11. [PMID: 38116950 DOI: 10.1080/07391102.2023.2294385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
SARS-CoV-2 viral infection is regulated by the host cell receptors ACE2 and TMPRSS2, and therefore the effect of various natural and synthetic compounds on these receptors has recently been the subject of investigations. Cyclodextrins, naturally occurring polysaccharides derived from starch, are soluble in water and have a hydrophobic cavity at their center enabling them to accommodate small molecules and utilize them as carriers in the food, supplements, and pharmaceutical industries to improve the solubility, stability, and bioavailability of target compounds. In the current study, computational molecular simulations were used to investigate the ability of α-, β- and γ-Cyclodextrins on human cell surface receptors. Cell-based experimental approaches, including expression analyses at mRNA and protein levels and virus replication, were used to assess the effect on receptor expression and virus infection, respectively. We found that none of the three CDs could dock effectively to human cell surface receptor ACE2 and viral protease Mpro (essential for virus replication). On the other hand, α- and β-CD showed strong and stable interactions with TMPRSS2, and the expression of both ACE2 and TMPRSS2 was downregulated at the mRNA and protein levels in cyclodextrin (CD)-treated cells. A cell-based virus replication assay showed ∼20% inhibition by β- and γ-CD. Taken together, the study suggested that (i) downregulation of expression of host cell receptors may not be sufficient to inhibit virus infection (ii) activity of the receptors and virus protein Mpro may play a critical and clinically relevant role, and hence (iii) newly emerging anti-Covid-19 compounds warrant multimodal functional analyses.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vipul Kumar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Hazna Noor Meidinna
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | | | | | - Keiji Terao
- CycloChem Bio Co., Ltd, Chuo-ku, Kobe, Japan
| | | | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| |
Collapse
|
10
|
Pojtanadithee P, Isswanich K, Buaban K, Chamni S, Wilasluck P, Deetanya P, Wangkanont K, Langer T, Wolschann P, Sanachai K, Rungrotmongkol T. A combination of structure-based virtual screening and experimental strategies to identify the potency of caffeic acid ester derivatives as SARS-CoV-2 3CL pro inhibitor from an in-house database. Biophys Chem 2023; 304:107125. [PMID: 39491914 DOI: 10.1016/j.bpc.2023.107125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Drug development requires significant time and resources, and computer-aided drug discovery techniques that integrate chemical and biological spaces offer valuable tools for the process. This study focused on the field of COVID-19 therapeutics and aimed to identify new active non-covalent inhibitors for 3CLpro, a key protein target. By combining in silico and in vitro approaches, an in-house database was utilized to identify potential inhibitors. The drug-likeness criteria were considered to pre-filter 553 compounds from 12 groups of natural products. Using structure-based virtual screening, 296 compounds were identified that matched the chemical features of SARS-CoV-2 3CLpro peptidomimetic inhibitor pharmacophore models. Subsequent molecular docking resulted in 43 hits with high binding affinities. Among the hits, caffeic acid analogs showed significant interactions with the 3CLpro active site, indicating their potential as promising candidates. To further evaluate their efficacy, enzyme-based assays were conducted, revealing that two ester derivatives of caffeic acid (4k and 4l) exhibited more than a 30% reduction in 3CLpro activity. Overall, these findings suggest that the screening approach employed in this study holds promise for the discovery of novel anti-SARS-CoV-2 therapeutics. Furthermore, the methodology could be extended for optimization or retrospective evaluation to enhance molecular targeting and antiviral efficacy of potential drug candidates.
Collapse
Affiliation(s)
- Piyatida Pojtanadithee
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kulpornsorn Isswanich
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Koonchira Buaban
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patcharin Wilasluck
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapon Deetanya
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | | | - Kamonpan Sanachai
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
11
|
Kumar V, Sari AN, Meidinna HN, Kaul A, Basu B, Ishida Y, Terao K, Kaul SC, Vrati S, Sundar D, Wadhwa R. Computational and experimental evidence of the anti-COVID-19 potential of honeybee propolis ingredients, caffeic acid phenethyl ester and artepillin c. Phytother Res 2023; 37:3651-3654. [PMID: 36757055 DOI: 10.1002/ptr.7717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 02/10/2023]
Affiliation(s)
- Vipul Kumar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, India
| | - Anissa Nofita Sari
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
- School of Integrative & Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
| | - Hazna Noor Meidinna
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
- School of Integrative & Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
| | - Ashish Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
- School of Integrative & Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
| | - Brohmomoy Basu
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | | | | | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | | | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
- School of Integrative & Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
12
|
Akter R, Rahman MR, Ahmed ZS, Afrose A. Plausibility of natural immunomodulators in the treatment of COVID-19-A comprehensive analysis and future recommendations. Heliyon 2023; 9:e17478. [PMID: 37366526 PMCID: PMC10284624 DOI: 10.1016/j.heliyon.2023.e17478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
The COVID-19 pandemic has inflicted millions of deaths worldwide. Despite the availability of several vaccines and some special drugs approved for emergency use to prevent or treat this disease still, there is a huge concern regarding their effectiveness, adverse effects, and most importantly, their efficacy against the new variants. A cascade of immune-inflammatory responses is involved with the pathogenesis and severe complications with COVID-19. People with dysfunctional and compromised immune systems display severe complications, including acute respiratory distress syndrome, sepsis, multiple organ failure etc., when they get infected with the SARS-CoV-2 virus. Plant-derived natural immune-suppressant compounds, such as resveratrol, quercetin, curcumin, berberine, luteolin, etc., have been reported to inhibit pro-inflammatory cytokines and chemokines. Therefore, natural products with immunomodulatory and anti-inflammatory potential could be plausible targets to treat this contagious disease. This review aims to delineate the clinical trials status and outcomes of natural compounds with immunomodulatory potential in COVID-19 patients along with the outcomes of their in-vivo studies. In clinical trials several natural immunomodulators resulted in significant improvement of COVID-19 patients by diminishing COVID-19 symptoms such as fever, cough, sore throat, and breathlessness. Most importantly, they reduced the duration of hospitalization and the need for supplemental oxygen therapy, improved clinical outcomes in patients with COVID-19, especially weakness, and eliminated acute lung injury and acute respiratory distress syndrome. This paper also discusses many potent natural immunomodulators yet to undergo clinical trials. In-vivo studies with natural immunomodulators demonstrated reduction of a wide range of proinflammatory cytokines. Natural immunomodulators that were found effective, safe, and well tolerated in small-scale clinical trials are warranted to undergo large-scale trials to be used as drugs to treat COVID-19 infections. Alongside, compounds yet to test clinically must undergo clinical trials to find their effectiveness and safety in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Md. Rashidur Rahman
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zainab Syed Ahmed
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Afrina Afrose
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
13
|
Ramli S, Wu YS, Batumalaie K, Guad RM, Choy KW, Kumar A, Gopinath SCB, Rahman Sarker MM, Subramaniyan V, Sekar M, Fuloria NK, Fuloria S, Chinni SV, Ramachawolran G. Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery. Microorganisms 2023; 11:microorganisms11041000. [PMID: 37110423 PMCID: PMC10142625 DOI: 10.3390/microorganisms11041000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Coronavirus disease (COVID-19) has killed millions of people since first reported in Wuhan, China, in December 2019. Intriguingly, Withania somnifera (WS) has shown promising antiviral effects against numerous viral infections, including SARS-CoV and SARS-CoV-2, which are contributed by its phytochemicals. This review focused on the updated testing of therapeutic efficacy and associated molecular mechanisms of WS extracts and their phytochemicals against SARS-CoV-2 infection in preclinical and clinical studies with the aim to develop a long-term solution against COVID-19. It also deciphered the current use of the in silico molecular docking approach in developing potential inhibitors from WS targeting SARS-CoV-2 and host cell receptors that may aid the development of targeted therapy against SARS-CoV-2 ranging from prior to viral entry until acute respiratory distress syndrome (ARDS). This review also discussed nanoformulations or nanocarriers in achieving effective WS delivery to enhance its bioavailability and therapeutic efficacy, consequently preventing the emergence of drug resistance, and eventually therapeutic failure.
Collapse
Affiliation(s)
- Suaidah Ramli
- Department of Pharmacy, Hospital Sultanah Nur Zahirah, Kuala Terengganu 20400, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, Johor Bahru 81750, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | - Ashok Kumar
- Department of Internal Medicine, Division of Pulmonary, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Subash C B Gopinath
- Centre of Excellence (CoE), Faculty of Chemical Engineering & Technology & Micro System Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Malaysia
| | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
- Health Med Science Research Network, 3/1, Block F, Lalmatia, Dhaka 1207, Bangladesh
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Subang Jaya 42610, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Neeraj Kumar Fuloria
- Centre of Excellence for Biomaterials Engineering & Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Malaysia
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom 42610, Malaysia
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Chennai 600077, India
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, No 4, Jalan Sepoy Lines, Georgetown 10450, Malaysia
| |
Collapse
|
14
|
Qudus MS, Tian M, Sirajuddin S, Liu S, Afaq U, Wali M, Liu J, Pan P, Luo Z, Zhang Q, Yang G, Wan P, Li Y, Wu J. The roles of critical pro-inflammatory cytokines in the drive of cytokine storm during SARS-CoV-2 infection. J Med Virol 2023; 95:e28751. [PMID: 37185833 DOI: 10.1002/jmv.28751] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
In patients with severe COVID-19, acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), and even mortality can result from cytokine storm, which is a hyperinflammatory medical condition caused by the excessive and uncontrolled release of pro-inflammatory cytokines. High levels of numerous crucial pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-α, interferon (IFN)-γ, IFN-induced protein 10 kDa, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and IL-10 and so on, have been found in severe COVID-19. They participate in cascade amplification pathways of pro-inflammatory responses through complex inflammatory networks. Here, we review the involvements of these critical inflammatory cytokines in SARS-CoV-2 infection and discuss their potential roles in triggering or regulating cytokine storm, which can help to understand the pathogenesis of severe COVID-19. So far, there is rarely effective therapeutic strategy for patients with cytokine storm besides using glucocorticoids, which is proved to result in fatal side effects. Clarifying the roles of key involved cytokines in the complex inflammatory network of cytokine storm will help to develop an ideal therapeutic intervention, such as neutralizing antibody of certain cytokine or inhibitor of some inflammatory signal pathways.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingfu Tian
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Summan Sirajuddin
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muneeba Wali
- Department of Allied Health Sciences, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Jinbiao Liu
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Zhen Luo
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Yongkui Li
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| |
Collapse
|
15
|
Hashemi-Shahraki F, Shareghi B, Farhadian S, Yadollahi E. A comprehensive insight into the effects of caffeic acid (CA) on pepsin: Multi-spectroscopy and MD simulations methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122240. [PMID: 36527971 DOI: 10.1016/j.saa.2022.122240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The interaction between caffeic acid (CA) and pepsin was investigated using multi-spectroscopy approaches and molecular dynamic simulations (MDS). The effects of CA on the structure, stability, and activity of pepsin were studied. Fluorescence emission spectra and UV-vis absorption peaks all represented the static quenching mechanism of pepsin by CA. Moreover, the fluorescence spectra displayed that the interaction of CA exposed the tryptophan chromophores of pepsin to a more hydrophilic micro-environment. Consistent with the simulation results, thermodynamic parameters revealed that CA was bound to pepsin with a high binding affinity. The Van der Waals force and Hydrogen bond interaction were the dominant driving forces during the binding process. The circular dichroism (CD) spectroscopy analysis showed that the CA binding to pepsin decreased the contents of α-Helix and Random Coil but increased the content of β-sheet in the pepsin structure. Accordingly, MD simulations confirmed all the experimental results. As a result, CA is considered an inhibitor with adverse effects on pepsin activity.
Collapse
Affiliation(s)
- Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box.115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box.115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box.115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Elham Yadollahi
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box.115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
16
|
Taysi S, Algburi FS, Taysi ME, Caglayan C. Caffeic acid phenethyl ester: A review on its pharmacological importance, and its association with free radicals, COVID-19, and radiotherapy. Phytother Res 2023; 37:1115-1135. [PMID: 36562210 PMCID: PMC9880688 DOI: 10.1002/ptr.7707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Caffeic acid phenethyl ester (CAPE), a main active component of propolis and a flavonoid, is one of the natural products that has attracted attention in recent years. CAPE, which has many properties such as anti-cancer, anti-inflammatory, antioxidant, antibacterial and anti-fungal, has shown many pharmacological potentials, including protective effects on multiple organs. Interestingly, molecular docking studies showed the possibility of binding of CAPE with replication enzyme. In addition, it was seen that in order to increase the binding security of the replication enzyme and CAPE, modifications can be made at three sites on the CAPE molecule, which leads to the possibility of the compound working more powerfully and usefully to prevent the proliferation of cancer cells and reduce its rate. Also, it was found that CAPE has an inhibitory effect against the main protease enzyme and may be effective in the treatment of SARS-CoV-2. This review covers in detail the importance of CAPE in alternative medicine, its pharmacological value, its potential as a cancer anti-proliferative agent, its dual role in radioprotection and radiosensitization, and its use against coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Seyithan Taysi
- Department of Medical Biochemistry, Medical School, Gaziantep University, Gaziantep, Turkey
| | - Firas Shawqi Algburi
- Department of Medical Biochemistry, Medical School, Gaziantep University, Gaziantep, Turkey.,Department of Biology, College of Science, Tikrit University, Tikrit, Iraq.,College of Dentistry, Al-Kitab University, Altun Kupri, Iraq
| | - Muhammed Enes Taysi
- Department of Emergency Medicine, Medical School, Bolu Izzet Baysal University-Bolu, Bolu, Turkey
| | - Cuneyt Caglayan
- Department of Medical Biochemistry, Medical School, Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
17
|
Polumackanycz M, Petropoulos SA, Śledziński T, Goyke E, Konopacka A, Plenis A, Viapiana A. Withania somnifera L.: Phenolic Compounds Composition and Biological Activity of Commercial Samples and Its Aqueous and Hydromethanolic Extracts. Antioxidants (Basel) 2023; 12:antiox12030550. [PMID: 36978798 PMCID: PMC10045402 DOI: 10.3390/antiox12030550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
In the present study, the chemical composition and bioactive properties of commercially available Withania somnifera samples were evaluated. The hydromethanolic and aqueous extracts of the tested samples were analyzed in terms of phenolic compound composition, ascorbic acid content, antioxidant and antibacterial activity, and acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Polyphenols and ascorbic acid content, as well as the antioxidant activity, were higher in the aqueous extracts than in the hydromethanolic extracts. Generally, aqueous extracts presented higher antioxidant activity than the hydromethanolic ones, especially in the case of 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay. Moreover, higher amounts of phenolic acids and flavonoids were found in the hydromethanolic extracts compared to the aqueous ones. Regarding the antibacterial properties, samples 4, 6, and 10 showed the best overall performance with growth-inhibitory activities against all the examined bacteria strains. Finally, the aqueous and hydromethanolic extracts were the most efficient extracts in terms of AChE and BChE inhibitory activities, respectively. In conclusion, our results indicate that W. somnifera possesses important bioactive properties which could be attributed to the high amounts of phenolic compounds. However, a great variability was recorded in commercially available products, suggesting significant differences in the origin of product and the processing method.
Collapse
Affiliation(s)
- Milena Polumackanycz
- Department of Analytical Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Spyridon A. Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece
- Correspondence: (S.A.P.); (A.V.)
| | - Tomasz Śledziński
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Elżbieta Goyke
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Agnieszka Konopacka
- Department of Pharmaceutical Microbiology, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Alina Plenis
- Department of Analytical Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Agnieszka Viapiana
- Department of Analytical Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
- Correspondence: (S.A.P.); (A.V.)
| |
Collapse
|
18
|
Rani N, Singh R, Kumar P, Sharma P, Sharma V. Natural Compounds as Potential Anti-COVID Agents. ANTI-INFECTIVE AGENTS 2023; 21:3-13. [DOI: 10.2174/2211352520666220404093338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2025]
Abstract
Background:
health crisis in the world and has been declared a public health emergency of international concern by WHO. A number of treatment strategies have been utilized to encounter the prevailing disease. But still the need of most appropriate therapeutic agent is still awaited. In search of anti-COVID treatment regimen, molecular docking approach was used to identify the natural compounds which may have potential for treatment of COVID and acts on specific target and possess selective mechanism. Our goal is to identify the potential anti-COVID compounds from the natural resources via virtual screening and protein of spike glycoprotein was considered as virtual inhibition.
Method.:
Molecular docking was carried out by using Molergo Virtual Docker. 35 compounds from different plant sources were selected and docked in the enzyme pocket.
Results. The docking result revealed that some of the compounds exhibited good potency against the virus and can be used further for developing new drug regimen.
Conclusion. The compounds of natural origin could be a good target and can be used as lead compounds for the treatment of this dreadful disease.
Collapse
Affiliation(s)
- Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Randhir Singh
- Department of Pharmacy, Central University
of Punjab, Bathinda, Punjab, India
| | | | - Prerna Sharma
- Guru Gobind Singh
College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Vikas Sharma
- Guru Gobind Singh
College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| |
Collapse
|
19
|
SALES-PERES SHDC, AZEVEDO-SILVA LJD, CASTILHO AVSS, CASTRO MS, SALES-PERES ADC, MACHADO MADAM. Propolis effects in periodontal disease seem to affect coronavirus disease: a meta-analysis. Braz Oral Res 2023; 37:e031. [PMID: 37018812 DOI: 10.1590/1807-3107bor-2023.vol37.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 10/17/2022] [Indexed: 04/05/2023] Open
Abstract
This meta-analysis aimed to investigate the effects of propolis on the severity of coronavirus disease symptoms by reducing periodontal disease. PubMed, EMBASE, SciELO, Web of Science, and SCOPUS databases were systematically searched. Studies have been conducted analyzing propolis's effects on COVID-19 and periodontitis. The study was conducted according to the PRISMA statement and registered in PROSPERO. Risk of Bias (RoB) assessment and meta-analysis of clinical studies were performed (Review Manager 5, Cochrane). The certainty of the evidence was assessed using GradePro (GDT). Studies have shown propolis flavonoids inhibit viral replication in several DNA and RNA viruses, including coronaviruses. Propolis components have an aminopeptidase inhibitor activity that can inhibit the main proteases of SARS viruses and seem to inhibit protein spikes, which are sites of most mutations in SARS-CoV strains. The meta-analysis showed favorable results with the use of propolis on probing depth (95%CI: 0.92; p < 0.001), clinical attachment level (95%CI: 1.48; p < 0.001), gingival index (95%CI: 0.14; p = 0.03), plaque index (95%CI: 0.11; p = 0.23), and blending on probing (95%CI: 0.39; p < 0.001). The antibacterial activity of propolis could be mediated through its direct action on microorganisms or the stimulation of the immune system, activating natural defenses. Thus, propolis inhibits the replication of SARS-CoV-2 as well as its bacterial activity. Treatment with propolis improves general health and facilitates the activation of the immune system against coronavirus.
Collapse
|
20
|
Naidu SAG, Clemens RA, Naidu AS. SARS-CoV-2 Infection Dysregulates Host Iron (Fe)-Redox Homeostasis (Fe-R-H): Role of Fe-Redox Regulators, Ferroptosis Inhibitors, Anticoagulants, and Iron-Chelators in COVID-19 Control. J Diet Suppl 2023; 20:312-371. [PMID: 35603834 DOI: 10.1080/19390211.2022.2075072] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Severe imbalance in iron metabolism among SARS-CoV-2 infected patients is prominent in every symptomatic (mild, moderate to severe) clinical phase of COVID-19. Phase-I - Hypoxia correlates with reduced O2 transport by erythrocytes, overexpression of HIF-1α, altered mitochondrial bioenergetics with host metabolic reprogramming (HMR). Phase-II - Hyperferritinemia results from an increased iron overload, which triggers a fulminant proinflammatory response - the acute cytokine release syndrome (CRS). Elevated cytokine levels (i.e. IL6, TNFα and CRP) strongly correlates with altered ferritin/TF ratios in COVID-19 patients. Phase-III - Thromboembolism is consequential to erythrocyte dysfunction with heme release, increased prothrombin time and elevated D-dimers, cumulatively linked to severe coagulopathies with life-threatening outcomes such as ARDS, and multi-organ failure. Taken together, Fe-R-H dysregulation is implicated in every symptomatic phase of COVID-19. Fe-R-H regulators such as lactoferrin (LF), hemoxygenase-1 (HO-1), erythropoietin (EPO) and hepcidin modulators are innate bio-replenishments that sequester iron, neutralize iron-mediated free radicals, reduce oxidative stress, and improve host defense by optimizing iron metabolism. Due to its pivotal role in 'cytokine storm', ferroptosis is a potential intervention target. Ferroptosis inhibitors such as ferrostatin-1, liproxstatin-1, quercetin, and melatonin could prevent mitochondrial lipid peroxidation, up-regulate antioxidant/GSH levels and abrogate iron overload-induced apoptosis through activation of Nrf2 and HO-1 signaling pathways. Iron chelators such as heparin, deferoxamine, caffeic acid, curcumin, α-lipoic acid, and phytic acid could protect against ferroptosis and restore mitochondrial function, iron-redox potential, and rebalance Fe-R-H status. Therefore, Fe-R-H restoration is a host biomarker-driven potential combat strategy for an effective clinical and post-recovery management of COVID-19.
Collapse
Affiliation(s)
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | | |
Collapse
|
21
|
Ngo ST, Nguyen TH, Tung NT, Vu VV, Pham MQ, Mai BK. Characterizing the ligand-binding affinity toward SARS-CoV-2 Mpro via physics- and knowledge-based approaches. Phys Chem Chem Phys 2022; 24:29266-29278. [PMID: 36449268 DOI: 10.1039/d2cp04476e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Computational approaches, including physics- and knowledge-based methods, have commonly been used to determine the ligand-binding affinity toward SARS-CoV-2 main protease (Mpro or 3CLpro). Strong binding ligands can thus be suggested as potential inhibitors for blocking the biological activity of the protease. In this context, this paper aims to provide a short review of computational approaches that have recently been applied in the search for inhibitor candidates of Mpro. In particular, molecular docking and molecular dynamics (MD) simulations are usually combined to predict the binding affinity of thousands of compounds. Quantitative structure-activity relationship (QSAR) is the least computationally demanding and therefore can be used for large chemical collections of ligands. However, its accuracy may not be high. Moreover, the quantum mechanics/molecular mechanics (QM/MM) method is most commonly used for covalently binding inhibitors, which also play an important role in inhibiting the activity of SARS-CoV-2. Furthermore, machine learning (ML) models can significantly increase the searching space of ligands with high accuracy for binding affinity prediction. Physical insights into the binding process can then be confirmed via physics-based calculations. Integration of ML models into computational chemistry provides many more benefits and can lead to new therapies sooner.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nguyen Thanh Tung
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam. .,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Minh Quan Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
22
|
QSAR, Molecular Docking, Dynamic Simulation and Kinetic Study of Monoamine Oxidase B Inhibitors as Anti-Alzheimer Agent. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Okella H, Okello E, Mtewa AG, Ikiriza H, Kaggwa B, Aber J, Ndekezi C, Nkamwesiga J, Ajayi CO, Mugeni IM, Ssentamu G, Ochwo S, Odongo S, Tolo CU, Kato CD, Engeu PO. ADMET profiling and molecular docking of potential antimicrobial peptides previously isolated from African catfish, Clarias gariepinus. Front Mol Biosci 2022; 9:1039286. [PMID: 36567944 PMCID: PMC9772024 DOI: 10.3389/fmolb.2022.1039286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Amidst rising cases of antimicrobial resistance, antimicrobial peptides (AMPs) are regarded as a promising alternative to traditional antibiotics. Even so, poor pharmacokinetic profiles of certain AMPs impede their utility necessitating, a careful assessment of potential AMPs' absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties during novel lead exploration. Accordingly, the present study utilized ADMET scores to profile seven previously isolated African catfish antimicrobial peptides (ACAPs). After profiling, the peptides were docked against approved bacterial protein targets to gain insight into their possible mode of action. Promising ACAPs were then chemically synthesized, and their antibacterial activity was validated in vitro utilizing the broth dilution method. All seven examined antimicrobial peptides passed the ADMET screening, with two (ACAP-IV and ACAP-V) exhibiting the best ADMET profile scores. The ACAP-V had a higher average binding energy (-8.47 kcal/mol) and average global energy (-70.78 kcal/mol) compared to ACAP-IV (-7.60 kcal/mol and -57.53 kcal/mol), with the potential to penetrate and disrupt bacterial cell membrane (PDB Id: 2w6d). Conversely, ACAP-IV peptide had higher antibacterial activity against E. coli and S. aureus (Minimum Inhibitory Concentration, 520.7 ± 104.3 μg/ml and 1666.7 ± 416.7 μg/ml, respectively) compared to ACAP-V. Collectively, the two antimicrobial peptides (ACAP-IV and ACAP-V) are potential novel leads for the food, cosmetic and pharmaceutical industries. Future research is recommended to optimize the expression of such peptides in biological systems for extended evaluation.
Collapse
Affiliation(s)
- Hedmon Okella
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Emmanuel Okello
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Andrew Glory Mtewa
- Chemistry Section, Malawi Institute of Technology, Malawi University of Science and Technology, Limbe, Malawi
| | - Hilda Ikiriza
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Bruhan Kaggwa
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jacqueline Aber
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Gulu University, Gulu, Uganda
| | | | - Joseph Nkamwesiga
- International Livestock Research Institute, Nairobi, Kenya
- Institut für Virologie, Freie Universität, Berlin, Germany
| | - Clement Olusoji Ajayi
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Ivan Mulongo Mugeni
- Medical Entomology Laboratory, Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Geofrey Ssentamu
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Sylvester Ochwo
- Center for Animal Health and Food Safety, University of Minnesota, St. Paul, MN, United States
| | - Steven Odongo
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Casim Umba Tolo
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Charles Drago Kato
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Patrick Ogwang Engeu
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
24
|
Alqathama AA, Ahmad R, Alsaedi RB, Alghamdi RA, Abkar EH, Alrehaly RH, Abdalla AN. The vital role of animal, marine, and microbial natural products against COVID-19. PHARMACEUTICAL BIOLOGY 2022; 60:509-524. [PMID: 35234563 PMCID: PMC8896193 DOI: 10.1080/13880209.2022.2039215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Since the outbreak of SARS-CoV-2, researchers have been working on finding ways to prevent viral entry and pathogenesis. Drug development from naturally-sourced pharmacological constituents may be a fruitful approach to COVID-19 therapy. OBJECTIVE Most of the published literature has focussed on medicinal plants, while less attention has been given to biodiverse sources such as animal, marine, and microbial products. This review focuses on highlighting natural products and their derivatives that have been evaluated for antiviral, anti-inflammatory, and immunomodulatory properties. METHODS We searched electronic databases such as PubMed, Scopus, Science Direct and Springer Link to gather raw data from publications up to March 2021, using terms such as 'natural products', marine, micro-organism, and animal, COVID-19. We extracted a number of documented clinical trials of products that were tested in silico, in vitro, and in vivo which paid specific attention to chemical profiles and mechanisms of action. RESULTS Various classes of flavonoids, 2 polyphenols, peptides and tannins were found, which exhibit inhibitory properties against viral and host proteins, including 3CLpro, PLpro, S, hACE2, and NF-κB, many of which are in different phases of clinical trials. DISCUSSION AND CONCLUSIONS The synergistic effects of logical combinations with different mechanisms of action emphasizes their value in COVID19 management, such as iota carrageenan nasal spray, ermectin oral drops, omega-3 supplementation, and a quadruple treatment of zinc, quercetin, bromelain, and vitamin C. Though in vivo efficacy of these compounds has yet to be established, these bioproducts are potentially useful in counteracting the effects of SARS-CoV-2.
Collapse
Affiliation(s)
- Aljawharah A. Alqathama
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rizwan Ahmad
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ruba B. Alsaedi
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Raghad A. Alghamdi
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ekram H. Abkar
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rola H. Alrehaly
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
25
|
Balkrishna A, Goswami S, Singh H, Gohel V, Dev R, Haldar S, Varshney A. Herbo-mineral formulation, Divya-Swasari-Vati averts SARS-CoV-2 pseudovirus entry into human alveolar epithelial cells by interfering with spike protein-ACE 2 interaction and IL-6/TNF-α /NF-κB signaling. Front Pharmacol 2022; 13:1024830. [PMID: 36386162 PMCID: PMC9643876 DOI: 10.3389/fphar.2022.1024830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 08/16/2023] Open
Abstract
The herbo-mineral formulation, Divya-Swasari-Vati (DSV), is a well-known Ayurvedic medication for respiratory ailments. In a recent pre-clinical study, DSV rescued humanized zebrafish from SARS-CoV-2 S-protein-induced pathologies. This merited for an independent evaluation of DSV as a SARS-CoV-2 entry inhibitor in the human host cell and its effectiveness in ameliorating associated cytokine production. The ELISA-based protein-protein interaction study showed that DSV inhibited the interactions of recombinant human ACE 2 with three different variants of S proteins, namely, Smut 1 (the first reported variant), Smut 2 (W436R variant) and Smut 3 (D614G variant). Entry of recombinant vesicular stomatitis SARS-CoV-2 (VSVppSARS-2S) pseudovirus, having firefly luciferase and EGFP reporters, was assessed through luciferase assay and fluorescent microscopy. DSV exhibited dose-dependent inhibition of VSVppSARS-2S pseudovirus entry into human lung epithelial A549 cells and also suppressed elevated levels of secreted pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) induced by viral infection mimicking Poly I:C-, S-protein- and VSVppSARS-2S pseudovirus. In human immune cells, DSV also moderated TNF-α-mediated NF-κB induction, in a dose-dependent manner. The observed anti-viral effect of DSV against SARS-CoV-2 is attributable to the presence of different metabolites Summarily, the observations from this study biochemically demonstrated that DSV interfered with the interaction between SARS-CoV-2 S-protein and human ACE 2 receptor which consequently, inhibited viral entry into the host cells and concomitant induction of inflammatory response.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
| | - Sudeep Goswami
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Hoshiyar Singh
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
26
|
Prajapati SK, Malaiya A, Mishra G, Jain D, Kesharwani P, Mody N, Ahmadi A, Paliwal R, Jain A. An exhaustive comprehension of the role of herbal medicines in Pre- and Post-COVID manifestations. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115420. [PMID: 35654349 PMCID: PMC9150915 DOI: 10.1016/j.jep.2022.115420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The coronavirus disease (COVID-19) has relentlessly spread all over the world even after the advent of vaccines. It demands management, treatment, and prevention as well with utmost safety and effectiveness. It is well researched that herbal medicines or natural products have shown promising outcomes to strengthen immunity with antiviral potential against SARS-COV-2. AIM OF THE REVIEW Our objective is to provide a comprehensive insight into the preventive and therapeutic effects of herbal medicines and products (Ayurvedic) for pre-and post-COVID manifestations. MATERIAL AND METHOD The database used in the text is collected and compiled from Scopus, PubMed, Nature, Elsevier, Web of Science, bioRxiv, medRxiv, American Chemical Society, and clinicaltrials.gov up to January 2022. Articles from non-academic sources such as websites and news were also retrieved. Exploration of the studies was executed to recognize supplementary publications of research studies and systematic reviews. The keywords, such as "SARS-COV-2, coronavirus, COVID-19, herbal drugs, immunity, herbal immunomodulators, infection, herbal antiviral drugs, and WHO recommendation" were thoroughly searched. Chemical structures were drawn using the software Chemdraw Professional 15.0.0.160 (PerkinElmer Informatics, Inc.). RESULT A plethora of literature supports that the use of herbal regimens not only strengthen immunity but can also treat SARS-COV-2 infection with minimal side effects. This review summarizes the mechanistic insights into herbal therapy engaging interferons and antibodies to boost the response against SARS-COV-2 infection, several clinical trials, and in silico studies (computational approaches) on selected natural products including, Ashwagandha, Guduchi, Yashtimadhu, Tulsi, etc. as preventive and therapeutic measures against COVID. We have also emphasized the exploitation of herbal medicine-based pharmaceutical products along with perspectives for unseen upcoming alike diseases. CONCLUSION According to the current state of art and cutting-edge research on herbal medicines have showed a significant promise as modern COVID tools. Since vaccination cannot be purported as a long-term cure for viral infections, herbal/natural medicines can only be considered a viable alternative to current remedies, as conceived from our collected data to unroot recurring viral infections.
Collapse
Affiliation(s)
- Shiv Kumar Prajapati
- Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, 201310, UP, India
| | - Akanksha Malaiya
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, 484886, MP, India
| | - Gaurav Mishra
- Institute of Medical Sciences, Faculty of Ayurveda, Department of Medicinal Chemistry, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Dolly Jain
- Department of Pharmacy, Oriental University, Indore, 453555, Madhya Pradesh, India; Adina College of Pharmacy, Sagar, 470002, MP, India
| | - Payal Kesharwani
- Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, 201310, UP, India
| | - Nishi Mody
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, MP, India
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, 48175866, Iran
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, 484886, MP, India
| | - Ankit Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
27
|
Zhao Y, Deng S, Bai Y, Guo J, Kai G, Huang X, Jia X. Promising natural products against SARS-CoV-2: Structure, function, and clinical trials. Phytother Res 2022; 36:3833-3858. [PMID: 35932157 PMCID: PMC9538226 DOI: 10.1002/ptr.7580] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023]
Abstract
The corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus type 2 (SARS-COV-2) poses a severe threat to human health and still spreads globally. Due to the high mutation ratio and breakthrough infection rate of the virus, vaccines and anti-COVID-19 drugs require continual improvements. Drug screening research has shown that some natural active products can target the critical proteins of SARS-CoV-2, including 3CLpro, ACE2, FURIN, and RdRp, which could produce great inhibitory effects on SARS-COV-2. In addition, some natural products have displayed activities of immunomodulation, antiinflammatory, and antihepatic failure in COVID-19 clinical trials, which may relate to their non-monomeric structures. However, further evaluation and high-quality assessments, including safety verification tests, drug interaction tests, and clinical trials, are needed to substantiate natural products' multi-target and multi-pathway effects on COVID-19. Here, we review the literature on several promising active natural products that may act as vaccine immune enhancers or provide targeted anti-COVID-19 drugs. The structures, mechanisms of action, and research progress of these natural products are analyzed, to hopefully provide effective ideas for the development of targeted drugs that possess better structure, potency, and safety.
Collapse
Affiliation(s)
- Yan Zhao
- Life Science and EngineeringSouthwest Jiaotong UniversityChengduChina
| | - Shanshan Deng
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| | - Yujiao Bai
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| | - Jinlin Guo
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest ChinaChengdu University of Traditional Chinese MedicineChengduChina
| | - Guoyin Kai
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xinhe Huang
- Life Science and EngineeringSouthwest Jiaotong UniversityChengduChina
| | - Xu Jia
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| |
Collapse
|
28
|
Hossain R, Quispe C, Khan RA, Saikat ASM, Ray P, Ongalbek D, Yeskaliyeva B, Jain D, Smeriglio A, Trombetta D, Kiani R, Kobarfard F, Mojgani N, Saffarian P, Ayatollahi SA, Sarkar C, Islam MT, Keriman D, Uçar A, Martorell M, Sureda A, Pintus G, Butnariu M, Sharifi-Rad J, Cho WC. Propolis: An update on its chemistry and pharmacological applications. Chin Med 2022; 17:100. [PMID: 36028892 PMCID: PMC9412804 DOI: 10.1186/s13020-022-00651-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Propolis, a resinous substance produced by honeybees from various plant sources, has been used for thousands of years in traditional medicine for several purposes all over the world. The precise composition of propolis varies according to plant source, seasons harvesting, geography, type of bee flora, climate changes, and honeybee species at the site of collection. This apiary product has broad clinical applications such as antioxidant, anti-inflammatory, antimicrobial, anticancer, analgesic, antidepressant, and anxiolytic as well asimmunomodulatory effects. It is also well known from traditional uses in treating purulent disorders, improving the wound healing, and alleviating many of the related discomforts. Even if its use was already widespread since ancient times, after the First and Second World War, it has grown even more as well as the studies to identify its chemical and pharmacological features, allowing to discriminate the qualities of propolis in terms of the chemical profile and relative biological activity based on the geographic place of origin. Recently, several in vitro and in vivo studies have been carried out and new insights into the pharmaceutical prospects of this bee product in the management of different disorders, have been highlighted. Specifically, the available literature confirms the efficacy of propolis and its bioactive compounds in the reduction of cancer progression, inhibition of bacterial and viral infections as well as mitigation of parasitic-related symptoms, paving the way to the use of propolis as an alternative approach to improve the human health. However, a more conscious use of propolis in terms of standardized extracts as well as new clinical studies are needed to substantiate these health claims.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Rasel Ahmed Khan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9280 Bangladesh
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Pranta Ray
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Damira Ongalbek
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022 India
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Roghayeh Kiani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naheed Mojgani
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Mohammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Dılhun Keriman
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Arserim Uçar
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, and CIBEROBN - Physiopathology of Obesity and Nutrition, CB12/03/30038, University of Balearic Islands, Palma, Spain
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, 22272 Sharjah, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences King Mihai I from Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
29
|
Matondo A, Dendera W, Isamura BK, Ngbolua KTN, Mambo HVS, Muzomwe M, Mudogo V. In silico Drug Repurposing of Anticancer Drug 5-FU and Analogues Against SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics Simulation, Pharmacokinetics and Chemical Reactivity Studies. Adv Appl Bioinform Chem 2022; 15:59-77. [PMID: 35996620 PMCID: PMC9391940 DOI: 10.2147/aabc.s366111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background Since the last COVID-19 outbreak, several approaches have been given a try to quickly tackle this global calamity. One of the well-established strategies is the drug repurposing, which consists in finding new therapeutic uses for approved drugs. Following the same paradigm, we report in the present study, an investigation of the potential inhibitory activity of 5-FU and nineteen of its analogues against the SARS-CoV-2 main protease (3CLpro). Material and Methods Molecular docking calculations were performed to investigate the binding affinity of the ligands within the active site of 3CLpro. The best binding candidates were further considered for molecular dynamics simulations for 100 ns to gain a time-resolved understanding of the behavior of the guest-host complexes. Furthermore, the profile of druggability of the best binding ligands was assessed based on ADMET predictions. Finally, their chemical reactivity was elucidated using different reactivity descriptors, namely the molecular electrostatic potential (MEP), Fukui functions and frontier molecular orbitals. Results and Discussion From the calculations performed, four candidates (compounds 14, 15, 16 and 18) show promising results with respect to the binding affinity to the target protease, 3CLpro, the therapeutic profile of druggability and safety. These compounds are maintained inside the active site of 3CLpro thanks to a variety of noncovalent interactions, especially hydrogen bonds, involving important amino acids such as GLU166, HIS163, GLY143, ASN142, HIS172, CYS145. Molecular dynamics simulations suggest that the four ligands are well trapped within the active site of the protein over a time gap of 100 ns, ligand 18 being the most retained. Conclusion In line with the findings reported herein, we recommend that further in-vitro and in-vivo investigations are carried out to shed light on the possible mechanism of pharmacological action of the proposed ligands.
Collapse
Affiliation(s)
- Aristote Matondo
- Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Washington Dendera
- Department of Chemistry, Rhodes University, Makhanda, Eastern Cape, South Africa
| | - Bienfait Kabuyaya Isamura
- Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo.,Department of Chemistry, Rhodes University, Makhanda, Eastern Cape, South Africa.,Research Center for Theoretical Chemistry and Physics in Central Africa, Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Koto-Te-Nyiwa Ngbolua
- Department of Biology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Hilaire V S Mambo
- Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Mayaliwa Muzomwe
- Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Virima Mudogo
- Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
30
|
Nath M, Debnath P. Therapeutic role of traditionally used Indian medicinal plants and spices in combating COVID-19 pandemic situation. J Biomol Struct Dyn 2022:1-20. [PMID: 35773779 DOI: 10.1080/07391102.2022.2093793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is a big challenge and burning issue to the scientific community and doctors worldwide. Globally, COVID-19 has created a health disaster and adversely affects the economic growth. Although some vaccines have already emerged, no therapeutic medication has yet been approved by FDA for the treatment of COVID-19 patients. Traditionally, we have been using different medicinal plants like neem, tulsi, tea, and many spices like garlic, ginger, turmeric, black seed, onion, etc. for the treatment of flu-like diseases. In this paper, we are highlighting the recent research progress in the identification of natural products from the Indian medicinal plants and spices that have potential inhibition properties against SARS-CoV-2. This study will provide an initiative to stimulate further research by providing useful guidance to the medicinal chemists for designing new protease inhibitors effective against SARS-CoV-2 in future.
Collapse
Affiliation(s)
- Moumita Nath
- Department of Botany, Tripura University, Suryamaninagar, Tripura, India
| | - Pradip Debnath
- Department of Chemistry, Maharaja Bir Bikram College, Agartala, Tripura, India
| |
Collapse
|
31
|
Thorat SA, Kaniyassery A, Poojari P, Rangel M, Tantry S, Kiran KR, Joshi MB, Rai PS, Botha AM, Muthusamy A. Differential Gene Expression and Withanolides Biosynthesis During in vitro and ex vitro Growth of Withania somnifera (L.) Dunal. FRONTIERS IN PLANT SCIENCE 2022; 13:917770. [PMID: 35774803 PMCID: PMC9237602 DOI: 10.3389/fpls.2022.917770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 05/03/2023]
Abstract
Ashwagandha (Withania somnifera L. Dunal) is a medicinally important plant with withanolides as its major bioactive compounds, abundant in the roots and leaves. We examined the influence of plant growth regulators (PGRs) on direct organogenesis, adventitious root development, withanolide biosynthetic pathway gene expression, withanolide contents, and metabolites during vegetative and reproductive growth phases under in vitro and ex vitro conditions. The highest shooting responses were observed with 6-benzylaminopurine (BAP) (2.0 mg L-1) + Kinetin (KIN) (1.5 mg L-1) supplementation. Furthermore, BAP (2.0 mg L-1) + KIN (1.5 mg L-1) + gibberellic acid (GA3) (0.5 mg L-1) exhibited better elongation responses with in vitro flowering. Half-strength MS medium with indole-3-butyric acid (IBA) (1.5 mg L-1) exhibited the highest rooting responses and IBA (1.0 mg L-1) with highest fruits, and overall biomass. Higher contents of withaferin A (WFA) [∼8.2 mg g-1 dry weight (DW)] were detected in the reproductive phase, whereas substantially lower WFA contents (∼1.10 mg g-1 DW) were detected in the vegetative phase. Cycloartenol synthase (CAS) (P = 0.0025), sterol methyltransferase (SMT) (P = 0.0059), and 1-deoxy-D-xylulose-5-phosphate reductase (DXR) (P = 0.0375) genes resulted in a significant fold change in expression during the reproductive phase. The liquid chromatography-mass spectrometry (LC-MS) analysis revealed metabolites that were common (177) and distinct in reproductive (218) and vegetative (167) phases. Adventitious roots cultured using varying concentrations of indole-3-acetic acid (IAA) (0.5 mg L-1) + IBA (1.0 mg L-1) + GA3 (0.2 mg L-1) exhibited the highest biomass, and IAA (0.5 mg L-1) + IBA (1.0 mg L-1) exhibited the highest withanolides content. Overall, our findings demonstrate the peculiarity of withanolide biosynthesis during distinct growth phases, which is relevant for the large-scale production of withanolides.
Collapse
Affiliation(s)
- Sachin Ashok Thorat
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Arya Kaniyassery
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Poornima Poojari
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Melissa Rangel
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Shashikala Tantry
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kodsara Ramachandra Kiran
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Manjunath B. Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Padmalatha S. Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anna-Maria Botha
- Department of Genetics, Faculty of Agriculture, University of Stellenbosch, Stellenbosch, South Africa
| | - Annamalai Muthusamy
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
32
|
Omer AK, Khorshidi S, Mortazavi N, Rahman HS. A Review on the Antiviral Activity of Functional Foods Against COVID-19 and Viral Respiratory Tract Infections. Int J Gen Med 2022; 15:4817-4835. [PMID: 35592539 PMCID: PMC9112189 DOI: 10.2147/ijgm.s361001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Due to the absence of successful therapy, vaccines for protection are continuously being developed. Since vaccines must be thoroughly tested, viral respiratory tract infections (VRTIs), mainly coronaviruses, have seriously affected human health worldwide in recent years. In this review, we presented the relevant data which originated from trusted publishers regarding the practical benefits of functional foods (FFs) and their dietary sources, in addition to natural plant products, in viral respiratory and COVID-19 prevention and immune-boosting activities. As a result, FFs were confirmed to be functionally active ingredients for preventing COVID-19 and VRTIs. Furthermore, the antiviral activity and immunological effects of FFs against VRTIs and COVID-19 and their potential main mechanisms of action are also being reviewed. Therefore, to prevent COVID-19 and VRTIs, it is critical to identify controlling the activities and immune-enhancing functional food constituents as early as possible. We further aimed to summarize functional food constituents as a dietary supplement that aids in immune system boosting and may effectively reduce VRTIs and COVID-19 and promote therapeutic efficacy.
Collapse
Affiliation(s)
- Abdullah Khalid Omer
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
- Razga Company, Sulaimaniyah, Kurdistan Region, Iraq
| | - Sonia Khorshidi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Negar Mortazavi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| |
Collapse
|
33
|
Kashyap D, Roy R, Kar P, Jha HC. Plant-derived active compounds as a potential nucleocapsid protein inhibitor of SARS-CoV-2: an in-silico study. J Biomol Struct Dyn 2022:1-16. [PMID: 35532092 DOI: 10.1080/07391102.2022.2072951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2. This virus has a high mismatch repair proofreading ability due to its unique exonuclease activity, making it knotty to treat. The nucleocapsid protein can serve as a potential antiviral drug target, as this protein is responsible for multiple captious functions during the viral life cycle. Herein, we have investigated the potential to repurpose active antiviral compounds of plant origins for treating the SARS-CoV-2 infection. In the present study, we followed the molecular docking methodology to screen druggable natural plants' active compounds against the nucleocapsid protein of SARS-CoV-2. The virtual screening of all 68 compounds revealed that the top seven active compounds, such as withanolide D, hypericin, silymarin, oxyacanthine, withaferin A, Acetyl aleuritolic acid, and rhein, exhibit good binding affinity with druggable ADME properties, toxicity, and Pass prediction. The stability of the docked complexes was studied by conducting molecular simulations of 100 ns. MM-GBSA calculated the binding free energy uncovered that withanolide D, hypericin, and silymarin result in highly stable binding conformations in three different sites of the nucleocapsid protein. However, further investigation is needed in order to validate the candidacy of these inhibitors for clinical trials. HighlightsNatural plants' active compounds may aid in the inhibition of SARS-CoV-2 replication and COVID-19 therapeutics.Hypericin, silymarin, withanolide D, oxyacanthine, withaferin A, Acetyl aleuritolic acid, and rhein are effective against SARS-CoV-2 N protein.Studied natural plants' active compounds could be useful against COVID-19 and its associated organs comorbidities.ADMET properties of selected compounds favor these compounds as druggable candidates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Rajarshi Roy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| |
Collapse
|
34
|
Wang Y, Xie Y, Wang A, Wang J, Wu X, Wu Y, Fu Y, Sun H. Insights into interactions between food polyphenols and proteins: an updated overview. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yang Xie
- Pharmaceutical Engineering Center Chongqing Medical and Pharmaceutical College Chongqing China
| | - Aidong Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| | - Xiaoran Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yan Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| |
Collapse
|
35
|
Sberna G, Biagi M, Marafini G, Nardacci R, Biava M, Colavita F, Piselli P, Miraldi E, D'Offizi G, Capobianchi MR, Amendola A. In vitro Evaluation of Antiviral Efficacy of a Standardized Hydroalcoholic Extract of Poplar Type Propolis Against SARS-CoV-2. Front Microbiol 2022; 13:799546. [PMID: 35350622 PMCID: PMC8958028 DOI: 10.3389/fmicb.2022.799546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/27/2022] [Indexed: 12/23/2022] Open
Abstract
Except for specific vaccines and monoclonal antibodies, effective prophylactic or post-exposure therapeutic treatments are currently limited for COVID-19. Propolis, a honeybee’s product, has been suggested as a potential candidate for treatment of COVID-19 for its immunomodulatory properties and for its powerful activity against various types of viruses, including common coronaviruses. However, direct evidence regarding the antiviral activities of this product still remains poorly documented. VERO E6 and CALU3 cell lines were infected with SARS-CoV-2 and cultured in the presence of 12.5 or 25 μg/ml of a standardized Hydroalcoholic Extract acronym (sHEP) of Eurasian poplar type propolis and analyzed for viral RNA transcription, for cell damage by optical and electron microscopy, and for virus infectivity by viral titration at 2, 24, 48, and 72 h post-infection. The three main components of sHEP, caffeic acid phenethyl ester, galangin, and pinocembrin, were tested for the antiviral power, either alone or in combination. On both cell lines, sHEP showed significant effects mainly on CALU3 up to 48 h, i.e., some protection from cytopathic effects and consistent reduction of infected cell number, fewer viral particles inside cellular vesicles, reduction of viral titration in supernatants, dramatic drop of N gene negative sense RNA synthesis, and lower concentration of E gene RNA in cell extracts. Interestingly, pre-treatment of cells with sHEP before virus inoculation induced these same effects described previously and was not able to block virus entry. When used in combination, the three main constituents of sHEP showed antiviral activity at the same levels of sHEP. sHEP has a remarkable ability to hinder the replication of SARS-CoV-2, to limit new cycles of infection, and to protect host cells against the cytopathic effect, albeit with rather variable results. However, sHEP do not block the virus entry into the cells. The antiviral activity observed with the three main components of sHEP used in combination highlights that the mechanism underlying the antiviral activity of sHEP is probably the result of a synergistic effect. These data add further emphasis on the possible therapeutic role of this special honeybee’s product as an adjuvant to official treatments of COVID-19 patients for its direct antiviral activity.
Collapse
Affiliation(s)
- Giuseppe Sberna
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Giovanni Marafini
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Roberta Nardacci
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Clinical Department, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Mirella Biava
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Pierluca Piselli
- Epidemiology Department, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Gianpiero D'Offizi
- Clinical Department, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Saint Camillus International University of Health Sciences, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Saint Camillus International University of Health Sciences, Rome, Italy
| | - Alessandra Amendola
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
36
|
Khuntia BK, Sharma V, Wadhawan M, Chhabra V, Kidambi B, Rathore S, Agrawal A, Ram A, Qazi S, Ahmad S, Raza K, Sharma G. Antiviral Potential of Indian Medicinal Plants Against Influenza and SARS-CoV: A Systematic Review. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221086988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic has posed a significant threat to human health due to the lack of drugs that can potentially act against SARS-CoV -2. Also, even after the emergency approval of WHO, the vaccines’ efficacy is still a question, and people are getting reinfections. Previous studies have demonstrated the efficacy of traditional medicinal plants against influenza and SARS coronavirus. The present article aims to review potential phytochemicals from Indian medicinal plants that may be used against SARS-CoV-2. Articles published in the English language between 1992 and 2021 were retrieved from Embase, PubMed, and Google scholar using relevant keywords, and the scientific literature on efficacies of Indian medicinal plants against SARS-CoV and influenza virus were analyzed. The initial search revealed 1304 studies, but, on subsequent screening, 115 eligible studies were reported. Twenty research articles investigating traditional medicinal plant extracts and metabolites against SARS-CoV and influenza A virus in in vitro and in vivo systems satisfied the search criteria. The studies reported that plant extracts and active compounds such as glycyrrhizin, 14-α-lipoyl andrographolide, and curcumin from medicinal plants such as Yashtimadhu ( Glycyrrhiza glabra), Bhunimba ( Andrographis paniculata), and Haridra ( Curcuma longa) are effective against the various phases of the virus life cycle, viz., virus-host cell attachment, viral replication, 3CL protease activity, neuraminidase activity, adsorption and penetration of the virus. As per ancient Indian literature, plants in Ayurveda possess Rasayana (revitalizing) and Jwara hara (antipyretic, anti-inflammatory) properties. This evidence may be used to conduct experimental and clinical trials to study the underlying mechanisms and efficacy of antiviral properties of Indian medicinal plants against SARS-CoV-2.
Collapse
Affiliation(s)
- Bharat Krushna Khuntia
- Centre for Integrative Medicine and Research (CIMR), All India Institute of MedicalSciences (AIIMS), New Delhi, India
| | - Vandna Sharma
- Centre for Integrative Medicine and Research (CIMR), All India Institute of MedicalSciences (AIIMS), New Delhi, India
| | - Mohit Wadhawan
- Centre for Integrative Medicine and Research (CIMR), All India Institute of MedicalSciences (AIIMS), New Delhi, India
| | - Varun Chhabra
- Centre for Integrative Medicine and Research (CIMR), All India Institute of MedicalSciences (AIIMS), New Delhi, India
| | - Bharatraj Kidambi
- Department of Cardiology, Centre for Integrative Medicine and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Shubhangi Rathore
- Centre for Integrative Medicine and Research (CIMR), All India Institute of MedicalSciences (AIIMS), New Delhi, India
| | - Aman Agrawal
- Centre for Integrative Medicine and Research (CIMR), All India Institute of MedicalSciences (AIIMS), New Delhi, India
| | - Amirtha Ram
- Centre for Integrative Medicine and Research (CIMR), All India Institute of MedicalSciences (AIIMS), New Delhi, India
| | - Sahar Qazi
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Gautam Sharma
- Department of Cardiology, Centre for Integrative Medicine and Research, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
37
|
Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Inhibition of the main protease of SARS-CoV-2 (M pro) by repurposing/designing drug-like substances and utilizing nature's toolbox of bioactive compounds. Comput Struct Biotechnol J 2022; 20:1306-1344. [PMID: 35308802 PMCID: PMC8920478 DOI: 10.1016/j.csbj.2022.03.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
The emergence of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has resulted in a long pandemic, with numerous cases and victims worldwide and enormous consequences on social and economic life. Although vaccinations have proceeded and provide a valuable shield against the virus, the approved drugs are limited and it is crucial that further ways to combat infection are developed, that can also act against potential mutations. The main protease (Mpro) of the virus is an appealing target for the development of inhibitors, due to its importance in the viral life cycle and its high conservation among different coronaviruses. Several compounds have shown inhibitory potential against Mpro, both in silico and in vitro, with few of them also having entered clinical trials. These candidates include: known drugs that have been repurposed, molecules specifically designed based on the natural substrate of the protease or on structural moieties that have shown high binding affinity to the protease active site, as well as naturally derived compounds, either isolated or in plant extracts. The aim of this work is to collectively present the results of research regarding Mpro inhibitors to date, focusing on the function of the compounds founded by in silico simulations and further explored by in vitro and in vivo assays. Creating an extended portfolio of promising compounds that may block viral replication by inhibiting Mpro and by understanding involved structure-activity relationships, could provide a basis for the development of effective solutions against SARS-CoV-2 and future related outbreaks.
Collapse
Affiliation(s)
| | | | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
38
|
Magnavacca A, Sangiovanni E, Racagni G, Dell'Agli M. The antiviral and immunomodulatory activities of propolis: An update and future perspectives for respiratory diseases. Med Res Rev 2022; 42:897-945. [PMID: 34725836 PMCID: PMC9298305 DOI: 10.1002/med.21866] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Propolis is a complex natural product that possesses antioxidant, anti-inflammatory, immunomodulatory, antibacterial, and antiviral properties mainly attributed to the high content in flavonoids, phenolic acids, and their derivatives. The chemical composition of propolis is multifarious, as it depends on the botanical sources from which honeybees collect resins and exudates. Nevertheless, despite this variability propolis may have a general pharmacological value, and this review systematically compiles, for the first time, the existing preclinical and clinical evidence of propolis activities as an antiviral and immunomodulatory agent, focusing on the possible application in respiratory diseases. In vitro and in vivo assays have demonstrated propolis broad-spectrum effects on viral infectivity and replication, as well as the modulatory actions on cytokine production and immune cell activation as part of both innate and adaptive immune responses. Clinical trials confirmed propolis undeniable potential as an effective therapeutic agent; however, the lack of rigorous randomized clinical trials in the context of respiratory diseases is tangible. Since propolis is available as a dietary supplement, possible use for the prevention of respiratory diseases and their deleterious inflammatory drawbacks on the respiratory tract in humans is considered and discussed. This review opens up new perspectives on the clinical investigation of neglected propolis biological properties which, now more than ever, are particularly relevant with respect to the recent outbreaks of pandemic respiratory infections.
Collapse
Affiliation(s)
- Andrea Magnavacca
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| |
Collapse
|
39
|
Ali S, Alam M, Khatoon F, Fatima U, Elasbali AM, Adnan M, Islam A, Hassan MI, Snoussi M, De Feo V. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights. Biomed Pharmacother 2022; 147:112658. [PMID: 35066300 PMCID: PMC8769927 DOI: 10.1016/j.biopha.2022.112658] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The unexpected emergence of the new Coronavirus disease (COVID-19) has affected more than three hundred million individuals and resulted in more than five million deaths worldwide. The ongoing pandemic has underscored the urgent need for effective preventive and therapeutic measures to develop anti-viral therapy. The natural compounds possess various pharmaceutical properties and are reported as effective anti-virals. The interest to develop an anti-viral drug against the novel severe acute respiratory syndrome Coronavirus (SARS-CoV-2) from natural compounds has increased globally. Here, we investigated the anti-viral potential of selected promising natural products. Sources of data for this paper are current literature published in the context of therapeutic uses of phytoconstituents and their mechanism of action published in various reputed peer-reviewed journals. An extensive literature survey was done and data were critically analyzed to get deeper insights into the mechanism of action of a few important phytoconstituents. The consumption of natural products such as thymoquinone, quercetin, caffeic acid, ursolic acid, ellagic acid, vanillin, thymol, and rosmarinic acid could improve our immune response and thus possesses excellent therapeutic potential. This review focuses on the anti-viral functions of various phytoconstituent and alkaloids and their potential therapeutic implications against SARS-CoV-2. Our comprehensive analysis provides mechanistic insights into phytoconstituents to restrain viral infection and provide a better solution through natural, therapeutically active agents.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Fatima Khatoon
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, Uttar Pradesh 201303, India
| | - Urooj Fatima
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, Italy.
| |
Collapse
|
40
|
Wieczorek PP, Hudz N, Yezerska O, Horčinová-Sedláčková V, Shanaida M, Korytniuk O, Jasicka-Misiak I. Chemical Variability and Pharmacological Potential of Propolis as a Source for the Development of New Pharmaceutical Products. Molecules 2022; 27:1600. [PMID: 35268700 PMCID: PMC8911684 DOI: 10.3390/molecules27051600] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
This review aims to analyze propolis as a potential raw material for the development and manufacture of new health-promoting products. Many scientific publications were retrieved from the Scopus, PubMed, and Google Scholar databases via searching the word "propolis". The different extraction procedures, key biologically active compounds, biological properties, and therapeutic potential of propolis were analyzed. It was concluded that propolis possesses a variety of biological properties because of a very complex chemical composition that mainly depends on the plant species visited by bees and species of bees. Numerous studies found versatile pharmacological activities of propolis: antimicrobial, antifungal, antiviral, antioxidant, anticancer, anti-inflammatory, immunomodulatory, etc. In this review, the composition and biological activities of propolis are presented from a point of view of the origin and standardization of propolis for the purpose of the development of new pharmaceutical products on its base. It was revealed that some types of propolis, especially European propolis, contain flavonoids and phenolic acids, which could be markers for the standardization and quality evaluation of propolis and its preparations. One more focus of this paper was the overview of microorganisms' sensitivity to propolis for further development of antimicrobial and antioxidant products for the treatment of various infectious diseases with an emphasis on the illnesses of the oral cavity. It was established that the antimicrobial activity of different types of propolis is quite significant, especially to Gram-negative bacteria and lipophilic viruses. The present study could be also of interest to the pharmaceutical industry as a review for the appropriate design of standardized propolis preparations such as mouthwashes, toothpastes, oral drops, sprays, creams, ointments, suppositories, tablets, and capsules, etc. Moreover, propolis could be regarded as a source for the isolation of biologically active substances. Furthermore, this review can facilitate partially overcoming the problem of the standardization of propolis preparations, which is a principal obstacle to the broader use of propolis in the pharmaceutical industry. Finally, this study could be of interest in the area of the food industry for the development of nutritionally well-balanced products. The results of this review indicate that propolis deserves to be better studied for its promising therapeutic effects from the point of view of the connection of its chemical composition with the locality of its collection, vegetation, appropriate extraction methods, and standardization.
Collapse
Affiliation(s)
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (N.H.); (O.Y.)
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Oksana Yezerska
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (N.H.); (O.Y.)
| | | | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Oleksii Korytniuk
- Department of Occupational and Facial Surgery and Dentistry, Ukrainian Military Medical Academy, 01015 Kyiv, Ukraine;
| | - Iza Jasicka-Misiak
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| |
Collapse
|
41
|
Bakour M, Laaroussi H, Ousaaid D, El Ghouizi A, Es-safi I, Mechchate H, Lyoussi B. New Insights into Potential Beneficial Effects of Bioactive Compounds of Bee Products in Boosting Immunity to Fight COVID-19 Pandemic: Focus on Zinc and Polyphenols. Nutrients 2022; 14:nu14050942. [PMID: 35267917 PMCID: PMC8912813 DOI: 10.3390/nu14050942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is an epidemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Populations at risk as well as those who can develop serious complications are people with chronic diseases such as diabetes, hypertension, and the elderly. Severe symptoms of SARS-CoV-2 infection are associated with immune failure and dysfunction. The approach of strengthening immunity may be the right choice in order to save lives. This review aimed to provide an overview of current information revealing the importance of bee products in strengthening the immune system against COVID-19. We highlighted the immunomodulatory and the antiviral effects of zinc and polyphenols, which may actively contribute to improving symptoms and preventing complications caused by COVID-19 and can counteract viral infections. Thus, this review will pave the way for conducting advanced experimental research to evaluate zinc and polyphenols-rich bee products to prevent and reduce the severity of COVID-19 symptoms.
Collapse
Affiliation(s)
- Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Imane Es-safi
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland;
| | - Hamza Mechchate
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland;
- Correspondence:
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| |
Collapse
|
42
|
Sharma D, Saini R, Mishra A. Natural phytocompounds physalin D, withaferin a and withanone target L-asparaginase of Mycobacterium tuberculosis: a molecular dynamics study. J Biomol Struct Dyn 2022; 41:2645-2659. [PMID: 35132949 DOI: 10.1080/07391102.2022.2036239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tuberculosis is a major infectious disease that is responsible for high mortality in humans. The reason for the global burden is the emergence of new antibiotic resistant strains of Mycobacteria that showed resistance against the currently given therapy. It is identified that the pathogen utilizes the L-asparaginase enzyme as a virulence factor for survival benefits inside the host. Therefore, L-asparaginase of Mycobacterium tuberculosis is a promising therapeutic drug target. In view of the light, the present study explores thirty phytocompounds from medicinal plants to determine the binding affinity in the catalytic site of L-asparaginase. The studies initiated with the construction of the 3 D structure of L-asparaginase using homology modeling. Using the robustness of molecular docking with binding energy cut-off value < -9.0 kcal/mol and 100 ns molecular dynamics simulations, three phytocompounds viz., Physalin D (-9.11 kcal/mol), Withanone (-9.45 kcal/mol) and Withaferin A (-9. 67 kcal/mol) showed strong binding potential compared to the product, L-aspartate (-5.87 kcal/mol). The active site residues identified are Thr 12, Asp 51, Ser 53, Thr 84, Asp 85, and Lys 157. Upon MD simulations, the phytocompounds and the product L-aspartate remain present in the same catalytic pocket of the enzyme. The RMSD, RMSF, radius of gyration and H-bond analysis of enzyme ligand complexes efficiently showed the stability of ligands at the docked site. Further, ADME studies distinctly demonstrate the potential of selected phytoconstituents as therapeutics. Thus, serve as safe and low-cost alternatives to chemical compounds to be used in combination therapy for treatment of tuberculosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deepankar Sharma
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Ravi Saini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
43
|
Basak HK, Saha S, Ghosh J, Paswan U, Karmakar S, Pal A, Chatterjee A. Sequence Analysis, Structure Prediction of Receptor Proteins and In Silico
Study of Potential Inhibitors for Management of Life Threatening
COVID-19. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210804141613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Treatment of the Covid-19 pandemic caused by the highly contagious and
pathogenic SARS-CoV-2 is a global menace. Day by day, this pandemic is getting worse. Doctors,
scientists and researchers across the world are urgently scrambling for a cure for novel corona virus
and continuously working at break neck speed to develop vaccines or drugs. But to date, there
are no specific drugs or vaccines available in the market to cope up with the virus.
Objective:
The present study helps us to elucidate 3D structures of SARS-CoV-2 proteins and also
to identify natural compounds as potential inhibitors against COVID-19.
Methods:
The 3D structures of the proteins were constructed using Modeller 9.16 modeling tool.
Modelled proteins were validated with PROCHECK by Ramachandran plot analysis. In this study,
a small library of natural compounds (fifty compounds) was docked to the hACE2 binding site of
the modelled surface glycoprotein of SARS-CoV-2 using AutoDock Vina to repurpose these inhibitors
against SARS-CoV-2. Conceptual density functional theory calculations of the best eight
compounds had been performed by Gaussian-09. Geometry optimizations for these molecules were
done at M06-2X/ def2-TZVP level of theory. ADME parameters, pharmacokinetic properties and
drug likeness of the compounds were analyzed using swissADME website.
Results:
In this study, we analysed the sequences of surface glycoprotein, nucleocapsid phosphoprotein
and envelope protein obtained from different parts of the globe. We modelled all the different
sequences of surface glycoprotein and envelop protein in order to derive 3D structure of a molecular
target, which is essential for the development of therapeutics. Different electronic properties
of the inhibitors have been calculated using DFT through M06-2X functional with def2-TZVP
basis set. Docking result at the hACE2 binding site of all modelled surface glycoproteins of SARSCoV-
2 showed that all the eight inhibitors (actinomycin D, avellanin C, ichangin, kanglemycin A,
obacunone, ursolic acid, ansamiotocin P-3 and isomitomycin A) studied here were many folds
better compared to hydroxychloroquine which has been found to be effective to treat patients suffering
from COVID-19. All the inhibitors meet most of the criteria of drug likeness assessment.
Conclusion:
We expect that eight compounds (actinomycin D, avellanin C, ichangin, kanglemycin
A, obacunone, ursolic acid, ansamiotocin P-3 and isomitomycin A) can be used as potential inhibitors
against SARS-CoV-2.
Collapse
Affiliation(s)
- Hriday Kumar Basak
- In silico Chemical Laboratory, Department of Chemistry, Raiganj University, Raiganj, West Bengal, India
| | - Soumen Saha
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Joydeep Ghosh
- In silico Chemical Laboratory, Department of Chemistry, Raiganj University, Raiganj, West Bengal, India
| | - Uttam Paswan
- In silico Chemical Laboratory, Department of Chemistry, Raiganj University, Raiganj, West Bengal, India
| | - Sujoy Karmakar
- In silico Chemical Laboratory, Department of Chemistry, Raiganj University, Raiganj, West Bengal, India
| | - Ayon Pal
- Microbiology & Computational
Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, India
| | - Abhik Chatterjee
- In silico Chemical Laboratory, Department of Chemistry, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
44
|
Kumar V, Dhanjal JK, Bhargava P, Kaul A, Wang J, Zhang H, Kaul SC, Wadhwa R, Sundar D. Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. J Biomol Struct Dyn 2022; 40:1-13. [PMID: 32469279 PMCID: PMC7309304 DOI: 10.1080/07391102.2020.1775704] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) initiated in December 2019 in Wuhan, China and became pandemic causing high fatality and disrupted normal life calling world almost to a halt. Causative agent is a novel coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2/2019-nCoV). While new line of drug/vaccine development has been initiated world-wide, in the current scenario of high infected numbers, severity of the disease and high morbidity, repurposing of the existing drugs is heavily explored. Here, we used a homology-based structural model of transmembrane protease serine 2 (TMPRSS2), a cell surface receptor, required for entry of virus to the target host cell. Using the strengths of molecular docking and molecular dynamics simulations, we examined the binding potential of Withaferin-A (Wi-A), Withanone (Wi-N) and caffeic acid phenethyl ester to TPMRSS2 in comparison to its known inhibitor, Camostat mesylate. We found that both Wi-A and Wi-N could bind and stably interact at the catalytic site of TMPRSS2. Wi-N showed stronger interactions with TMPRSS2 catalytic residues than Wi-A and was also able to induce changes in its allosteric site. Furthermore, we investigated the effect of Wi-N on TMPRSS2 expression in MCF7 cells and found remarkable downregulation of TMPRSS2 mRNA in treated cells predicting dual action of Wi-N to block SARS-CoV-2 entry into the host cells. Since the natural compounds are easily available/affordable, they may even offer a timely therapeutic/preventive value for the management of SARS-CoV-2 pandemic. We also report that Wi-A/Wi-N content varies in different parts of Ashwagandha and warrants careful attention for their use.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vipul Kumar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, India
| | - Jaspreet Kaur Dhanjal
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Priyanshu Bhargava
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Ashish Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Jia Wang
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Huayue Zhang
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, India
| |
Collapse
|
45
|
Jamiu AT, Pohl CH, Bello S, Adedoja T, Sabiu S. A review on molecular docking analysis of phytocompounds against SARS-CoV-2 druggable targets. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.2013327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Abdullahi Temitope Jamiu
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
- Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Sharafa Bello
- Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria
| | - Toluwase Adedoja
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
46
|
Verma D, Mitra D, Paul M, Chaudhary P, Kamboj A, Thatoi H, Janmeda P, Jain D, Panneerselvam P, Shrivastav R, Pant K, Das Mohapatra PK. Potential inhibitors of SARS-CoV-2 (COVID 19) proteases PL pro and M pro/ 3CL pro: molecular docking and simulation studies of three pertinent medicinal plant natural components. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100038. [PMID: 34870149 PMCID: PMC8178537 DOI: 10.1016/j.crphar.2021.100038] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - coronavirus disease 2019 (COVID-19) has raised a severe global public health issue and creates a pandemic situation. The present work aims to study the molecular -docking and dynamic of three pertinent medicinal plants i.e. Eurycoma harmandiana, Sophora flavescens and Andrographis paniculata phyto-compounds against SARS-COV-2 papain-like protease (PLpro) and main protease (Mpro)/3-chymotrypsin-like protease (3CLpro). The interaction of protein targets and ligands was performed through AutoDock-Vina visualized using PyMOL and BIOVIA-Discovery Studio 2020. Molecular docking with canthin-6-one 9-O-beta-glucopyranoside showed highest binding affinity and less binding energy with both PLpro and Mpro/3CLpro proteases and was subjected to molecular dynamic (MD) simulations for a period of 100ns. Stability of the protein-ligand complexes was evaluated by different analyses. The binding free energy calculated using MM-PBSA and the results showed that the molecule must have stable interactions with the protein binding site. ADMET analysis of the compounds suggested that it is having drug-like properties like high gastrointestinal (GI) absorption, no blood-brain barrier permeability and high lipophilicity. The outcome revealed that canthin-6-one 9-O-beta-glucopyranoside can be used as a potential natural drug against COVID-19 protease.
Collapse
Affiliation(s)
- Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248 002, Uttarakhand, India
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, 733 134, Uttar Dinajpur, West Bengal, India
| | - Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, 757003, Odisha, India
| | - Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, 304022, Rajasthan, India
| | - Anshul Kamboj
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248 002, Uttarakhand, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, 757003, Odisha, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, 304022, Rajasthan, India
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, 304022, Rajasthan, India
| | - Periyasamy Panneerselvam
- Microbiology, Crop Production Division, ICAR- National Rice Research Institute, Cuttack, 753 006, Odisha, India
| | - Rakesh Shrivastav
- Department of Applied Sciences, NGF College of Engineering and Technology, Palwal, Haryana, India
| | - Kumud Pant
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248 002, Uttarakhand, India
| | - Pradeep K Das Mohapatra
- Department of Microbiology, Raiganj University, Raiganj, 733 134, Uttar Dinajpur, West Bengal, India.,PAKB Environment Conservation Centre, Raiganj University, Raiganj, 733 134, Uttar Dinajpur, West Bengal, India
| |
Collapse
|
47
|
Saha P, Bose S, Srivastava AK, Chaudhary AA, Lall R, Prasad S. Jeopardy of COVID-19: Rechecking the Perks of Phytotherapeutic Interventions. Molecules 2021; 26:6783. [PMID: 34833873 PMCID: PMC8621307 DOI: 10.3390/molecules26226783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/31/2023] Open
Abstract
The novel coronavirus disease (COVID-19), the reason for worldwide pandemic, has already masked around 220 countries globally. This disease is induced by Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Arising environmental stress, increase in the oxidative stress level, weak immunity and lack of nutrition deteriorates the clinical status of the infected patients. Though several researches are at its peak for understanding and bringing forward effective therapeutics, yet there is no promising solution treating this disease directly. Medicinal plants and their active metabolites have always been promising in treating many clinical complications since time immemorial. Mother nature provides vivid chemical structures, which act multi-dimensionally all alone or synergistically in mitigating several diseases. Their unique antioxidant and anti-inflammatory activity with least side effects have made them more effective candidate for pharmacological studies. These medicinal plants inhibit attachment, encapsulation and replication of COVID-19 viruses by targeting various signaling molecules such as angiotensin converting enzyme-2, transmembrane serine protease 2, spike glycoprotein, main protease etc. This property is re-examined and its potency is now used to improve the existing global health crisis. This review is an attempt to focus various antiviral activities of various noteworthy medicinal plants. Moreover, its implications as prophylactic or preventive in various secondary complications including neurological, cardiovascular, acute kidney disease, liver disease are also pinpointed in the present review. This knowledge will help emphasis on the therapeutic developments for this novel coronavirus where it can be used as alone or in combination with the repositioned drugs to combat COVID-19.
Collapse
Affiliation(s)
- Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, WB, India; (P.S.); (S.B.); (A.K.S.)
| | - Subhankar Bose
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, WB, India; (P.S.); (S.B.); (A.K.S.)
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, WB, India; (P.S.); (S.B.); (A.K.S.)
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh 11623, Saudi Arabia;
| | - Rajiv Lall
- Noble Pharma, LLC, 4602 Domain Drive, Menomonie, WI 54751, USA;
| | - Sahdeo Prasad
- Noble Pharma, LLC, 4602 Domain Drive, Menomonie, WI 54751, USA;
| |
Collapse
|
48
|
Bhattacharya S, Paul SMN. Efficacy of phytochemicals as immunomodulators in managing COVID-19: a comprehensive view. Virusdisease 2021; 32:435-445. [PMID: 34189187 PMCID: PMC8224255 DOI: 10.1007/s13337-021-00706-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Throughout history, disease outbreaks have worked havoc upon humanity, sometimes reorienting the history and at times, signaling the end of entire civilizations and the modern pandemic that the world is dealing with, is COVID-19 or SARS-CoV-2. A healthy immunity could be an ideal gear for resisting COVID-19 for neither medicines nor vaccines have been ascertained till date. In view of the present scenario, there is a demanding necessity to analyze innovative and valid techniques for forestalling and cure of COVID-19 by re-evaluating the structure of the natural compounds for drug designing. The Ayurveda has come forward by prescribing a lot of medicinal herbs for combating this dreaded disease. We have searched from sources in Pubmed and Google Scholar and found 1509 items. The search criteria were limited to the effect of phytochemicals in certain immunomodulatory aspects of viral infection. The original research papers related to the works on phytochemicals in the down regulation of NF-kB, activation of NK and CD8+ cells, inhibition of inflammatory cytokine release and ROS scavenging were included in our study. Here, we try to focus on the immunoregulatory cells which have a vital aspect in COVID-19 and highlight the potential effects of the restorative use of phytochemicals as drugs or dietary supplements. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00706-2.
Collapse
Affiliation(s)
- Sonali Bhattacharya
- Department of Zoology, Rishi Bankim Chandra College, Naihati, West Bengal 743165 India
| | | |
Collapse
|
49
|
Bhargava P, Mahanta D, Kaul A, Ishida Y, Terao K, Wadhwa R, Kaul SC. Experimental Evidence for Therapeutic Potentials of Propolis. Nutrients 2021; 13:2528. [PMID: 34444688 PMCID: PMC8397973 DOI: 10.3390/nu13082528] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Propolis is produced by honeybees from materials collected from plants they visit. It is a resinous material having mixtures of wax and bee enzymes. Propolis is also known as bee glue and used by bees as a building material in their hives, for blocking holes and cracks, repairing the combs and strengthening their thin borders. It has been extensively used since ancient times for different purposes in traditional human healthcare practices. The quality and composition of propolis depend on its geographic location, climatic zone and local flora. The New Zealand and Brazilian green propolis are the two main kinds that have been extensively studied in recent years. Their bioactive components have been found to possess a variety of therapeutic potentials. It was found that Brazilian green propolis improves the cognitive functions of mild cognitive impairments in patients living at high altitude and protects them from neurodegenerative damage through its antioxidant properties. It possesses artepillin C (ARC) as the key component, also known to possess anticancer potential. The New Zealand propolis contains caffeic acid phenethyl ester (CAPE) as the main bioactive with multiple therapeutic potentials. Our lab performed in vitro and in vivo assays on the extracts prepared from New Zealand and Brazilian propolis and their active ingredients. We provided experimental evidence that these extracts possess anticancer, antistress and hypoxia-modulating activities. Furthermore, their conjugation with γCD proved to be more effective. In the present review, we portray the experimental evidence showing that propolis has the potential to be a candidate drug for different ailments and improve the quality of life.
Collapse
Affiliation(s)
- Priyanshu Bhargava
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
| | - Debajit Mahanta
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
- DBT-APSCS&T Centre of Excellence for Bioresources and Sustainable Development, Kimin 791121, India
| | - Ashish Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
| | - Yoshiyuki Ishida
- CycloChem Co., Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; (Y.I.); (K.T.)
| | - Keiji Terao
- CycloChem Co., Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; (Y.I.); (K.T.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
- Kaul-Tech Co., Ltd., Nagakunidai 3-24, Tsuchiura 300-0810, Japan
| |
Collapse
|
50
|
Alsayari A, Muhsinah AB, Almaghaslah D, Annadurai S, Wahab S. Pharmacological Efficacy of Ginseng against Respiratory Tract Infections. Molecules 2021; 26:molecules26134095. [PMID: 34279434 PMCID: PMC8271507 DOI: 10.3390/molecules26134095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory tract infections are underestimated, as they are mild and generally not incapacitating. In clinical medicine, however, these infections are considered a prevalent problem. By 2030, the third most comprehensive reason for death worldwide will be chronic obstructive pulmonary disease (COPD), according to the World Health Organization. The current arsenal of anti-inflammatory drugs shows little or no benefits against COPD. For thousands of years, herbal drugs have been used to cure numerous illnesses; they exhibit promising results and enhance physical performance. Ginseng is one such herbal medicine, known to alleviate pro-inflammatory chemokines and cytokines (IL-2, IL-4, IFN-γ, TNF-α, IL-5, IL-6, IL-8) formed by macrophages and epithelial cells. Furthermore, the mechanisms of action of ginsenoside are still not fully understood. Various clinical trials of ginseng have exhibited a reduction of repeated colds and the flu. In this review, ginseng’s structural features, the pathogenicity of microbial infections, and the immunomodulatory, antiviral, and anti-bacterial effects of ginseng were discussed. The focus was on the latest animal studies and human clinical trials that corroborate ginseng’s role as a therapy for treating respiratory tract infections. The article concluded with future directions and significant challenges. This review would be a valuable addition to the knowledge base for researchers in understanding the promising role of ginseng in treating respiratory tract infections. Further analysis needs to be re-focused on clinical trials to study ginseng’s efficacy and safety in treating pathogenic infections and in determining ginseng-drug interactions.
Collapse
Affiliation(s)
- Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
- Correspondence: or
| |
Collapse
|