1
|
Guadagnin AR, Peñagaricano F, Dahl GE, Laporta J. Programming effects of intrauterine hyperthermia on adrenal gland development. J Dairy Sci 2024; 107:6308-6321. [PMID: 38580145 DOI: 10.3168/jds.2023-24606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024]
Abstract
Maternal heat stress during late pregnancy can lead to intrauterine hyperthermia and affect fetal hypothalamic-pituitary-adrenal axis development and function. Herein, we investigated the effects of chronic environmental heat stress exposure of Holstein cows in the last 2 mo of gestation on their offspring's adrenal gland histomorphology and transcriptome. Cows in their last 54 ± 5 d of gestation were either heat stressed (housed under the shade of a freestall barn) or provided heat stress abatement via active cooling (via water soakers and fans) during a subtropical summer (temperature-humidity index >68). Respiration rate (RR) and skin temperature (ST) were elevated in heat-stressed dams relative to the cows with access to heat abatement (23 breaths/min and 2°C higher for RR and ST, respectively). Heifers born to heat-stressed cows experienced heat stress in utero (HS), whereas heifers born to actively cooled cows did not (CL). The adrenal gland was harvested from 6 heifers per group that were euthanized at birth (d 0; n = 12) or 1 wk after weaning (d 63; n = 12). Circulating cortisol was measured from blood samples collected weekly throughout the preweaning period. At d 63, heifers that experienced HS while developing in utero had heavier adrenal glands, with a greater total tissue surface area and thickness of the zona glomerulosa (ZG), fasciculata (ZF), and reticularis (ZR), compared with CL heifers. In addition, the adrenal gland of HS heifers had fewer cells in the ZG, more and larger cells in the ZF, and larger cells in the ZR, relative to CL heifers. Although no changes in circulating cortisol were observed through the preweaning period, the transcriptomic profile of the adrenal tissue was altered by fetal exposure to hyperthermia. Both at birth and on d 63, approximately 30 pathways were differentially expressed in the adrenal glands of HS heifers relative to CL. These pathways were associated with immune function, inflammation, prolactin signaling, cell function, and calcium transport. Upstream regulators significantly activated or inhibited in the adrenal glands of heifers exposed to intrauterine hyperthermia were identified. Maternal exposure to heat stress during late gestation caused an enlargement of their offspring's adrenal glands by inducing ZG and ZF cell hypertrophy, and caused gene expression changes. These phenotypic, histological, and molecular changes in the adrenal gland might lead to alterations in stress, immune, and metabolic responses later in life.
Collapse
Affiliation(s)
- Anne R Guadagnin
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Geoffrey E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
2
|
Moraes DA, Machado RB, Koban M, Hoffman GE, Suchecki D. The Pituitary-Adrenal Response to Paradoxical Sleep Deprivation Is Similar to a Psychological Stressor, Whereas the Hypothalamic Response Is Unique. Front Endocrinol (Lausanne) 2022; 13:885909. [PMID: 35880052 PMCID: PMC9308007 DOI: 10.3389/fendo.2022.885909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
Stressors of different natures induce activation of the hypothalamic-pituitary-adrenal (HPA) axis at different magnitudes. Moreover, the HPA axis response to repeated exposure is usually distinct from that elicited by a single session. Paradoxical sleep deprivation (PSD) augments ACTH and corticosterone (CORT) levels, but the nature of this stimulus is not yet defined. The purpose of the present study was to qualitatively compare the stress response of animals submitted to PSD to that of rats exposed once or four times to cold, as a physiological stress, movement restraint (RST) as a mixed stressor and predator odour (PRED) as the psychological stressor, whilst animals were submitted for 1 or 4 days to PSD and respective control groups. None of the stressors altered corticotropin releasing factor immunoreactivity in the paraventricular nucleus of the hypothalamus (PVN), median eminence (ME) or central amygdala, compared to control groups, whereas vasopressin immunoreactivity in PSD animals was decreased in the PVN and increased in the ME, indicating augmented activity of this system. ACTH levels were higher after repeated stress or prolonged PSD than after single- or 1 day-exposure and control groups, whereas the CORT response was habituated by repeated stress, but not by 4-days PSD. This dissociation resulted in changes in the CORT : ACTH ratio, with repeated cold and RST decreasing the ratio compared to single exposure, but no change was seen in PRED and PSD groups. Comparing the magnitude and pattern of pituitary-adrenal response to the different stressors, PSD-induced responses were closer to that shown by PRED-exposed rats. In contrast, the hypothalamic response of PSD-exposed rats was unique, inasmuch as this was the only stressor which increased the activity of the vasopressin system. In conclusion, we propose that the pituitary-adrenal response to PSD is similar to that induced by a psychological stressor.
Collapse
Affiliation(s)
- Danilo A. Moraes
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo B. Machado
- Grupo de Pesquisa em Psicossomática, Universidade Ibirapuera, São Paulo, Brazil
| | - Michael Koban
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Gloria E. Hoffman
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Deborah Suchecki,
| |
Collapse
|
3
|
Zimmerman AD, Mackay L, Kemppainen RJ, Jones MA, Read CC, Schwartz D, Foradori CD. The Herbicide Atrazine Potentiates Angiotensin II-Induced Aldosterone Synthesis and Release From Adrenal Cells. Front Endocrinol (Lausanne) 2021; 12:697505. [PMID: 34335472 PMCID: PMC8317615 DOI: 10.3389/fendo.2021.697505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/22/2021] [Indexed: 12/06/2022] Open
Abstract
Atrazine is one of the most commonly used pre-emergence and early post-emergence herbicides in the world. We have shown previously that atrazine does not directly stimulate the pituitary or adrenal to trigger hormone release but acts centrally to activate a stress-like activation of the hypothalamic-pituitary-adrenal axis. In doing so, atrazine treatment has been shown to cause adrenal morphology changes characteristic of repeated stress. In this study, adrenals from atrazine treated and stressed animals were directly compared after 4 days of atrazine treatment or restraint stress. Both atrazine and stressed animals displayed reduced adrenocortical zona glomerulosa thickness and aldosterone synthase (CYP11B2) expression, indicative of repeated adrenal stimulation by adrenocorticotropic hormone. To determine if reduced CYP11B2 expression resulted in attenuated aldosterone synthesis, stressed and atrazine treated animals were challenged with angiotensin II (Ang II). As predicted, stressed animals produced less aldosterone compared to control animals when stimulated. However, atrazine treated animals had higher circulating aldosterone concentrations compared to both stressed and control groups. Ang II-induced aldosterone release was also potentiated in atrazine pretreated human adrenocortical carcinoma cells (H295R). Atrazine pretreated did not alter the expression of the rate limiting steroidogenic StAR protein or angiotensin II receptor 1. Atrazine treated animals also presented with higher basal blood pressure than vehicle treated control animals suggesting sustained elevations in circulating aldosterone levels. Our results demonstrate that treatment with the widely used herbicide, atrazine, directly increases stimulated production of aldosterone in adrenocortical cells independent of expression changes to rate limiting steroidogenic enzymes.
Collapse
|
4
|
Steenblock C, Todorov V, Kanczkowski W, Eisenhofer G, Schedl A, Wong ML, Licinio J, Bauer M, Young AH, Gainetdinov RR, Bornstein SR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the neuroendocrine stress axis. Mol Psychiatry 2020; 25:1611-1617. [PMID: 32382135 PMCID: PMC7204611 DOI: 10.1038/s41380-020-0758-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Vladimir Todorov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Waldemar Kanczkowski
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Clinical Chemistry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Ma-Li Wong
- State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg State University Hospital, St. Petersburg State University, St. Petersburg, Russia
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences Division, King's College London, London, UK
| |
Collapse
|
5
|
Popovska-Perčinić F, Manojlović-Stojanoski M, Pendovski L, Dinevska Kjovkarovska S, Miova B, Grubin J, Milošević V, Ajdžanović V. A Moderate Increase in Ambient Temperature Influences The Structure and Hormonal Secretion of Adrenal Glands in Rats. CELL JOURNAL 2020; 22:415-424. [PMID: 32347034 PMCID: PMC7211272 DOI: 10.22074/cellj.2021.6827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
Abstract
Objective As a consequence of global warming, the increase in the average annual temperature is observed, while the living organisms actively adapt to these changes. High environmental temperature initiates numerous physiological, autonomic, and behavioral responses, and activates the stress response. Thus, the aim of the study was to investigate effect of a moderate increase in ambient temperature on the activity of the hypothalamic-pituitary-adrenocortical (HPA) axis by determining histological changes in adrenal glands and hormonal levels in adult male rats. Materials and Methods In this experimental study, the morpho-functional state of adrenal glands was estimated by stereological evaluation of parameters, including the adrenal volume, adrenocortical cell/nuclear size and number, and the volume density of vascular tissues after four days of exposure to a moderate increase in ambient temperature of 35 ± 1˚C. Novelli histochemical and vascular endothelial growth factor (VEGF) immunohistochemical staining provided insight into the adrenal gland vascular network. Additionally, the adrenal levels of aldosterone, corticosterone, and pituitary adrenocorticotropic hormone (ACTH) were determined as crucial indicators of the hypothalamic-pituitaryadrenocortical (HPA) axis activity. Results Prolonged exposure to a moderate increase in ambient temperature for four days resulted in a significant increase in ACTH level up to 24%, which altered adrenal glands both structurally and functionally. The adrenocortical volume and number of cells in all cortical zones were markedly increased (P<0.05). A statistically significant increase was shown in the level of aldosterone (16%) and corticosterone (25%) in serum levels of individuals. Conclusion Increased activity of the HPA axis reflects the response to a moderate increase in ambient temperature during four days, showing the capacity of the HPA axis to adapt the organism to daily temperature changes.
Collapse
Affiliation(s)
- Florina Popovska-Perčinić
- Department of Functional Morphology, Institute of Reproduction and Biomedicine, Faculty of Veterinary Medicine, Ss Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, Skopje, Republic of Macedonia
| | - Milica Manojlović-Stojanoski
- Department of Cytology, Institute for Biological Research Siniša Stanković, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, Republic of Serbia. Electronic Address:
| | - Lazo Pendovski
- Department of Functional Morphology, Institute of Reproduction and Biomedicine, Faculty of Veterinary Medicine, Ss Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, Skopje, Republic of Macedonia
| | - Suzana Dinevska Kjovkarovska
- Department of Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University in Skopje, Arhimedova 3, Skopje, Republic of Macedonia
| | - Biljana Miova
- Department of Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University in Skopje, Arhimedova 3, Skopje, Republic of Macedonia
| | - Jasmina Grubin
- Ministry of Education, Science and Technological Development of the Republic of Serbia, Njegoševa 12, Belgrade, Republic of Serbia
| | - Verica Milošević
- Department of Cytology, Institute for Biological Research Siniša Stanković, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, Republic of Serbia
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research Siniša Stanković, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, Republic of Serbia
| |
Collapse
|
6
|
Saroj N, Shanker S, Fernández-Parilla MA, López-Sánchez P, Terrón JA. Effect of chronic corticosterone treatment on expression and distribution of serotonin 5-HT7 receptors in rat adrenal glands. Can J Physiol Pharmacol 2019; 97:924-931. [DOI: 10.1139/cjpp-2019-0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sensitized stress-induced corticosterone (CORT) secretion in chronically stressed rats involves 5-HT7 receptor activation. The effect of 14-day chronic CORT and vehicle (VEH) administration on 5-HT7 receptor expression in adrenal glands, adrenal 5-HT content, and adrenocorticotropic hormone and CORT secretion was analysed. On day 15, VEH- and CORT-treated animals were perfused or decapitated without stress exposure (0 min) or after 10 and 30 min of restraint for collection of trunk blood and tissues. 5-HT7 receptor-like immunoreactivity (5-HT7R-LI), 5-HT7 receptor protein, and mRNA levels were determined by immunohistochemistry, Western blot, and reverse transcription polymerase chain reaction assays, respectively; 5-HT levels and hormones were quantified using HPLC and ELISA kits, respectively. An undisturbed control group was included for most experimental comparisons. Chronic CORT strongly increased 5-HT7R-LI in the outer adrenal cortex, as well as 5-HT7 receptor protein and mRNA in whole adrenal glands; adrenal 5-HT content also increased in these animals. Decreased adrenocorticotropic hormone and CORT secretion at 30 min of restraint occurred in CORT-treated rats. The results support the notion that chronic stress-induced increase of adrenocortical 5-HT7 receptors and adrenal 5-HT content is a glucocorticoid-dependent phenomenon; the development of magnified stress-induced 5-HT7 receptor-mediated CORT responses in chronically stressed animals nevertheless likely involves additional mechanisms.
Collapse
Affiliation(s)
- Neeshu Saroj
- Departamento de Farmacología, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, col. La Laguna Ticomán, CP 07360, CDMX, Mexico
| | - Shiv Shanker
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto Tomás, Ciudad de México, Mexico
| | - Manuel A. Fernández-Parilla
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, col. La Laguna Ticomán, CP 07360, CDMX, Mexico
| | - Pedro López-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto Tomás, Ciudad de México, Mexico
| | - José A. Terrón
- Departamento de Farmacología, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, col. La Laguna Ticomán, CP 07360, CDMX, Mexico
| |
Collapse
|
7
|
Berger I, Werdermann M, Bornstein SR, Steenblock C. The adrenal gland in stress - Adaptation on a cellular level. J Steroid Biochem Mol Biol 2019; 190:198-206. [PMID: 30959152 DOI: 10.1016/j.jsbmb.2019.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 01/29/2023]
Abstract
Human individuals are constantly confronted to various kinds of stressors and the body's response and adaptation is essential for human health. The adrenal gland as the main producer of stress hormones plays a major role in the response to physiological challenges and is able to adapt to these physiological needs. Proper adaptation is of particular importance since dysregulation of the stress system is the cause of various human diseases including obesity, depression, Parkinson's disease, and post-traumatic stress disorder. Therefore, it is fundamental to understand the physiological, cellular, and molecular underpinnings of the stress adaptation in humans. Because of ethical reasons it is problematic to study the plasticity of the human gland in stress. Hence, various experimental models have been established for the analysis of the functional and cellular role of the adrenal gland adaptation on a translational approach. Here, we summarize the insights of stress-induced adrenal plasticity gained from these models and discuss their relevance to clinical observations.
Collapse
Affiliation(s)
- Ilona Berger
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Martin Werdermann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Diabetes and Nutritional Sciences Division, King's College London, London WC2R 2LS, UK
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
8
|
Korolev YN, Geniatulina MS, Mikhailik LV, Nikulina LA. [Intracellular regeneration of adrenocorticocytes in response to the prophylactic application of low-intensity electromagnetic radiation under the conditions of radiation (an experimental study)]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2019; 96:43-49. [PMID: 30724881 DOI: 10.17116/kurort20199601143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Adaptation of the organism to the action of certain damaging factors, including radiation, is closely related to the state of the hypothalamic-pituitary-adrenal system. The important role in its activities is played by adrenocorticocytes (ACC) - the cells of the fascicular zone of the adrenal cortex. The disturbance of the structure and function of these cells can significantly impair and limit the development of the adaptive reactions in the body. One of the most promising ways to prevent the post-radiation changes in adrenocorticocytes consists of the application of the non-pharmacological therapeutic factors, such as low-intensity electromagnetic radiation (EMR) of ultra high frequency ( UHF) and the low-frequency (LF) magnetic field (MF) of low intensity (LI) after the exposition of the cells to the action of radiation. AIM The objective of the present study was to identify the ultrastructural regenerative - adaptive changes in ACC of the fascicular zone of the adrenal gland in response to the primary preventive action of ultra high frequency EMR, microwave oven, and low-intensity MF after the exposition of the cells to the action of radiation. MATERIAL AND METHODS The investigations were carried using the outbred male rats (180-200 gr body weight). The experimental animals were allocated to four groups two of which had been preliminarily treated by the application of ultra high frequency EMR and low-intensity MF and were thereafter exposed to radiation. The animals of the third group were exposed to radiation alone without the treatment with the therapeutic physical factors and served as controls whereas the animals of the fourth group underwent no treatment whatever and were regarded as intact. Transmission electron microscopy was used to count light and dark adrenocorticocytes of the fascicular zone. The morphometric analysis of mitochondria included the determination of their number, the average and the total area per standard cell area, and the number of cristae per average area of mitochondria). In addition, the analysis of the lipid content and protein-synthesizing organelles was performed. RESULTS The study has demonstrated that the primary prophylactic application of ultra high frequency EMR and the low-frequency MF caused stimulation of the cellular and intracellular regenerative-adaptive reactions and increased the resistance of the ultrastructure of ACC in the fascicular zone of the adrenal glands to the action of radiation. These changes were most pronounced in response to the application of ultra high frequency EMR. The resulting structural-adaptive rearrangements of the organelles (the enlargement of mitochondria with the simultaneous increase in the number of cristae, hyperplasia of ribosomes and smooth endoplasmic reticulum, preservation of membranes) were largely due to antioxidative and membrane-stabilizing effects of low-intensity electromagnetic radiation of ultra high frequency and were directly related to the formation of the mechanisms of ACC radioprotection. The Increased regenerative-adaptive potential of these cells prevented the development of the dystrophic processes and protected the adrenocorticocytes from aggressive radiation. CONCLUSIONS The results of the present study suggests the necessity of the further studies on the action of the non-pharmacological therapeutic factors, especially low-intensity electromagnetic radiation (EMR) of ultra high frequency and the low-frequency magnetic field of low intensity as the tools for the prevention of post-radiation changes in the adrenocorticocytes of the fascicular zone of the adrenal cortex exposed to the action of radiation.
Collapse
Affiliation(s)
- Yu N Korolev
- National Medical Research Center of Rehabilitation and Balneology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M S Geniatulina
- National Medical Research Center of Rehabilitation and Balneology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L V Mikhailik
- National Medical Research Center of Rehabilitation and Balneology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L A Nikulina
- National Medical Research Center of Rehabilitation and Balneology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
9
|
Ratner MH, Kumaresan V, Farb DH. Neurosteroid Actions in Memory and Neurologic/Neuropsychiatric Disorders. Front Endocrinol (Lausanne) 2019; 10:169. [PMID: 31024441 PMCID: PMC6465949 DOI: 10.3389/fendo.2019.00169] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Memory dysfunction is a symptomatic feature of many neurologic and neuropsychiatric disorders; however, the basic underlying mechanisms of memory and altered states of circuitry function associated with disorders of memory remain a vast unexplored territory. The initial discovery of endogenous neurosteroids triggered a quest to elucidate their role as neuromodulators in normal and diseased brain function. In this review, based on the perspective of our own research, the advances leading to the discovery of positive and negative neurosteroid allosteric modulators of GABA type-A (GABAA), NMDA, and non-NMDA type glutamate receptors are brought together in a historical and conceptual framework. We extend the analysis toward a state-of-the art view of how neurosteroid modulation of neural circuitry function may affect memory and memory deficits. By aggregating the results from multiple laboratories using both animal models for disease and human clinical research on neuropsychiatric and age-related neurodegenerative disorders, elements of a circuitry level view begins to emerge. Lastly, the effects of both endogenously active and exogenously administered neurosteroids on neural networks across the life span of women and men point to a possible underlying pharmacological connectome by which these neuromodulators might act to modulate memory across diverse altered states of mind.
Collapse
|
10
|
Medjerab M, Abdelali M, Khalkhal A, Semiane N, Hammadi S, Mallek A, Bellahrache Z, Agoun H, Dahmani Y. Adrenal cortex disorders in a new model of obesity, Gerbillus gerbillus, exposed to a high carbohydrate diet. C R Biol 2019; 342:35-44. [PMID: 30686566 DOI: 10.1016/j.crvi.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/31/2018] [Accepted: 01/08/2019] [Indexed: 02/03/2023]
|
11
|
Foradori CD, Healy JE, Zimmerman AD, Kemppainen RJ, Jones MA, Read CC, White BD, Yi KD, Hinds LR, Lacagnina AF, Quihuis AM, Breckenridge CB, Handa RJ. Characterization of Activation of the Hypothalamic-Pituitary-Adrenal Axis by the Herbicide Atrazine in the Female Rat. Endocrinology 2018; 159:3378-3388. [PMID: 30060079 DOI: 10.1210/en.2018-00474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022]
Abstract
Atrazine (ATR) is a commonly used pre-emergence and early postemergence herbicide. Rats gavaged with ATR and its chlorometabolites desethylatrazine (DEA) and deisopropylatrazine (DIA) respond with a rapid and dose-dependent rise in plasma corticosterone, whereas the major chlorometabolite, diaminochlorotriazine (DACT), has little or no effect on corticosterone levels. In this study, we investigated the possible sites of ATR activation of the hypothalamic-pituitary-adrenal (HPA) axis. ATR treatment had no effect on adrenal weights but altered adrenal morphology. Hypophysectomized rats or rats under dexamethasone suppression did not respond to ATR treatment, suggesting that ATR does not directly stimulate the adrenal gland to induce corticosterone synthesis. Immortalized mouse corticotrophs (AtT-20) and primary rat pituitary cultures were treated with ATR, DEA, DIA, or DACT. None of the compounds induced an increase in ACTH secretion or potentiated ACTH release in conjunction with CRH on ACTH release. In female rats gavaged with ATR, pretreatment with the CRH receptor antagonist astressin completely blocked the ATR-induced rise in corticosterone concentrations, implicating CRH release in ATR-induced HPA activation. Intracerebroventricular infusion of ATR, DEA, and DIA but not DACT at concentrations equivalent to peak plasma concentrations after gavage dosing resulted in an elevation of plasma corticosterone concentrations. However, ATR did not induce c-Fos immunoreactivity in the paraventricular nucleus of the hypothalamus. These results indicate that ATR activates the HPA axis centrally and requires CRH receptor activation, but it does not stimulate cellular pathways associated with CRH neuronal excitation.
Collapse
Affiliation(s)
- Chad D Foradori
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Jessica E Healy
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Arthur D Zimmerman
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Robert J Kemppainen
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Melaney A Jones
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Casey C Read
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - B Douglas White
- Nutrition, Dietetics, and Hospitality Management, College of Human Sciences, Auburn University, Auburn, Alabama
| | - Kun Don Yi
- Syngenta Crop Protection LLC, Greensboro, North Carolina
| | - Laura R Hinds
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Anthony F Lacagnina
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Alicia M Quihuis
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | | | - Robert J Handa
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| |
Collapse
|
12
|
Popovska-Perčinić F, Jarić I, Pendovski L, Nataša R, Trifunović S, Milošević V, Ajdžanović V. The Effect of Moderate Heat on Rat Pituitary ACTH Cells: Histomorphometric, Immunofluorescent and Hormonal Study. ACTA VET-BEOGRAD 2017. [DOI: 10.1515/acve-2017-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
In areas with moderate continental climate, increased average ambient temperature during the summer represents a stressogenic factor that affects the hypothalamo-pituitaryadrenocortical axis in mammals. Therefore, we wanted to examine the effects of 4 days of constant exposure to moderately elevated ambient temperature (35 ± 1oC) on the histomorphometric and immunofl uorescent characteristics, as well as on the hormonal secretion of pituitary corticotropes (ACTH) cells in adult male rats. In comparison with the controls kept at 20 ± 2oC, a signifi cant increase (p<0.05) of the absolute and relative pituitary weight (23.1% and 36.1%, respectively) was registered after exposure to heat. The localization, as well as the shape of the ACTH cells in the heat exposed group was not signifi cantly altered, but their immunopositivity was weaker. After 4 days of heat exposure, a weaker signal confi rmed the relative fl uorescence intensity of the ACTH cells (15.3%, p<0.05). In heat exposed rats, an increase of the cellular and nuclear volumes of immunolabelled ACTH cells and decrease of their volume density (6.9%, 14.3% and 20.0%, respectively; p<0.05) was registered. Observed histomorphometric and immunofl uorescent features of the pituitary ACTH cells were in accordance with the increased (p<0.05) value of plasma adrenocorticotropic hormone (ACTH) by 23.7% compared to the control rats. It can be concluded that the 4-day exposure to moderately elevated ambient temperature intensifi es pituitary ACTH secretion in adult male rats.
Collapse
Affiliation(s)
- Florina Popovska-Perčinić
- Faculty of Veterinary Medicine, “Ss Cyril and Methodius” University in Skopje, 1000 Skopje , R. of Macedonia
| | - Ivana Jarić
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, 11060 Belgrade , Serbia
| | - Lazo Pendovski
- Faculty of Veterinary Medicine, “Ss Cyril and Methodius” University in Skopje, 1000 Skopje , R. of Macedonia
| | - Ristić Nataša
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, 11060 Belgrade , Serbia
| | - Svetlana Trifunović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, 11060 Belgrade , Serbia
| | - Verica Milošević
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, 11060 Belgrade , Serbia
| | - Vladimir Ajdžanović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, 11060 Belgrade , Serbia
| |
Collapse
|
13
|
Orekhova NA, Modorov MV. Stress-associated radiation effects in pygmy wood mouse Apodemus uralensis (Muridae, Rodentia) populations from the East-Urals Radioactive Trace. Stress 2016; 19:516-27. [PMID: 27353005 DOI: 10.1080/10253890.2016.1206883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
This work is based on the comparative analysis of data obtained in the course of monitoring pygmy wood mouse populations (Apodemus uralensis Pallas, 1811) in the East-Urals Radioactive Trace (EURT) area and background territories. The effect of population size and its interaction with the radioactivity on biochemical parameters in the spleen and adrenal glands was studied. The concentrations of total lipids, proteins, DNA and RNA, activity of glucose-6-phosphate isomerase and catalase as well as the level of lipid peroxidation (LPO) were evaluated. The functional-metabolic shifts seen with large population sizes were characterized by delipidisation of adrenocortical cells, increased LPO as the main mechanism for steroidogenesis, growth of the protein components of the adrenal glands to maintain their hyperfunction, as well as immunosuppression associated with the restriction of carbohydrates providing splenocytes, reduction of DNA synthesis, and the development of a pro-/antioxidant imbalance. Reactivity of the neuroendocrine and hematopoietic systems of animals experiencing a high population density was higher in the EURT zone compared with the reference group. This difference can be explained by the additional stress from the chronic radiation exposure. The level of LPO, catalase activity, and DNA/protein ratio in the spleen and the total protein content in the adrenal glands were the most sensitive to the interaction of population size and radiation exposure. The harmful effect (distress) of the interaction of non-radiation and radiation factors can manifest when there is a population abundance above 30 ind./100 trap-day and a radiation burden which exceeds the lower boundary of the Derived Consideration Reference Levels, which is above 0.1 mGy/day.
Collapse
Affiliation(s)
- Natal'ya A Orekhova
- a Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences , Ekaterinburg , Russia
| | - Makar V Modorov
- a Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences , Ekaterinburg , Russia
| |
Collapse
|
14
|
Adrenocortical function in cane toads from different environments. Comp Biochem Physiol A Mol Integr Physiol 2016; 195:65-72. [PMID: 26877241 DOI: 10.1016/j.cbpa.2016.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 11/21/2022]
Abstract
The adrenocortical function of cane toads (Rhinella marina) exposed to different experimental procedures, as well as captured from different environments, was assessed by challenging the hypothalamic-pituitary-adrenal (HPA) axis. It was found that restriction stress as well as cannulation increased plasma corticosterone (B) levels for up to 12h. A single dose of dexamethasone (DEX 2mg/kg) significantly reduced B levels demonstrating its potential for use in the evaluation of the HPA axis in amphibia. We also demonstrate that 0.05 IU/g BW (im) of synthetic adrenocorticotropic hormone (ACTH) significantly increased plasma B levels in cane toads. Changes in size area of the cortical cells were positively associated with total levels of B after ACTH administration. We also found differences in adrenal activity between populations. This was assessed by a DEX-ACTH test. The animals captured from the field and maintained in captivity for one year at the animal house (AH) present the highest levels of total and free B after ACTH administration. We also found that animals from the front line of dispersion in Western Australia (WA) present the weakest adrenal response to a DEX-ACTH test. The animals categorized as long established in Queensland Australia (QL), and native in Mexico (MX), do not shown a marked difference in the HPA activity. Finally we found that in response to ACTH administration, females reach significantly higher levels of plasma B than males. For the first time the adrenocortical response in cane toads exposed to different experimental procedures, as well as from different populations was assessed systematically.
Collapse
|
15
|
Bali A, Jaggi AS. Preclinical experimental stress studies: protocols, assessment and comparison. Eur J Pharmacol 2014; 746:282-92. [PMID: 25446911 DOI: 10.1016/j.ejphar.2014.10.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 01/05/2023]
Abstract
Stress is a state of threatened homeostasis during which a variety of adaptive processes are activated to produce physiological and behavioral changes. Preclinical models are pivotal for understanding these physiological or pathophysiological changes in the body in response to stress. Furthermore, these models are also important for the development of novel pharmacological agents for stress management. The well described preclinical stress models include immobilization, restraint, electric foot shock and social isolation stress. Stress assessment in animals is done at the behavioral level using open field, social interaction, hole board test; at the biochemical level by measuring plasma corticosterone and ACTH; at the physiological level by measuring food intake, body weight, adrenal gland weight and gastric ulceration. Furthermore the comparison between different stressors including electric foot shock, immobilization and cold stressor is described in terms of intensity, hormonal release, protein changes in brain, adaptation and sleep pattern. This present review describes these preclinical stress protocols, and stress assessment at different levels.
Collapse
Affiliation(s)
- Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India.
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India.
| |
Collapse
|
16
|
Zhang W, Hetzel A, Shah B, Atchley D, Blume SR, Padival MA, Rosenkranz JA. Greater physiological and behavioral effects of interrupted stress pattern compared to daily restraint stress in rats. PLoS One 2014; 9:e102247. [PMID: 25014526 PMCID: PMC4094544 DOI: 10.1371/journal.pone.0102247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/17/2014] [Indexed: 11/19/2022] Open
Abstract
Repeated stress can trigger a range of psychiatric disorders, including anxiety. The propensity to develop abnormal behaviors after repeated stress is related to the severity, frequency and number of stressors. However, the pattern of stress exposure may contribute to the impact of stress. In addition, the anxiogenic nature of repeated stress exposure can be moderated by the degree of coping that occurs, and can be reflected in homotypic habituation to the repeated stress. However, expectations are not clear when a pattern of stress presentation is utilized that diminishes habituation. The purpose of these experiments is to test whether interrupted stress exposure decreases homotypic habituation and leads to greater effects on anxiety-like behavior in adult male rats. We found that repeated interrupted restraint stress resulted in less overall homotypic habituation compared to repeated daily restraint stress. This was demonstrated by greater production of fecal boli and greater corticosterone response to restraint. Furthermore, interrupted restraint stress resulted in a lower body weight and greater adrenal gland weight than daily restraint stress, and greater anxiety-like behavior in the elevated plus maze. Control experiments demonstrated that these effects of the interrupted pattern could not be explained by differences in the total number of stress exposures, differences in the total number of days that the stress periods encompased, nor could it be explained as a result of only the stress exposures after an interruption from stress. These experiments demonstrate that the pattern of stress exposure is a significant determinant of the effects of repeated stress, and that interrupted stress exposure that decreases habituation can have larger effects than a greater number of daily stress exposures. Differences in the pattern of stress exposure are therefore an important factor to consider when predicting the severity of the effects of repeated stress on psychiatric disorders.
Collapse
Affiliation(s)
- Wei Zhang
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Andrea Hetzel
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Bijal Shah
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Derek Atchley
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Shannon R. Blume
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Mallika A. Padival
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - J. Amiel Rosenkranz
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
17
|
Pang S, Wu H, Wang Q, Cai M, Shi W, Shang J. Chronic stress suppresses the expression of cutaneous hypothalamic-pituitary-adrenocortical axis elements and melanogenesis. PLoS One 2014; 9:e98283. [PMID: 24854026 PMCID: PMC4031121 DOI: 10.1371/journal.pone.0098283] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/29/2014] [Indexed: 11/18/2022] Open
Abstract
Chronic stress can affect skin function, and some skin diseases might be triggered or aggravated by stress. Stress can activate the central hypothalamic–pituitary–adrenocortical (HPA) axis, which causes glucocorticoid levels to increase. The skin has HPA axis elements that react to environmental stressors to regulate skin functions, such as melanogenesis. This study explores the mechanism whereby chronic stress affects skin pigmentation, focusing on the HPA axis, and investigates the role of glucocorticoids in this pathway. We exposed C57BL/6 male mice to two types of chronic stress, chronic restraint stress (CRS) and chronic unpredictable mild stress (CUMS). Mice subjected to either stress condition showed reduced melanogenesis. Interestingly, CRS and CUMS triggered reductions in the mRNA expression levels of key factors involved in the HPA axis in the skin. In mice administered corticosterone, decreased melanin synthesis and reduced expression of HPA axis elements were observed. The reduced expression of HPA axis elements and melanogenesis in the skin of stressed mice were reversed by RU486 (a glucocorticoid receptor antagonist) treatment. Glucocorticoids had no significant inhibitory effect on melanogenesis in vitro. These results suggest that, high levels of serum corticosterone induced by chronic stress can reduce the expression of elements of the skin HPA axis by glucocorticoid-dependent negative feedback. These activities can eventually result in decreased skin pigmentation. Our findings raise the possibility that chronic stress could be a risk factor for depigmentation by disrupting the cutaneous HPA axis and should prompt dermatologists to exercise more caution when using glucocorticoids for treatment.
Collapse
Affiliation(s)
- Silin Pang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Huali Wu
- New Drug Screening Center, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qian Wang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Minxuan Cai
- New Drug Screening Center, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Weimin Shi
- Shanghai First People Hospital, Shanghai, China
| | - Jing Shang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- * E-mail:
| |
Collapse
|
18
|
Bozzo AA, Soñez CA, Monedero Cobeta I, Rolando A, Romanini MC, Cots D, Lazarte MA, Gauna HF, Mugnaini MT. Chronic stress and its effects on adrenal cortex apoptosis in pregnant rats. Biotech Histochem 2013; 89:296-303. [DOI: 10.3109/10520295.2013.846478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
The genetic basis of adrenal gland weight and structure in BXD recombinant inbred mice. Mamm Genome 2011; 22:209-34. [DOI: 10.1007/s00335-011-9315-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 12/21/2022]
|
20
|
|
21
|
Connell JMC, MacKenzie SM, Freel EM, Fraser R, Davies E. A lifetime of aldosterone excess: long-term consequences of altered regulation of aldosterone production for cardiovascular function. Endocr Rev 2008; 29:133-54. [PMID: 18292466 DOI: 10.1210/er.2007-0030] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Up to 15% of patients with essential hypertension have inappropriate regulation of aldosterone; although only a minority have distinct adrenal tumors, recent evidence shows that mineralocorticoid receptor activation contributes to the age-related blood pressure rise and illustrates the importance of aldosterone in determining cardiovascular risk. Aldosterone also has a major role in progression and outcome of ischemic heart disease. These data highlight the need to understand better the regulation of aldosterone synthesis and its action. Aldosterone effects are mediated mainly through classical nuclear receptors that alter gene transcription. In classic epithelial target tissues, signaling mechanisms are relatively well defined. However, aldosterone has major effects in nonepithelial tissues that include increased synthesis of proinflammatory molecules and reactive oxygen species; it remains unclear how these effects are controlled and how receptor specificity is maintained. Variation in aldosterone production reflects interaction of genetic and environmental factors. Although the environmental factors are well understood, the genetic control of aldosterone synthesis is still the subject of debate. Aldosterone synthase (encoded by the CYP11B2 gene) controls conversion of deoxycorticosterone to aldosterone. Polymorphic variation in CYP11B2 is associated with increased risk of hypertension, but the molecular mechanism that accounts for this is not known. Altered 11beta-hydroxylase efficiency (conversion of deoxycortisol to cortisol) as a consequence of variation in the neighboring gene (CYP11B1) may be important in contributing to altered control of aldosterone synthesis, so that the risk of hypertension may reflect a digenic effect, a concept that is discussed further. There is evidence that a long-term increase in aldosterone production from early life is determined by an interaction of genetic and environmental factors, leading to the eventual phenotypes of aldosterone-associated hypertension and cardiovascular damage in middle age and beyond. The importance of aldosterone has generated interest in its therapeutic modulation. Disadvantages associated with spironolactone (altered libido, gynecomastia) have led to a search for alternative mineralocorticoid receptor antagonists. Of these, eplerenone has been shown to reduce cardiovascular risk after myocardial infarction. The benefits and disadvantages of this therapeutic approach are discussed.
Collapse
Affiliation(s)
- John M C Connell
- Division of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow, United Kingdom.
| | | | | | | | | |
Collapse
|
22
|
Jeon JH, Kim KY, Kim JH, Baek A, Cho H, Lee YH, Kim JW, Kim D, Han SH, Lim JS, Kim KI, Yoon DY, Kim SH, Oh GT, Kim E, Yang Y. A novel adipokine CTRP1 stimulates aldosterone production. FASEB J 2008; 22:1502-11. [PMID: 18171693 DOI: 10.1096/fj.07-9412com] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Complement-C1q TNF-related protein 1 (CTRP1), a member of the CTRP superfamily, is expressed at high levels in adipose tissues of obese Zucker diabetic fatty (fa/fa) rats, and CTRP1 expression is induced by proinflammatory cytokines, including TNF-alpha and IL-1beta. In the present study, we investigated stimulation of aldosterone production by CTRP1, since it was observed that CTRP1 was specifically expressed in the zona glomerulosa of the adrenal cortex, where aldosterone is produced. Increased aldosterone production by CTRP1 in cells of the human adrenal cortical cell line H295R was dose-dependent. Expression levels of aldosterone synthase CYP11B2 were examined to investigate the molecular mechanisms by which CTRP1 enhances the production of aldosterone. The expression of CYP11B2 was greatly increased by treatment with CTRP1, as was the expression of the transcription factors NGFIB and NURR1, which play critical roles in stimulation of CYP11B2 gene expression. It was also revealed that angiotensin II-induced aldosterone production is, at least in part, mediated by the stimulation of CTRP1 secretion, not by the increase of CTRP1 mRNA transcription. In addition, the levels of CTRP1 were significantly up-regulated in hypertensive patients' serum. As CTRP1 was highly expressed in obese subjects as well as up-regulated in hypertensive patients, CTRP1 may be a newly identified molecular link between obesity and hypertension.
Collapse
Affiliation(s)
- Jun Ho Jeon
- Department of Life Science, Sookmyung Women's University, Seoul 140-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Stress-responsive adrenocortical function is the final physiological response to the cascade of events that occurs when the interaction between individuals and their environment takes place. Glucocorticoids are produced in response to perturbance of homeostasis and are necessary for the energy required to restore this homeostasis. Genetics contributes to the individual variation in basal and stimulated plasma glucocorticoid levels and also to adrenal gland mass that increases in response to prolonged adrenal stimulation. This review briefly describes regulation of the adrenocortical axis, summarizes the linkage studies carried out so far in humans and in model organisms, and discusses the potential candidate genes that might contribute to the variation. The significance of individual variations in the glucocorticoid stress-responsiveness, with particular attention to their potential role in the recent explosion of obesity and the prevalence of metabolic syndrome X, is commented upon.
Collapse
Affiliation(s)
- Eva E Redei
- Northwestern University Feinberg School of Medicine, The Asher Center, Department of Psychiatry and Behavioral Sciences, Chicago, IL, USA.
| |
Collapse
|
24
|
Ulrich-Lai YM, Figueiredo HF, Ostrander MM, Choi DC, Engeland WC, Herman JP. Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am J Physiol Endocrinol Metab 2006; 291:E965-73. [PMID: 16772325 DOI: 10.1152/ajpendo.00070.2006] [Citation(s) in RCA: 322] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adrenal gland is an essential stress-responsive organ that is part of both the hypothalamic-pituitary-adrenal axis and the sympatho-adrenomedullary system. Chronic stress exposure commonly increases adrenal weight, but it is not known to what extent this growth is due to cellular hyperplasia or hypertrophy and whether it is subregion specific. Moreover, it is not clear whether increased production of adrenal glucocorticoid after chronic stress is due to increased sensitivity to adrenocorticotropic hormone (ACTH) vs. increased maximal output. The present studies use a 14-day chronic variable stress (CVS) paradigm in adult male rats to assess the effects of chronic stress on adrenal growth and corticosterone steroidogenesis. Exogenous ACTH administration (0-895 ng/100 g body wt) to dexamethasone-blocked rats demonstrated that CVS increased maximal plasma and adrenal corticosterone responses to ACTH without affecting sensitivity. This enhanced function was associated with increased adrenal weight, DNA and RNA content, and RNA/DNA ratio after CVS, suggesting that both cellular hyperplasia and hypertrophy occurred. Unbiased stereological counting of cells labeled for Ki67 (cell division marker) or 4,6-diamidino-2-phenylindole (nuclear marker), combined with zone specific markers, showed that CVS induced hyperplasia in the outer zona fasciculata, hypertrophy in the inner zona fasciculata and medulla, and reduced cell size in the zona glomerulosa. Collectively, these results demonstrate that increased adrenal weight after CVS is due to hyperplasia and hypertrophy that occur in specific adrenal subregions and is associated with increased maximal corticosterone responses to ACTH. These chronic stress-induced changes in adrenal growth and function may have implications for patients with stress-related disorders.
Collapse
Affiliation(s)
- Yvonne M Ulrich-Lai
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio 45237-0506, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Rai D, Bhatia G, Sen T, Palit G. Comparative study of perturbations of peripheral markers in different stressors in rats. Can J Physiol Pharmacol 2004; 81:1139-46. [PMID: 14719033 DOI: 10.1139/y03-117] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stress has been implicated in the etiopathogenesis of several diseases. In the present study, the effects of acute (AS), chronic (CS), and chronic unpredictable stress (CUS) were studied on the ulcer index, adrenal gland mass, and biochemical and hormonal changes in rats. The stress was provided in the form of immobilization-immobilization for 150 min, once only, and for 10 consecutive days in CS and CUS. In CUS, animals received variable unpredictable stressors. Immediately after stress, animals were decapitated, blood was collected, and plasma was separated for the estimation of plasma glucose, triglyceride, cholesterol, creatine kinase (CK), corticosterone, and insulin. The adrenal gland and stomach were also dissected for mass and ulcer scoring, respectively. AS significantly increased the ulcer index, plasma glucose, CK, corticosterone, and insulin. CS and CUS significantly increased the ulcer index, adrenal gland mass, and corticosterone. In CS, a significant decrease in plasma triglyceride and cholesterol levels was found, but in CUS only cholesterol was decreased significantly. High CK activity and hyperglycemia maintain the energy demands of metabolism, and elevated corticosterone desensitizes the insulin receptor in AS. In CS and CUS, prolonged elevation of corticosterone shifts metabolism to utilization of lipids as a secondary substrate by gluconeogenesis. From our experiment, it is clear that AS causes maximum activation of energy metabolism, which becomes specific after habituation in prolonged CS. These biochemical manipulations in the body by using different types of stressors are good markers that can be of great use to understand, target, and manage stress-induced etiologies.
Collapse
Affiliation(s)
- Deepak Rai
- Division of Pharmacology, Central Drug Research Institute, Lucknow, India
| | | | | | | |
Collapse
|
26
|
Bruder ED, Lee PC, Raff H. Metabolomic analysis of adrenal lipids during hypoxia in the neonatal rat: implications in steroidogenesis. Am J Physiol Endocrinol Metab 2004; 286:E697-703. [PMID: 14709419 DOI: 10.1152/ajpendo.00502.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nursing rat pup exposed to hypoxia from birth exhibits ACTH-independent increases in corticosterone and renin/ANG II-independent increases in aldosterone. These increases are accompanied by significant elevation of plasma lipid concentrations in the hypoxic neonates. The purpose of the present study was to compare changes in the concentrations of specific fatty acid metabolites and lipid classes in serum and adrenal tissue from normoxic and hypoxic rat pups. We hypothesized that lipid alterations resulting from hypoxia may partly explain increases in steroidogenesis. Rats were exposed to normoxia or hypoxia from birth, and pooled serum and adrenal tissue from 7-day-old pups were subjected to metabolomic analyses. Hypoxia resulted in specific and significant changes in a number of fatty acid metabolites in both serum and the adrenal. Hypoxia increased the concentrations of oleic (18:1 n-9), eicosapentaenoic (EPA; 20:5 n-3), and arachidonic (20:4 n-6) acids in the triacylglyceride fraction of serum and decreased oleic and EPA concentrations in the cholesterol ester fraction. In the adrenal, hypoxia caused an increase in several n-6 fatty acids in the triacylglyceride fraction, including linoleic (18:2 n-6) and arachidonic acid. There was also an increase in the concentration of alpha-linolenic acid (18:3 n-3) in the triacylglyceride fraction of the hypoxic adrenal, along with an increase in linoleic acid concentration in the diacylglyceride fraction. We propose that specific changes in lipid metabolism in the adrenal, as a result of hypoxia, may partly explain the increased steroidogenesis previously observed. The mechanism responsible may involve alterations in cellular signaling and/or mitochondrial function. These cellular changes may be a mechanism by which the neonate can increase circulating adrenal steroids necessary for survival, therefore bypassing a relative insensitivity to normal stimuli.
Collapse
Affiliation(s)
- Eric D Bruder
- Endocrine Research Laboratory, St. Luke's Medical Center, Milwaukee, WI 53215, USA
| | | | | |
Collapse
|
27
|
Abstract
Aldosterone, the primary human mineralocorticoid, is a major regulator of intravascular volume and blood pressure. The capacity of the adrenal gland to produce aldosterone is controlled, in large part, by the regulated transcription of CYP11B2, the gene encoding aldosterone synthase. Aldosterone synthase is responsible for the conversion of 11-deoxycorticosterone to aldosterone and is expressed only within the zona glomerulosa of the adrenal cortex. The development of new systems for in vitro studies of expression has helped define molecular mechanisms that regulate this enzyme and thus the capacity of the adrenal gland to produce aldosterone. Both potassium and angiotensin II (ANG II) increase intracellular calcium levels, which regulate expression of CYP11B2 through transcription factors that interact with defined sites in the 5'-flanking region of the gene.
Collapse
Affiliation(s)
- Mary H Bassett
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75235-9032, USA
| | | | | |
Collapse
|
28
|
Dehnhard M, Clauss M, Lechner-Doll M, Meyer HH, Palme R. Noninvasive monitoring of adrenocortical activity in roe deer (Capreolus capreolus) by measurement of fecal cortisol metabolites. Gen Comp Endocrinol 2001; 123:111-20. [PMID: 11551112 DOI: 10.1006/gcen.2001.7656] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A method for measuring glucocorticoids noninvasively in feces of roe deer was established and validated. The enzyme immunoassay (EIA) measures 11,17-dioxoandrostanes (11,17-DOA), a group of cortisol metabolites. Such measurement avoids blood sampling and reflects a dampened pattern of diurnal glucocorticoid secretion, providing an integrated measure of adrenocortical activity. After high-performance liquid chromatography, the presence of at least three different immunoreactive 11,17-DOA in the feces of roe deer was demonstrated. The physiological relevance of these fecal cortisol metabolites to adrenocortical activity was evaluated with an adrenocorticotropic hormone challenge test: cortisol metabolite concentrations exceeded pretreatment levels (31-78 ng/g) up to 13-fold (183-944 ng/g) within 8-23 h. Starting from basal levels between 13 and 71 ng/g, a suppression of adrenocortical activity after dexamethasone administration, indicated by metabolite levels close to the detection limit, was obtained 36-81 h after treatment, whereas unmetabolized dexamethasone was detectable in feces 12 h after its injection. Fecal glucocorticoid metabolite assessment via EIA is therefore of use in the monitoring of adrenocortical activity in roe deer. In a second experiment, capture, veterinary treatment, and transportation of animals were used as experimental stresses. This resulted in a 7.5-fold increase of fecal metabolites (1200 +/- 880 ng/g, mean +/- SD) compared to baseline concentrations. The administration of a long-acting tranquilizer (LAT), designed to minimize the physiological stress response, 2 days prior to a similar stress event led to a reduced stress response, resulting in only a 4-fold increase of fecal metabolites (650 +/- 280 ng/g; mean +/- SD). Therefore, LATs should be further investigated for their effectiveness in reducing stress responses in zoo and wild animals, e.g., when translocations are necessary.
Collapse
Affiliation(s)
- M Dehnhard
- Institut für Zoo- und Wildtierforschung, Berlin, Germany
| | | | | | | | | |
Collapse
|
29
|
Pignatelli D, Maia M, Castro AR, da Conceição Magalhães M, Vivier J, Defaye G. Chronic stress effects on the rat adrenal cortex. Endocr Res 2000; 26:537-44. [PMID: 11196426 DOI: 10.3109/07435800009048567] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Under the influence of a chronic permanent stress, the adrenal function as well as the entire hypothalamic-pituitary-adrenal axis (HPAA) suffered an adaptation process that resulted in the normalization of the studied stress hormones (ACTH, corticosterone and aldosterone) with the exception of plasma renin activity which first diminished and at the end increased. ACTH receptors exhibited a dual response since after 14 days of permanent stress MC2-R showed a slight reduction while MC5-R was still up-regulated.
Collapse
Affiliation(s)
- D Pignatelli
- Inst. of Histology, Fac. of Medicine of Porto and IBMC, Portugal
| | | | | | | | | | | |
Collapse
|
30
|
Coulter CL, Myers DA, Nathanielsz PW, Bird IM. Ontogeny of angiotensin II type 1 receptor and cytochrome P450(c11) in the sheep adrenal gland. Biol Reprod 2000; 62:714-9. [PMID: 10684814 DOI: 10.1095/biolreprod62.3.714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In the present study we investigated the ontogeny of the expression of the type 1 angiotensin receptor (AT(1)R mRNA) and the zonal localization of AT(1)R immunoreactivity (AT(1)R-ir) and cytochrome P450(c11) (CYP11B-ir) in the sheep adrenal gland. In the adult sheep and in the fetus from as early as 90 days gestation, intense AT(1)R-ir was observed predominantly in the zona glomerulosa and to a lesser extent in the zona fasciculata, and it was not detectable in the adrenal medulla. AT(1)R mRNA decreased 4-fold between 105 days and 120 days, whereas AT(1)R mRNA levels remained relatively constant between 120 days and the newborn period. In contrast, both in the adult sheep and in the fetal sheep from as early as 90 days gestation, intense CYP11B-ir was consistently detected throughout the adrenal cortex and in steroidogenic cells that surround the central adrenal vein. In conclusion, we speculate that the presence of AT(1)R in the zona fasciculata, and the higher levels of expression of AT(1)R at around 100 days gestation, may suggest that suppression of CYP17 is mediated via AT(1)R at this time. The abundant expression of AT(1)R-ir and CYP11B-ir in the zona glomerulosa of the fetal sheep adrenal gland would also suggest that lack of angiotensin II stimulation of aldosterone secretion is not due to an absence of AT(1)R or CYP11B in the zona glomerulosa.
Collapse
Affiliation(s)
- C L Coulter
- Department of Physiology, University of Adelaide, Adelaide, South Australia, Australia 5005.
| | | | | | | |
Collapse
|
31
|
Abstract
Aldosterone and cortisol are the major mineralocorticoid and glucocorticoid produced by the human adrenal. Circulating levels of angiotensin II and potassium control the adrenal production of aldosterone, while the production of cortisol is controlled mainly by adrenocorticotropin. The capacity of the adrenal cortex to differentially produce aldosterone and cortisol relies to a large degree on the expression of aldosterone synthase (CYP11B2) and 11beta-hydroxylase (CYP11B1). CYP11B2 catalyzes the final steps in the biosynthesis of aldosterone and is expressed solely in the glomerulosa of the adrenal cortex, while CYP11B1 catalyzes the final steps in the biosynthesis of cortisol and is expressed in the fasciculata/reticularis. The zonal expression of these two isozymes appears to result from transcriptional regulation of the two genes. Herein, the recent progress in defining the cellular mechanisms that regulate transcription of these two isozymes and thus the capacity of the adrenal gland to differentially produce aldosterone and cortisol is discussed.
Collapse
Affiliation(s)
- W E Rainey
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas 75235-9032, USA.
| |
Collapse
|
32
|
Coulter CL, Myers DA, Nathanielsz PW, Bird IM. Ontogeny of angiotensin II type 1 receptor (AT1R) in the sheep adrenal gland. Endocr Res 1998; 24:935-6. [PMID: 9888600 DOI: 10.3109/07435809809032710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|