1
|
Zhao M, Feng L, Li W. Network Pharmacology and Experimental Verification: SanQi-DanShen Treats Coronary Heart Disease by Inhibiting the PI3K/AKT Signaling Pathway. Drug Des Devel Ther 2024; 18:4529-4550. [PMID: 39399124 PMCID: PMC11471080 DOI: 10.2147/dddt.s480248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Objective To employee network pharmacology to predict the components and pathways of SanQi-DanShen (SQDS) in treating coronary heart disease, followed by in vitro experiments to validate the molecular mechanism of SQDS in treating coronary heart disease. Methods We sourced the active ingredients and targets of Panax notoginseng and Danshen from the Traditional Chinese Medicine Systems Pharmacology database. Coronary heart disease related genes were retrieved from the OMIM, Genecards, and Therapeutic Target databases. Using Cytoscape 3.7.2 software, we constructed a network diagram illustrating the components and targets of SQDS. The associated targets were then imported into the STRING database to build a protein-protein interaction network. The Metascape database and WeChat software were utilized for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Lastly, we performed molecular docking between the key components and related targets using AutoDock Vina. To validate the potential mechanism of SQDS in treating coronary heart disease, we established an acute coronary heart disease rat model via tail vein injection of pituitrin. Results Network pharmacology analysis revealed that 65 active ingredients and 167 targets of SQDS are implicated in the treatment of coronary heart disease. The key targets identified include AKT1, TNF, TP53, IL6, and VEGFA. Notably, the PI3K/AKT signaling pathway emerged as the primary pathway. Furthermore, animal experiments showed that, compared to the model group, SQDS significantly reduced levels of TNF-α, IL-6, Bax, and cardiac troponin I, while increasing Bcl-2 content. It also notably suppressed the expression of p-PI3K and p-AKT, thereby offering protection to myocardial tissue. Conclusion Through the integrated approach of network pharmacology and molecular docking, we have established that SQDS exerts a multi-component, multi-target, and multi-pathway synergistic therapeutic effect on coronary heart disease. Its mechanism may involve the inhibition of the PI3K/AKT signaling pathway and the reduction of inflammatory factor expression.
Collapse
Affiliation(s)
- Min Zhao
- School of Medicine, Lijiang University of Culture and Tourism, Lijiang, Yunnan, 674100, People’s Republic of China
| | - Liuxiang Feng
- People’s Hospital of Yulong Naxi Autonomous County of Lijiang City, Lijiang, Yunnan, 674112, People’s Republic of China
| | - Wenhua Li
- School of Medicine, Xizang Minzu University, Xianyang Shaanxi, 712082, People’s Republic of China
| |
Collapse
|
2
|
Hinkema HJ, Westra J, Arends S, Brouwer E, Mulder DJ. Higher levels of markers for early atherosclerosis in anti-citrullinated protein antibodies positive individuals at risk for RA, a cross sectional study. Rheumatol Int 2024; 44:2007-2016. [PMID: 39012360 PMCID: PMC11393035 DOI: 10.1007/s00296-024-05659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVE To identify differences in levels of serum biomarkers associated with atherosclerosis between anti-citrullinated protein antibodies (ACPA) positive groups. METHODS Cross-sectional data were used from the Dutch Lifelines Cohort Study combined with data derived from RA risk and early RA studies conducted at the University Medical Center Groningen (UMCG). Serum biomarkers of inflammation, endothelial cell activation, tissue remodeling and adipokine, which were previously associated with atherosclerosis, were measured with Luminex in four ACPA positive groups with different characteristics: without joint complaints, with joint complaints, RA risk and early RA groups. RESULTS Levels of C-reactive protein (CRP), Interleukin-6 (IL-6), Tumor Necrosis Factor Receptor 1 (TNFR1) and vascular endothelial growth factor (VEGF) were significantly higher in the RA risk and early RA groups compared to the joint complaints and the no joint complaints groups. The difference remained statistically significant after correcting for renal function, smoking and hypertension in multivariate logistic regression analysis, with focus on ACPA positive with joint complaints group versus RA risk group: CRP OR = 2.67, p = 0.033; IL-6 OR = 3.73, p = 0.019; TNFR1 OR = 1.003, p < 0.001; VGEF OR = 8.59, p = 0.019. CONCLUSION Individuals at risk for RA have higher levels of inflammatory markers and VEGF, which suggests that they might also have a risk of higher cardiovascular disease (CVD); however, this does not apply to individuals with ACPA positivity with self-reported joint complaints or without joint complaints only. Therefore, it is important that individuals with RA risk are referred to a rheumatologist to rule in or out arthritis/development of RA and discuss CVD risk.
Collapse
Affiliation(s)
- Helma J Hinkema
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, P.O. Box 30001, Groningen, 9700 RB, The Netherlands.
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, P.O. Box 30001, Groningen, 9700 RB, The Netherlands
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, P.O. Box 30001, Groningen, 9700 RB, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, P.O. Box 30001, Groningen, 9700 RB, The Netherlands
| | - Douwe J Mulder
- Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Iusupova AO, Slepova OA, Pakhtusov NN, Popova LV, Ageev AA, Lishuta AS, Privalova EV, Khabarova NV, Dadashovа GМ, Belenkov YN. Assessment of the Level of Matrix Metalloproteinases, VEGF and MicroRNA-34a in Patients With Non-obstructive and Obstructive Lesions of the Coronary Arteries. KARDIOLOGIIA 2024; 64:14-21. [PMID: 38742511 DOI: 10.18087/cardio.2024.4.n2622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/26/2024] [Indexed: 05/16/2024]
Abstract
AIM To assess the levels of matrix metalloproteinases (MMP), vascular endothelial growth factor (VEGF), and miRNA-34a expression in patients with ischemic heart disease (IHD) and obstructive and nonobstructive coronary artery (CA) disease. MATERIAL AND METHODS This cross-sectional observational study included 64 patients with IHD (diagnosis verified by coronary angiography or multislice computed tomography coronary angiography), of which 33 (51.6%) were men aged 64.9±8.1 years. 20 patients had nonobstructive CA disease (stenosis <50%), and 44 had hemodynamically significant stenoses. The control group consisted of 30 healthy volunteers. MMP-1, -9, -13, and -14, miRNA-34a, and VEGF were measured in all patients. RESULTS The concentration of MMP-1 was significantly higher in patients with ischemia and nonobstructive CA disease (INOCAD) (p=0.016), and the concentration of MMP-9 was the highest in the group with obstructive CA disease (p<0.001). The concentrations of MMP-13 and MMP-14 did not differ significantly between the groups. The highest VEGF concentrations were observed in the INOCAD group (p<0.001). The expression of miRNA-34a significantly differed between the IHD groups with different types of CA disease and controls (p <0.001). Patients with hemodynamically significant stenosis showed moderate relationships between the concentrations of MMP-14 and VEGF (ρ=0.418; p=0.024), as well as between VEGF and miRNA-34a (ρ=0.425; p=0.022). Patients with INOCAD had a significant negative correlation between the concentrations of MMP-13 and VEGF (ρ= -0.659; p=0.003). Correlation analysis showed in all IHD patients a moderate relationship of the concentrations of MMP-1 and MMP-14 with VEGF (ρ=0.449; p=0.002 and p=0.341; p=0.019, respectively). According to ROC analysis, a MMP-9 concentration above 4.83 ng/ml can be a predictor for the presence of hemodynamically significant CA obstruction in IHD patients; a VEGF concentration higher than 27.23 pg/ml suggests the absence of hemodynamically significant CA stenosis. CONCLUSION IHD patients with INOCAD had the greatest increase in MMP-1, whereas patients with obstructive CA disease had the highest level of MMP-9. According to our data, concentrations of MMP-9 and VEGF can be used to predict the degree of CA obstruction. The expression of miRNA-34a was significantly higher in IHD patients with INOCAD and CA obstruction than in the control group, which suggested a miRNA-34a contribution to the development and progression of coronary atherosclerosis. In the future, it may be possible to use this miRNA as a diagnostic marker for IHD.
Collapse
Affiliation(s)
- A O Iusupova
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - O A Slepova
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - N N Pakhtusov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - L V Popova
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - A A Ageev
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - A S Lishuta
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - E V Privalova
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - N V Khabarova
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Yu N Belenkov
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
4
|
Brandes F, Meidert AS, Kirchner B, Yu M, Gebhardt S, Steinlein OK, Dolch ME, Rantner B, Tsilimparis N, Schelling G, Pfaffl MW, Reithmair M. Identification of microRNA biomarkers simultaneously expressed in circulating extracellular vesicles and atherosclerotic plaques. Front Cardiovasc Med 2024; 11:1307832. [PMID: 38725837 PMCID: PMC11079260 DOI: 10.3389/fcvm.2024.1307832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Background Atherosclerosis is a widespread disorder of the cardiovascular system. The early detection of plaques by circulating biomarkers is highly clinically relevant to prevent the occurrence of major complications such as stroke or heart attacks. It is known that extracellular vesicles (EVs) are important in intercellular communication in atherosclerotic disorders and carry many components of their cells of origin, including microRNAs (miRNAs). In this study, we test the assumption that miRNAs present in material acquired from plaques in patients undergoing surgery for atherosclerotic carotid artery stenosis are also expressed in circulating EVs obtained from the identical patients. This would allow the adoption of a liquid biopsy approach for the detection of plaques. Methods We studied 22 surgical patients with atherosclerotic carotid arterial stenosis and 28 healthy controls. EVs were isolated from serum by precipitation. miRNA expression profiles of serum-derived EVs were obtained by small RNA sequencing and in plaque material simultaneously acquired from patients. A comparative analysis was performed to identify circulating atherosclerosis-associated miRNAs that are also detectable in plaques. Results Seven miRNAs were found to be differentially regulated in patient serum compared with the serum of healthy controls. Of these, miR-193b-5p, miR-193a-5p, and miR-125a-3p were significantly upregulated in patients compared with that in healthy controls and present in both, circulating EVs and plaque material. An overrepresentation analysis of experimentally validated mRNA targets revealed an increased regulation of inflammation and vascular growth factors, key players in atherosclerosis and plaque formation. Conclusion Our findings suggest that circulating EVs reflect plaque development in patients with symptomatic carotid artery stenosis, which can serve as biomarker candidates for detecting the presence of atherosclerotic plaques.
Collapse
Affiliation(s)
- Florian Brandes
- Department of Anesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Agnes S. Meidert
- Department of Anesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mia Yu
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Sonja Gebhardt
- Department of Anaesthesiology, InnKlinikum Altötting, Altötting, Germany
| | - Ortrud K. Steinlein
- Institute of Human Genetics, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael E. Dolch
- Department of Anaesthesiology, InnKlinikum Altötting, Altötting, Germany
| | - Barbara Rantner
- Department of Vascular Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Nikolaos Tsilimparis
- Department of Vascular Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Gustav Schelling
- Department of Anesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Marlene Reithmair
- Institute of Human Genetics, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Liu G, Xie X, Liao W, Chen S, Zhong R, Qin J, He P, Xie J. Ferroptosis in cardiovascular disease. Biomed Pharmacother 2024; 170:116057. [PMID: 38159373 DOI: 10.1016/j.biopha.2023.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
In the 21st century, cardiovascular disease (CVD) has become one of the leading causes of death worldwide. The prevention and treatment of CVD remain pressing scientific issues. Several recent studies have suggested that ferroptosis may play a key role in CVD. Most studies conducted thus far on ferroptosis and CVD have supported the link. Ferroptosis mediated by different signaling and metabolic pathways can lead to ischemic heart disease, myocarditis, heart failure, ischemia-reperfusion injury, and cardiomyopathy. Still, the specific mechanism of ferroptosis in CVD, the particular organ areas affected, and the stage of disease involved need to be further studied. Therefore, understanding the mechanisms regulating ferroptosis in CVD may improve disease management. Throughout this review, we summarized the mechanism of ferroptosis and its effect on the pathogenesis of CVD. We also predicted and discussed future research directions, aiming to provide new ideas and strategies for preventing and treating CVD.
Collapse
Affiliation(s)
- Guoqing Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyong Xie
- Departments of Pathophysiology, Guangxi Medical University, Nanning, Guangxi, China
| | - Wang Liao
- Department of Cardiology, The First People's Hospital of Yulin, Yulin, Guangxi, China
| | - Siyuan Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rumao Zhong
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiahui Qin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Peichun He
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jian Xie
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
6
|
Gao D, Hu L, Lv H, Lian L, Wang M, Fan X, Xie Y, Zhang J. Ferroptosis Involved in Cardiovascular Diseases: Mechanism Exploration of Ferroptosis' Role in Common Pathological Changes. J Cardiovasc Pharmacol 2024; 83:33-42. [PMID: 37890084 DOI: 10.1097/fjc.0000000000001507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
ABSTRACT Regulated cell death is a controlled form of cell death that protects cells by adaptive responses in pathophysiological states. Ferroptosis has been identified as a novel method of controlling cell death in recent years. Several cardiovascular diseases (CVDs) are shown to be profoundly influenced by ferroptosis, and ferroptosis is directly linked to the majority of cardiovascular pathological alterations. Despite this, it is still unclear how ferroptosis affects the pathogenic alterations that take place in CVDs. Based on a review of the mechanisms that regulate ferroptosis, this review explores the most recent research on the role of ferroptosis in the major pathological changes associated with CVDs, to provide new perspectives and strategies for cardiovascular research and clinical treatment.
Collapse
Affiliation(s)
- Dongjie Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leilei Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Lian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingyang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinbiao Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingyu Xie
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Hajer F, Hana S, Saoussen C, Abdelhak F, Nadia B, Ameni D, Habib G, Hassen BA, Amel HK. Genetic polymorphisms in VEGFA and VEGFR2 genes associated with coronary heart disease susceptibility and severity. Mol Biol Rep 2023; 50:10169-10177. [PMID: 37924452 DOI: 10.1007/s11033-023-08899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Vascular endothelial growth factor A (VEGFA) is well acknowledged as a powerful angiogenesis-promoting agent mainly through its receptor VEGFR2. Ischemia stimulates VEGFA/VEGFR2 signaling pathway and elevated serum levels of VEGFA were detected in coronary heart disease (CHD) patients. The goal of the current study is to determine how four SNPs in the genes for VEGFA (rs3025039 and rs699947) and VEGFR2 (rs2305948 and rs1870377) contribute to the development of CHD. We also wanted to use the Gensini score to confirm if these four SNPs have an effect on the severity of coronary lesions. METHODS In this case-control research, we used the restriction fragment length polymorphism of the polymerase chain reaction to genotype 239 CHD patients and 200 controls. Age, sex, smoking behavior, and obesity were taken into account in the statistical analysis. RESULTS Two VEGFA/VEFGR2 signaling pathway SNPs (rs699947 and rs1870377) were found to be associated with CHD (C vs. A, P = 0.002; OR = 1.47 (1.12-1.93); A vs. T, P = 0.001; OR = 1.58 (1.17-2.13) respectively). The rs2305948 showed no allelic associations with CHD susceptibility, although we noticed a slight association under the recessive model of rs3025039 TT genotype (p = 0.023; OR = 6.41 (1.14-36.12)) only under adjusted analyses. In addition, both VEGFA SNPs (rs699947and rs3025039) were found to be associated with high Gensini score (p < 0.001). CONCLUSIONS Our research helps to shed further light on the pathophysiology of CHD. The VEGFA/VEGFR2 signaling pathway may have been downregulated, increasing CHD susceptibility and risk.
Collapse
Affiliation(s)
- Foddha Hajer
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| | - Saoud Hana
- Laboratory of Genetics, Biodiversity and Bioresource Valorization (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Chouchene Saoussen
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
- Department of Hematology, Fattouma Bourguiba Hospital, University of Monastir, Monastir, Tunisia
| | - Foddha Abdelhak
- Cardiology Department, Fattouma Bourguiba Hospital, University of Monastir, Monastir, Tunisia
| | - Bouzidi Nadia
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Dhiflaoui Ameni
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Gamra Habib
- Cardiology Department, Fattouma Bourguiba Hospital, University of Monastir, Monastir, Tunisia
| | - Ben Abdennebi Hassen
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Haj Khelil Amel
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
8
|
Xu K, Tang H, Xiong J, Ban X, Duan Y, Tu Y. Tyrosine kinase inhibitors and atherosclerosis: A close but complicated relationship. Eur J Pharmacol 2023:175869. [PMID: 37369295 DOI: 10.1016/j.ejphar.2023.175869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
Targeted cancer therapies have revolutionized the treatment of the disease in the past decade. The tyrosine kinase inhibitor (TKI) class of drugs is a widely used option for treating various cancers. Despite numerous advances, clinical and experimental studies have demonstrated the atherosclerosis-inducing properties of these drugs that can cause adverse cardiovascular events. TKIs also have an atherosclerosis-preventing role in patients with cancer through different mechanisms under various conditions, suggesting that specific drugs play different roles in atherosclerosis regulation. Given these contradictory properties, this review summarizes the outcomes of previously performed clinical and basic experiments and shows how the targeted effects of novel TKIs affect atherosclerosis. Future collaborative efforts are warranted to enhance our understanding of the association between TKIs and atherosclerosis.
Collapse
Affiliation(s)
- Ke Xu
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Hao Tang
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Jie Xiong
- Department of Cardiology, The Second Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Xiaofang Ban
- Department of Cardiology, The Second Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Yuchen Duan
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yingfeng Tu
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
9
|
Lavie L, Si-On E, Hoffman A. Giant phagocytes (Gφ) and neutrophil-macrophage hybrids in human carotid atherosclerotic plaques - An activated phenotype. Front Immunol 2023; 14:1101569. [PMID: 36911715 PMCID: PMC9998916 DOI: 10.3389/fimmu.2023.1101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction A small subpopulation of CD66b+ neutrophils with extended lifespan and immensely large size was identified in vitro. They internalized dead neutrophil remnants and cellular debris, transforming them into giant phagocytes (Gφ) resembling macrophage-foam cells with a massive lipid content and CD68+ scavenger receptor expression. Thus, we sought to investigate if similar CD66b+ neutrophils with altered morphology and functions exist in inflammatory/atherosclerotic conditions in vivo, by using human carotid atherosclerotic plaques. Methods Thirty-three plaques were obtained from 31 patients undergoing endarterectomy. Carotid plaques were analyzed for CD markers by immunohistochemistry and immunofluorescence and quantitatively analyzed by confocal microscopy. Intra-plaque lipids were stained with Oil Red O. Results Plaque CD66b+ neutrophils co-expressed myeloperoxidase (MPO)+ and neutrophil elastase (NE)+. Also, co-expression of CD66b+/CD68+, CD66b+/CD36+, CD66b+/vascular-endothelial-growth- factor (VEGF)+ and 3-nitrotyrosine (3-NT)+/NE+ was noted. Similarly, macrophages co-expressed CD163+/CD68+, CD163+/VEGF+ and CD163+/3-NT+. Both cell types were predominantly localized in lipid-rich areas and stained for lipids. CD66b+ and CD163+ expressions were highly positively correlated with each other and each with CD68+, and 3-NT+. Morphologically, CD66+ cells were big, had a rounded nucleus, and resembled macrophage-foam cell morphology as well as that of Gφ in vitro. To clarify whether CD66b+ and CD163+ cells represent two distinct plaque-populations, plaques were double-stained for CD66b/CD163 co-localization. A third of the plaques was negative for CD66b/CD163 co-localization. Other plaques had a low co-localization, but in few plaques, co-localization was high, collectively, indicating that in some of plaques there were two distinct cell populations, those resembling Gφ, and those co-expressing CD66b+/CD163+, demonstrating a hybrid neutrophil-macrophage phenotype. Interestingly, CD66b+/CD163+ co-localization was highly positively correlated with the oxidant 3-NT, hence, supporting trans-differentiation of CD66b+ cells to CD163+ Cells. Conversely, phagocytosis of dead neutrophils by macrophages might have also occurred. Discussion Thus, we conclude that in some of the plaques CD66b+ cells might represent cells resembling Gφ that developed in prolonged culture conditions. Yet, CD66b+/CD163+ co-expressing cells represent a new neutrophil-macrophage hybrid population of unknown transitioning point, possibly by adopting macrophage markers or contrariwise. Nonetheless, the significance and functions of these cells in plaque biology or other inflammatory/atherosclerotic conditions should be unveiled.
Collapse
Affiliation(s)
- Lena Lavie
- Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Erez Si-On
- Department of Vascular Surgery and Transplantation, Rambam Health Care Campus, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Aaron Hoffman
- Department of Vascular Surgery and Transplantation, Rambam Health Care Campus, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Mamillapalli R, Toffoloni N, Habata S, Qunhua H, Atwani R, Stachenfeld N, Taylor HS. Endometriosis promotes atherosclerosis in a murine model. Am J Obstet Gynecol 2022; 227:248.e1-248.e8. [PMID: 35351413 PMCID: PMC9308711 DOI: 10.1016/j.ajog.2022.03.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Epidemiologic studies have demonstrated an association between endometriosis and the subsequent development of cardiovascular disease. The direct effect of endometriosis on the progression of atherosclerotic, if any, has not been previously characterized. Endometriosis leads to systemic inflammation that could have consequences for cardiovascular health. Here, we reported the effects of endometriosis on the development of atherosclerosis in a murine model. OBJECTIVE This study aimed to determine the contribution of endometriosis in promoting cardiovascular disease in a murine model of endometriosis. STUDY DESIGN Endometriosis was induced in 18 apolipoprotein E-null mice, the standard murine model used to study atherosclerosis. Mice of the same strain were used as controls (n=18) and underwent sham surgery without inducing endometriosis. The formation of endometriotic lesions was confirmed after 25 weeks of induction. Atherosclerotic lesions were subjected to hematoxylin and eosin staining followed by measurement of the aortic root luminal area and wall thickness. The whole aorta was isolated, and Oil Red O staining was performed to quantify the lipid deposits or plaque formation; moreover, biochemical assays were carried out in serum to determine the levels of lipids and inflammatory-related cytokines. RESULTS Apolipoprotein E mice with endometriosis exhibited increased aortic atherosclerosis compared with controls as measured using Oil Red O staining (7.9% vs 3.1%, respectively; P=.0004). Mice with endometriosis showed a significant 50% decrease in the aortic luminal area compared with sham mice (0.85 mm2 vs 1.46 mm2; P=.03) and a significant increase in aortic root wall thickness (0.22 mm vs 0.15 mm; P=.04). There was no difference in the lipoprotein profile (P<.05) between mice with endometriosis and sham mice. The serum levels of inflammatory cytokines interleukin 1 alpha, interleukin 6, interferon gamma, and vascular endothelial growth factor were significantly (P<.05)increased in the endometriosis mice. CONCLUSION Our study used a murine model to determine the effect of endometriosis on atherosclerosis. Inflammation-related cytokines interleukin 1 alpha, interleukin 6, interferon gamma, and vascular endothelial growth factor (angiogenic factor) released by endometriotic lesions may contribute to the increased cardiovascular risks in women with endometriosis. To reduce the risk of cardiovascular disease, early identification and treatment of endometriosis are essential. Future treatments targeting inflammatory cytokines may help reduce the long-term risk of cardiovascular disease in women with endometriosis.
Collapse
Affiliation(s)
- Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT.
| | - Nikoletta Toffoloni
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Shutaro Habata
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Huang Qunhua
- Department of Surgery (Cardiac Surgery), Yale School of Medicine, New Haven, CT
| | - Rula Atwani
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Nina Stachenfeld
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
11
|
Vinchi F. Non-Transferrin-Bound Iron in the Spotlight: Novel Mechanistic Insights into the Vasculotoxic and Atherosclerotic Effect of Iron. Antioxid Redox Signal 2021; 35:387-414. [PMID: 33554718 PMCID: PMC8328045 DOI: 10.1089/ars.2020.8167] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Significance: While atherosclerosis is an almost inevitable consequence of aging, food preferences, lack of exercise, and other aspects of the lifestyle in many countries, the identification of new risk factors is of increasing importance to tackle a disease, which has become a major health burden for billions of people. Iron has long been suspected to promote the development of atherosclerosis, but data have been conflicting, and the contribution of iron is still debated controversially. Recent Advances: Several experimental and clinical studies have been recently published about this longstanding controversial problem, highlighting the critical need to unravel the complexity behind this topic. Critical Issues: The aim of the current review is to provide an overview of the current knowledge about the proatherosclerotic impact of iron, and discuss the emerging role of non-transferrin-bound iron (NTBI) as driver of vasculotoxicity and atherosclerosis. Finally, I will provide detailed mechanistic insights on the cellular processes and molecular pathways underlying iron-exacerbated atherosclerosis. Overall, this review highlights a complex framework where NTBI acts at multiple levels in atherosclerosis by altering the serum and vascular microenvironment in a proatherogenic and proinflammatory manner, affecting the functionality and survival of vascular cells, promoting foam cell formation and inducing angiogenesis, calcification, and plaque destabilization. Future Directions: The use of additional iron markers (e.g., NTBI) may help adequately predict predisposition to cardiovascular disease. Clinical studies are needed in the aging population to address the atherogenic role of iron fluctuations within physiological limits and the therapeutic value of iron restriction approaches. Antioxid. Redox Signal. 35, 387-414.
Collapse
Affiliation(s)
- Francesca Vinchi
- Iron Research Program, Lindsley F. Kimball Research Institute (LFKRI), New York Blood Center (NYBC), New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
12
|
Sofogianni A, Tziomalos K, Koletsa T, Pitoulias AG, Skoura L, Pitoulias GA. Using Serum Biomarkers for Identifying Unstable Carotid Plaque: Update of Current Evidence. Curr Pharm Des 2021; 27:1899-1903. [PMID: 33183188 DOI: 10.2174/1381612826666201112094734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022]
Abstract
Carotid atherosclerosis is responsible for a great proportion of ischemic strokes. Early identification of unstable or vulnerable carotid plaques, and therefore, of patients at high risk for stroke, is of significant medical and socioeconomical value. We reviewed the current literature and discussed the potential role of the most important serum biomarkers in identifying patients with carotid atherosclerosis who are at high risk for atheroembolic stroke.
Collapse
Affiliation(s)
- Areti Sofogianni
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Triantafyllia Koletsa
- Department of Pathology, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Apostolos G Pitoulias
- Division of Vascular Surgery, Second Department of Surgery, Medical School, Aristotle University of Thessaloniki, G. Gennimatas Hospital, Thessaloniki, Greece
| | - Lemonia Skoura
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Georgios A Pitoulias
- Division of Vascular Surgery, Second Department of Surgery, Medical School, Aristotle University of Thessaloniki, G. Gennimatas Hospital, Thessaloniki, Greece
| |
Collapse
|
13
|
Steinkamp PJ, Vonk J, Huisman LA, Meersma GJ, Diercks GFH, Hillebrands JL, Nagengast WB, Zeebregts CJ, Slart RHJA, Boersma HH, van Dam GM. VEGF-Targeted Multispectral Optoacoustic Tomography and Fluorescence Molecular Imaging in Human Carotid Atherosclerotic Plaques. Diagnostics (Basel) 2021; 11:diagnostics11071227. [PMID: 34359310 PMCID: PMC8305003 DOI: 10.3390/diagnostics11071227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
Vulnerable atherosclerotic carotid plaques are prone to rupture, resulting in ischemic strokes. In contrast to radiological imaging techniques, molecular imaging techniques have the potential to assess plaque vulnerability by visualizing diseases-specific biomarkers. A risk factor for rupture is intra-plaque neovascularization, which is characterized by overexpression of vascular endothelial growth factor-A (VEGF-A). Here, we study if administration of bevacizumab-800CW, a near-infrared tracer targeting VEGF-A, is safe and if molecular assessment of atherosclerotic carotid plaques in vivo is possible using multispectral optoacoustic tomography (MSOT). Healthy volunteers and patients with symptomatic carotid artery stenosis scheduled for carotid artery endarterectomy were imaged with MSOT. Secondly, patients were imaged two days after intravenous administration of 4.5 bevacizumab-800CW. Ex vivo fluorescence molecular imaging of the surgically removed plaque specimen was performed and correlated with histopathology. In this first-in-human MSOT and fluorescence molecular imaging study, we show that administration of 4.5 mg bevacizumab-800CW appeared to be safe in five patients and accumulated in the carotid atherosclerotic plaque. Although we could visualize the carotid bifurcation area in all subjects using MSOT, bevacizumab-800CW-resolved signal could not be detected with MSOT in the patients. Future studies should evaluate tracer safety, higher doses of bevacizumab-800CW or develop dedicated contrast agents for carotid atherosclerotic plaque assessment using MSOT.
Collapse
Affiliation(s)
- Pieter J. Steinkamp
- Department of Surgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (P.J.S.); (L.A.H.); (C.J.Z.)
| | - Jasper Vonk
- Department of Oral & Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Lydian A. Huisman
- Department of Surgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (P.J.S.); (L.A.H.); (C.J.Z.)
| | - Gert-Jan Meersma
- Department of Pathology & Medical Biology, Pathology Division, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (G.-J.M.); (G.F.H.D.); (J.-L.H.)
| | - Gilles F. H. Diercks
- Department of Pathology & Medical Biology, Pathology Division, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (G.-J.M.); (G.F.H.D.); (J.-L.H.)
| | - Jan-Luuk Hillebrands
- Department of Pathology & Medical Biology, Pathology Division, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (G.-J.M.); (G.F.H.D.); (J.-L.H.)
| | - Wouter B. Nagengast
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Clark J. Zeebregts
- Department of Surgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (P.J.S.); (L.A.H.); (C.J.Z.)
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (R.H.J.A.S.); (H.H.B.)
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, 7522 ND Enschede, The Netherlands
| | - Hendrikus H. Boersma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (R.H.J.A.S.); (H.H.B.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Gooitzen M. van Dam
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (R.H.J.A.S.); (H.H.B.)
- AxelaRx/TRACER BV, 9700 RB Groningen, The Netherlands
- Correspondence: ; Tel.: +31-50-361-12283; Fax: +31-50-361-4873
| |
Collapse
|
14
|
Yang L, Chen L, Fang Y, Ma S. Downregulation of GSK-3β Expression via Ultrasound-Targeted Microbubble Destruction Enhances Atherosclerotic Plaque Stability in New Zealand Rabbits. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:710-722. [PMID: 33261913 DOI: 10.1016/j.ultrasmedbio.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/14/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Accumulating evidence suggests that atherosclerosis (AS) is the underlying cause of vascular diseases, including heart disease and stroke. Ultrasound-targeted microbubble destruction (UTMD) technology provides a tolerable, efficient and effective system for drug delivery and gene transfection, which has broad application prospects in the treatment of AS. In addition, glycogen synthase kinase (GSK)-3β has been implicated as a potentially valuable therapeutic agent for AS treatment; however, the specific molecular mechanisms remain unknown. Therefore, this study was conducted to explore the effect of downregulation of GSK-3β expression via UTMD on atherosclerotic plaque stability. We established a THP-1 macrophage-derived foam cell model in vitro and an atherosclerotic plaque model in the right common carotid artery of New Zealand rabbits. We determined levels of the relevant vulnerable plaque stability elements. The results indicate that GSK-3β was upregulated in the foam cells and in atherosclerotic rabbits. Downregulation of GSK-3β expression by UTMD suppressed vulnerable plaque factors and inflammation in vitro and in vivo, changed the cytoskeleton of the foam cells in vitro, increased Young's modulus and decreased the peak intensity of atherosclerotic plaque in vivo. Moreover, GSK-3β inhibition by UTMD did not influence the viability of the foam cells. Collectively, our results indicate that GSK-3β could be a potential target for anti-atherogenic interventions and, in particular, can improve the stability of AS plaques in combination with UTMD.
Collapse
Affiliation(s)
- Lifei Yang
- Department of Ultrasound, Ningbo Urology and Nephrology Hospital, Ningbo, China
| | - Lingzi Chen
- Ningbo University School of Medicine, Ningbo, China
| | - Ye Fang
- Department of Ultrasound, Ningbo Urology and Nephrology Hospital, Ningbo, China
| | - Suya Ma
- Department of Ultrasound, Ningbo Urology and Nephrology Hospital, Ningbo, China.
| |
Collapse
|
15
|
Occurrence of Fibrotic Tumor Vessels in Grade I Meningiomas Is Strongly Associated with Vessel Density, Expression of VEGF, PlGF, IGFBP-3 and Tumor Recurrence. Cancers (Basel) 2020; 12:cancers12103075. [PMID: 33096816 PMCID: PMC7593950 DOI: 10.3390/cancers12103075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is a key feature during oncogenesis and remains a potential target of antiangiogenic therapy. While commonly described in high-grade lesions, vascularization and its correlation with prognosis in grade I meningiomas is largely unexplored. In the histological classification, not only the number but also the composition of blood vessels seems to be important. Therefore, tumor vessel density and fibrosis were correlated with clinical and imaging variables and prognosis in 295 patients with intracranial grade I meningioma. Expression of pro-angiogenic proteins within the meningiomas was investigated by proteome analyses and further validated by immunohistochemical staining. Fibrotic tumor vessels (FTV) were detected in 48% of all tumors and strongly correlated with vessel density, but not with the histopathological tumor subtype. Occurrence of FTV was correlated with a 2-fold increased risk of recurrence in both univariate and multivariate analyses. Explorative proteome analyses revealed upregulation of VEGF (vascular endothelial growth factor), PlGF (placental growth factor), and IGFBP-3 (insulin-like growth factor-binding protein-3) in tumors displaying FTV. Immunohistochemical analyses confirmed strong correlations between tumor vessel fibrosis and expression of VEGF, PlGF, and IGFBP-3. Presence of FTV was strongly associated with disruption of the arachnoid layer on preoperative MRI in univariate and multivariate analyses. In summary, the occurrence of fibrotic tumor vessels in grade I meningiomas is strongly associated with vessel density, disruption of the arachnoid layer, expression of VEGF, PlGF, IGFBP-3 and tumor recurrence.
Collapse
|
16
|
VEGF-A in Cardiomyocytes and Heart Diseases. Int J Mol Sci 2020; 21:ijms21155294. [PMID: 32722551 PMCID: PMC7432634 DOI: 10.3390/ijms21155294] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelial growth factor (VEGF), a homodimeric vasoactive glycoprotein, is the key mediator of angiogenesis. Angiogenesis, the formation of new blood vessels, is responsible for a wide variety of physio/pathological processes, including cardiovascular diseases (CVD). Cardiomyocytes (CM), the main cell type present in the heart, are the source and target of VEGF-A and express its receptors, VEGFR1 and VEGFR2, on their cell surface. The relationship between VEGF-A and the heart is double-sided. On the one hand, VEGF-A activates CM, inducing morphogenesis, contractility and wound healing. On the other hand, VEGF-A is produced by CM during inflammation, mechanical stress and cytokine stimulation. Moreover, high concentrations of VEGF-A have been found in patients affected by different CVD, and are often correlated with an unfavorable prognosis and disease severity. In this review, we summarized the current knowledge about the expression and effects of VEGF-A on CM and the role of VEGF-A in CVD, which are the most important cause of disability and premature death worldwide. Based on clinical studies on angiogenesis therapy conducted to date, it is possible to think that the control of angiogenesis and VEGF-A can lead to better quality and span of life of patients with heart disease.
Collapse
|
17
|
Vinchi F, Porto G, Simmelbauer A, Altamura S, Passos ST, Garbowski M, Silva AMN, Spaich S, Seide SE, Sparla R, Hentze MW, Muckenthaler MU. Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. Eur Heart J 2020; 41:2681-2695. [PMID: 30903157 DOI: 10.1093/eurheartj/ehz112] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/10/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
AIMS Whether and how iron affects the progression of atherosclerosis remains highly debated. Here, we investigate susceptibility to atherosclerosis in a mouse model (ApoE-/- FPNwt/C326S), which develops the disease in the context of elevated non-transferrin bound serum iron (NTBI). METHODS AND RESULTS Compared with normo-ferremic ApoE-/- mice, atherosclerosis is profoundly aggravated in iron-loaded ApoE-/- FPNwt/C326S mice, suggesting a pro-atherogenic role for iron. Iron heavily deposits in the arterial media layer, which correlates with plaque formation, vascular oxidative stress and dysfunction. Atherosclerosis is exacerbated by iron-triggered lipid profile alterations, vascular permeabilization, sustained endothelial activation, elevated pro-atherogenic inflammatory mediators, and reduced nitric oxide availability. NTBI causes iron overload, induces reactive oxygen species production and apoptosis in cultured vascular cells, and stimulates massive MCP-1-mediated monocyte recruitment, well-established mechanisms contributing to atherosclerosis. NTBI-mediated toxicity is prevented by transferrin- or chelator-mediated iron scavenging. Consistently, a low-iron diet and iron chelation therapy strongly improved the course of the disease in ApoE-/- FPNwt/C326S mice. Our results are corroborated by analyses of serum samples of haemochromatosis patients, which show an inverse correlation between the degree of iron depletion and hallmarks of endothelial dysfunction and inflammation. CONCLUSION Our data demonstrate that NTBI-triggered iron overload aggravates atherosclerosis and unravel a causal link between NTBI and the progression of atherosclerotic lesions. Our findings support clinical applications of iron restriction in iron-loaded individuals to counteract iron-aggravated vascular dysfunction and atherosclerosis.
Collapse
Affiliation(s)
- Francesca Vinchi
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Otto Meyerhof Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany.,Iron Homeostasis Group, Molecular Medicine Partnership Unit (MMPU), Heidelberg University, Im Neuenheimer Feld 350, 69120, Heidelberg & European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,New York Blood Center (NYBC), Iron Research Program, Lindsley F. Kimball Research Institute (LFKRI), 310 East 67th Street, 10065, New York, NY, USA.,Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Graca Porto
- Centro Hospitalar do Porto-Hospital Santo António, Largo do Prof. Abel Slazar, 4099-001 Porto, Portugal.,Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Andreas Simmelbauer
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Otto Meyerhof Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany.,Iron Homeostasis Group, Molecular Medicine Partnership Unit (MMPU), Heidelberg University, Im Neuenheimer Feld 350, 69120, Heidelberg & European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Otto Meyerhof Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany.,Iron Homeostasis Group, Molecular Medicine Partnership Unit (MMPU), Heidelberg University, Im Neuenheimer Feld 350, 69120, Heidelberg & European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Sara T Passos
- New York Blood Center (NYBC), Iron Research Program, Lindsley F. Kimball Research Institute (LFKRI), 310 East 67th Street, 10065, New York, NY, USA
| | - Maciej Garbowski
- Hematology Department, University College London Cancer Institute, London, aul O'Gorman Bld, 72 Huntley Street, WC1E 6DD, London, UK
| | - André M N Silva
- Departamento de Quimica e Bioquimica, REQUIMITE-LAQV, Faculdade de Ciencias, University of Porto, Rua Do Campo Alegre, 4169-007 Porto, Portugal
| | - Sebastian Spaich
- Department of Cardiology, Angiology and Pneumonology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Svenja E Seide
- Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Richard Sparla
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Otto Meyerhof Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Matthias W Hentze
- Iron Homeostasis Group, Molecular Medicine Partnership Unit (MMPU), Heidelberg University, Im Neuenheimer Feld 350, 69120, Heidelberg & European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Otto Meyerhof Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany.,Iron Homeostasis Group, Molecular Medicine Partnership Unit (MMPU), Heidelberg University, Im Neuenheimer Feld 350, 69120, Heidelberg & European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
18
|
Stupin A, Mihalj M, Kolobarić N, Šušnjara P, Kolar L, Mihaljević Z, Matić A, Stupin M, Jukić I, Kralik Z, Grčević M, Kralik G, Šerić V, Drenjančević I. Anti-Inflammatory Potential of n-3 Polyunsaturated Fatty Acids Enriched Hen Eggs Consumption in Improving Microvascular Endothelial Function of Healthy Individuals-Clinical Trial. Int J Mol Sci 2020; 21:ijms21114149. [PMID: 32532035 PMCID: PMC7312294 DOI: 10.3390/ijms21114149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
The effects of consumption of n-3 polyunsaturated fatty acids (n-3 PUFAs) enriched hen eggs on endothelium-dependent and endothelium-independent vasodilation in microcirculation, and on endothelial activation and inflammation were determined in young healthy individuals. Control group (N = 21) ate three regular hen eggs/daily (249 mg n-3 PUFAs/day), and n-3 PUFAs group (N = 19) ate three n-3 PUFAs enriched hen eggs/daily (1053 g n-3 PUFAs/day) for 3 weeks. Skin microvascular blood flow in response to iontophoresis of acetylcholine (AChID; endothelium-dependent) and sodium nitroprusside (SNPID; endothelium-independent) was assessed by laser Doppler flowmetry. Blood pressure (BP), body composition, body fluid status, serum lipid and free fatty acids profile, and inflammatory and endothelial activation markers were measured before and after respective dietary protocol. Results: Serum n-3 PUFAs concentration significantly increased, AChID significantly improved, and SNPID remained unchanged in n-3 PUFAs group, while none was changed in Control group. Interferon-γ (pro-inflammatory) significantly decreased and interleukin-10 (anti-inflammatory) significantly increased in n-3 PUFAs. BP, fat free mass, and total body water significantly decreased, while fat mass, interleukin-17A (pro-inflammatory), interleukin-10 and vascular endothelial growth factor A significantly increased in the Control group. Other measured parameters remained unchanged in both groups. Favorable anti-inflammatory properties of n-3 PUFAs consumption potentially contribute to the improvement of microvascular endothelium-dependent vasodilation in healthy individuals.
Collapse
Affiliation(s)
- Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (A.S.); (M.M.); (N.K.); (P.Š.); (L.K.); (Z.M.); (A.M.); (M.S.); (I.J.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia; (Z.K.); (M.G.); (G.K.)
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (A.S.); (M.M.); (N.K.); (P.Š.); (L.K.); (Z.M.); (A.M.); (M.S.); (I.J.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia; (Z.K.); (M.G.); (G.K.)
- Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (A.S.); (M.M.); (N.K.); (P.Š.); (L.K.); (Z.M.); (A.M.); (M.S.); (I.J.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia; (Z.K.); (M.G.); (G.K.)
| | - Petar Šušnjara
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (A.S.); (M.M.); (N.K.); (P.Š.); (L.K.); (Z.M.); (A.M.); (M.S.); (I.J.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia; (Z.K.); (M.G.); (G.K.)
| | - Luka Kolar
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (A.S.); (M.M.); (N.K.); (P.Š.); (L.K.); (Z.M.); (A.M.); (M.S.); (I.J.)
- Department of Internal Medicine, Vukovar General Hospital, Županijska ulica 35, HR-32000 Vukovar, Croatia
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (A.S.); (M.M.); (N.K.); (P.Š.); (L.K.); (Z.M.); (A.M.); (M.S.); (I.J.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia; (Z.K.); (M.G.); (G.K.)
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (A.S.); (M.M.); (N.K.); (P.Š.); (L.K.); (Z.M.); (A.M.); (M.S.); (I.J.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia; (Z.K.); (M.G.); (G.K.)
| | - Marko Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (A.S.); (M.M.); (N.K.); (P.Š.); (L.K.); (Z.M.); (A.M.); (M.S.); (I.J.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia; (Z.K.); (M.G.); (G.K.)
- Department for Cardiovascular Disease, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Ivana Jukić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (A.S.); (M.M.); (N.K.); (P.Š.); (L.K.); (Z.M.); (A.M.); (M.S.); (I.J.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia; (Z.K.); (M.G.); (G.K.)
| | - Zlata Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia; (Z.K.); (M.G.); (G.K.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Manuela Grčević
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia; (Z.K.); (M.G.); (G.K.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Gordana Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia; (Z.K.); (M.G.); (G.K.)
| | - Vatroslav Šerić
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia;
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (A.S.); (M.M.); (N.K.); (P.Š.); (L.K.); (Z.M.); (A.M.); (M.S.); (I.J.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia; (Z.K.); (M.G.); (G.K.)
- Correspondence: ; Tel.: +385-3151-2800
| |
Collapse
|
19
|
Forné C, Cambray S, Bermudez-Lopez M, Fernandez E, Bozic M, Valdivielso JM. Machine learning analysis of serum biomarkers for cardiovascular risk assessment in chronic kidney disease. Clin Kidney J 2019; 13:631-639. [PMID: 32905292 PMCID: PMC7467598 DOI: 10.1093/ckj/sfz094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/24/2019] [Indexed: 01/13/2023] Open
Abstract
Background Chronic kidney disease (CKD) patients show an increased burden of atherosclerosis and high risk of cardiovascular events (CVEs). There are several biomarkers described as being associated with CVEs, but their combined effectiveness in cardiovascular risk stratification in CKD has not been tested. The objective of this work is to analyse the combined ability of 19 biomarkers associated with atheromatous disease in predicting CVEs after 4 years of follow-up in a subcohort of the NEFRONA study in individuals with different stages of CKD without previous CVEs. Methods Nineteen putative biomarkers were quantified in 1366 patients (73 CVEs) and their ability to predict CVEs was ranked by random survival forest (RSF) analysis. The factors associated with CVEs were tested in Fine and Gray (FG) regression models, with non-cardiovascular death and kidney transplant as competing events. Results RSF analysis detected several biomarkers as relevant for predicting CVEs. Inclusion of those biomarkers in an FG model showed that high levels of osteopontin, osteoprotegerin, matrix metalloproteinase-9 and vascular endothelial growth factor increased the risk for CVEs, but only marginally improved the discrimination obtained with classical clinical parameters: concordance index 0.744 (95% confidence interval 0.609–0.878) versus 0.723 (0.592–0.854), respectively. However, in individuals with diabetes treated with antihypertensives and lipid-lowering drugs, the determination of these biomarkers could help to improve cardiovascular risk estimates. Conclusions We conclude that the determination of four biomarkers in the serum of CKD patients could improve cardiovascular risk prediction in high-risk individuals.
Collapse
Affiliation(s)
- Carles Forné
- Biostatistics Unit, Institute for Biomedical Research Dr. Pifarré Foundation, IRBLleida, Lleida, Spain.,Department of Basic Medical Sciences, University of Lleida, Lleida, Spain
| | - Serafi Cambray
- Vascular and Renal Translational Research Group, Institute for Biomedical Research Dr. Pifarré Foundation, IRBLleida and RedinRen RETIC, ISCIII, Lleida, Spain
| | - Marcelino Bermudez-Lopez
- Vascular and Renal Translational Research Group, Institute for Biomedical Research Dr. Pifarré Foundation, IRBLleida and RedinRen RETIC, ISCIII, Lleida, Spain
| | - Elvira Fernandez
- Vascular and Renal Translational Research Group, Institute for Biomedical Research Dr. Pifarré Foundation, IRBLleida and RedinRen RETIC, ISCIII, Lleida, Spain
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Institute for Biomedical Research Dr. Pifarré Foundation, IRBLleida and RedinRen RETIC, ISCIII, Lleida, Spain
| | - Jose M Valdivielso
- Vascular and Renal Translational Research Group, Institute for Biomedical Research Dr. Pifarré Foundation, IRBLleida and RedinRen RETIC, ISCIII, Lleida, Spain
| | | |
Collapse
|
20
|
Jodati A, Pirouzpanah SM, Fathi Maroufi N, Pezeshkian M, Safaie N, Bijanpour H, Khamaneh AM, Mota A, Nouri M. Different expression of Micro RNA-126, 133a and 145 in aorta and saphenous vein samples of patients undergoing coronary artery bypass graft surgery. J Cardiovasc Thorac Res 2019; 11:43-47. [PMID: 31024671 PMCID: PMC6477108 DOI: 10.15171/jcvtr.2019.07] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/26/2019] [Indexed: 11/09/2022] Open
Abstract
Introduction: microRNAs (miRNAs) are highly conserved, noncoding RNA molecules that regulate gene expression on the post-transcriptional level. Some evidence indicates that microRNAs dysfunction plays a crucial role in human disease development. The role of microRNAs in cardiac growth, hypertrophy, heart failure, cardiovascular complications in diabetes and many other hearth conditions are demonstrated. In this study we aimed to evaluate the expression of six microRNAs (mir-100, mir-126, mir-127, mir-133a, mir-133b and mir-145) that have been shown to overexpress in aortic and carotid plaques.
Methods: Thirty Coronary Artery Disease patients who underwent elective coronary artery bypass graft surgery were enrolled in the study. The expression patterns of six miRNAs (mir-100, mir-126, mir-127, mir-133a, mir-133b, and mir-145) were examined in 30 patients of whom we obtained aorta and saphenous vein samples.
Results: In three miRNAs, mir-100, mir-127 and mir-133b, we did not obtain expression data from real-time experiments. We found that the expression level of mir-126, mir-133a and mir145 were lower in aorta in comparison with saphenous vein. Mir-126 was highly expressed in saphenous vein samples (13.8±1.1) when compared with aorta samples (20.2±1.1), although mir133a was highly expressed in saphenous vein samples (16.1±0.5) when compared with the aorta (17.9±1.5). Expression of mir-145 saphenous vein samples was also dramatically higher than aorta (7.2±0.5 versus 10.8±0.6) that was statistically significant (P<0.05).
Conclusion: Understanding the role of miRNAs in cardiovascular physiology and diseases might suggest miRNA- based therapeutic methods in the management of coronary artery disease.
Collapse
Affiliation(s)
- Ahmadreza Jodati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Mohammadbagher Pirouzpanah
- Stem cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Lvts u1148 Inserm Institut Galilee Universite Paris 13, Paris, France
| | - Nazila Fathi Maroufi
- Department of Biochemistry & Clinical Laboratory, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossain Bijanpour
- Stem cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mahdi Khamaneh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mota
- Stem cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Bahey NG, Abd Elaziz HO, Elsayed Gadalla KK. Potential Toxic Effect of Bisphenol A on the Cardiac Muscle of Adult Rat and the Possible Protective Effect of Omega-3: A Histological and Immunohistochemical Study. J Microsc Ultrastruct 2019; 7:1-8. [PMID: 31008050 PMCID: PMC6442328 DOI: 10.4103/jmau.jmau_53_18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bisphenol A (BPA) is intensely used in the production of polycarbonate plastics and epoxy resins. Recently, BPA has been receiving increased attention due to its link to various health problems that develop after direct or indirect human exposure. Previous studies have shown the harmful effect of high doses of BPA; however, the effect of small doses of BPA on disease development is controversial. The aim of this study was to investigate the effect of a low dose of BPA on the rat myocardium and to explore the outcome of coadministration of Omega-3 fatty acid (FA). Thirty adult male rats were divided equally into control group, BPA-treated group (1.2 mg/kg/day, intraperitoneally for 3 weeks), and BPA and Omega-3-treated group (received BPA as before plus Omega-3 at a daily dose of 300 mg/kg/day orally) for 3 weeks. Exposure to BPA resulted in structural anomalies in the rat myocardium in the form of disarrangement of myofibers, hypertrophy of myocytes, myocardial fibrosis, and dilatation of intramyocardial arterioles. On the other hand, mast cell density and media-to-lumen area ratio were not significantly altered. Interestingly, concomitant administration of Omega-3 FAs with BPA significantly reduced BPA-induced changes and provided a protective effect to the myocardium. In conclusion, exposure to a low dose of BPA could potentially lead to pathological alterations in the myocardium, which could be prevented by administration of Omega-3 FA.
Collapse
Affiliation(s)
- Noha Gamal Bahey
- Department of Histology and Cell Biology, Faculty of Medicine, Tanta University, Egypt
| | | | - Kamal Kamal Elsayed Gadalla
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt.,Center for Discovery Brain Science, Edinburgh University, United Kingdom
| |
Collapse
|
22
|
Tekabe Y, Johnson LL, Rodriquez K, Li Q, Backer M, Backer JM. Selective Imaging of Vascular Endothelial Growth Factor Receptor-1 and Receptor-2 in Atherosclerotic Lesions in Diabetic and Non-diabetic ApoE -/- Mice. Mol Imaging Biol 2018; 20:85-93. [PMID: 28421362 DOI: 10.1007/s11307-017-1045-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Plaque vulnerability is associated with inflammation and angiogenesis, processes that rely on vascular endothelial growth factor (VEGF) signaling via two receptors, VEGFR-1 and VEGFR-2. We have recently reported that enhanced uptake of scVEGF-PEG-DOTA/Tc-99m (scV/Tc) single photon emission computed tomography (SPECT) tracer that targets both VEGFR-1 and VEGFR-2, identifies accelerated atherosclerosis in diabetic relative to non-diabetic ApoE-/- mice. Since VEGFR-1 and VEGFR-2 may play different roles in atherosclerotic plaques, we reasoned that selective imaging of each receptor can provide more detailed information on plaque biology. PROCEDURES Recently described VEGFR-1 and VEGFR-2 selective mutants of scVEGF, named scVR1 and scVR2, were site-specifically derivatized with Tc-99m chelator DOTA via 3.4 kDa PEG linker, and their selectivity to the cognate receptors was confirmed in vitro. scVR1 and scVR2 conjugates were radiolabeled with Tc-99m to specific activity of 110 ± 11 MBq/nmol, yielding tracers named scVR1/Tc and scVR2/Tc. 34-40 week old diabetic and age-matched non-diabetic ApoE-/- mice were injected with tracers, 2-3 h later injected with x-ray computed tomography (CT) contrast agent and underwent hybrid SPECT/CT imaging. Tracer uptake, localized to proximal aorta and brachiocephalic vessels, was quantified as %ID from. Tracer uptake was also quantified as %ID/g from gamma counting of harvested plaques. Harvested atherosclerotic arterial tissue was used for immunofluorescent analyses of VEGFR-1 and VEGFR-2 and various lineage-specific markers. RESULTS Focal, receptor-mediated uptake in proximal aorta and brachiocephalic vessels was detected for both scVR1/Tc and scVR2/Tc tracers. Uptake of scVR1/Tc and scVR2/Tc was efficiently inhibited only by "cold" proteins of the same receptor selectivity. Tracer uptake in this area, expressed as %ID, was higher in diabetic vs. non- diabetic mice for scVR1/Tc (p = 0.01) but not for scVR2/Tc. Immunofluorescent analysis revealed enhanced VEGFR-1 prevalence in and around plaque area in diabetic mice. CONCLUSIONS Selective VEGFR-1 and VEGFR-2 imaging of atherosclerotic lesions may be useful to explore plaque biology and identify vulnerability.
Collapse
Affiliation(s)
- Yared Tekabe
- Department of Medicine, Columbia University Medical Center, 622 St 168th St, PH 10, room 203, New York, NY, 10032, USA
| | - Lynne L Johnson
- Department of Medicine, Columbia University Medical Center, 622 St 168th St, PH 10, room 203, New York, NY, 10032, USA.
| | - Krissy Rodriquez
- Department of Medicine, Columbia University Medical Center, 622 St 168th St, PH 10, room 203, New York, NY, 10032, USA
| | - Qing Li
- Department of Medicine, Columbia University Medical Center, 622 St 168th St, PH 10, room 203, New York, NY, 10032, USA
| | - Marina Backer
- SibTech, Inc., 115A Commerce Drive, Brookfield, CT, 06804, USA
| | - Joseph M Backer
- SibTech, Inc., 115A Commerce Drive, Brookfield, CT, 06804, USA
| |
Collapse
|
23
|
Seijkens TTP, Lutgens E. Cardiovascular oncology: exploring the effects of targeted cancer therapies on atherosclerosis. Curr Opin Lipidol 2018; 29:381-388. [PMID: 30074493 DOI: 10.1097/mol.0000000000000538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Targeted cancer therapies have revolutionized the treatment of cancer in the past decade, but cardiovascular toxicity is a rising problem in cancer patients. Here we discuss the effects of targeted cancer therapies on atherosclerosis. Increasing the awareness of these adverse effects will promote the development of evidence-based preventive strategies in the emerging field of cardiovascular oncology. RECENT FINDINGS Vascular endothelial growth factor inhibitors, immunomodulatory imide drugs, tyrosine kinase inhibitors and immune checkpoint inhibitors are successfully used as treatment for many types of solid and hematologic malignancies. However, clinical and experimental studies have demonstrated that these drugs can drive atherosclerosis, thereby causing adverse cardiovascular events such as myocardial infarction, stroke and peripheral arterial occlusive diseases. SUMMARY In this review, we discuss how on-target and off-target effects of novel cancer drugs may affect atherosclerosis and we postulate how these cardiovascular adverse events can be prevented in the future.
Collapse
Affiliation(s)
- Tom T P Seijkens
- Department of Medical Biochemistry, Subdivision Experimental Vascular Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
| | - Esther Lutgens
- Department of Medical Biochemistry, Subdivision Experimental Vascular Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
24
|
Krishna BA, Miller WE, O'Connor CM. US28: HCMV's Swiss Army Knife. Viruses 2018; 10:E445. [PMID: 30127279 PMCID: PMC6116241 DOI: 10.3390/v10080445] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
US28 is one of four G protein coupled receptors (GPCRs) encoded by human cytomegalovirus (HCMV). The US28 protein (pUS28) is a potent signaling molecule that alters a variety of cellular pathways that ultimately alter the host cell environment. This viral GPCR is expressed not only in the context of lytic replication but also during viral latency, highlighting its multifunctional properties. pUS28 is a functional GPCR, and its manipulation of multiple signaling pathways likely impacts HCMV pathogenesis. Herein, we will discuss the impact of pUS28 on both lytic and latent infection, pUS28-mediated signaling and its downstream consequences, and the influence this viral GPCR may have on disease states, including cardiovascular disease and cancer. We will also discuss the potential for and progress towards exploiting pUS28 as a novel therapeutic to combat HCMV.
Collapse
Affiliation(s)
- Benjamin A Krishna
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - William E Miller
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Christine M O'Connor
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
25
|
Zhao X, Meng L, Jiang J, Wu X. Vascular endothelial growth factor gene polymorphisms and coronary heart disease: a systematic review and meta-analysis. Growth Factors 2018; 36:153-163. [PMID: 30317903 DOI: 10.1080/08977194.2018.1477141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We performed this study to better elucidate the relationship between vascular endothelial growth factor (VEGF) polymorphisms and coronary heart disease (CHD). Eligible articles were searched in PubMed, Medline, Embase, Scopus and CNKI. A total of 24 studies containing 6489 CHD patients and 5664 control subjects were analyzed. Our overall and subgroup analyses suggested that rs699947 polymorphism was significantly associated with CHD susceptibility in both Caucasians and Asians, rs1570360 polymorphism was significantly associated with CHD susceptibility in Caucasians, and rs3025039 polymorphism was significantly associated with CHD susceptibility in Asians. Besides, rs3025039 polymorphism was significantly correlated with the number of affected coronary arteries, while rs699947 and rs2010963 polymorphisms were significantly correlated with poor collateral circulation in CHD patients. Overall, our findings indicate that VEGF rs699947, rs1570360, and rs3025039 polymorphisms may affect CHD susceptibility. Moreover, VEGF rs699947 and rs2010963 polymorphisms may serve as genetic biomarkers of poor collateral circulation after myocardial ischemia.
Collapse
Affiliation(s)
- Xiangwen Zhao
- a Cardiovascular Inpatient Ward 2, Lanling People's Hospital , Linyi , Shandong , China
| | - Liang Meng
- b Research Center Laboratory , Lanling People's Hospital , Linyi , Shandong , China
| | - Jimin Jiang
- b Research Center Laboratory , Lanling People's Hospital , Linyi , Shandong , China
| | - Xinglong Wu
- b Research Center Laboratory , Lanling People's Hospital , Linyi , Shandong , China
| |
Collapse
|
26
|
Figueira L, González JC. Effect of resveratrol on seric vascular endothelial growth factor concentrations during atherosclerosis. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2018; 30:209-216. [PMID: 30253861 DOI: 10.1016/j.arteri.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Although it is known that resveratrol has anti-inflammatory and anti-atherogenic actions, its effect on vascular endothelial growth factor (VEGF) in atherosclerosis is unknown. OBJECTIVE To evaluate the effect of resveratrol on serum concentrations of VEGF during the progression and evolution of atherosclerosis, as well as and its evolution over time in rabbits fed with a cholesterol diet. MATERIALS AND METHODS A total of 48 New Zealand white male rabbits were randomly divided into four groups of 12 rabbits: group1 (control): standard diet (commercial rabbit food); group2: cholesterol diet (0.5% cholesterol); group3 (control resveratrol): standard diet (commercial rabbit food) and resveratrol (2mg/Kg); group4: cholesterol diet (0.5% cholesterol) and resveratrol (2mg/Kg), for 12weeks. Blood samples of overnight-fasted rabbits were collected at baseline and the sixth and twelfth weeks, and the lipid profile, VEGF, and C-reactive protein (CRP) levels were determined. Half of the animals were sacrificed on the sixth or twelfth week, and the aorta was dissected for histological studies. RESULTS VEGF and CRP levels were significantly higher in groups2 and 4 than in groups1 and 3, respectively, from the 6th week (p<0.001). VEGF and CRP were significantly lower in group4 than in group2 on 12th week (p<0.004). Supplementation of resveratrol reduced the formation of atherosclerotic lesions. CONCLUSIONS Serum VEGF and CRP levels are early markers of atherosclerosis. Oral supplementation of resveratrol exerts anti-inflammatory and anti-atherosclerotic effects, decreasing serum concentrations of VEGF and CRP and the formation and evolution of atherosclerotic lesions.
Collapse
Affiliation(s)
- Leticia Figueira
- Escuela de Bioanálisis, Laboratorio de Investigación y Postgrado de la Escuela de Bioanálisis (LIPEB), Facultad de Ciencias de la Salud, Universidad de Carabobo, Naguanagua, Carabobo, Venezuela.
| | - Julio César González
- Escuela de Bioanálisis, Laboratorio de Investigación y Postgrado de la Escuela de Bioanálisis (LIPEB), Facultad de Ciencias de la Salud, Universidad de Carabobo, Naguanagua, Carabobo, Venezuela; Laboratorio Clínico Julio César González, Valencia, Carabobo, Venezuela
| |
Collapse
|
27
|
Aissa AF, Amaral CLD, Venancio VP, Machado CDS, Hernandes LC, Santos PWDS, Curi R, Bianchi MDLP, Antunes LMG. Methionine-supplemented diet affects the expression of cardiovascular disease-related genes and increases inflammatory cytokines in mice heart and liver. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1116-1128. [PMID: 28880739 DOI: 10.1080/15287394.2017.1357366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Some important environmental factors that influence the development of cardiovascular diseases (CVD) include tobacco, excess alcohol, and unhealthy diet. Methionine obtained from the diet participates in the synthesis of DNA, proteins, lipids and affects homocysteine levels, which is associated with the elevated risk for CVD development. Therefore, the aim of this study was to investigate the manner in which dietary methionine might affect cellular mechanisms underlying CVD occurrence. Swiss albino mice were fed either control (0.3% DL-methionine), methionine-supplemented (2% DL-methionine), or a methionine-deprived diet (0% DL-methionine) over a 10-week period. The parameters measured included plasma homocysteine concentrations, oxidative stress by reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, levels of inflammatory cytokines IL-1ß, TNF-α, and IL-6, as well as expression of genes associated with CVD. The levels of apolipoprotein A5 (APOA5), a regulator of plasma triglycerides, were measured. The methionine-supplemented diet increased oxidative stress by lowering the GSH/GSSG ratio in heart tissues and decreased expression of the genes Apob, Ctgf, Serpinb2, Spp1, Il1b, and Sell, but elevated expression of Thbs4, Tgfb2, Ccr1, and Vegfa. Methionine-deprived diet reduced expression of Col3a1, Cdh5, Fabp3, Bax, and Hbegf and increased expression of Sell, Ccl5, Itga2, Birc3, Msr1, Bcl2a1a, Il1r2, and Selp. Methionine-deprived diet exerted pro-inflammatory consequences as evidenced by elevated levels of cytokines IL-1ß, TNF-α, and IL-6 noted in liver. Methionine-supplemented diet increased hepatic IL-6 and cardiac TNF-α. Both methionine supplementation and deprivation lowered hepatic levels of APOA5. In conclusion, data demonstrated that a methionine-supplemented diet modulated important biological processes associated with high risk of CVD development.
Collapse
Affiliation(s)
- Alexandre Ferro Aissa
- a Department of Genetics, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Catia Lira do Amaral
- b Campus Henrique Santillo , Universidade Estadual de Goiás , Anápolis , GO , Brazil
| | - Vinicius Paula Venancio
- c Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Carla da Silva Machado
- a Department of Genetics, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Lívia Cristina Hernandes
- c Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Patrick Wellington da Silva Santos
- c Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Rui Curi
- d Department of Physiology and Biophysics , Institute of Biomedical Sciences, University of São Paulo , São Paulo , SP , Brazil
| | - Maria de Lourdes Pires Bianchi
- c Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Lusânia Maria Greggi Antunes
- c Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| |
Collapse
|
28
|
Abstract
The introduction of molecularly targeted therapies with tyrosine kinase inhibitors has revolutionized cancer therapy and has contributed to a steady decline in cancer-related mortality since the late 1990s. However, not only cardiac but also vascular toxicity has been reported for these agents, some as expected on-target effects (e.g., VEGF receptor inhibitors) and others as unanticipated events (e.g., BCR-Abl inhibitors). A sound understanding of these cardiovascular toxic effects is critical to advance mechanistic insight into vascular disease and clinical care. From a conceptual standpoint, there might be value in defining type I (permanent) and type II (transient) vascular toxicity. This review will focus on the tyrosine kinase inhibitors in current clinical use and their associated vascular side effects.
Collapse
|
29
|
Klint H, Lejonklou MH, Karimullina E, Rönn M, Lind L, Lind PM, Brittebo E. Low-dose exposure to bisphenol A in combination with fructose increases expression of genes regulating angiogenesis and vascular tone in juvenile Fischer 344 rat cardiac tissue. Ups J Med Sci 2017; 122:20-27. [PMID: 27622962 PMCID: PMC5361428 DOI: 10.1080/03009734.2016.1225870] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES Epidemiological studies report associations between exposure to the high-volume chemical and endocrine disruptor bisphenol A (BPA) and cardiovascular disorders, but there is a lack of experimental studies addressing the mechanisms of action of BPA on the cardiovascular system. In the present study, effects on markers for cardiovascular function of exposure to BPA and fructose in vivo in rat cardiac tissues, and of BPA exposure in human cardiomyocytes in vitro, were investigated. MATERIALS Juvenile female Fischer 344 rats were exposed to 5, 50, and 500 μg BPA/kg bodyweight/day in their drinking water from 5 to 15 weeks of age, in combination with 5% fructose. Further, cultured human cardiomyocytes were exposed to 10 nM BPA to 1 × 104 nM BPA for six hours. Expression of markers for cardiovascular function and BPA target receptors was investigated using qRT-PCR. RESULTS Exposure to 5 μg BPA/kg bodyweight/day plus fructose increased mRNA expression of Vegf, Vegfr2, eNos, and Ace1 in rat heart. Exposure of human cardiomyocytes to 1 × 104 nM BPA increased mRNA expression of eNOS and ACE1, as well as IL-8 and NFκβ known to regulate inflammatory response. CONCLUSIONS . Low-dose exposure of juvenile rats to BPA and fructose induced up-regulation of expression of genes controlling angiogenesis and vascular tone in cardiac tissues. The observed effects of BPA in rat heart were in line with our present and previous studies of BPA in human endothelial cells and cardiomyocytes. These findings may aid in understanding the mechanisms of the association between BPA exposure and cardiovascular disorders reported in epidemiological studies.
Collapse
Affiliation(s)
- Helén Klint
- Uppsala University, Department of Pharmaceutical Biosciences, SE-75124 Uppsala, Sweden
| | | | - Elina Karimullina
- University of California, Irvine, Department of Developmental and Cell Biology, Irvine, CA 92697, USA
| | - Monika Rönn
- Uppsala University, Department of Medical Sciences, SE-75185 Uppsala, Sweden
| | - Lars Lind
- Uppsala University, Department of Medical Sciences, SE-75185 Uppsala, Sweden
| | - P. Monica Lind
- Uppsala University, Department of Medical Sciences, SE-75185 Uppsala, Sweden
| | - Eva Brittebo
- Uppsala University, Department of Pharmaceutical Biosciences, SE-75124 Uppsala, Sweden
| |
Collapse
|
30
|
Association of VEGFR-2 Gene Polymorphisms With Clopidogrel Resistance in Patients With Coronary Heart Disease. Am J Ther 2017; 23:e1663-e1670. [PMID: 25738571 DOI: 10.1097/mjt.0000000000000231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR-2) plays a central role in atherogenesis. We investigated the correlation between VEGFR-2 polymorphisms and the risk of clopidogrel resistance (CR) in patients with coronary heart disease (CHD). The study involved 275 patients with CHD undergoing percutaneous coronary intervention and on antiplatelet clopidogrel therapy. The participants were divided into CR group (n = 59) and non-CR group (NCR, n = 216) based on maximum platelet aggregation measurements. VEGFR-2 gene polymorphisms, +1192C>T (rs2305948), +1416T>A (rs1870377), and -271A>G (rs7667298), were genotyped using polymerase chain reaction-restriction fragment length polymorphism. Enzyme-linked immunosorbent assay was used to measure serum transforming growth factor, beta receptor 2 levels. CR was found in 59 patients (20.45%). A significantly higher proportion of patients in the CR group had a history of diabetes mellitus compared with the NCR group (P < 0.05). Genotype and allele frequency of VEGFR-2 +1192C>T (rs2305948) was significantly higher in the CR group than in the NCR group (all P < 0.01). In the VEGFR-2 +1192C>T (rs2305948), the angina pectoris, recurrent myocardial infarction, and combined end point events were significantly more prevalent in the TT carriers than in the CC + CT carriers. In VEGFR-2 -271A>G (rs7667298), the GG carriers had a lower proportion of target lesion revascularization and angina pectoris in contrast to the AA + AG carriers (all P < 0.05). Based on our results, VEGFR-2 +1192C>T (rs2305948) polymorphism is strongly associated with increased CR and main adverse cardiovascular event incidence in patients with CHD undergoing percutaneous coronary intervention. Additionally, patients with CHD with diabetes mellitus history were more likely to develop CR. The associations of +1416T>A (rs1870377) and -271A>G (rs7667298) polymorphisms with CR were inconclusive and will need to be examined further.
Collapse
|
31
|
Abstract
Virus–platelet interplay is complex. Diverse virus types have been shown to associate with numerous distinct platelet receptors. This association can benefit the virus or the host, and thus the platelet is somewhat of a renegade. Evidence is accumulating to suggest that viruses are capable of entering platelets. For at least one type of RNA virus (dengue virus), the platelet has the necessary post-translational and packaging machinery required for production of replicative viral progeny. As a facilitator of immunity, the platelet also participates in eradicating the virus by direct and indirect mechanisms involving presentation of the pathogen to the innate and adaptive immune systems, thus enhancing inflammation by release of cytokines and other agonists. Virus-induced thrombocytopenia is caused by tangential imbalance of thrombopoeisis, autoimmunity, and loss of platelet function and integrity.
Collapse
|
32
|
Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol 2017; 12:18-34. [PMID: 28212521 PMCID: PMC5312547 DOI: 10.1016/j.redox.2017.01.007] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a multifocal alteration of the vascular wall of medium and large arteries characterized by a local accumulation of cholesterol and non-resolving inflammation. Atherothrombotic complications are the leading cause of disability and mortality in western countries. Neovascularization in atherosclerotic lesions plays a major role in plaque growth and instability. The angiogenic process is mediated by classical angiogenic factors and by additional factors specific to atherosclerotic angiogenesis. In addition to its role in plaque progression, neovascularization may take part in plaque destabilization and thromboembolic events. Anti-angiogenic agents are effective to reduce atherosclerosis progression in various animal models. However, clinical trials with anti-angiogenic drugs, mainly anti-VEGF/VEGFR, used in anti-cancer therapy show cardiovascular adverse effects, and require additional investigations.
Collapse
Affiliation(s)
- Caroline Camaré
- INSERM - I2MC, U-1048, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 4, France; Université Paul Sabatier Toulouse III, Faculty of Medicine, Biochemistry Departement, Toulouse, France; CHU Toulouse, Rangueil, 1 avenue Jean Poulhès, TSA 50032, 31059 Toulouse Cedex 9, France
| | - Mélanie Pucelle
- INSERM - I2MC, U-1048, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 4, France
| | - Anne Nègre-Salvayre
- INSERM - I2MC, U-1048, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 4, France.
| | - Robert Salvayre
- INSERM - I2MC, U-1048, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 4, France; Université Paul Sabatier Toulouse III, Faculty of Medicine, Biochemistry Departement, Toulouse, France; CHU Toulouse, Rangueil, 1 avenue Jean Poulhès, TSA 50032, 31059 Toulouse Cedex 9, France.
| |
Collapse
|
33
|
Liu R, Jin JP. Deletion of calponin 2 in macrophages alters cytoskeleton-based functions and attenuates the development of atherosclerosis. J Mol Cell Cardiol 2016; 99:87-99. [PMID: 27575021 PMCID: PMC5325694 DOI: 10.1016/j.yjmcc.2016.08.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 01/04/2023]
Abstract
Arterial atherosclerosis is an inflammatory disease. Macrophages play a major role in the pathogenesis and progression of atherosclerotic lesions. Modulation of macrophage function is a therapeutic target for the treatment of atherosclerosis. Calponin is an actin-filament-associated regulatory protein that inhibits the activity of myosin-ATPase and dynamics of the actin cytoskeleton. Encoded by the gene Cnn2, calponin isoform 2 is expressed at significant levels in macrophages. Deletion of calponin 2 increases macrophage migration and phagocytosis. In the present study, we investigated the effect of deletion of calponin 2 in macrophages on the pathogenesis and development of atherosclerosis. The results showed that macrophages isolated from Cnn2 knockout mice ingested a similar level of acetylated low-density lipoprotein (LDL) to that of wild type (WT) macrophages but the resulting foam cells had significantly less hindered velocity of migration. Systemic or myeloid cell-specific Cnn2 knockouts effectively attenuated the development of arterial atherosclerosis lesions with less macrophage infiltration in apolipoprotein E knockout mice. Consistently, calponin 2-null macrophages produced less pro-inflammatory cytokines than that of WT macrophages, and the up-regulation of pro-inflammatory cytokines in foam cells was also attenuated by the deletion of calponin 2. Calponin 2-null macrophages and foam cells have significantly weakened cell adhesion, indicating a role of cytoskeleton regulation in macrophage functions and inflammatory responses, and a novel therapeutic target for the treatment of arterial atherosclerosis.
Collapse
Affiliation(s)
- Rong Liu
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
34
|
Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models. Int J Mol Sci 2016; 17:ijms17091511. [PMID: 27618031 PMCID: PMC5037788 DOI: 10.3390/ijms17091511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE−/− and ApoE−/−Fbn1C1039G+/− mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies.
Collapse
|
35
|
Aschbacher K, Derakhshandeh R, Flores AJ, Narayan S, Mendes WB, Springer ML. Circulating angiogenic cell function is inhibited by cortisol in vitro and associated with psychological stress and cortisol in vivo. Psychoneuroendocrinology 2016; 67:216-23. [PMID: 26925833 PMCID: PMC4808379 DOI: 10.1016/j.psyneuen.2016.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 02/07/2023]
Abstract
Psychological stress and glucocorticoids are associated with heightened cardiovascular disease risk. We investigated whether stress or cortisol would be associated with reduced circulating angiogenic cell (CAC) function, an index of impaired vascular repair. We hypothesized that minority-race individuals who experience threat in interracial interactions would exhibit reduced CAC function, and that this link might be explained by cortisol. To test this experimentally, we recruited 106 African American participants for a laboratory interracial interaction task, in which they received socially evaluative feedback from Caucasian confederates. On a separate day, a subset of 32 participants (mean age=26years, 47% female) enrolled in a separate biological substudy and provided blood samples for CAC isolation and salivary samples to quantify the morning peak in cortisol (the cortisol awakening response, CAR). CAC function was quantified using cell culture assays of migration to vascular endothelial growth factor (VEGF) and secretion of VEGF into the culture medium. Heightened threat in response to an interracial interaction and trait anxiety in vivo were both associated with poorer CAC migratory function in vitro. Further, threat and poorer sustained attention during the interracial interaction were associated with a higher CAR, which in turn, was related to lower CAC sensitivity to glucocorticoids. In vitro, higher doses of cortisol impaired CAC migratory function and VEGF protein secretion. The glucocorticoid receptor antagonist RU486 reversed this functional impairment. These data identify a novel, neuroendocrine pathway by which psychological stress may reduce CAC function, with potential implications for cardiovascular health.
Collapse
Affiliation(s)
- Kirstin Aschbacher
- Department of Psychiatry, University of California, 3333 California Street, San Francisco, CA 94143, United States; The Institute for Integrative Health, 1407 Fleet Street, Baltimore, MD 21231, United States.
| | | | | | | | | | | |
Collapse
|
36
|
Iliescu CA, Grines CL, Herrmann J, Yang EH, Cilingiroglu M, Charitakis K, Hakeem A, Toutouzas KP, Leesar MA, Marmagkiolis K. SCAI Expert consensus statement: Evaluation, management, and special considerations of cardio-oncology patients in the cardiac catheterization laboratory (endorsed by the cardiological society of india, and sociedad Latino Americana de Cardiologıa intervencionista). Catheter Cardiovasc Interv 2016; 87:E202-23. [PMID: 26756277 DOI: 10.1002/ccd.26379] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/28/2015] [Indexed: 12/24/2022]
Abstract
In the United States alone, there are currently approximately 14.5 million cancer survivors, and this number is expected to increase to 20 million by 2020. Cancer therapies can cause significant injury to the vasculature, resulting in angina, acute coronary syndromes (ACS), stroke, critical limb ischemia, arrhythmias, and heart failure, independently from the direct myocardial or pericardial damage from the malignancy itself. Consequently, the need for invasive evaluation and management in the cardiac catheterization laboratory (CCL) for such patients has been increasing. In recognition of the need for a document on special considerations for cancer patients in the CCL, the Society for Cardiovascular Angiography and Interventions (SCAI) commissioned a consensus group to provide recommendations based on the published medical literature and on the expertise of operators with accumulated experience in the cardiac catheterization of cancer patients.
Collapse
Affiliation(s)
- Cezar A Iliescu
- MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Cindy L Grines
- Detroit Medical Center, Cardiovascular Institute, Detroit, Michigan
| | - Joerg Herrmann
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Eric H Yang
- Division of Cardiology, University of California at Los Angeles, Los Angeles, California
| | - Mehmet Cilingiroglu
- School of Medicine, Arkansas Heart Hospital, Little Rock, Arkansas.,Department of Cardiology, Koc University, Istanbul, Turkey
| | | | - Abdul Hakeem
- Department of Cardiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Massoud A Leesar
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Konstantinos Marmagkiolis
- Department of Cardiology, Citizens Memorial Hospital, Bolivar, Missouri.,Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
37
|
Golestani R, Mirfeizi L, Zeebregts CJ, Westra J, de Haas HJ, Glaudemans AWJM, Koole M, Luurtsema G, Tio RA, Dierckx RAJO, Boersma HH, Elsinga PH, Slart RHJA. Feasibility of [18F]-RGD for ex vivo imaging of atherosclerosis in detection of αvβ3 integrin expression. J Nucl Cardiol 2015; 22:1179-86. [PMID: 25698472 DOI: 10.1007/s12350-014-0061-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Inflammation and angiogenesis play an important role in atherosclerotic plaque rupture. Therefore, molecular imaging of these processes could be used for determination of rupture-prone atherosclerotic plaques. αvβ3 integrin is involved in the process of angiogenesis. Targeted imaging of αvβ3 integrin has been shown to be possible in previous studies on tumor models, using radiolabeled arginine-glycine-aspartate (RGD). Our aim was to investigate feasibility of ex vivo detection of αvβ3 integrin in carotid endarterectomy (CEA) specimens. METHODS AND RESULTS Nineteen CEA specimens were incubated in 5 MBq [18F]-RGD-K5 for 1 hour followed by 1 hour emission microPET scan. The results were quantified in 4 mm wide segments as percent incubation dose per gram (%Inc/g). Segmental-to-total ratio was calculated and presence of αvβ3 integrin and endothelial cells in each segment was confirmed by immunohistochemical staining for CD31 and αvβ3 integrin, respectively. [18F]-RGD-K5 uptake was heterogeneously distributed across CEA specimens and was localized within the vessel wall. Significant correlations were observed between segmental-to-total ratio with αvβ3 integrin staining score (r = 0.58, P = .038) and CD31 staining score (ρ = 0.67, P < .002). CONCLUSION This study showed the feasibility of integrin imaging by determination of αvβ3 integrin expression in human atherosclerotic plaques.
Collapse
Affiliation(s)
- Reza Golestani
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.
- Cardiovascular Medicine Section, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Leila Mirfeizi
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Clark J Zeebregts
- Division of Vascular Surgery, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johanna Westra
- Department of Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hans J de Haas
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Michel Koole
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - René A Tio
- Department of Cardiology, Thorax Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Hendrikus H Boersma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
- Department of Clinical and Hospital Pharmacy, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
- Faculty of Science and Technology, Biomedical Photonic Imaging, University of Twente, Enschede, The Netherlands
| |
Collapse
|
38
|
Strauss E, Waliszewski K, Oszkinis G, Staniszewski R. Polymorphisms of genes involved in the hypoxia signaling pathway and the development of abdominal aortic aneurysms or large-artery atherosclerosis. J Vasc Surg 2015; 61:1105-13.e3. [DOI: 10.1016/j.jvs.2014.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 12/29/2022]
|
39
|
Marino F, Tozzi M, Schembri L, Ferraro S, Tarallo A, Scanzano A, Legnaro M, Castelli P, Cosentino M. Production of IL-8, VEGF and Elastase by Circulating and Intraplaque Neutrophils in Patients with Carotid Atherosclerosis. PLoS One 2015; 10:e0124565. [PMID: 25893670 PMCID: PMC4404350 DOI: 10.1371/journal.pone.0124565] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 03/16/2015] [Indexed: 12/25/2022] Open
Abstract
Objectives Polymorphonuclear neutrophils (PMN) in atherosclerotic plaques have been identified only recently, and their contribution to plaque development is not yet fully understood. In this study, production of elastase, interleukin (IL)-8 and vascular endothelial growth factor (VEGF) by PMN was investigated in subjects with carotid stenosis undergoing carotid endarterectomy (CEA). Methods The study enrolled 50 patients (Pts) and 10 healthy subjects (HS). Circulating PMN (cPMN) isolated from venous blood (in both Pts and HS) and from plaques (pPMN, in Pts) were cultured, alone or with 0.1 μM fMLP. Elastase, IL-8 and VEGF mRNA were analyzed by real-time PCR. In CEA specimens, PMN were localized by immunohistochemistry. Results In both Pts cPMN and pPMN, IL-8 mRNA was higher at rest but lower after fMLP (P<0.01 vs HS), and VEGF mRNA was higher both at rest and after fMLP (P<0.01 vs HS), while elastase mRNA was not significantly different. On the contrary, protein production was always higher in cPMN of HS with respect to values measured in cells of Pts. In CEA specimens, CD66b+ cells localized to areas with massive plaque formation close to neovessels. Pts with soft and mix plaques, as defined by computed tomography, did not differ in cPMN or pPMN IL-8, VEGF or elastase mRNA, or in intraplaque CD66b+ cell density. However, Pts with soft plaques had higher white blood cell count due to increased PMN. Conclusions In Pts with carotid plaques, both circulating and intraplaque PMN produce IL-8, VEGF and elastase, which are crucial for plaque development and progression. These findings suggest mechanistic explanations to the reported correlation between PMN count and cardiovascular mortality in carotid ATH.
Collapse
Affiliation(s)
- Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
- * E-mail:
| | - Matteo Tozzi
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Laura Schembri
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Stefania Ferraro
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Antonino Tarallo
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Angela Scanzano
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Massimiliano Legnaro
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Patrizio Castelli
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| |
Collapse
|
40
|
Svendstrup M, Vestergaard H. The potential role of inhibitor of differentiation-3 in human adipose tissue remodeling and metabolic health. Mol Genet Metab 2014; 113:149-54. [PMID: 25239768 DOI: 10.1016/j.ymgme.2014.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 12/23/2022]
Abstract
Metabolic health in obesity is known to differ among individuals, and the distribution of visceral (VAT) and subcutaneous adipose tissue (SAT) plays an important role in this regard. Adipose tissue expansion is dependent on new blood vessel formation in order to prevent hypoxia and inflammation in the tissue. Regulation of angiogenesis in SAT and VAT in response to diet is therefore crucial for the metabolic outcome in obesity. Knowledge about the underlying genetic mechanisms determining metabolic health in obesity is very limited. We aimed to review the literature of the inhibitor of differentiation-3 (ID3) gene in relation to adipose tissue and angiogenesis in humans in order to determine whether ID3 could be involved in the regulation of adipose tissue expansion and metabolic health in human obesity. We find evidence that ID3 is involved in regulatory mechanisms in adipose tissue and regulates angiogenesis in many tissues including adipose tissue. We discuss how this might influence obesity and metabolic health in obesity and further discuss some potential mechanisms by which ID3 might regulate visceral and subcutaneous adipose tissue expansion. The combined results from the reviewed literature suggest ID3 to play a potential role in the underlying regulatory mechanisms of metabolic health in human obesity. The literature is still sparse and further studies focusing on human ID3 in relation to the nature of obesity are warranted.
Collapse
Affiliation(s)
- Mathilde Svendstrup
- The Danish Diabetes Academy and Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Universitetsparken 1, 1st Floor, University of Copenhagen, Denmark; The Danish Diabetes Academy and Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Universitetsparken 1, 1st Floor, University of Copenhagen, Denmark.
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Universitetsparken 1, 1st Floor, University of Copenhagen, Denmark.
| |
Collapse
|
41
|
Su Y, Liu W, Wang D, Tian J. Evaluation of abdominal aortic elasticity by strain rate imaging in patients with type 2 diabetes mellitus. JOURNAL OF CLINICAL ULTRASOUND : JCU 2014; 42:475-480. [PMID: 24990226 DOI: 10.1002/jcu.22163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 11/02/2013] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
PURPOSE To use strain rate imaging (SRI) to compare the abdominal aortic wall elasticity between patients with type 2 diabetes mellitus and controls. METHODS We measured the abdominal aorta intima-media thickness (IMT) with B-mode echography, and the anterior and posterior wall displacement (d), strain, and strain rate (SR) with SRI, in 90 patients with type 2 diabetes mellitus and 30 control subjects (group A). The patients were classified into group B (normal IMT), group C (thickened IMT), and group D (one single atheroma plaque). RESULTS d, strain, and SR were significantly lower in group B, C, and D than in group A (p < .05). Systolic, early-diastolic, and late-diastolic SR were lower in patients with diabetes (especially in group D) than in controls. There were significant differences in systolic SR, early-diastolic SR, and late-diastolic SR between group A and group B (p < .05). CONCLUSIONS SRI is a noninvasive method that can demonstrate a loss in aorta wall elasticity in patients with diabetes with normal IMT.
Collapse
Affiliation(s)
- Yanxin Su
- Ultrasound Department, the Second Affiliated Hospital, Harbin Medical University, 148 Baojian Road, Harbin, Heilongjiang, China, 150086
| | | | | | | |
Collapse
|
42
|
Ingegnoli F, Gualtierotti R, Artusi C, Lubrano E. Focus on the potential effects of treatments for spondylarthritides on cardiovascular risk. Expert Rev Clin Immunol 2014; 10:307-15. [PMID: 24410540 DOI: 10.1586/1744666x.2014.875468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The past years have seen the publication of several studies on seronegative spondylarthritides (SpA) and cardiovascular risk as a result of new insights into the connection between inflammation and atherogenesis. Although the overall cardiovascular disease is a complex entity, chronic inflammation of SpA is known to contribute as an independent risk factor, and new therapies are aimed at reducing this persistent inflammatory status. This review provides an overview of the recent advances in understanding the role of the current therapeutic measures of SpA in preventing or accelerating cardiovascular risk.
Collapse
Affiliation(s)
- Francesca Ingegnoli
- Department of Clinical Sciences & Community Health, Division of Rheumatology, University of Milan, 20122 Milan, Italy
| | | | | | | |
Collapse
|
43
|
Tekabe Y, Kollaros M, Zerihoun A, Zhang G, Backer MV, Backer JM, Johnson LL. Imaging VEGF receptor expression to identify accelerated atherosclerosis. EJNMMI Res 2014; 4:41. [PMID: 26055940 PMCID: PMC4884015 DOI: 10.1186/s13550-014-0041-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/08/2014] [Indexed: 01/23/2023] Open
Abstract
Background The biology of the vulnerable plaque includes increased inflammation and rapid growth of vasa vasorum, processes that are associated with enhanced vascular endothelial growth factor (VEGF)/ imaging receptors for VEGF (VEGFR) signaling and are accelerated in diabetes. This study was designed to test the hypothesis that VEGFRs in atherosclerotic plaques with a SPECT tracer scVEGF-PEG-DOTA/99mTc (scV/Tc) can identify accelerated atherosclerosis in diabetes. Methods Male apolipoprotein E null (ApoE−/−) mice (6 weeks of age) were made diabetic (n = 10) or left as non-diabetic (n = 13). At 26 to 28 weeks of age, 5 non-diabetic mice were injected with functionally inactivated scV/Tc (in-scV/Tc) that does not bind to VEGF receptors, while 8 non-diabetic and 10 diabetic mice were injected with scV/Tc. After blood pool clearance, at 3 to 4 h post-injection, mice were injected with CT contrast agent and underwent SPECT/CT imaging. From the scans, regions of interest (ROI) were drawn on serial transverse sections comprising the proximal aorta and the percentage of injected dose (%ID) in ROIs was calculated. At the completion of imaging, mice were euthanized, proximal aorta explanted for gamma well counting to determine the percentage of injected dose per gram (%ID/g) uptake and immunohistochemical characterization. Results The uptake of scV/Tc in the proximal aorta, calculated from SPECT/CT co-registered scans as %ID, was significantly higher in the diabetic mice (0.036 ± 0.017%ID) compared to non-diabetic mice (0.017 ± 0.005%ID; P < 0.01), as was uptake measured as %ID/g in harvested aorta, 1.81 ± 0.50%ID/g in the diabetic group vs. 0.98 ± 0.25%ID/g in the non-diabetic group (P < 0.01). The nonspecific uptake of in-scV/Tc in proximal aorta was significantly lower than the uptake of functionally active scV/Tc. Immunostaining of the atherosclerotic lesions showed higher expression of VEGFR-1 and VEGFR-2 in the diabetic mice. Conclusion These initial results suggest that imaging VEGFR with scV/Tc shows promise as a non-invasive approach to identify accelerated atherosclerosis. Electronic supplementary material The online version of this article (doi:10.1186/s13550-014-0041-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yared Tekabe
- Department of Medicine, Columbia University Medical Center, 622 West 168th St, PH 10 center rm 203, New York, NY, 10032, USA,
| | | | | | | | | | | | | |
Collapse
|
44
|
Su Y, Yuan Q, Wang D, Tian J. Evaluation of Shear Stress in the Popliteal Artery in Patients With Type 2 Diabetes Mellitus Using Vascular Sonography. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2014. [DOI: 10.1177/8756479313518371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to use vascular sonography to evaluate the dynamic forces acting on the wall of the popliteal artery in patients with type 2 diabetes mellitus (T2DM) compared to a control group without diabetes. Forty patients with T2DM and 20 control subjects were enrolled in the study. Patients were divided according to their measured Ankle-Brachial Index (ABI) into two groups, those with evidence of peripheral vascular disease (PVD) based on an ABI < 0.9 (n = 18) and those without peripheral vascular disease (N-PVD, ABI ≥ 0.9, n = 22). The systolic and diastolic internal diameter (IDs, IDd) and the end-diastolic intima media thickness (IMT) of the popliteal artery were measured. Hemodynamic parameters measured were the peak systolic velocity, end-diastolic velocity, and the mean velocity (Vs, Vd, Vm). The peak systolic and mean shear stress (Ts, Tm) were calculated using the Hagen-Poiseuille formula. The shear stress of the popliteal artery was significantly decreased in patients with diabetes in the PVD group compared to the N-PVD group ( P < .05). Shear stress also was significantly decreased in both the N-PVD and the PVD patients compared to the control group ( P < .05). The shear stress may be a reliable index for the assessment of lower extremity arterial disease status in patients with diabetes mellitus at an early stage when the vascular IMT remains normal.
Collapse
Affiliation(s)
- Yanxin Su
- Harbin Medical University, Harbin, China
| | | | - Dawei Wang
- Harbin Engineering University, Harbin, China
| | | |
Collapse
|
45
|
Assinger A, Kral JB, Yaiw KC, Schrottmaier WC, Kurzejamska E, Wang Y, Mohammad AA, Religa P, Rahbar A, Schabbauer G, Butler LM, Söderberg-Naucler C. Human cytomegalovirus-platelet interaction triggers toll-like receptor 2-dependent proinflammatory and proangiogenic responses. Arterioscler Thromb Vasc Biol 2014; 34:801-9. [PMID: 24558109 DOI: 10.1161/atvbaha.114.303287] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Human cytomegalovirus (HCMV) is a widespread pathogen that correlates with various clinical complications, including atherosclerosis. HCMV is released into the circulation during primary infection and periodic viral reactivation, allowing virus-platelet interactions. Platelets are important in the onset and development of atherosclerosis, but the consequences of platelet-HCMV interactions are unclear. APPROACH AND RESULTS We studied the effects of HCMV-platelet interactions in blood from healthy donors using the purified clinical HCMV isolate VR1814. We demonstrated that HCMV bound to a Toll-like receptor (TLR) 2-positive platelet subpopulation, which resulted in signal transduction, degranulation, and release of proinflammatory CD40L and interleukin-1β and proangiogenic vascular endothelial-derived growth factor. In mice, murine CMV activated wild-type but not TLR2-deficient platelets. However, supernatant from murine CMV-stimulated wild-type platelets also activated TLR2-deficient platelets, indicating that activated platelets generated soluble mediators that triggered further platelet activation, independent of TLR2 expression. Inhibitor studies, using ADP receptor antagonists and apyrase, revealed that ADP release is important to trigger secondary platelet activation in response to HCMV. HCMV-activated platelets rapidly bound to and activated neutrophils, supporting their adhesion and transmigration through endothelial monolayers. In an in vivo model, murine CMV induced systemic upregulation of platelet-leukocyte aggregates and plasma vascular endothelial-derived growth factor in mice and showed a tendency to enhance neutrophil extravasation in a TLR2-dependent fashion. CONCLUSIONS HCMV is a well-adapted pathogen that does not induce immediate thrombotic events. However, HCMV-platelet interactions lead to proinflammatory and proangiogenic responses, which exacerbate tissue damage and contribute to atherogenesis. Therefore, platelets might contribute to the effects of HCMV in accelerating atherosclerosis.
Collapse
Affiliation(s)
- Alice Assinger
- From the Department of Medicine, Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.A., K.C.Y., E.K., Y.W., A.-A.M., P.R., A.R., L.M.B., C.S.-N.); Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (A.A., J.B.K., W.C.S., G.S.); Postgraduate School of Molecular Medicine, Department of Internal Medicine and Hypertension, Medical University of Warsaw, Warsaw, Poland (E.K.); and Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China (Y.W.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Proietta M, Tritapepe L, Cifani N, Ferri L, Taurino M, Del Porto F. MMP-12 as a new marker of Stanford-A acute aortic dissection. Ann Med 2014; 46:44-8. [PMID: 24432723 DOI: 10.3109/07853890.2013.876728] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The study evaluated macrophage cytokines and macrophage metalloprotease (MMP)-12 levels in patients with Stanford-A acute aortic dissection (AAD) and in patients with critical carotid artery stenosis (CAS) compared with patients matched for age, sex, and traditional cardiovascular risk factors (RF). The aim was to identify possible early serum markers of risk for atherosclerotic complications. MATERIALS AND METHODS We selected 65 patients: 23 AAD patients, 21 CAS patients, 21 RF, and 10 healthy subjects (HS). In each patient and control serum, levels of interleukin (IL)-6, IL-8, tumour necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, vascular endothelial growth factor (VEGF), and MMP-12 were assessed by ELISA. RESULTS A significant increase of MMP-12, IL-6, and IL-8 levels in AAD versus CAS was found. Moreover, MMP-12 was shown to be significantly higher in AAD versus RF, but not in CAS versus RF. A significant increase of IL-6, IL-8, MCP-1, TNF-α, and VEGF levels was observed both in AAD and CAS versus RF. CONCLUSIONS The results suggest that MMP-12 may be considered to be a specific marker of Stanford-A AAD. Furthermore, the study confirmed that in AAD and CAS macrophage cytokines play a key role in the progression of the atherosclerotic disease towards complications.
Collapse
Affiliation(s)
- Maria Proietta
- Dipartimento di Medicina Clinica e Molecolare, Facoltà di Medicina e Psicologia, Ospedale Sant'Andrea, 'Sapienza', Università di Roma , Italia , and UOS Aterosclerosi e Dislipidemia, 'Sapienza', Università di Roma , Italy
| | | | | | | | | | | |
Collapse
|
47
|
Turner RJ, Bushnell CD, Register TC, Sharp FR. Gender-dependent correlations of carotid intima-media thickness with gene expression in blood. Transl Stroke Res 2013; 2:171-8. [PMID: 22287995 DOI: 10.1007/s12975-011-0066-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mechanisms underlying gender differences in stroke incidence, risk, and outcome are uncertain. We sought to determine whether transcriptional profiles of circulating blood cells of men and women differentially correlated with carotid artery intima-media thickness (CIMT), a predictor of atherosclerosis and stroke risk. Gene expression in whole blood was measured using Affymetrix expression arrays in men (n=17) and women (n=35), aged 45-64 years, with at least one risk factor for stroke. Mean average CIMT was measured using B-mode ultrasound. Expression levels of 746 genes positively and 292 genes negatively correlated with CIMT only in women (p<0.05); 881 genes positively and 597 genes negatively correlated with CIMT only in men (p<0.05). Forty-one genes correlated with CIMT in men and women, but in opposite directions. These genes were associated with estrogen, cholesterol and lipid metabolism, inflammation, coagulation, and vasoreactivity. This pilot study provides the first proof of principle that gene expression in blood cells correlates with CIMT. These results point to potential pathophysiological mechanisms underlying sex differences in stroke risk. Since the sample size is small, the findings are preliminary and need to be confirmed in independent, larger studies.
Collapse
Affiliation(s)
- Renée J Turner
- Department of Neurology and M.I.N.D. Institute, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
48
|
Del Porto F, di Gioia C, Tritapepe L, Ferri L, Leopizzi M, Nofroni I, De Santis V, Della Rocca C, Mitterhofer AP, Bruno G, Taurino M, Proietta M. The multitasking role of macrophages in Stanford type A acute aortic dissection. Cardiology 2013; 127:123-9. [PMID: 24334970 DOI: 10.1159/000355253] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/16/2013] [Indexed: 01/29/2023]
Abstract
OBJECTIVES The aim of the study was to determine whether the release by macrophages of matrix metalloproteinase (MMP)-12 and vascular endothelial growth factor (VEGF) - leading to inflammation, matrix degradation and neoangiogenesis - represents an effective pathway that underlies aortic wall remodeling in Stanford type A acute aortic dissection (AAD). METHODS Twenty-one consecutive patients with no genetic predisposition, with Stanford type A AAD were selected. In each patient, the levels of serum VEGF, MMP-12, serum interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1 were evaluated using enzyme-linked immunosorbent assay. Ascending aortic specimens were collected for immunohistochemical identification of any presence of inflammatory infiltrate, VEGF and CD31 expression. RESULTS A significant increase in serum VEGF (p = 0.044), MMP-12 (p = 0.007), IL-6 (p = 0.0001), IL-8 (p = 0.0001) and MCP-1 (p = 0.0001) levels was observed in the AAD group compared to the control group. Furthermore, all AAD samples were positive for VEGF in the tunica media and showed vessel growth and immune-inflammatory infiltrate. A large number of cases (62.79%) showed inflammation at the edge of the dissection and approximately half (51.42%) showed neovessels growing at the edge of the dissection. CONCLUSIONS The results suggest that VEGF-mediated angiogenesis and matrix degradation play a role in AAD. Finally, we believe that MMP-12 should be considered a marker of AAD.
Collapse
Affiliation(s)
- Flavia Del Porto
- Dipartimento di Medicina Clinica e Molecolare, Facoltà di Medicina e Psicologia, Ospedale Sant'Andrea, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hu YW, Zheng L, Wang Q, Zhong TY, Yu X, Bao J, Cao NN, Li B, Si-Tu B. Vascular endothelial growth factor downregulates apolipoprotein M expression by inhibiting Foxa2 in a Nur77-dependent manner. Rejuvenation Res 2013; 15:423-34. [PMID: 22877565 DOI: 10.1089/rej.2011.1295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE We aimed to investigate whether vascular endothelial growth factor (VEGF) influences apolipoprotein M (ApoM) expression and pre-β-high-density lipoprotin (HDL) formation, and whether forkhead box A2 (Foxa2) and Nur77 are involved in this process. METHODS AND RESULTS We analyzed the serum VEGF concentrations of 264 adults who underwent a medical checkup and found that VEGF concentration was positively correlated with serum triglyceride, total cholesterol, LDL cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL-C), and ApoB concentrations, but was negatively correlated with serum high-density lipoprotein cholesterol (HDL-C) and ApoM concentrations. We further investigated the effects of VEGF on ApoM expression and pre-β-HDL formation, and the mechanisms responsible, in HepG2 cells and mouse primary hepatocytes. VEGF markedly downregulated ApoM expression and pre-β-HDL formation. At the same time, expression of Foxa2 was also inhibited, whereas expression of Nur77 was increased by treatment with VEGF. Furthermore, small interfering (si) RNA knockdown of Foxa2 made the downregulation of VEGF on ApoM expression and pre-β-HDL formation even more obvious. In addition, siRNA knockdown of Nur77 significantly compensated for the inhibitory effect of VEGF on Foxa2 expression, whereas the Nur77 agonist cytosporone B led to the downregulation of Foxa2 expression more significantly than VEGF. Moreover, overexpression of a Nur77 transgene in C57BL/6 mice resulted in decreased serum ApoM and pre-β-HDL levels, whereas si-Nur77-treated mice displayed upregulated serum ApoM and pre-β-HDL levels. CONCLUSION These results provide evidence that VEGF may first downregulate expression of Foxa2 by enhancing Nur77 activity and then decrease expression of ApoM and pre-β-HDL formation. Therefore, our study may be useful in understanding the critical effect of VEGF in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Golestani R, Zeebregts CJ, van Scheltinga AGT, Hooge MNLD, van Dam GM, Glaudemans AW, Dierckx RA, Tio RA, Suurmeijer AJ, Boersma HH, Nagengast WB, Slart RH. Feasibility of Vascular Endothelial Growth Factor Imaging in Human Atherosclerotic Plaque Using
89
Zr-Bevacizumab Positron Emission Tomography. Mol Imaging 2013. [DOI: 10.2310/7290.2012.00034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Reza Golestani
- From the Departments of Nuclear Medicine and Molecular Imaging, Surgery (Divisions of Vascular and Abdominal Surgery), Clinical and Hospital Pharmacy, Medical Oncology, Cardiology, Pathology, and Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, and the Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Clark J. Zeebregts
- From the Departments of Nuclear Medicine and Molecular Imaging, Surgery (Divisions of Vascular and Abdominal Surgery), Clinical and Hospital Pharmacy, Medical Oncology, Cardiology, Pathology, and Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, and the Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Anton G.T. Terwisscha van Scheltinga
- From the Departments of Nuclear Medicine and Molecular Imaging, Surgery (Divisions of Vascular and Abdominal Surgery), Clinical and Hospital Pharmacy, Medical Oncology, Cardiology, Pathology, and Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, and the Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Marjolijn N. Lub-de Hooge
- From the Departments of Nuclear Medicine and Molecular Imaging, Surgery (Divisions of Vascular and Abdominal Surgery), Clinical and Hospital Pharmacy, Medical Oncology, Cardiology, Pathology, and Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, and the Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Gooitzen M. van Dam
- From the Departments of Nuclear Medicine and Molecular Imaging, Surgery (Divisions of Vascular and Abdominal Surgery), Clinical and Hospital Pharmacy, Medical Oncology, Cardiology, Pathology, and Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, and the Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Andor W.J.M. Glaudemans
- From the Departments of Nuclear Medicine and Molecular Imaging, Surgery (Divisions of Vascular and Abdominal Surgery), Clinical and Hospital Pharmacy, Medical Oncology, Cardiology, Pathology, and Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, and the Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Rudi A.J.O. Dierckx
- From the Departments of Nuclear Medicine and Molecular Imaging, Surgery (Divisions of Vascular and Abdominal Surgery), Clinical and Hospital Pharmacy, Medical Oncology, Cardiology, Pathology, and Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, and the Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - René A. Tio
- From the Departments of Nuclear Medicine and Molecular Imaging, Surgery (Divisions of Vascular and Abdominal Surgery), Clinical and Hospital Pharmacy, Medical Oncology, Cardiology, Pathology, and Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, and the Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Albert J.H. Suurmeijer
- From the Departments of Nuclear Medicine and Molecular Imaging, Surgery (Divisions of Vascular and Abdominal Surgery), Clinical and Hospital Pharmacy, Medical Oncology, Cardiology, Pathology, and Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, and the Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Hendrikus H. Boersma
- From the Departments of Nuclear Medicine and Molecular Imaging, Surgery (Divisions of Vascular and Abdominal Surgery), Clinical and Hospital Pharmacy, Medical Oncology, Cardiology, Pathology, and Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, and the Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Wouter B. Nagengast
- From the Departments of Nuclear Medicine and Molecular Imaging, Surgery (Divisions of Vascular and Abdominal Surgery), Clinical and Hospital Pharmacy, Medical Oncology, Cardiology, Pathology, and Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, and the Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Riemer H.J.A. Slart
- From the Departments of Nuclear Medicine and Molecular Imaging, Surgery (Divisions of Vascular and Abdominal Surgery), Clinical and Hospital Pharmacy, Medical Oncology, Cardiology, Pathology, and Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, and the Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|