1
|
Lenchours Pezzano J, Rodriguez YE, Fernández-Gimenez AV, Laitano MV. Exploring fishery waste potential as antifouling component. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20159-20171. [PMID: 38372927 DOI: 10.1007/s11356-024-32491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
Marine biofouling is a global issue with economic and ecological implications. Existing solutions, such as biocide-based antifouling paints, are toxic for the environment. The search for better antifouling agents remains crucial. Recent research focuses on eco-friendly antifouling paints containing natural compounds like enzymes. This study evaluates enzymatic extracts from fishery residues for antifouling potential. Extracts from Pleoticus muelleri shrimp, Illex argentinus squid, and Lithodes santolla king crab were analyzed. Proteolytic activity and thermal stability were assessed, followed by bioassays on mussel byssus thread formation and barnacle cypris adhesive footprints. All three extracts demonstrated proteolytic activity and 24-h stability at temperate oceanic temperatures, except I. argentinus. P. muelleri extracts hindered cyprid footprint formation and mussel byssus thread generation. Further purification is required for L. santolla extract to assess its antifouling potential activity. This study introduces the use of fishery waste-derived enzyme extracts as a novel antifouling agent, providing a sustainable tool to fight against biofouling formation.
Collapse
Affiliation(s)
- Juliana Lenchours Pezzano
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Yamila E Rodriguez
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
- Marine and Coastal Research Institute (IIMyC), Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Scientific and Technological Research National Council, Mar del Plata, Argentina
| | - Analía V Fernández-Gimenez
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
- Marine and Coastal Research Institute (IIMyC), Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Scientific and Technological Research National Council, Mar del Plata, Argentina
| | - María V Laitano
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina.
- Marine and Coastal Research Institute (IIMyC), Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Scientific and Technological Research National Council, Mar del Plata, Argentina.
| |
Collapse
|
2
|
Hur S, Méthivier C, Wilson A, Salmain M, Boujday S, Miserez A. Biomineralization in Barnacle Base Plate in Association with Adhesive Cement Protein. ACS APPLIED BIO MATERIALS 2023; 6:3423-3432. [PMID: 37078387 DOI: 10.1021/acsabm.3c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Barnacles strongly attach to various underwater substrates by depositing and curing a proteinaceous cement that forms a permanent adhesive layer. The protein MrCP20 present within the calcareous base plate of the acorn barnacle Megabalanus rosa (M. rosa) was investigated for its role in regulating biomineralization and growth of the barnacle base plate, as well as the influence of the mineral on the protein structure and corresponding functional role. Calcium carbonate (CaCO3) growth on gold surfaces modified by 11-mercaptoundecanoic acid (MUA/Au) with or without the protein was followed using quartz crystal microbalance with dissipation monitoring (QCM-D), and the grown crystal polymorph was identified by Raman spectroscopy. It is found that MrCP20 either in solution or on the surface affects the kinetics of nucleation and growth of crystals and stabilizes the metastable vaterite polymorph of CaCO3. A comparative study of mass uptake calculated by applying the Sauerbrey equation to the QCM-D data and quantitative X-ray photoelectron spectroscopy determined that the final surface density of the crystals as well as the crystallization kinetics are influenced by MrCP20. In addition, polarization modulation infrared reflection-absorption spectroscopy of MrCP20 established that, during crystal growth, the content of β-sheet structures in MrCP20 increases, in line with the formation of amyloid-like fibrils. The results provide insights into the molecular mechanisms by which MrCP20 regulates the biomineralization of the barnacle base plate, while favoring fibril formation, which is advantageous for other functional roles such as adhesion and cohesion.
Collapse
Affiliation(s)
- Sunyoung Hur
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 637553
| | - Christophe Méthivier
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
| | - Axel Wilson
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
| | - Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005 Paris, France
| | - Souhir Boujday
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 637553
- School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore, 637551
| |
Collapse
|
3
|
Tilbury MA, Tran TQ, Shingare D, Lefevre M, Power AM, Leclère P, Wall JG. Self-assembly of a barnacle cement protein into intertwined amyloid fibres and determination of their adhesive and viscoelastic properties. J R Soc Interface 2023; 20:20230332. [PMID: 37553991 PMCID: PMC10410215 DOI: 10.1098/rsif.2023.0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
The stalked barnacle Pollicipes pollicipes uses a multi-protein cement to adhere to highly varied substrates in marine environments. We investigated the morphology and adhesiveness of a component 19 kDa protein in barnacle cement gland- and seawater-like conditions, using transmission electron microscopy and state-of-the art scanning probe techniques. The protein formed amyloid fibres after 5 days in gland-like but not seawater conditions. After 7-11 days, the fibres self-assembled under gland-like conditions into large intertwined fibrils of up to 10 µm in length and 200 nm in height, with a distinctive twisting of fibrils evident after 11 days. Atomic force microscopy (AFM)-nanodynamic mechanical analysis of the protein in wet conditions determined E' (elasticity), E'' (viscosity) and tan δ values of 2.8 MPa, 1.2 MPa and 0.37, respectively, indicating that the protein is a soft and viscoelastic material, while the adhesiveness of the unassembled protein and assembled fibres, measured using peak force quantitative nanomechanical mapping, was comparable to that of the commercial adhesive Cell-Tak™. The study provides a comprehensive insight into the nanomechanical and viscoelastic properties of the barnacle cement protein and its self-assembled fibres under native-like conditions and may have application in the design of amyloid fibril-based biomaterials or bioadhesives.
Collapse
Affiliation(s)
- Maura A. Tilbury
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Thi Quynh Tran
- Laboratory for Physics of Nanomaterials and Energy, Research Institute for Materials, University of Mons, 7000 Mons, Belgium
| | - Dilip Shingare
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Mathilde Lefevre
- Laboratory for Physics of Nanomaterials and Energy, Research Institute for Materials, University of Mons, 7000 Mons, Belgium
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Philippe Leclère
- Laboratory for Physics of Nanomaterials and Energy, Research Institute for Materials, University of Mons, 7000 Mons, Belgium
| | - J. Gerard Wall
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Targeted hydrolysis of native potato protein: A novel workflow for obtaining hydrolysates with improved interfacial properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
5
|
Sarkar PK, Pawar SS, Rath SK, Kandasubramanian B. Anti-barnacle biofouling coatings for the protection of marine vessels: synthesis and progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26078-26112. [PMID: 35076840 DOI: 10.1007/s11356-021-18404-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Marine biofouling has gnawed both mobile and non-mobile marine structures since time immemorial, leading to the deterioration of designed operational capabilities as well as a loss of valuable economic revenues. Mitigation of biofouling has been the primary focus of researchers and scientists from across the globe to save billions of dollars wasted due to the biological fouling of marine structures. The availability of an appropriate environment along with favorable substrata initiates biofilm formation within a few minutes. The crucial element in establishing a gelatinous biofilm is the excreted metabolites of destructive nature and exopolymeric substances (EPSs). These help in securing as well as signaling numerous foulants to establish themselves on this substrate. The larvae of various benthic invertebrates adhere to these suitable surfaces and transform from juveniles to adult barnacles depending upon the environment. Despite biofouling being characteristically witnessed for a month or lengthier timeframe, the preliminary phases of the fouling process typically transpire on a much lesser timescale. A few natural and synthetic additives had demonstrated excellent non-toxic anti barnacle establishment capability; however, further development into commercial products is still far-fetched. This review collates the specific anti-barnacle coatings, emphasizing natural additives, their sources of extraction, general life cycle analysis, and concluding future perspectives of this niche product.
Collapse
Affiliation(s)
- Pramit Kumar Sarkar
- Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced, Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, India
- Mazagon Dock Shipbuilders Ltd, Ministry of Defence, Dockyard Road, Mumbai, 400010, Maharashtra, India
| | - Sushil S Pawar
- Protective Coatings Department, Naval Materials Research Laboratory, Ministry of Defence, DRDO, Ambernath, 421506, Maharashtra, India
| | - Sangram K Rath
- Protective Coatings Department, Naval Materials Research Laboratory, Ministry of Defence, DRDO, Ambernath, 421506, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced, Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, India.
| |
Collapse
|
6
|
Lahiri D, Nag M, Dey A, Sarkar T, Ray RR, Rebezov M, Shariati MA, Thiruvengadam M, Simal‐Gandara J. Immobilized enzymes as potent antibiofilm agent. Biotechnol Prog 2022; 38:e3281. [PMID: 35690881 PMCID: PMC9786792 DOI: 10.1002/btpr.3281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/03/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
Biofilm has been a point of concern in hospitals and various industries. They not only cause various chronic infections but are also responsible for the degradation of various medical appliances. Since the last decade, various alternate strategies are being adopted to combat the biofilm formed on various biotic and abiotic surfaces. The use of enzymes as a potent anti-fouling agent is proved to be of utmost importance as the enzymes can inhibit biofilm formation in an eco-friendly and cost-effective way. The physical and chemical immobilization of the enzyme not only leads to the improvement of thermostability and reusability of the enzyme, but also gains better efficiency of biofilm removal. Immobilization of amylase, cellobiohydrolase, pectinase, subtilisin A and β-N-acetyl-glucosaminidase (DspB) are proved to be most effective in inhibition of biofilm formation and removal of matured biofilm than their free forms. Hence, these immobilized enzymes provide greater eradication of biofilm formed on various surfaces and are coming up to be the potent antibiofilm agent.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of BiotechnologyUniversity of Engineering & ManagementKolkataWest BengalIndia
| | - Moupriya Nag
- Department of BiotechnologyUniversity of Engineering & ManagementKolkataWest BengalIndia
| | - Ankita Dey
- Department of MicrobiologyBelle Vue ClinicsKolkataWest BengalIndia
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda PolytechnicWest Bengal State Council of Technical Education, Govtment of West BengalMalda732102India
| | - Rina Rani Ray
- Department of BiotechnologyMaulana Abul Kalam Azad University of TechnologyHaringhataWest BengalIndia
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food SystemsMoscowRussian Federation,Prokhorov General Physics Institute of the Russian Academy of SciencesMoscowRussian Federation,Liaocheng UniversityLiaochengShandongChina
| | - Mohammad Ali Shariati
- Liaocheng UniversityLiaochengShandongChina,Department of Scientific ResearchK. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University)MoscowRussian Federation
| | - Muthu Thiruvengadam
- Department of Crop ScienceCollege of Sanghuh Life Science, Konkuk UniversitySeoulSouth Korea
| | - Jesus Simal‐Gandara
- Universidade de Vigo, Nutrition and Bromatology GroupAnalytical Chemistry and Food Science Department, Faculty of ScienceOurenseSpain
| |
Collapse
|
7
|
Domínguez-Pérez D, Almeida D, Wissing J, Machado AM, Jänsch L, Castro LF, Antunes A, Vasconcelos V, Campos A, Cunha I. The Quantitative Proteome of the Cement and Adhesive Gland of the Pedunculate Barnacle, Pollicipes pollicipes. Int J Mol Sci 2020; 21:E2524. [PMID: 32260514 PMCID: PMC7177777 DOI: 10.3390/ijms21072524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
Adhesive secretion has a fundamental role in barnacles' survival, keeping them in an adequate position on the substrate under a variety of hydrologic regimes. It arouses special interest for industrial applications, such as antifouling strategies, underwater industrial and surgical glues, and dental composites. This study was focused on the goose barnacle Pollicipes pollicipes adhesion system, a species that lives in the Eastern Atlantic strongly exposed intertidal rocky shores and cliffs. The protein composition of P. pollicipes cement multicomplex and cement gland was quantitatively studied using a label-free LC-MS high-throughput proteomic analysis, searched against a custom transcriptome-derived database. Overall, 11,755 peptide sequences were identified in the gland while 2880 peptide sequences were detected in the cement, clustered in 1616 and 1568 protein groups, respectively. The gland proteome was dominated by proteins of the muscle, cytoskeleton, and some uncharacterized proteins, while the cement was, for the first time, reported to be composed by nearly 50% of proteins that are not canonical cement proteins, mainly unannotated proteins, chemical cues, and protease inhibitors, among others. Bulk adhesive proteins accounted for one-third of the cement proteome, with CP52k being the most abundant. Some unannotated proteins highly expressed in the proteomes, as well as at the transcriptomic level, showed similar physicochemical properties to the known surface-coupling barnacle adhesive proteins while the function of the others remains to be discovered. New quantitative and qualitative clues are provided to understand the diversity and function of proteins in the cement of stalked barnacles, contributing to the whole adhesion model in Cirripedia.
Collapse
Affiliation(s)
- Dany Domínguez-Pérez
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua General Norton de Matos s/n, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (D.D.-P.); (D.A.); (A.M.M.); (L.F.C.); (A.A.); (V.V.); (A.C.)
| | - Daniela Almeida
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua General Norton de Matos s/n, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (D.D.-P.); (D.A.); (A.M.M.); (L.F.C.); (A.A.); (V.V.); (A.C.)
| | - Josef Wissing
- Cellular Proteomics Research, Helmholtz Centre for Infection Research, Inhoffenstraße. 7, 38124 Braunschweig, Germany; (J.W.); (L.J.)
| | - André M. Machado
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua General Norton de Matos s/n, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (D.D.-P.); (D.A.); (A.M.M.); (L.F.C.); (A.A.); (V.V.); (A.C.)
| | - Lothar Jänsch
- Cellular Proteomics Research, Helmholtz Centre for Infection Research, Inhoffenstraße. 7, 38124 Braunschweig, Germany; (J.W.); (L.J.)
| | - Luís Filipe Castro
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua General Norton de Matos s/n, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (D.D.-P.); (D.A.); (A.M.M.); (L.F.C.); (A.A.); (V.V.); (A.C.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua General Norton de Matos s/n, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (D.D.-P.); (D.A.); (A.M.M.); (L.F.C.); (A.A.); (V.V.); (A.C.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua General Norton de Matos s/n, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (D.D.-P.); (D.A.); (A.M.M.); (L.F.C.); (A.A.); (V.V.); (A.C.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Alexandre Campos
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua General Norton de Matos s/n, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (D.D.-P.); (D.A.); (A.M.M.); (L.F.C.); (A.A.); (V.V.); (A.C.)
| | - Isabel Cunha
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua General Norton de Matos s/n, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (D.D.-P.); (D.A.); (A.M.M.); (L.F.C.); (A.A.); (V.V.); (A.C.)
| |
Collapse
|
8
|
Transcriptional characterisation of the Exaiptasia pallida pedal disc. BMC Genomics 2019; 20:581. [PMID: 31299887 PMCID: PMC6626399 DOI: 10.1186/s12864-019-5917-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Biological adhesion (bioadhesion), enables organisms to attach to surfaces as well as to a range of other targets. Bioadhesion evolved numerous times independently and is ubiquitous throughout the kingdoms of life. To date, investigations have focussed on various taxa of animals, plants and bacteria, but the fundamental processes underlying bioadhesion and the degree of conservation in different biological systems remain poorly understood. This study had two aims: 1) To characterise tissue-specific gene regulation in the pedal disc of the model cnidarian Exaiptasia pallida, and 2) to elucidate putative genes involved in pedal disc adhesion. RESULTS Five hundred and forty-seven genes were differentially expressed in the pedal disc compared to the rest of the animal. Four hundred and twenty-seven genes were significantly upregulated and 120 genes were significantly downregulated. Forty-one condensed gene ontology terms and 19 protein superfamily classifications were enriched in the pedal disc. Eight condensed gene ontology terms and 11 protein superfamily classifications were depleted. Enriched superfamilies were consistent with classifications identified previously as important for the bioadhesion of unrelated marine invertebrates. A host of genes involved in regulation of extracellular matrix generation and degradation were identified, as well as others related to development and immunity. Ab initio prediction identified 173 upregulated genes that putatively code for extracellularly secreted proteins. CONCLUSION The analytical workflow facilitated identification of genes putatively involved in adhesion, immunity, defence and development of the E. pallida pedal disc. When defence, immunity and development-related genes were identified, those remaining corresponded most closely to formation of the extracellular matrix (ECM), implicating ECM in the adhesion of anemones to surfaces. This study therefore provides a valuable high-throughput resource for the bioadhesion community and lays a foundation for further targeted research to elucidate bioadhesion in the Cnidaria.
Collapse
|
9
|
Aldred N, Alsaab A, Clare AS. Quantitative analysis of the complete larval settlement process confirms Crisp's model of surface selectivity by barnacles. Proc Biol Sci 2019; 285:rspb.2017.1957. [PMID: 29445024 DOI: 10.1098/rspb.2017.1957] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/18/2018] [Indexed: 11/12/2022] Open
Abstract
For barnacle cypris larvae at the point of settlement, selection of an appropriate surface is critical. Since post-settlement relocation is usually impossible, barnacles have evolved finely tuned surface-sensing capabilities to identify suitable substrata, and a temporary adhesion system for extensive surface exploration. The pattern of exploratory behaviour appears complex and may last for several hours, imposing significant barriers to quantitative measurement. Here, we employ a novel tracking system that enables simultaneous analysis of the larval body movement of multiple individuals over their entire planktonic phase. For the first time, to our knowledge, we describe quantitatively the complete settlement process of cyprids as they explore and select surfaces for attachment. We confirm the 'classic' behaviours of wide searching, close searching and inspection that comprise a model originally proposed by Prof. Dennis Crisp FRS. Moreover, a short-term assay of cyprid body movement has identified inspection behaviour as the best indicator of propensity to settle, with more inspection-related movements occurring in conditions that also promote higher settlement. More than half a century after the model was first proposed by Crisp, there exists a precise method for quantifying cyprid settlement behaviour in wide-ranging investigations of barnacle ecology and applied studies of fouling management.
Collapse
Affiliation(s)
- Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Ahmad Alsaab
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
10
|
Mosnáček J, Osička J, Popelka A, Zavahir S, Ben-Hamadou R, Kasák P. Photochemical grafting of polysulfobetaine onto polyethylene and polystyrene surfaces and investigation of long-term stability of the polysulfobetaine layer in seawater. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jaroslav Mosnáček
- Center for Advanced Materials; Qatar University; PO Box 2713 Doha Qatar
- Polymer Institute; Slovak Academy of Sciences; Dubravska cesta 9 845 41 Bratislava Slovakia
| | - Jozef Osička
- Center for Advanced Materials; Qatar University; PO Box 2713 Doha Qatar
| | - Anton Popelka
- Center for Advanced Materials; Qatar University; PO Box 2713 Doha Qatar
| | - Sifani Zavahir
- Center for Advanced Materials; Qatar University; PO Box 2713 Doha Qatar
| | - Radhouane Ben-Hamadou
- Department of Biological and Environmental Sciences, College of Arts and Sciences; Qatar University; PO Box 2713 Doha Qatar
| | - Peter Kasák
- Center for Advanced Materials; Qatar University; PO Box 2713 Doha Qatar
| |
Collapse
|
11
|
He LS, Zhang G, Wang Y, Yan GY, Qian PY. Toward understanding barnacle cementing by characterization of one cement protein-100kDa in Amphibalanus amphitrite. Biochem Biophys Res Commun 2018; 495:969-975. [DOI: 10.1016/j.bbrc.2017.11.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
|
12
|
Wenning BM, Martinelli E, Mieszkin S, Finlay JA, Fischer D, Callow JA, Callow ME, Leonardi AK, Ober CK, Galli G. Model Amphiphilic Block Copolymers with Tailored Molecular Weight and Composition in PDMS-Based Films to Limit Soft Biofouling. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16505-16516. [PMID: 28429593 DOI: 10.1021/acsami.7b03168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A set of controlled surface composition films was produced utilizing amphiphilic block copolymers dispersed in a cross-linked poly(dimethylsiloxane) network. These block copolymers contained oligo(ethylene glycol) (PEGMA) and fluoroalkyl (AF6) side chains in selected ratios and molecular weights to control surface chemistry including antifouling and fouling-release performance. Such properties were assessed by carrying out assays using two algae, the green macroalga Ulva linza (favors attachment to polar surfaces) and the unicellular diatom Navicula incerta (favors attachment to nonpolar surfaces). All films performed well against U. linza and exhibited high removal of attached sporelings (young plants) under an applied shear stress, with the lower molecular weight block copolymers being the best performing in the set. The composition ratios from 50:50 to 60:40 of the AF6/PEGMA side groups were shown to be more effective, with several films exhibiting spontaneous removal of the sporelings. The cells of N. incerta were also removed from several coating compositions. All films were characterized by surface techniques including captive bubble contact angle, atomic force microscopy, and near edge X-ray absorption fine structure spectroscopy to correlate surface chemistry and morphology with biological performance.
Collapse
Affiliation(s)
- Brandon M Wenning
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Pisa 56124, Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Pisa 56124, Italy
| | - Sophie Mieszkin
- School of Biosciences, The University of Birmingham , Edgbaston, Birmingham B15 5TT, U.K
| | - John A Finlay
- School of Biosciences, The University of Birmingham , Edgbaston, Birmingham B15 5TT, U.K
| | - Daniel Fischer
- National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | - James A Callow
- School of Biosciences, The University of Birmingham , Edgbaston, Birmingham B15 5TT, U.K
| | - Maureen E Callow
- School of Biosciences, The University of Birmingham , Edgbaston, Birmingham B15 5TT, U.K
| | | | | | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Pisa 56124, Italy
| |
Collapse
|
13
|
Alsaab A, Aldred N, Clare AS. Automated tracking and classification of the settlement behaviour of barnacle cyprids. J R Soc Interface 2017; 14:rsif.2016.0957. [PMID: 28356538 PMCID: PMC5378130 DOI: 10.1098/rsif.2016.0957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/03/2017] [Indexed: 01/20/2023] Open
Abstract
A focus on the development of nontoxic coatings to control marine biofouling has led to increasing interest in the settlement behaviour of fouling organisms. Barnacles pose a significant fouling challenge and accordingly the behaviour of their settlement-stage cypris larva (cyprid) has attracted much attention, yet remains poorly understood. Tracking technologies have been developed that quantify cyprid movement, but none have successfully automated data acquisition over the prolonged periods necessary to capture and identify the full repertoire of behaviours, from alighting on a surface to permanent attachment. Here we outline a new tracking system and a novel classification system for identifying and quantifying the exploratory behaviour of cyprids. The combined system enables, for the first time, tracking of multiple larvae, simultaneously, over long periods (hours), followed by automatic classification of typical cyprid behaviours into swimming, wide search, close search and inspection events. The system has been evaluated by comparing settlement behaviour in the light and dark (infrared illumination) and tracking one of a group of 25 cyprids from the water column to settlement over the course of 5 h. Having removed a significant technical barrier to progress in the field, it is anticipated that the system will accelerate our understanding of the process of surface selection and settlement by barnacles.
Collapse
Affiliation(s)
- Ahmad Alsaab
- School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Nick Aldred
- School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Anthony S Clare
- School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
14
|
Patterson AL, Wenning B, Rizis G, Calabrese DR, Finlay JA, Franco SC, Zuckermann RN, Clare AS, Kramer EJ, Ober CK, Segalman RA. Role of Backbone Chemistry and Monomer Sequence in Amphiphilic Oligopeptide- and Oligopeptoid-Functionalized PDMS- and PEO-Based Block Copolymers for Marine Antifouling and Fouling Release Coatings. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02505] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | | | - John A. Finlay
- School
of Marine Science and Technology, Newcastle University, Newcastle
upon Tyne NE17RU, U.K
| | - Sofia C. Franco
- School
of Marine Science and Technology, Newcastle University, Newcastle
upon Tyne NE17RU, U.K
| | - Ronald N. Zuckermann
- The
Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Anthony S. Clare
- School
of Marine Science and Technology, Newcastle University, Newcastle
upon Tyne NE17RU, U.K
| | | | | | | |
Collapse
|
15
|
Thaiphanit S, Schleining G, Anprung P. Effects of coconut (Cocos nucifera L.) protein hydrolysates obtained from enzymatic hydrolysis on the stability and rheological properties of oil-in-water emulsions. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.03.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Jiang D, Liu Z, He X, Han J, Wu X. Polyacrylamide strengthened mixed-charge hydrogels and their applications in resistance to protein adsorption and algae attachment. RSC Adv 2016. [DOI: 10.1039/c6ra05312b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mixed-charge polymer hydrogels were successfully prepared by copolymerization of different ratios of [2-(meth-acryloyloxy)ethyl]trimethylammonium (TMA) and 3-sulfopropyl methacrylate (SA).
Collapse
Affiliation(s)
- Daoyi Jiang
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Zhixiong Liu
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Xiaoyan He
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Jin Han
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Xuedong Wu
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| |
Collapse
|
17
|
In vivo and in situ synchrotron radiation-based μ-XRF reveals elemental distributions during the early attachment phase of barnacle larvae and juvenile barnacles. Anal Bioanal Chem 2015; 408:1487-96. [DOI: 10.1007/s00216-015-9253-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 01/07/2023]
|
18
|
Zhao N, Wang Z, Cai C, Shen H, Liang F, Wang D, Wang C, Zhu T, Guo J, Wang Y, Liu X, Duan C, Wang H, Mao Y, Jia X, Dong H, Zhang X, Xu J. Bioinspired materials: from low to high dimensional structure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6994-7017. [PMID: 25212698 DOI: 10.1002/adma.201401718] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/11/2014] [Indexed: 06/03/2023]
Abstract
The surprising properties of biomaterials are the results of billions of years of evolution. Generally, biomaterials are assembled under mild conditions with very limited supply of constituents available for living organism, and their amazing properties largely result from the sophisticated hierarchical structures. Following the biomimetic principles to prepare manmade materials has drawn great research interests in materials science and engineering. In this review, we summarize the recent progress in fabricating bioinspired materials with the emphasis on mimicking the structure from one to three dimensions. Selected examples are described with a focus on the relationship between the structural characters and the corresponding functions. For one-dimensional materials, spider fibers, polar bear hair, multichannel plant roots and so on have been involved. Natural structure color and color shifting surfaces, and the antifouling, antireflective coatings of biomaterials are chosen as the typical examples of the two-dimensional biomimicking. The outstanding protection performance, and the stimuli responsive and self-healing functions of biomaterials based on the sophisticated hierarchical bulk structures are the emphases of the three-dimensional mimicking. Finally, a summary and outlook are given.
Collapse
Affiliation(s)
- Ning Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ma J, Ma C, Yang Y, Xu W, Zhang G. Biodegradable Polyurethane Carrying Antifoulants for Inhibition of Marine Biofouling. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502147t] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jielin Ma
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Chunfeng Ma
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Yun Yang
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Wentao Xu
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Guangzhao Zhang
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
- Hefei
National Laboratory for Physical Sciences at Microscale, Department
of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
20
|
Gohad NV, Aldred N, Hartshorn CM, Jong Lee Y, Cicerone MT, Orihuela B, Clare AS, Rittschof D, Mount AS. Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae. Nat Commun 2014; 5:4414. [DOI: 10.1038/ncomms5414] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 06/16/2014] [Indexed: 12/23/2022] Open
|
21
|
|
22
|
Ma C, Xu L, Xu W, Zhang G. Degradable polyurethane for marine anti-biofouling. J Mater Chem B 2013; 1:3099-3106. [PMID: 32261013 DOI: 10.1039/c3tb20454e] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Degradable polyurethane (PU) with copolyester oligomer consisting of ε-caprolactone (CL) and glycolide (GA) as the soft segments has been prepared by a combination of ring-opening polymerization and condensation reaction. Enzymatic and hydrolytic degradation experiments demonstrate that the PU can degrade in seawater. Such a polyurethane exhibit a more rapid degradation in comparison with that with poly(ε-caprolactone) (PCL) soft segments because the introduction of GA can reduce the crystallinity, as revealed by differential scanning calorimetry (DSC) and polarizing optical microscope (POM). Marine field tests show that the degradable polyurethane has good antifouling ability due to its self-renewal property. Besides, such polyurethane can serve as a carrier and controlled release system for an antifoulant, and the incorporation of an antifoulant in the polyurethane can significantly improve the antifouling ability and duration.
Collapse
Affiliation(s)
- Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
| | | | | | | |
Collapse
|
23
|
|
24
|
Abstract
Barnacles are intriguing, not only with respect to their importance as fouling organisms, but also in terms of the mechanism of underwater adhesion, which provides a platform for biomimetic and bioinspired research. These aspects have prompted questions regarding how adult barnacles attach to surfaces under water. The multidisciplinary and interdisciplinary nature of the studies makes an overview covering all aspects challenging. This mini-review, therefore, attempts to bring together aspects of the adhesion of adult barnacles by looking at the achievements of research focused on both fouling and adhesion. Biological and biochemical studies, which have been motivated mainly by understanding the nature of the adhesion, indicate that the molecular characteristics of barnacle adhesive are unique. However, it is apparent from recent advances in molecular techniques that much remains undiscovered regarding the complex event of underwater attachment. Barnacles attached to silicone-based elastomeric coatings have been studied widely, particularly with respect to fouling-release technology. The fact that barnacles fail to attach tenaciously to silicone coatings, combined with the fact that the mode of attachment to these substrata is different to that for most other materials, indicates that knowledge about the natural mechanism of barnacle attachment is still incomplete. Further research on barnacles will enable a more comprehensive understanding of both the process of attachment and the adhesives used. Results from such studies will have a strong impact on technology aimed at fouling prevention as well as adhesion science and engineering.
Collapse
Affiliation(s)
- Kei Kamino
- Department of Biotechnology, National Institute of Technology and Evaluation, Kisarazu, Japan.
| |
Collapse
|
25
|
Bré LP, Zheng Y, Pêgo AP, Wang W. Taking tissue adhesives to the future: from traditional synthetic to new biomimetic approaches. Biomater Sci 2013; 1:239-253. [DOI: 10.1039/c2bm00121g] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Abstract
Various antifouling (AF) coatings have been developed to protect submerged surfaces by deterring the settlement of the colonizing stages of fouling organisms. A review of the literature shows that effective AF compounds with specific targets are ones often considered non-toxic. Such compounds act variously on ion channels, quorum sensing systems, neurotransmitters, production/release of adhesive, and specific enzymes that regulate energy production or primary metabolism. In contrast, AF compounds with general targets may or may not act through toxic mechanisms. These compounds affect a variety of biological activities including algal photosynthesis, energy production, stress responses, genotoxic damage, immunosuppressed protein expression, oxidation, neurotransmission, surface chemistry, the formation of biofilms, and adhesive production/release. Among all the targets, adhesive production/release is the most common, possibly due to a more extensive research effort in this area. Overall, the specific molecular targets and the molecular mechanisms of most AF compounds have not been identified. Thus, the information available is insufficient to draw firm conclusions about the types of molecular targets to be used as sensitive biomarkers for future design and screening of compounds with AF potential. In this review, the relevant advantages and disadvantages of the molecular tools available for studying the molecular targets of AF compounds are highlighted briefly and the molecular mechanisms of the AF compounds, which are largely a source of speculation in the literature, are discussed.
Collapse
Affiliation(s)
- Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, HKSAR, China.
| | | | | |
Collapse
|
27
|
Ma C, Yang H, Zhou X, Wu B, Zhang G. Polymeric material for anti-biofouling. Colloids Surf B Biointerfaces 2012; 100:31-5. [DOI: 10.1016/j.colsurfb.2012.04.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/12/2012] [Accepted: 04/20/2012] [Indexed: 11/16/2022]
|
28
|
Regina VR, Søhoel H, Lokanathan AR, Bischoff C, Kingshott P, Revsbech NP, Meyer RL. Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications. ACS APPLIED MATERIALS & INTERFACES 2012; 4:5915-21. [PMID: 23020255 DOI: 10.1021/am301554m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Enzymes with antifouling properties are of great interest in developing nontoxic antifouling coatings. A bottleneck in developing enzyme-based antifouling coatings is to immobilize the enzyme in a suitable coating matrix without compromising its activity and stability. Entrapment of enzymes in ceramics using the sol-gel method is known to have several advantages over other immobilization methods. The sol-gel method can be used to make robust coatings, and the aim of this study was to explore if sol-gel technology can be used to develop robust coatings harboring active enzymes for antifouling applications. We successfully entrapped a protease, subtilisin (Savinase, Novozymes), in a ceramic coating using a sol-gel method. The sol-gel formulation, when coated on a stainless steel surface, adhered strongly and cured at room temperature in less than 8 h. The resultant coating was smoother and less hydrophobic than stainless steel. Changes in the coating's surface structure, thickness and chemistry indicate that the coating undergoes gradual erosion in aqueous medium, which results in release of subtilisin. Subtilisin activity in the coating increased initially, and then gradually decreased. After 9 months, 13% of the initial enzyme activity remained. Compared to stainless steel, the sol-gel-coated surfaces with active subtilisin were able to reduce bacterial attachment of both Gram positive and Gram negative bacteria by 2 orders of magnitude. Together, our results demonstrate that the sol-gel method is a promising coating technology for entrapping active enzymes, presenting an interesting avenue for enzyme-based antifouling solutions.
Collapse
|
29
|
Glinel K, Thebault P, Humblot V, Pradier CM, Jouenne T. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater 2012; 8:1670-84. [PMID: 22289644 DOI: 10.1016/j.actbio.2012.01.011] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/20/2011] [Accepted: 01/10/2012] [Indexed: 11/16/2022]
Abstract
Prevention of bacterial adhesion and biofilm formation on the surfaces of materials is a topic of major medical and societal importance. Various synthetic approaches based on immobilization or release of bactericidal substances such as metal derivatives, polyammonium salts and antibiotics were extensively explored to produce antibacterial coatings. Although providing encouraging results, these approaches suffer from the use of active agents which may be associated with side-effects such as cytotoxicity, hypersensibility, inflammatory responses or the progressive alarming phenomenon of antibiotic resistance. In addition to these synthetic approaches, living organisms, e.g. animals and plants, have developed fascinating strategies over millions of years to prevent efficiently the colonization of their surfaces by pathogens. These strategies have been recently mimicked to create a new generation of bio-inspired biofilm-resistant surfaces. In this review, we discuss some of these bio-inspired methods devoted to the development of antibiofilm surfaces. We describe the elaboration of antibacterial coatings based on natural bactericidal substances produced by living organisms such as antimicrobial peptides, bacteriolytic enzymes and essential oils. We discuss also the development of layers mimicking algae surfaces and based on anti-quorum-sensing molecules which affect cell-to-cell communication. Finally, we report on very recent strategies directly inspired from marine animal life and based on surface microstructuring.
Collapse
Affiliation(s)
- K Glinel
- Institute of Condensed Matter and Nanosciences (Bio- and Soft Matter), Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | | | | | | | |
Collapse
|
30
|
Barlow DE, Wahl KJ. Optical spectroscopy of marine bioadhesive interfaces. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2012; 5:229-51. [PMID: 22524229 DOI: 10.1146/annurev-anchem-061010-113844] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Marine organisms have evolved extraordinarily effective adhesives that cure underwater and resist degradation. These underwater adhesives differ dramatically in structure and function and are composed of multiple proteins assembled into functional composites. The processes by which these bioadhesives cure--conformational changes, dehydration, polymerization, and cross-linking--are challenging to quantify because they occur not only underwater but also in a buried interface between the substrate and the organism. In this review, we highlight interfacial optical spectroscopy approaches that can reveal the biochemical processes and structure of marine bioadhesives, with particular emphasis on macrofoulers such as barnacles and mussels.
Collapse
Affiliation(s)
- Daniel E Barlow
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375-5342, USA
| | | |
Collapse
|
31
|
Ma CF, Yang HJ, Zhang GZ. Anti-biofouling by degradation of polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2012. [DOI: 10.1007/s10118-012-1158-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
|
33
|
Fitridge I, Dempster T, Guenther J, de Nys R. The impact and control of biofouling in marine aquaculture: a review. BIOFOULING 2012; 28:649-69. [PMID: 22775076 DOI: 10.1080/08927014.2012.700478] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biofouling in marine aquaculture is a specific problem where both the target culture species and/or infrastructure are exposed to a diverse array of fouling organisms, with significant production impacts. In shellfish aquaculture the key impact is the direct fouling of stock causing physical damage, mechanical interference, biological competition and environmental modification, while infrastructure is also impacted. In contrast, the key impact in finfish aquaculture is the fouling of infrastructure which restricts water exchange, increases disease risk and causes deformation of cages and structures. Consequently, the economic costs associated with biofouling control are substantial. Conservative estimates are consistently between 5-10% of production costs (equivalent to US$ 1.5 to 3 billion yr(-1)), illustrating the need for effective mitigation methods and technologies. The control of biofouling in aquaculture is achieved through the avoidance of natural recruitment, physical removal and the use of antifoulants. However, the continued rise and expansion of the aquaculture industry and the increasingly stringent legislation for biocides in food production necessitates the development of innovative antifouling strategies. These must meet environmental, societal, and economic benchmarks while effectively preventing the settlement and growth of resilient multi-species consortia of biofouling organisms.
Collapse
Affiliation(s)
- Isla Fitridge
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), Department of Zoology, University of Melbourne, 3010 Victoria, Australia.
| | | | | | | |
Collapse
|
34
|
Wang X, Wood TK. Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl Environ Microbiol 2011; 77:5577-83. [PMID: 21685157 PMCID: PMC3165247 DOI: 10.1128/aem.05068-11] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In many genomes, toxin-antitoxin (TA) systems have been identified; however, their role in cell physiology has been unclear. Here we examine the evidence that TA systems are involved in biofilm formation and persister cell formation and that these systems may be important regulators of the switch from the planktonic to the biofilm lifestyle as a stress response by their control of secondary messenger 3',5'-cyclic diguanylic acid. Specifically, upon stress, the sequence-specific mRNA interferases MqsR and MazF mediate cell survival. In addition, we propose that TA systems are not redundant, as they may have developed to respond to specific stresses.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122
- Key Laboratory of Marine Bio-Resource Sustainable Utilization, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Thomas K. Wood
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122
| |
Collapse
|
35
|
|
36
|
Aldred N, Ekblad T, Andersson O, Liedberg B, Clare AS. Real-time quantification of microscale bioadhesion events in situ using imaging surface plasmon resonance (iSPR). ACS APPLIED MATERIALS & INTERFACES 2011; 3:2085-2091. [PMID: 21595456 DOI: 10.1021/am2003075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
From macro- to nanoscales, adhesion phenomena are all-pervasive in nature yet remain poorly understood. In recent years, studies of biological adhesion mechanisms, terrestrial and marine, have provided inspiration for "biomimetic" adhesion strategies and important insights for the development of fouling-resistant materials. Although the focus of most contemporary bioadhesion research is on large organisms such as marine mussels, insects and geckos, adhesion events on the micro/nanoscale are critical to our understanding of important underlying mechanisms. Observing and quantifying adhesion at this scale is particularly relevant for the development of biomedical implants and in the prevention of marine biofouling. However, such characterization has so far been restricted by insufficient quantities of material for biochemical analysis and the limitations of contemporary imaging techniques. Here, we introduce a recently developed optical method that allows precise determination of adhesive deposition by microscale organisms in situ and in real time; a capability not before demonstrated. In this extended study we used the cypris larvae of barnacles and a combination of conventional and imaging surface plasmon resonance techniques to observe and quantify adhesive deposition onto a range of model surfaces (CH(3)-, COOH-, NH(3)-, and mPEG-terminated SAMs and a PEGMA/HEMA hydrogel). We then correlated this deposition to passive adsorption of a putatively adhesive protein from barnacles. In this way, we were able to rank surfaces in order of effectiveness for preventing barnacle cyprid exploration and demonstrate the importance of observing the natural process of adhesion, rather than predicting surface effects from a model system. As well as contributing fundamentally to the knowledge on the adhesion and adhesives of barnacle larvae, a potential target for future biomimetic glues, this method also provides a versatile technique for laboratory testing of fouling-resistant chemistries.
Collapse
Affiliation(s)
- Nick Aldred
- School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun 2011; 2:244. [DOI: 10.1038/ncomms1251] [Citation(s) in RCA: 830] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 02/23/2011] [Indexed: 12/14/2022] Open
|
38
|
Banerjee I, Pangule RC, Kane RS. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:690-718. [PMID: 20886559 DOI: 10.1002/adma.201001215] [Citation(s) in RCA: 1582] [Impact Index Per Article: 121.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/06/2010] [Indexed: 05/21/2023]
Abstract
The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed. Biofouling is of great concern in numerous applications ranging from biosensors to biomedical implants and devices, and from food packaging to industrial and marine equipment. The two major approaches to combat surface fouling are based on either preventing biofoulants from attaching or degrading them. One of the key strategies for imparting adhesion resistance involves the functionalization of surfaces with poly(ethylene glycol) (PEG) or oligo(ethylene glycol). Several alternatives to PEG-based coatings have also been designed over the past decade. While protein-resistant coatings may also resist bacterial attachment and subsequent biofilm formation, in order to overcome the fouling-mediated risk of bacterial infection it is highly desirable to design coatings that are bactericidal. Traditional techniques involve the design of coatings that release biocidal agents, including antibiotics, quaternary ammonium salts (QAS), and silver, into the surrounding aqueous environment. However, the emergence of antibiotic- and silver-resistant pathogenic strains has necessitated the development of alternative strategies. Therefore, other techniques based on the use of polycations, enzymes, nanomaterials, and photoactive agents are being investigated. With regard to marine antifouling coatings, restrictions on the use of biocide-releasing coatings have made the generation of nontoxic antifouling surfaces more important. While considerable progress has been made in the design of antifouling coatings, ongoing research in this area should result in the development of even better antifouling materials in the future.
Collapse
Affiliation(s)
- Indrani Banerjee
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | |
Collapse
|
39
|
Guo SF, Lee HP, Chaw KC, Miklas J, Teo SLM, Dickinson GH, Birch WR, Khoo BC. Effect of ultrasound on cyprids and juvenile barnacles. BIOFOULING 2011; 27:185-192. [PMID: 21271409 DOI: 10.1080/08927014.2010.551535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Settlement inhibition of barnacle (Amphibalanus amphitrite) cypris larvae resulting from exposure to ultrasound was measured at three frequencies (23, 63, and 102 kHz), applied at three acoustic pressure levels (9, 15, and 22 kPa) for exposure times of 30, 150, and 300 s. The lowest settlement was observed for 23 kHz, which also induced the highest cyprid mortality. Cyprid settlement following exposure to 23 kHz at 22 kPa for 30 s was reduced by a factor of two. Observing surface exploration by the cyprids revealed an altered behaviour following exposure to ultrasound: step length was increased, while step duration, walking pace, and the fraction of cyprids exploring the surface were significantly reduced with respect to control cyprids. The basal area of juvenile barnacles, metamorphosed from ultrasound-treated cyprids was initially smaller than unexposed individuals, but normalised over two weeks' growth. Thus, ultrasound exposure effectively reduced cyprid settlement, yet metamorphosed barnacles grew normally.
Collapse
Affiliation(s)
- Shi Feng Guo
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Scardino AJ, de Nys R. Mini review: Biomimetic models and bioinspired surfaces for fouling control. BIOFOULING 2011; 27:73-86. [PMID: 21132577 DOI: 10.1080/08927014.2010.536837] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nature provides many examples of mechanisms to control fouling. These defences can be copied (biomimetic) or tailored (bioinspired) to solve problems of fouling on manmade structures. With increasing research in this area over the last two decades, it is timely to review this burgeoning subject, in particular as the biofouling field shifts focus towards novel, physical mechanisms to prevent and control fouling. This change is being promoted by advances in nano- and micro-scale patterning as well as in a variety of nano-biotechnologies, which are transforming the translation of natural surfaces into experimental materials. In this article, research on the defence of marine organisms against fouling and the technologies they are defining is reviewed.
Collapse
Affiliation(s)
- Andrew J Scardino
- Maritime Platforms Division, Defence Science and Technology Organisation, Melbourne, Victoria, Australia.
| | | |
Collapse
|
41
|
Cao S, Wang J, Chen H, Chen D. Progress of marine biofouling and antifouling technologies. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-4158-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Aldred N, Li G, Gao Y, Clare AS, Jiang S. Modulation of barnacle (Balanus amphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings. BIOFOULING 2010; 26:673-683. [PMID: 20658383 DOI: 10.1080/08927014.2010.506677] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Zwitterionic polymers such as poly(sulfobetaine methacrylate) (polySBMA) and poly(carboxybetaine methacrylate) (polyCBMA) have demonstrated impressive fouling-resistance against proteins and mammalian cells. In this paper, the effects of these surface chemistries on the settlement and behavior of an ubiquitous fouling organism, the cypris larva of the barnacle Balanus amphitrite (=Amphibalanus amphitrite), were studied in the laboratory. Conventional settlement assays and behavioral analysis of cyprids using Noldus Ethovision 3.1 demonstrated significant differences in settlement and behavior on different surfaces. Cyprids did not settle on the polySBMA or polyCBMA surfaces over the course of the assay, whereas settlement on glass occurred within expected limits. Individual components of cyprid behavior were shown to differ significantly between glass, polySBMA and polyCBMA. Cyprids also responded differently to the two zwitterionic surfaces. On polySBMA, cyprids were unwilling or unable to settle, whereas on polyCBMA cyprids did not attempt exploration and left the surface quickly. In neither case was toxicity observed. It is concluded that a zwitterionic approach to fouling-resistant surface development has considerable potential in marine applications.
Collapse
Affiliation(s)
- Nick Aldred
- School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
43
|
Phang IY, Aldred N, Ling XY, Huskens J, Clare AS, Vancso GJ. Atomic force microscopy of the morphology and mechanical behaviour of barnacle cyprid footprint proteins at the nanoscale. J R Soc Interface 2010; 7:285-96. [PMID: 19570797 PMCID: PMC2842607 DOI: 10.1098/rsif.2009.0127] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/26/2009] [Indexed: 11/12/2022] Open
Abstract
Barnacles are a major biofouler of man-made underwater structures. Prior to settlement, cypris larvae explore surfaces by reversible attachment effected by a 'temporary adhesive'. During this exploratory behaviour, cyprids deposit proteinaceous 'footprints' of a putatively adhesive material. In this study, footprints deposited by Balanus amphitrite cyprids were probed by atomic force microscopy (AFM) in artificial sea water (ASW) on silane-modified glass surfaces. AFM images obtained in air yielded better resolution than in ASW and revealed the fibrillar nature of the secretion, suggesting that the deposits were composed of single proteinaceous nanofibrils, or bundles of fibrils. The force curves generated in pull-off force experiments in sea water consisted of regions of gradually increasing force, separated by sharp drops in extension force manifesting a characteristic saw-tooth appearance. Following the relaxation of fibrils stretched to high strains, force-distance curves in reverse stretching experiments could be described by the entropic elasticity model of a polymer chain. When subjected to relaxation exceeding 500 ms, extended footprint proteins refolded, and again showed saw-tooth unfolding peaks in subsequent force cycles. Observed rupture and hysteresis behaviour were explained by the 'sacrificial bond' model. Longer durations of relaxation (>5 s) allowed more sacrificial bond reformation and contributed to enhanced energy dissipation (higher toughness). The persistence length for the protein chains (L(P)) was obtained. At high elongation, following repeated stretching up to increasing upper strain limits, footprint proteins detached at total stretched length of 10 microm.
Collapse
Affiliation(s)
- In Yee Phang
- Department of Materials Science and Technology of Polymers, MESA Institute for Nanotechnology, PO Box 217, 7500 AE Enschede, The Netherlands
- Dutch Polymer Institute, PO Box 902, 5600 Eindhoven, The Netherlands
| | - Nick Aldred
- School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Xing Yi Ling
- Molecular Nanofabrication Group, MESA Institute for Nanotechnology, University of Twente, PO Box 217, 7500 Enschede, The Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication Group, MESA Institute for Nanotechnology, University of Twente, PO Box 217, 7500 Enschede, The Netherlands
| | - Anthony S. Clare
- School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - G. Julius Vancso
- Department of Materials Science and Technology of Polymers, MESA Institute for Nanotechnology, PO Box 217, 7500 AE Enschede, The Netherlands
- Dutch Polymer Institute, PO Box 902, 5600 Eindhoven, The Netherlands
| |
Collapse
|
44
|
Kristensen JB, Olsen SM, Laursen BS, Kragh KM, Poulsen CH, Besenbacher F, Meyer RL. Enzymatic generation of hydrogen peroxide shows promising antifouling effect. BIOFOULING 2010; 26:141-153. [PMID: 19882418 DOI: 10.1080/08927010903384271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The antifouling (AF) potential of hydrogen peroxide (H(2)O(2)) produced enzymatically in a coating containing starch, glucoamylase, and hexose oxidase was evaluated in a series of laboratory tests and in-sea field trials. Dissolved H(2)O(2) inhibited bacterial biofilm formation by eight of nine marine Proteobacteria, tested in microtiter plates. However, enzymatically produced H(2)O(2) released from a coating did not impede biofilm formation by bacteria in natural seawater tested in a biofilm reactor. A field trial revealed a noticeable effect of the enzyme system: after immersion in the North Sea for 97 days, the reference coating without enzymes had 35-40 barnacles, 10% area coverage by diatoms and 15% area coverage by tunicates. The enzyme containing coating had only 6-12 barnacles, 10% area coverage by diatoms and no tunicates. The enzyme system had a performance similar to a copper-based commercial coating and thus appears to have potential as a non-persistent AF agent.
Collapse
Affiliation(s)
- J B Kristensen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
45
|
Qian PY, Xu Y, Fusetani N. Natural products as antifouling compounds: recent progress and future perspectives. BIOFOULING 2010; 26:223-34. [PMID: 19960389 DOI: 10.1080/08927010903470815] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Since early 2008, an increasing number of countries have ratified an international treaty to ban the application of antifouling (AF) coatings based on organotin compounds (eg tributyltin (TBT) and triphenyltin). As a result, the demand for environmentally friendly, non-toxic or low-toxicity AF compounds and technologies (green AF agents) has become an urgent reality. Marine coatings based on Cu2O and various other biocides have a negative impact on the environment and they must eventually be replaced by new, effective, and environmentally friendly AF compounds. This mini-review describes important AF compounds discovered from a variety of organisms from 2004 until mid 2009, and discusses recent and general trends in the discovery of AF compounds. Finally, a perspective on the future of AF compound development is presented. The discussion is aimed at updating scientists and engineers on the current challenges facing AF research.
Collapse
Affiliation(s)
- Pei-Yuan Qian
- KAUST Global Partnership Program, Department of Biology, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | | | | |
Collapse
|
46
|
|
47
|
Tasso M, Cordeiro AL, Salchert K, Werner C. Covalent Immobilization of Subtilisin A onto Thin Films of Maleic Anhydride Copolymers. Macromol Biosci 2009; 9:922-9. [DOI: 10.1002/mabi.200900005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Tasso M, Pettitt ME, Cordeiro AL, Callow ME, Callow JA, Werner C. Antifouling potential of Subtilisin A immobilized onto maleic anhydride copolymer thin films. BIOFOULING 2009; 25:505-516. [PMID: 19387876 DOI: 10.1080/08927010902930363] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The proteinaceous nature of the adhesives used by most fouling organisms to attach to surfaces suggests that coatings incorporating proteolytic enzymes may provide a technology for the control of biofouling. In the present article, the antifouling (AF) and fouling release potential of model coatings incorporating the surface-immobilized protease, Subtilisin A, have been investigated. The enzyme was covalently attached to maleic anhydride copolymer thin films; the characteristics of the bioactive coatings obtained were adjusted through variation of the type of copolymer and the concentration of the enzyme solution used for immobilization. The bioactive coatings were tested for their effect on the settlement and adhesion strength of two major fouling species: the green alga Ulva linza and the diatom Navicula perminuta. The results show that the immobilized enzyme effectively reduced the settlement and adhesion strength of zoospores of Ulva and the adhesion strength of Navicula cells. The AF efficacy of the bioactive coatings increased with increasing enzyme surface concentration and activity, and was found to be superior to the equivalent amount of enzyme in solution. The results provide a rigorous analysis of one approach to the use of immobilized proteases to reduce the adhesion of marine fouling organisms and are of interest to those investigating enzyme-containing coating technologies for practical biofouling control.
Collapse
Affiliation(s)
- Mariana Tasso
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Phang IY, Chaw KC, Choo SSH, Kang RKC, Lee SSC, Birch WR, Teo SLM, Vancso GJ. Marine biofouling field tests, settlement assay and footprint micromorphology of cyprid larvae of Balanus amphitrite on model surfaces. BIOFOULING 2009; 25:139-147. [PMID: 19031305 DOI: 10.1080/08927010802592925] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atomic force microscopy (AFM), laboratory settlement assays and field tests were used to correlate cyprid footprint (FP) morphology with the behaviour of cyprids on different substrata. AFM imaging under laboratory conditions revealed more porous and larger FPs on glass exposing a CH3-surface than on aminosilane functionalised (NH2-) surfaces. The secreted FP volume was found to be similar on both substrata (2.1-2.6 microm(3)). Laboratory settlement assays and marine field tests were performed on three substrata, viz. untreated clean glass, NH2-glass, and CH3-glass. The results distinguished settlement preferences for NH2-glass and untreated glass over CH3-terminated surfaces, suggesting that cyprids favour settling on hydrophilic over hydrophobic surfaces. On combining observations from different length scales, it is speculated that the confined FP size on NH2-glass may induce a higher concentration of the settlement inducing protein complex. Settlement may be further facilitated by a stronger adherence of FP adhesives to the NH2-surface via Coulombic interactions.
Collapse
Affiliation(s)
- In Yee Phang
- Department of Materials Science and Technology of Polymers and MESA+, Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Antifouling enzymes and the biochemistry of marine settlement. Biotechnol Adv 2008; 26:471-81. [DOI: 10.1016/j.biotechadv.2008.05.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 03/27/2008] [Accepted: 05/13/2008] [Indexed: 11/19/2022]
|