1
|
Zhou Y, Zhao C, Shi Z, Heger Z, Jing H, Shi Z, Dou Y, Wang S, Qiu Z, Li N. A Glucose-Responsive Hydrogel Inhibits Primary and Secondary BRB Injury for Retinal Microenvironment Remodeling in Diabetic Retinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402368. [PMID: 39031576 PMCID: PMC11348052 DOI: 10.1002/advs.202402368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/06/2024] [Indexed: 07/22/2024]
Abstract
Current diabetic retinopathy (DR) treatment involves blood glucose regulation combined with laser photocoagulation or intravitreal injection of vascular endothelial growth factor (VEGF) antibodies. However, due to the complex pathogenesis and cross-interference of multiple biochemical pathways, these interventions cannot block disease progression. Recognizing the critical role of the retinal microenvironment (RME) in DR, it is hypothesized that reshaping the RME by simultaneously inhibiting primary and secondary blood-retinal barrier (BRB) injury can attenuate DR. For this, a glucose-responsive hydrogel named Cu-PEI/siMyD88@GEMA-Con A (CSGC) is developed that effectively delivers Cu-PEI/siMyD88 nanoparticles (NPs) to the retinal pigment epithelium (RPE). The Cu-PEI NPs act as antioxidant enzymes, scavenging ROS and inhibiting RPE pyroptosis, ultimately blocking primary BRB injury by reducing microglial activation and Th1 differentiation. Simultaneously, MyD88 expression silence in combination with the Cu-PEI NPs decreases IL-18 production, synergistically reduces VEGF levels, and enhances tight junction proteins expression, thus blocking secondary BRB injury. In summary, via remodeling the RME, the CSGC hydrogel has the potential to disrupt the detrimental cycle of cross-interference between primary and secondary BRB injury, providing a promising therapeutic strategy for DR.
Collapse
Affiliation(s)
- Yue Zhou
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
- Department of PharmacyTianjin Union Medical CenterNankai UniversityTianjin300122P. R. China
| | - Chan Zhao
- Department of OphthalmologyPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijing100730P. R. China
- Key Laboratory of Ocular Fundus DiseasesChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100730P. R. China
| | - Zhiyuan Shi
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Zbynek Heger
- Department of Chemistry and BiochemistryMendel University in BrnoBrnoCZ‐61300Czech Republic
| | - HuaQing Jing
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Zhengming Shi
- Department of OphthalmologyPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijing100730P. R. China
- Key Laboratory of Ocular Fundus DiseasesChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100730P. R. China
| | - Yunsheng Dou
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Siyu Wang
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Zitong Qiu
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| |
Collapse
|
2
|
Sharma M, Pal P, Gupta SK. Microglial mediators in autoimmune Uveitis: Bridging neuroprotection and neurotoxicity. Int Immunopharmacol 2024; 136:112309. [PMID: 38810304 DOI: 10.1016/j.intimp.2024.112309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Autoimmune uveitis, a severe inflammatory condition of the eye, poses significant challenges due to its complex pathophysiology and the critical balance between protective and detrimental immune responses. Central to this balance are microglia, the resident immune cells of the central nervous system, whose roles in autoimmune uveitis are multifaceted and dynamic. This review article delves into the dual nature of microglial functions, oscillating between neuroprotective and neurotoxic outcomes in the context of autoimmune uveitis. Initially, we explore the fundamental aspects of microglia, including their activation states and basic functions, setting the stage for a deeper understanding of their involvement in autoimmune uveitis. The review then navigates through the intricate mechanisms by which microglia contribute to disease onset and progression, highlighting both their protective actions in immune regulation and tissue repair, and their shift towards a pro-inflammatory, neurotoxic profile. Special emphasis is placed on the detailed pathways and cellular interactions underpinning these dual roles. Additionally, the review examines the potential of microglial markers as diagnostic and prognostic indicators, offering insights into their clinical relevance. The article culminates in discussing future research directions, and the ongoing challenges in translating these findings into effective clinical applications. By providing a comprehensive overview of microglial mechanisms in autoimmune uveitis, this review underscores the critical balance of microglial activities and its implications for disease management and therapy development.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Sukesh Kumar Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India; Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
3
|
Saleki K, Aram C, Alijanizadeh P, Khanmirzaei MH, Vaziri Z, Ramzankhah M, Azadmehr A. Matrix metalloproteinase/Fas ligand (MMP/FasL) interaction dynamics in COVID-19: An in silico study and neuroimmune perspective. Heliyon 2024; 10:e30898. [PMID: 38803919 PMCID: PMC11128882 DOI: 10.1016/j.heliyon.2024.e30898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Background The initiator of cytokine storm in Coronavirus disease (COVID-19) is still unknown. We recently suggested a complex interaction of matrix metalloproteinases (MMPs), Fas ligand (FasL), and viral entry factors could be responsible for the cytokine outrage In COVID-19. We explored the molecular dynamics of FasL/MMP7-9 in COVID-19 conditions in silico and provide neuroimmune insights for future. Methods We enrolled and analyzed a clinical cohort of COVID-19 patients, and recorded their blood Na + levels and temperature at admission. A blood-like molecular dynamics simulation (MDS) box was then built. Four conditions were studied; MMP7/FasL (healthy), MMP7/FasL (COVID-19), MMP9-FasL (healthy), and MMP9/FasL (COVID-19). MDS was performed by GROningen MAchine for Chemical Simulation (GROMACS). We analyzed bonds, short-range energies, and free binding energies to draw conclusions on the interaction of MMP7/MMP9 and FasL to gain insights into COVID-19 immunopathology. Genevestigator was used study RNA-seq/microarray expression data of MMPs in the cells of immune and nervous systems. Finally, epitopes of MMP/FasL complexes were identified as drug targets by machine learning (ML) tools. Results MMP7-FasL (Healthy), MMP7-FasL (COVID-19), MMP9-FasL (Healthy), and MMP9-FasL (COVID-19) systems showed 0, 1, 4, and 2 salt bridges, indicating MMP9 had more salt bridges. Moreover, in both COVID-19 and normal conditions, the number of interacting residues and surface area was higher for MMP9 compared to MMP7 group. The COVID-19 MMP9-FasL group had more H-bonds compared to MMP7-FasL group (12 vs. 7). 15 epitopes for FasL-MMP9 and 10 epitopes for FasL-MMP7 were detected. Extended MD simulation for 100 ns confirmed stronger binding of MMP9 based on Molecular Mechanics Generalized Borne Surface analysis (MM-GBSA) and Coul and Leonard-Jones (LJ) short-range energies. Conclusions MMP9 interacts stronger than MMP7 with FasL, however, both molecules maintained strong interaction through the MDS. We suggested epitopes for MMP-FasL complexes as valuable therapeutic targets in COVID-19. These data could be utilized in future immune drug and protein design and repurposing efforts.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences(SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- National Elite Foundation, Mazandaran Province Branch, Mazandaran, Iran
| | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Hossein Khanmirzaei
- School of Medicine, Tehran University of Medical Sciences, Babol, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Vaziri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ramzankhah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- National Elite Foundation, Mazandaran Province Branch, Mazandaran, Iran
- Department of Immunology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
4
|
Saleki K, Alijanizadeh P, Javanmehr N, Rezaei N. The role of Toll-like receptors in neuropsychiatric disorders: Immunopathology, treatment, and management. Med Res Rev 2024; 44:1267-1325. [PMID: 38226452 DOI: 10.1002/med.22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Neuropsychiatric disorders denote a broad range of illnesses involving neurology and psychiatry. These disorders include depressive disorders, anxiety, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorders, headaches, and epilepsy. In addition to their main neuropathology that lies in the central nervous system (CNS), lately, studies have highlighted the role of immunity and neuroinflammation in neuropsychiatric disorders. Toll-like receptors (TLRs) are innate receptors that act as a bridge between the innate and adaptive immune systems via adaptor proteins (e.g., MYD88) and downstream elements; TLRs are classified into 13 families that are involved in normal function and illnesses of the CNS. TLRs expression affects the course of neuropsychiatric disorders, and is influenced during their pharmacotherapy; For example, the expression of multiple TLRs is normalized during the major depressive disorder pharmacotherapy. Here, the role of TLRs in neuroimmunology, treatment, and management of neuropsychiatric disorders is discussed. We recommend longitudinal studies to comparatively assess the cell-type-specific expression of TLRs during treatment, illness progression, and remission. Also, further research should explore molecular insights into TLRs regulation and related pathways.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
5
|
Vaziri Z, Saleki K, Aram C, Alijanizadeh P, Pourahmad R, Azadmehr A, Ziaei N. Empagliflozin treatment of cardiotoxicity: A comprehensive review of clinical, immunobiological, neuroimmune, and therapeutic implications. Biomed Pharmacother 2023; 168:115686. [PMID: 37839109 DOI: 10.1016/j.biopha.2023.115686] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
Cancer and cardiovascular disorders are known as the two main leading causes of mortality worldwide. Cardiotoxicity is a critical and common adverse effect of cancer-related chemotherapy. Chemotherapy-induced cardiotoxicity has been associated with various cancer treatments, such as anthracyclines, immune checkpoint inhibitors, and kinase inhibitors. Different methods have been reported for the management of chemotherapy-induced cardiotoxicity. In this regard, sodium-glucose cotransporter-2 inhibitors (SGLT2i), a class of antidiabetic agents, have recently been applied to manage heart failure patients. Further, SGLT2i drugs such as EMPA exert protective cardiac and systemic effects. Moreover, it can reduce inflammation through the mediation of major inflammatory components, such as Nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasomes, Adenosine 5'-monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal kinase (JNK) pathways, Signal transducer and activator of transcription (STAT), and overall decreasing transcription of proinflammatory cytokines. The clinical outcome of EMPA administration is related to improving cardiovascular risk factors, including body weight, lipid profile, blood pressure, and arterial stiffness. Intriguingly, SGLT2 suppressors can regulate microglia-driven hyperinflammation affecting neurological and cardiovascular disorders. In this review, we discuss the protective effects of EMPA in chemotherapy-induced cardiotoxicity from molecular, immunological, and neuroimmunological aspects to preclinical and clinical outcomes.
Collapse
Affiliation(s)
- Zahra Vaziri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran; Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Azadmehr
- Immunology Department, Babol University of Medical Sciences, Babol, Iran
| | - Naghmeh Ziaei
- Clinical Research Development unit of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran; Department of Cardiology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
6
|
Saleki K, Alijanizadeh P, Azadmehr A. Is neuropilin-1 the neuroimmune initiator of multi-system hyperinflammation in COVID-19? Biomed Pharmacother 2023; 167:115558. [PMID: 37748412 DOI: 10.1016/j.biopha.2023.115558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
A major immunopathological feature of Coronavirus disease-2019 (COVID-19) is excessive inflammation in the form of "cytokine storm". The storm is characterized by injurious levels of cytokines which form a complicated network damaging different organs, including the lungs and the brain. The main starter of "cytokine network" hyperactivation in COVID-19 has not been discovered yet. Neuropilins (NRPs) are transmembrane proteins that act as neuronal guidance and angiogenesis modulators. The crucial function of NRPs in forming the nervous and vascular systems has been well-studied. NRP1 and NRP2 are the two identified homologs of NRP. NRP1 has been shown as a viral entry pathway for SARS-CoV2, which facilitates neuroinvasion by the virus within the central or peripheral nervous systems. These molecules directly interact with various COVID-19-related molecules, such as specific regions of the spike protein (major immune element of SARS-CoV2), vascular endothelial growth factor (VEGF) receptors, VEGFR1/2, and ANGPTL4 (regulator of vessel permeability and integrity). NRPs mainly play a role in hyperinflammatory injury of the CNS and lungs, and also the liver, kidney, pancreas, and heart in COVID-19 patients. New findings have suggested NRPs good candidates for pharmacotherapy of COVID-19. However, therapeutic targeting of NRP1 in COVID-19 is still in the preclinical phase. This review presents the implications of NRP1 in multi-organ inflammation-induced injury by SARS-CoV2 and provides insights for NRP1-targeting treatments for COVID-19 patients.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences(SBMU), Tehran, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- Immunology Department, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
7
|
Nouralishahi A, Fazlinejad N, Pecho RDC, Zaidan HK, Kheradjoo H, Amin AH, Mohammadzadehsaliani S. Pathological role of inflammation in ocular disease progress and its targeting by mesenchymal stem cells (MSCs) and their exosome; current status and prospect. Pathol Res Pract 2023; 248:154619. [PMID: 37406377 DOI: 10.1016/j.prp.2023.154619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Because of their unique capacity for differentiation to a diversity of cell lineages and immunosuppressive properties, mesenchymal stem cells (MSC) are being looked at as a potential new treatment option in ophthalmology. The MSCs derived from all tissue sources possess immunomodulatory attributes through cell-to-cell contact and releasing a myriad of immunomodulatory factors (IL-10, TGF-β, growth-related oncogene (GRO), indoleamine 2,3 dioxygenase (IDO), nitric oxide (NO), interleukin 1 receptor antagonist (IL-1Ra), prostaglandin E2 (PGE2)). Such mediators, in turn, alter both the phenotype and action of all immune cells that serve a pathogenic role in the progression of inflammation in eye diseases. Exosomes from MSCs, as natural nano-particles, contain the majority of the bioactive components of parental MSCs and can easily by-pass all biological barriers to reach the target epithelial and immune cells in the eye without interfering with nearby parenchymal cells, thus having no serious side effects. We outlined the most recent research on the molecular mechanisms underlying the therapeutic benefits of MSC and MSC-exosome in the treatment of inflammatory eye diseases in the current article.
Collapse
Affiliation(s)
- Alireza Nouralishahi
- Isfahan Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; KIMS Hospital, Oman
| | | | | | - Haider Kamil Zaidan
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | |
Collapse
|
8
|
Saleki K, Mohamadi MH, Alijanizadeh P, Rezaei N. Neurological adverse effects of chimeric antigen receptor T-cell therapy. Expert Rev Clin Immunol 2023; 19:1361-1383. [PMID: 37578341 DOI: 10.1080/1744666x.2023.2248390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T-cell is among the most prevalent approaches that act by directing T-cells toward cancer; however, they need to be optimized to minimize side effects and maximize efficacy before being used as standard treatment for malignancies. Neurotoxicity associated with CAR T-cell therapy has been well-documented in recent works. AREAS COVERED In this regard, two established syndromes exist. Immune effector cell-associated neurotoxicity syndrome (ICANS), previously called cytokine release encephalopathy syndrome (CRES), is a neuropsychiatric condition which can occur after therapy by immune effector cells (IEC) and T-lymphocytes utilizing treatments. Another syndrome is cytokine release syndrome (CRS), which may overlap with ICANS. EXPERT OPINION ICANS clinical manifestations include cerebral edema, mild lethargy, aphasia, and seizures. Notably, ICANS is associated with changes to EEG and neuroradiological findings. Therefore, it is necessary to make a timely and accurate diagnosis of neurological complications of CAR T-cells by clinical presentations, neuroimaging, and EEG. Since neurological events by different CAR T-cell products are heterogeneous, guides should be developed according to each product. Here, we provide an updated review of general information on CAR T-cell therapies and applications, neurological syndromes associated with their use, and risk factors contributing to ICANS.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences(SBMU), Tehran, Iran
| | | | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
9
|
Pourahmad R, Saleki K, Esmaili M, Abdollahi A, Alijanizadeh P, Gholinejad MZ, Banazadeh M, Ahmadi M. Deep brain stimulation (DBS) as a therapeutic approach in gait disorders: What does it bring to the table? IBRO Neurosci Rep 2023; 14:507-513. [PMID: 37304345 PMCID: PMC10248795 DOI: 10.1016/j.ibneur.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Gait deficits are found in various degenerative central nervous system conditions, and are particularly a hallmark of Parkinson's disease (PD). While there is no cure for such neurodegenerative disorders, Levodopa is considered as the standard medication in PD patients. Often times, the therapy of severe PD consists of deep brain stimulation (DBS) of the subthalamic nucleus. Earlier research exploring the effect of gait have reported contradictory results or insufficient efficacy. A change in gait includes various parameters, such as step length, cadence, Double-stance phase duration which may be positively affected by DBS. DBS could also be effective in correcting the levodopa-induced postural sway abnormalities. Moreover, during normal walking, interaction among the subthalamic nucleus and cortex -essential regions which exert a role in locomotion- are coupled. However, during the freezing of gait, the activity is desynchronized. The mechanisms underlying DBS-induced neurobehavioral improvements in such scenarios requires further study. The present review discusses DBS in the context of gait, the benefits associated with DBS compared to standard pharmacotherapy options, and provides insights into future research.
Collapse
Affiliation(s)
- Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences(SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | | | - Arian Abdollahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | | | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mona Ahmadi
- Department of Neurology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
10
|
Rasoulinejad SA, Kiyamehr P. The Determinative Role of Cytokines in Retinopathy of Prematurity. Curr Mol Med 2023; 23:36-43. [PMID: 35078395 DOI: 10.2174/1566524022666220117114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
Retinopathy of prematurity (ROP) is a neonatal disease corresponding to vision impairment and blindness. Utilizing the pathogenesis of ROP and the risk factors affecting its progression can help prevent and reduce its incidence and lead to the emergence and development of new treatment strategies. Factors influencing retinopathy include growth and inflammatory factors that play an essential role in the pathogenesis of the ROP. This review summarizes the most critical factors in the pathogenesis of ROP.
Collapse
Affiliation(s)
- Seyed Ahmad Rasoulinejad
- Department of Ophthalmology, Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Pegah Kiyamehr
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Javanmehr N, Saleki K, Alijanizadeh P, Rezaei N. Microglia dynamics in aging-related neurobehavioral and neuroinflammatory diseases. J Neuroinflammation 2022; 19:273. [PMID: 36397116 PMCID: PMC9669544 DOI: 10.1186/s12974-022-02637-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Microglia represent the first line of immune feedback in the brain. Beyond immune surveillance, they are essential for maintaining brain homeostasis. Recent research has revealed the microglial cells' spatiotemporal heterogeneity based on their local and time-based functions in brain trauma or disease when homeostasis is disrupted. Distinct "microglial signatures" have been recorded in physiological states and brain injuries, with discrete or sometimes overlapping pro- and anti-inflammatory functions. Microglia are involved in the neurological repair processes, such as neurovascular unit restoration and synaptic plasticity, and manage the extent of the damage due to their phenotype switching. The versatility of cellular phenotypes beyond the classical M1/M2 classification, as well as the double-edge actions of microglia in neurodegeneration, indicate the need for further exploration of microglial cell dynamics and their contribution to neurodegenerative processes. This review discusses the homeostatic functions of different microglial subsets focusing on neuropathological conditions. Also, we address the feasibility of targeting microglia as a therapeutic strategy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
12
|
Saleki K, Mohamadi MH, Banazadeh M, Alijanizadeh P, Javanmehr N, Pourahmad R, Nouri HR. In silico design of a TLR4-mediating multiepitope chimeric vaccine against amyotrophic lateral sclerosis via advanced immunoinformatics. J Leukoc Biol 2022; 112:1191-1207. [PMID: 35707959 DOI: 10.1002/jlb.6ma0721-376rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disorder worldwide. In ALS, progressing disease can result from misfolding and aggregation of superoxide dismutase-1 (SOD1) or TAR DNA-binding protein 43 kDa (TDP43). An efficient immunotherapy for ALS should spare intact SOD1 while eliminating its dysfunctional variant. We utilized advanced immunoinformatics to suggest a potential vaccine candidate against ALS by proposing a model of dynamic TLR4 mediation and induction of a specific Th2-biased shift against mutant SOD1, TDP43, and TRAF6, a protein that specifically interacts with dysfunctional SOD1. SOD1, TDP43, and TRAF6 were retrieved in FASTA. Immune Epitopes Database and CTLpred suggested T/B-cell epitopes from disease-specific regions of selected antigens. A TLR4-mediating adjuvant, RS01, was used. Sequences were assembled via suitable linkers. Tertiary structure of the protein was calculated. Refined protein structure and physicochemical features of the 3D structure were verified in silico. Differential immune induction was assessed via C-ImmSim. GROningen MAchine for Chemical Simulation was used to assess evolution of the docked vaccine-TLR4 complex in blood. Our protein showed high structural quality and was nonallergenic and immune inducing. Also, the vaccine-TLR4 complex stability was verified by RMSD, RMSF, gyration, and visual analyses of the molecular dynamic trajectory. Contact residues in the vaccine-TLR4 complex showed favorable binding energies. Immune stimulation analyses of the proposed candidate demonstrated a sustained memory cell response and a strong adaptive immune reaction. We proposed a potential vaccine candidate against ALS and verified its physicochemical and immune inducing features. Future studies should assess this vaccine in animal studies.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,USERN Office, Babol University of Medical Sciences, Babol, Iran
| | | | - Mohamad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Nouri
- USERN Office, Babol University of Medical Sciences, Babol, Iran.,Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
13
|
Saleki K, Banazadeh M, Saghazadeh A, Rezaei N. Aging, testosterone, and neuroplasticity: friend or foe? Rev Neurosci 2022; 34:247-273. [PMID: 36017670 DOI: 10.1515/revneuro-2022-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
Abstract
Neuroplasticity or neural plasticity implicates the adaptive potential of the brain in response to extrinsic and intrinsic stimuli. The concept has been utilized in different contexts such as injury and neurological disease. Neuroplasticity mechanisms have been classified into neuroregenerative and function-restoring processes. In the context of injury, neuroplasticity has been defined in three post-injury epochs. Testosterone plays a key yet double-edged role in the regulation of several neuroplasticity alterations. Research has shown that testosterone levels are affected by numerous factors such as age, stress, surgical procedures on gonads, and pharmacological treatments. There is an ongoing debate for testosterone replacement therapy (TRT) in aging men; however, TRT is more useful in young individuals with testosterone deficit and more specific subgroups with cognitive dysfunction. Therefore, it is important to pay early attention to testosterone profile and precisely uncover its harms and benefits. In the present review, we discuss the influence of environmental factors, aging, and gender on testosterone-associated alterations in neuroplasticity, as well as the two-sided actions of testosterone in the nervous system. Finally, we provide practical insights for further study of pharmacological treatments for hormonal disorders focusing on restoring neuroplasticity.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,USERN Office, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| | - Mohammad Banazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, 76169 13555 Kerman, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 14176 13151 Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| |
Collapse
|
14
|
Engineering a novel immunogenic chimera protein utilizing bacterial infections associated with atherosclerosis to induce a deviation in adaptive immune responses via Immunoinformatics approaches. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105290. [PMID: 35568333 DOI: 10.1016/j.meegid.2022.105290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022]
Abstract
Recent studies have established the role of bacteria including Streptococcus pneumoniae, Helicobacter pylori, Chlamydia pneumonia, Mycobacterium tuberculosis, and Porphyromonas gingivalis in the development of atherosclerosis. These bacteria contribute to plaque formation via promoting Th1 immune responses and speeding up ox-LDL formation. Hence, we employed computational reverse vaccinology (RV) approaches to deviate immune response toward Th2 via engineering a novel immunogenic chimera protein. Prominent atherogenic antigens from related bacteria were identified. Then, machine learning-based servers were employed for predicting CTL and HTL epitopes. We selected epitopes from a wide variety of HLAs. Then, a chimeric protein sequence containing TAT peptide, adjuvant, IL-10 inducer, and linker-separated epitopes was designed. The conformational structure of the vaccine was built via multiple-template homology modelling using MODELLER. The initial structure was refined and validated by Ramachandran plot. The vaccine was also docked with TLR4. After that, molecular dynamics (MD) simulation of the docked vaccine-TLR4 was conducted. Finally, the immune simulation of the vaccine was conducted via the C-ImmSim server. A chimera protein with 629 amino acids was built and, classified as a non-allergenic probable antigen. An improved ERRAT score of 80.95 for the refined structure verified its stability. Additionally, validation via the Ramachandran plot showed 98.09% of the residues were located in the most favorable and permitted regions. MD simulations showed the vaccine-TLR4 complex reached a stable conformation. Also, RMS fluctuations analysis revealed no sign of protein denaturation or unfolding. Finally, immune response simulations indicated a promising response by innate and adaptive immunity. In summary, we built an immunogenic vaccine against atherosclerosis and demonstrated its favorable properties via advanced Immunoinformatics analyses. This study may pave the path for combat against atherosclerosis.
Collapse
|
15
|
Investigation of the Clinical Laboratory Indexes in COVID-19 Patients with Ocular Symptoms in Iran: A Single-Center Experience. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2022. [DOI: 10.5812/pedinfect.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: Ocular symptoms are prevalent in coronavirus infectious disease 2019 (COVID-19) patients, which may be related to clinical/paraclinical conditions. This study investigated the association between laboratory indexes and ocular symptoms in COVID-19 patients. Methods: In this cross-sectional study, 108 polymerase chain reaction (PCR)-confirmed COVID-19 patients admitted to the Rouhani Hospital, Babol, Iran, were enrolled. Ocular symptoms were investigated using standard ophthalmologic examinations. Routine laboratory investigation was done according to the standard management in patients with COVID-19 infection. Results: The erythrocyte sedimentation rate (ESR) and the serum levels of the blood urea nitrogen (BUN) and creatinine (Cr) were significantly higher in COVID-19 patients with ocular discharge and exudate (P = 0.002, 0.045, 0.046, and 0.027, respectively), while the red blood cell (RBC) and albumin were lower in COVID-19 patients with ocular discharge and exudate (P = 0.029 and 0.027, respectively). The serum levels of creatine kinase (CPK) and iron (Fe) were significantly higher in non-photophobic COVID-19 patients than in photophobic patients (P =0.033 and 0.050, respectively). In contrast, the serum level of procalcitonin was lower than photophobic COVID-19 patients (P = 0.024). The serum level of phosphorus (P) was significantly higher in COVID-19 patients with itchy eyes compared to COVID-19 patients without itchy eyes (P = 0.026). Conclusions: The footprint of laboratory indexes was demonstrated in ocular symptoms of COVID-19 patients. The kidney biomarkers were correlated with ocular discharge and exudate, and electrolytes were associated with tear-related symptoms.
Collapse
|
16
|
Saleki K, Yaribash S, Banazadeh M, Hajihosseinlou E, Gouravani M, Saghazadeh A, Rezaei N. Interferon therapy in patients with SARS, MERS, and COVID-19: A systematic review and meta-analysis of clinical studies. Eur J Pharmacol 2021; 906:174248. [PMID: 34126092 PMCID: PMC8195694 DOI: 10.1016/j.ejphar.2021.174248] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Concern regarding coronavirus (CoV) outbreaks has stayed relevant to global health in the last decades. Emerging COVID-19 infection, caused by the novel SARS-CoV2, is now a pandemic, bringing a substantial burden to human health. Interferon (IFN), combined with other antivirals and various treatments, has been used to treat and prevent MERS-CoV, SARS-CoV, and SARS-CoV2 infections. We aimed to assess the clinical efficacy of IFN-based treatments and combinational therapy with antivirals, corticosteroids, traditional medicine, and other treatments. Major healthcare databases and grey literature were investigated. A three-stage screening was utilized, and included studies were checked against the protocol eligibility criteria. Risk of bias assessment and data extraction were performed, followed by narrative data synthesis. Fifty-five distinct studies of SARS-CoV2, MERS-CoV, and SARS-CoV were spotted. Our narrative synthesis showed a possible benefit in the use of IFN. A good quality cohort showed lower CRP levels in Arbidol (ARB) + IFN group vs. IFN only group. Another study reported a significantly shorter chest X-ray (CXR) resolution in IFN-Alfacon-1 + corticosteroid group compared with the corticosteroid only group in SARS-CoV patients. In a COVID-19 trial, total adverse drug events (ADEs) were much lower in the Favipiravir (FPV) + IFN-α group compared with the LPV/RTV arm (P = 0.001). Also, nausea in patients receiving FPV + IFN-α regimen was significantly lower (P = 0.03). Quantitative analysis of mortality did not show a conclusive effect for IFN/RBV treatment in six moderately heterogeneous MERS-CoV studies (log OR = -0.05, 95% CI: (-0.71,0.62), I2 = 44.71%). A meta-analysis of three COVID-19 studies did not show a conclusive nor meaningful relation between receiving IFN and COVID-19 severity (log OR = -0.44, 95% CI: (-1.13,0.25), I2 = 31.42%). A lack of high-quality cohorts and controlled trials was observed. Evidence suggests the potential efficacy of several combination IFN therapies such as lower ADEs, quicker resolution of CXR, or a decrease in inflammatory cytokines; Still, these options must possibly be further explored before being recommended in public guidelines. For all major CoVs, our results may indicate a lack of a definitive effect of IFN treatment on mortality. We recommend such therapeutics be administered with extreme caution until further investigation uncovers high-quality evidence in favor of IFN or combination therapy with IFN.
Collapse
Affiliation(s)
- Kiarash Saleki
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Shakila Yaribash
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; International Campus, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Banazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Hajihosseinlou
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gouravani
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
17
|
Saleki K, Banazadeh M, Miri NS, Azadmehr A. Triangle of cytokine storm, central nervous system involvement, and viral infection in COVID-19: the role of sFasL and neuropilin-1. Rev Neurosci 2021; 33:147-160. [PMID: 34225390 DOI: 10.1515/revneuro-2021-0047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is identified as the cause of coronavirus disease 2019 (COVID-19), and is often linked to extreme inflammatory responses by over activation of neutrophil extracellular traps (NETs), cytokine storm, and sepsis. These are robust causes for multi-organ damage. In particular, potential routes of SARS-CoV2 entry, such as angiotensin-converting enzyme 2 (ACE2), have been linked to central nervous system (CNS) involvement. CNS has been recognized as one of the most susceptible compartments to cytokine storm, which can be affected by neuropilin-1 (NRP-1). ACE2 is widely-recognized as a SARS-CoV2 entry pathway; However, NRP-1 has been recently introduced as a novel path of viral entry. Apoptosis of cells invaded by this virus involves Fas receptor-Fas ligand (FasL) signaling; moreover, Fas receptor may function as a controller of inflammation. Furthermore, NRP-1 may influence FasL and modulate cytokine profile. The neuroimmunological insult by SARS-CoV2 infection may be inhibited by therapeutic approaches targeting soluble Fas ligand (sFasL), cytokine storm elements, or related viral entry pathways. In the current review, we explain pivotal players behind the activation of cytokine storm that are associated with vast CNS injury. We also hypothesize that sFasL may affect neuroinflammatory processes and trigger the cytokine storm in COVID-19.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, 47176-47745, Iran
- USERN Office, Babol University of Medical Sciences, Babol, 47176-47745, Iran
- National Elite Foundation, Mazandaran Province Branch, Tehran, 48157-66435, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, 76169-13555, Iran
| | - Niloufar Sadat Miri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, 47176-47745, Iran
| | - Abbas Azadmehr
- National Elite Foundation, Mazandaran Province Branch, Tehran, 48157-66435, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, 47176-47745, Iran
- Medical Immunology Department, Babol University of Medical Sciences, Babol, 47176-47745, Iran
| |
Collapse
|