1
|
Quist AJL, Johnston JE. Malodors as environmental injustice: health symptoms in the aftermath of a hydrogen sulfide emergency in Carson, California, USA. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:935-940. [PMID: 37391609 PMCID: PMC10792538 DOI: 10.1038/s41370-023-00561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 07/02/2023]
Affiliation(s)
- Arbor J L Quist
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St., Los Angeles, CA, 90032, USA.
| | - Jill E Johnston
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St., Los Angeles, CA, 90032, USA
| |
Collapse
|
2
|
Wang A, Walden M, Ettlinger R, Kiessling F, Gassensmith JJ, Lammers T, Wuttke S, Peña Q. Biomedical Metal-Organic Framework Materials: Perspectives and Challenges. ADVANCED FUNCTIONAL MATERIALS 2024; 34:adfm.202308589. [PMID: 39726715 PMCID: PMC7617264 DOI: 10.1002/adfm.202308589] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 12/28/2024]
Abstract
Metal-organic framework (MOF) materials are gaining significant interest in biomedical research, owing to their high porosity, crystallinity, and structural and compositional diversity. Their versatile hybrid organic/inorganic chemistry endows MOFs with the capacity to retain organic (drug) molecules, metals, and gases, to effectively channel electrons and photons, to survive harsh physiological conditions such as low pH, and even to protect sensitive biomolecules. Extensive preclinical research has been carried out with MOFs to treat several pathologies and, recently, their integration with other biomedical materials such as stents and implants has demonstrated promising performance in regenerative medicine. However, there remains a significant gap between MOF preclinical research and translation into clinically and societally relevant medicinal products. Here, we outline the intrinsic features of MOFs and discuss how these are suited to specific biomedical applications like detoxification, drug and gas delivery, or as (combination) therapy platforms. We furthermore describe relevant examples of how MOFs have been engineered and evaluated in different medical indications, including cancer, microbial, and inflammatory diseases. Finally, we critically examine the challenges facing their translation into the clinic, with the goal of establishing promising research directions and more realistic approaches that can bridge the translational gap of MOFs and MOF-containing (nano)materials.
Collapse
Affiliation(s)
- Alec Wang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Madeline Walden
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
| | - Romy Ettlinger
- EastChem School of Chemistry, University of St Andrews, North Haugh, St AndrewsKY16 9ST, UK
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry & Biomedical Engineering, University of Texas at Dallas, Richardson, TX75080-3021
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Stefan Wuttke
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Quim Peña
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| |
Collapse
|
3
|
Toksha B, Gupta P, Rahaman M. Hydrogen Sensing with Palladium-Based Materials: Mechanisms, Challenges, and Opportunities. Chem Asian J 2024; 19:e202400127. [PMID: 38715432 DOI: 10.1002/asia.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Indexed: 06/12/2024]
Abstract
Palladium morphologies are prominently used in Hydrogen gas sensing applications owing to their unique characteristics and properties. In this review article, Palladium nanoparticles, thin films, and alloys were designated as the scope of Palladium morphologies. The aim of this review article is to explore Hydrogen sensing using Palladium, focusing on the recent advancements in the field.. The principles underlying Hydrogen sensing mechanisms with Palladium are discussed initially, highlighting the unique properties of Palladium that make it a promising material for this purpose. Special attention is given to the surface interactions and structural modifications that influence the sensitivity and selectivity of Palladium-based sensors The study also addresses key challenges and recent innovations in the field which contribute to the enhancement of Palladium-based Hydrogen sensing capabilities. The current state of research is critically examined to identify gaps in knowledge and future research directions are highlighted. The prospects and challenges associated with the use of Palladium for Hydrogen sensing, emphasizing its pivotal role in advancing sensor technologies for Hydrogen detection are also discussed.
Collapse
Affiliation(s)
- Bhagwan Toksha
- Faculty of Physics, Maharashtra Institute of Technology, Aurangabad, 431010, India
| | - Prashant Gupta
- Department of Plastic and Polymer Engineering, School of Engineering, Plastindia International University, Vapi, 3961935, India
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Batterman S, Grant-Alfieri A, Seo SH. Low level exposure to hydrogen sulfide: a review of emissions, community exposure, health effects, and exposure guidelines. Crit Rev Toxicol 2023; 53:244-295. [PMID: 37431804 PMCID: PMC10395451 DOI: 10.1080/10408444.2023.2229925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Hydrogen sulfide (H2S) is a toxic gas that is well-known for its acute health risks in occupational settings, but less is known about effects of chronic and low-level exposures. This critical review investigates toxicological and experimental studies, exposure sources, standards, and epidemiological studies pertaining to chronic exposure to H2S from both natural and anthropogenic sources. H2S releases, while poorly documented, appear to have increased in recent years from oil and gas and possibly other facilities. Chronic exposures below 10 ppm have long been associated with odor aversion, ocular, nasal, respiratory and neurological effects. However, exposure to much lower levels, below 0.03 ppm (30 ppb), has been associated with increased prevalence of neurological effects, and increments below 0.001 ppm (1 ppb) in H2S concentrations have been associated with ocular, nasal, and respiratory effects. Many of the studies in the epidemiological literature are limited by exposure measurement error, co-pollutant exposures and potential confounding, small sample size, and concerns of representativeness, and studies have yet to consider vulnerable populations. Long-term community-based studies are needed to confirm the low concentration findings and to refine exposure guidelines. Revised guidelines that incorporate both short- and long-term limits are needed to protect communities, especially sensitive populations living near H2S sources.
Collapse
Affiliation(s)
- Stuart Batterman
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Amelia Grant-Alfieri
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Sung-Hee Seo
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
5
|
Pacitti D, Scotton CJ, Kumar V, Khan H, Wark PAB, Torregrossa R, Hansbro PM, Whiteman M. Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxid Redox Signal 2021; 35:551-579. [PMID: 33736455 DOI: 10.1089/ars.2021.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in a plethora of physiological and pathological processes. It is primarily synthesized by cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase as a metabolite of the transsulfuration pathway. H2S has been shown to exert beneficial roles in lung disease acting as an anti-inflammatory and antiviral and to ameliorate cell metabolism and protect from oxidative stress. H2S interacts with transcription factors, ion channels, and a multitude of proteins via post-translational modifications through S-persulfidation ("sulfhydration"). Perturbation of endogenous H2S synthesis and/or levels have been implicated in the development of accelerated lung aging and diseases, including asthma, chronic obstructive pulmonary disease, and fibrosis. Furthermore, evidence indicates that persulfidation is decreased with aging. Here, we review the use of H2S as a biomarker of lung pathologies and discuss the potential of using H2S-generating molecules and synthesis inhibitors to treat respiratory diseases. Furthermore, we provide a critical appraisal of methods of detection used to quantify H2S concentration in biological samples and discuss the challenges of characterizing physiological and pathological levels. Considerations and caveats of using H2S delivery molecules, the choice of generating molecules, and concentrations are also reviewed. Antioxid. Redox Signal. 35, 551-579.
Collapse
Affiliation(s)
- Dario Pacitti
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Chris J Scotton
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Vinod Kumar
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Haroon Khan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Roberta Torregrossa
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, Australia
| | - Matthew Whiteman
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
6
|
Xueyuan H, Qianru C, Zhaoyi L, Dayong T, Yu W, Yimei C, Shu L. Transcriptome analysis reveals that hydrogen sulfide exposure suppresses cell proliferation and induces apoptosis through ciR-PTPN23/miR-15a/E2F3 signaling in broiler thymus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117466. [PMID: 34062439 DOI: 10.1016/j.envpol.2021.117466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The immune organs, like thymus, are one of the targets of hydrogen sulfide (H2S). Previously we reported that H2S induced the differential expression of mRNAs that implicating apoptosis in thymus, however, the roles of noncoding RNAs (ncRNAs) in H2S-induced thymus injury are still unknown. Pollution gases could alter the expression of ncRNAs, which have been shown to play important roles in many physiological and pathophysiological processes, including immune activity. This study revealed that H2S exposure induced 9 differentially expressed circRNAs and 15 differentially expressed miRNAs in chicken thymus. Furthermore, the circRNA - miRNA - mRNA network was constructed. We discovered that circR-PTPN23 - miR-15a - E2F3 was involved in the cell cycle and apoptosis. Further, an in vitro H2S exposure model was established using HD11 cell line and demonstrated that H2S suppressed cell proliferation and induced apoptosis. Moreover, ciR-PTPN23 and E2F3 were downregulated, but miR-15a was upregulated in both the thymus and HD11 cell line after H2S exposure. Bioinformatics analysis revealed that ciR-PTPN23 directly bound to miR-15a and that E2F3 was the target gene of miR-15a. Knocking down ciR-PTPN23 suppressed HD11 proliferation and caused G1 arrest and apoptosis, however, this phenomenon could be partially reversed by ciR-PTPN23 overexpression or miR-15a silencing. In summary, the ciR-PTPN23 - miR-15a - E2F3 axis was involved in H2S-induced cell proliferation suppression and apoptosis.
Collapse
Affiliation(s)
- Hu Xueyuan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chi Qianru
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Liu Zhaoyi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tao Dayong
- College of Animal Science, Tarim University, Alar, 843300, China
| | - Wang Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Cong Yimei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
7
|
Danger perception and stress response through an olfactory sensor for the bacterial metabolite hydrogen sulfide. Neuron 2021; 109:2469-2484.e7. [PMID: 34186026 DOI: 10.1016/j.neuron.2021.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
The olfactory system serves a critical function as a danger detection system to trigger defense responses essential for survival. The cellular and molecular mechanisms that drive such defenses in mammals are incompletely understood. Here, we have discovered an ultrasensitive olfactory sensor for the highly poisonous bacterial metabolite hydrogen sulfide (H2S) in mice. An atypical class of sensory neurons in the main olfactory epithelium, the type B cells, is activated by both H2S and low O2. These two stimuli trigger, respectively, Cnga2- and Trpc2-signaling pathways, which operate in separate subcellular compartments, the cilia and the dendritic knob. This activation drives essential defensive responses: elevation of the stress hormone ACTH, stress-related self-grooming behavior, and conditioned place avoidance. Our findings identify a previously unknown signaling paradigm in mammalian olfaction and define type B cells as chemosensory neurons that integrate distinct danger inputs from the external environment with appropriate defense outputs.
Collapse
|
8
|
Elwood M. The Scientific Basis for Occupational Exposure Limits for Hydrogen Sulphide-A Critical Commentary. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18062866. [PMID: 33799676 PMCID: PMC8001002 DOI: 10.3390/ijerph18062866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Occupational exposure limits for hydrogen sulphide (H2S) vary considerably; three expert group reports, published from 2006 to 2010, each recommend different limits. Some jurisdictions are considering substantial reductions. METHODS This review assesses the scientific evidence used in these recommendations and presents a new systematic review of human studies from 2006-20, identifying 33 studies. RESULTS The three major reports all give most weight to two sets of studies: of physiological effects in human volunteers, and of effects in the nasal passages of rats and mice. The human studies were done in one laboratory over 20 years ago and give inconsistent results. The breathing style and nasal anatomy of rats and mice would make them more sensitive than humans to inhaled agents. Each expert group applied different uncertainly factors. From these reports and the further literature review, no clear evidence of detrimental health effects from chronic occupational exposures specific to H2S was found. Detailed studies of individuals in communities with natural sources in New Zealand have shown no detrimental effects. Studies in Iceland and Italy show some associations; these and various other small studies need verification. CONCLUSIONS The scientific justification for lowering occupational exposure limits is very limited. There is no clear evidence, based on currently available studies, that lower limits will protect the health of workers further than will the current exposure limits used in most countries. Further review and assessment of relevant evidence is justified before exposure limits are set.
Collapse
Affiliation(s)
- Mark Elwood
- Department of Epidemiology & Biostatistics, School of Population Health, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
9
|
Balne PK, Sinha NR, Hofmann AC, Martin LM, Mohan RR. Characterization of hydrogen sulfide toxicity to human corneal stromal fibroblasts. Ann N Y Acad Sci 2020; 1480:207-218. [PMID: 32954509 PMCID: PMC9250278 DOI: 10.1111/nyas.14498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Hydrogen sulfide gas (H2 S) is a chemical weapon and a common environmental pollutant. H2 S intoxication is lethal to humans and animals. H2 S contact to the eye can cause vision loss. However, the molecular mechanisms associated with H2 S toxicity to the cornea remain unclear, and no specific therapy exists to mitigate ocular damage from H2 S. Here, we report H2 S-induced cytotoxicity and the parameters contributing to the molecular mechanisms associated with corneal toxicity using primary human corneal stromal fibroblasts (hCSFs) in vitro. Sodium hydrosulfide (NaSH) was used as a source of H2 S, and the cytotoxicity of H2 S was determined by treating hCSF cells with varying concentrations of NaSH (0-10 mM) for 0-72 hours. Changes in cell proliferation, oxidative stress factors, and the expression of inflammatory and fibrotic genes were studied using standard commercial kits and qRT-PCR. NaSH exposure to hCSFs showed dose- and time-dependent cytotoxicity. The IC50 of NaSH was determined to be 5.35 mM. NaSH 5.35 mM exposure led to significantly decreased cytochrome c oxidase activity, increased ROS production, and increased expression of inflammatory and fibrotic genes in hCSF cells. H2 S/NaSH exposure alters normal mitochondrial function, oxidative stress, and inflammatory and fibrotic gene responses in corneal stromal fibroblasts in vitro.
Collapse
Affiliation(s)
- Praveen K. Balne
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Nishant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Alexandria C. Hofmann
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Lynn M. Martin
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
10
|
Hu X, Chi Q, Liu Q, Wang D, Zhang Y, Li S. Atmospheric H 2S triggers immune damage by activating the TLR-7/MyD88/NF-κB pathway and NLRP3 inflammasome in broiler thymus. CHEMOSPHERE 2019; 237:124427. [PMID: 31352103 DOI: 10.1016/j.chemosphere.2019.124427] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Atmospheric hydrogen sulfide (H2S) is a highly toxic air pollutant that has a negative effect on human health and animal welfare. The immunotoxicity of H2S has been explored previously, but its mechanism still needs to be clarified, especially in chickens. To further evaluate the immunotoxicity of H2S, 1-day-old broilers were recruited and exposed to atmospheric H2S for 42 days of age. Our results showed that H2S significantly reduced the thymus index and the CD4+ and CD8+ T-lymphocyte numbers and that it also changed the CD4+/CD8+ ratio. The morphological analysis showed that H2S incrassated the medulla and generated inflammatory infiltration. In addition, it caused the mitochondria to swell and the chromatin to condense, and destroyed nuclear structures were observed. We also conducted bioinformation and transcriptomic analyses to delve the mechanism of H2S toxicity in chicken thymus. We measured 172 differently expression genes (DEGs) after H2S exposure and further filtrated the DEGs that are related to inflammation and cell death that play a critical role in immune function. We concluded that H2S significantly increased IL-1β, IL-4 and IL-10 levels, whereas it downregulated IL-12 and IFN-γ. This study confirmed that H2S triggered the thymus inflammatory response and caused a Th1/Th2 imbalance. Moreover, our results demonstrated that H2S triggered the TLR-7/MyD88/NF-κB pathway to promote NLRP3 inflammasome activation. In conclusion, atmospheric H2S actives the TLR-7/MyD88/NF-κB pathway and the NLRP3 inflammasome to promote an inflammatory response, which then causes tissues damage in broiler thymus. These results provide new insights for unveiling the immunotoxic effects of H2S.
Collapse
Affiliation(s)
- Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingqing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Dongxu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Hu X, Chi Q, Wang D, Chi X, Teng X, Li S. Hydrogen sulfide inhalation-induced immune damage is involved in oxidative stress, inflammation, apoptosis and the Th1/Th2 imbalance in broiler bursa of Fabricius. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:201-209. [PMID: 30118953 DOI: 10.1016/j.ecoenv.2018.08.029] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/05/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
Hydrogen sulfide (H2S) is widely accepted to be a signaling molecule that exhibits some potentially beneficial therapeutic effects at physiological concentrations. At elevated levels, H2S is highly toxic and has a negative effect on human health and animal welfare. Studies have shown that H2S exposure induces an immune function in mice, but there are few studies of the effect of continuous H2S exposure on immune organs in poultry. In this study, one-day-old broilers were selected and exposed to 4 or 20 ppm of H2S gas for 14, 28 and 42 days of age. After exposure, the bursa of Fabricius (BF) was harvested. The results showed that continuous H2S exposure reduced the body weight, abdominal fat percentage, and antibody titer in broilers. H2S exposure also decreased mRNA expression of IgA, IgM and IgG in the broiler BF. A histological study revealed obvious nuclear debris, and a few vacuoles in the BF, and an ultrastructural study revealed mitochondrial and nuclear damage to BF cells after H2S exposure for 42 d. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay suggested H2S exposure remarkably increased the number of TUNEL positive nuclei and significantly increased apoptotic index. The expression of apoptotic genes also confirmed that H2S inhalation damaged the broiler BF. Increased cytokines and reduced antioxidant responses were detected in the BF after exposure to H2S. Cytokines promoted inflammation and caused a Th1/Th2 imbalance. We suggest that continuous H2S intoxication triggers oxidative stress, inflammation, apoptosis and a Th1/Th2 imbalance in the BF, leading to immune injury in broilers.
Collapse
Affiliation(s)
- Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Dongxu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xin Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Kim DS, Anantharam P, Hoffmann A, Meade ML, Grobe N, Gearhart JM, Whitley EM, Mahama B, Rumbeiha WK. Broad spectrum proteomics analysis of the inferior colliculus following acute hydrogen sulfide exposure. Toxicol Appl Pharmacol 2018; 355:28-42. [PMID: 29932956 PMCID: PMC6422160 DOI: 10.1016/j.taap.2018.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
Abstract
Acute exposure to high concentrations of H2S causes severe brain injury and long-term neurological disorders, but the mechanisms involved are not known. To better understand the cellular and molecular mechanisms involved in acute H2S-induced neurodegeneration we used a broad-spectrum proteomic analysis approach to identify key molecules and molecular pathways involved in the pathogenesis of acute H2S-induced neurotoxicity and neurodegeneration. Mice were subjected to acute inhalation exposure of up to750 ppm of H2S. H2S induced behavioral deficits and severe lesions including hemorrhage in the inferior colliculus (IC). The IC was microdissected for proteomic analysis. Tandem mass tags (TMT) liquid chromatography mass spectrometry (LC-MS/MS)-based quantitative proteomics was applied for protein identification and quantitation. LC-MS/MS identified 598, 562, and 546 altered proteomic changes at 2 h, and on days 2 and 4 post-H2S exposure, respectively. Of these, 77 proteomic changes were statistically significant at any of the 3 time points. Mass spectrometry data were subjected to Perseus 1.5.5.3 statistical analysis, and gene ontology heat map clustering. Expressions of several key molecules were verified to confirm H2S-dependent proteomics changes. Webgestalt pathway overrepresentation enrichment analysis with Panther engine revealed H2S exposure disrupted several biological processes including metabotropic glutamate receptor group 1 and inflammation mediated by chemokine and cytokine signaling pathways among others. Further analysis showed that energy metabolism, integrity of blood-brain barrier, hypoxic, and oxidative stress signaling pathways were also implicated. Collectively, this broad-spectrum proteomics data has provided important clues to follow up in future studies to further elucidate mechanisms of H2S-induced neurotoxicity.
Collapse
Affiliation(s)
- Dong-Suk Kim
- Veterinary Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Poojya Anantharam
- Veterinary Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Andrea Hoffmann
- Henry M Jackson Foundation on contract 711HPW/USAFSAM/FHOF, Wright Patterson Air Force Base, Dayton, OH, USA
| | | | - Nadja Grobe
- 711HPW/RHDJ, Wright Patterson Air Force Base, Dayton, OH, USA
| | - Jeffery M Gearhart
- Henry M Jackson Foundation on contract 711HPW/USAFSAM/FHOF, Wright Patterson Air Force Base, Dayton, OH, USA
| | | | - Belinda Mahama
- Veterinary Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Wilson K Rumbeiha
- Veterinary Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
13
|
Swan KW, Song BM, Chen AL, Chen TJ, Chan RA, Guidry BT, Katakam PVG, Kerut EK, Giles TD, Kadowitz PJ. Analysis of decreases in systemic arterial pressure and heart rate in response to the hydrogen sulfide donor sodium sulfide. Am J Physiol Heart Circ Physiol 2017; 313:H732-H743. [PMID: 28667054 PMCID: PMC5668608 DOI: 10.1152/ajpheart.00729.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/05/2017] [Accepted: 06/23/2017] [Indexed: 01/16/2023]
Abstract
The actions of hydrogen sulfide (H2S) on the heart and vasculature have been extensively reported. However, the mechanisms underlying the effects of H2S are unclear in the anesthetized rat. The objective of the present study was to investigate the effect of H2S on the electrocardiogram and examine the relationship between H2S-induced changes in heart rate (HR), mean arterial pressure (MAP), and respiratory function. Intravenous administration of the H2S donor Na2S in the anesthetized Sprague-Dawley rat decreased MAP and HR and produced changes in respiratory function. The administration of Na2S significantly increased the RR interval at some doses but had no effect on PR or corrected QT(n)-B intervals. In experiments where respiration was maintained with a mechanical ventilator, we observed that Na2S-induced decreases in MAP and HR were independent of respiration. In experiments where respiration was maintained by mechanical ventilation and HR was maintained by cardiac pacing, Na2S-induced changes in MAP were not significantly altered, whereas changes in HR were abolished. Coadministration of glybenclamide significantly increased MAP and HR responses at some doses, but methylene blue, diltiazem, and ivabradine had no significant effect compared with control. The decreases in MAP and HR in response to Na2S could be dissociated and were independent of changes in respiratory function, ATP-sensitive K+ channels, methylene blue-sensitive mechanism involving L-type voltage-sensitive Ca2+ channels, or hyperpolarization-activated cyclic nucleotide-gated channels. Cardiovascular responses observed in spontaneously hypertensive rats were more robust than those in Sprague-Dawley rats.NEW & NOTEWORTHY H2S is a gasotransmitter capable of producing a decrease in mean arterial pressure and heart rate. The hypotensive and bradycardic effects of H2S can be dissociated, as shown with cardiac pacing experiments. Responses were not blocked by diltiazem, ivabradine, methylene blue, or glybenclamide.
Collapse
Affiliation(s)
- Kevin W Swan
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Bryant M Song
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Allen L Chen
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Travis J Chen
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ryan A Chan
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Bradley T Guidry
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - Thomas D Giles
- Division of Cardiology, Department of Internal Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Philip J Kadowitz
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana;
| |
Collapse
|
14
|
Anantharam P, Whitley EM, Mahama B, Kim DS, Imerman PM, Shao D, Langley MR, Kanthasamy A, Rumbeiha WK. Characterizing a mouse model for evaluation of countermeasures against hydrogen sulfide-induced neurotoxicity and neurological sequelae. Ann N Y Acad Sci 2017; 1400:46-64. [PMID: 28719733 DOI: 10.1111/nyas.13419] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/30/2017] [Indexed: 11/28/2022]
Abstract
Hydrogen sulfide (H2 S) is a highly neurotoxic gas. It is the second most common cause of gas-induced deaths. Beyond mortality, surviving victims of acute exposure may suffer long-term neurological sequelae. There is a need to develop countermeasures against H2 S poisoning. However, no translational animal model of H2 S-induced neurological sequelae exists. Here, we describe a novel mouse model of H2 S-induced neurotoxicity for translational research. In paradigm I, C57/BL6 mice were exposed to 765 ppm H2 S for 40 min on day 1, followed by 15-min daily exposures for periods ranging from 1 to 6 days. In paradigm II, mice were exposed once to 1000 ppm H2 S for 60 minutes. Mice were assessed for behavioral, neurochemical, biochemical, and histopathological changes. H2 S intoxication caused seizures, dyspnea, respiratory depression, knockdowns, and death. H2 S-exposed mice showed significant impairment in locomotor and coordinated motor movement activity compared with controls. Histopathology revealed neurodegenerative lesions in the collicular, thalamic, and cortical brain regions. H2 S significantly increased dopamine and serotonin concentration in several brain regions and caused time-dependent decreases in GABA and glutamate concentrations. Furthermore, H2 S significantly suppressed cytochrome c oxidase activity and caused significant loss in body weight. Overall, male mice were more sensitive than females. This novel translational mouse model of H2 S-induced neurotoxicity is reliable, reproducible, and recapitulates acute H2 S poisoning in humans.
Collapse
Affiliation(s)
- Poojya Anantharam
- Department of Veterinary Diagnostic and Animal Production Medicine, Iowa State University, Ames, Iowa
| | | | - Belinda Mahama
- Department of Veterinary Diagnostic and Animal Production Medicine, Iowa State University, Ames, Iowa
| | - Dong-Suk Kim
- Department of Veterinary Diagnostic and Animal Production Medicine, Iowa State University, Ames, Iowa
| | - Paula M Imerman
- Department of Veterinary Diagnostic and Animal Production Medicine, Iowa State University, Ames, Iowa
| | - Dahai Shao
- Department of Veterinary Diagnostic and Animal Production Medicine, Iowa State University, Ames, Iowa
| | - Monica R Langley
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa
| | - Wilson K Rumbeiha
- Department of Veterinary Diagnostic and Animal Production Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
15
|
Rumbeiha W, Whitley E, Anantharam P, Kim DS, Kanthasamy A. Acute hydrogen sulfide-induced neuropathology and neurological sequelae: challenges for translational neuroprotective research. Ann N Y Acad Sci 2016; 1378:5-16. [PMID: 27442775 PMCID: PMC5063677 DOI: 10.1111/nyas.13148] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 12/02/2022]
Abstract
Hydrogen sulfide (H2 S), the gas with the odor of rotten eggs, was formally discovered in 1777, over 239 years ago. For many years, it was considered an environmental pollutant and a health concern only in occupational settings. Recently, however, it was discovered that H2 S is produced endogenously and plays critical physiological roles as a gasotransmitter. Although at low physiological concentrations it is physiologically beneficial, exposure to high concentrations of H2 S is known to cause brain damage, leading to neurodegeneration and long-term neurological sequelae or death. Neurological sequelae include motor, behavioral, and cognitive deficits, which are incapacitating. Currently, there are concerns about accidental or malicious acute mass civilian exposure to H2 S. There is a major unmet need for an ideal neuroprotective treatment, for use in the field, in the event of mass civilian exposure to high H2 S concentrations. This review focuses on the neuropathology of high acute H2 S exposure, knowledge gaps, and the challenges associated with development of effective neuroprotective therapy to counteract H2 S-induced neurodegeneration.
Collapse
Affiliation(s)
- Wilson Rumbeiha
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa.
| | | | - Poojya Anantharam
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Dong-Suk Kim
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
16
|
Abstract
Hydrogen sulfide (H2S) is a hazard primarily in the oil and gas industry, agriculture, sewage and animal waste handling, construction (asphalt operations and disturbing marshy terrain), and other settings where organic material decomposes under reducing conditions, and in geothermal operations. It is an insoluble gas, heavier than air, with a very low odor threshold and high toxicity, driven by concentration more than duration of exposure. Toxicity presents in a unique, reliable, and characteristic toxidrome consisting, in ascending order of exposure, of mucosal irritation, especially of the eye ("gas eye"), olfactory paralysis (not to be confused with olfactory fatigue), sudden but reversible loss of consciousness ("knockdown"), pulmonary edema (with an unusually favorable prognosis), and death (probably with apnea contributing). The risk of chronic neurcognitive changes is controversial, with the best evidence at high exposure levels and after knockdowns, which are frequently accompanied by head injury or oxygen deprivation. Treatment cannot be initiated promptly in the prehospital phase, and currently rests primarily on supportive care, hyperbaric oxygen, and nitrite administration. The mechanism of action for sublethal neurotoxicity and knockdown is clearly not inhibition of cytochrome oxidase c, as generally assumed, although this may play a role in overwhelming exposures. High levels of endogenous sulfide are found in the brain, presumably relating to the function of hydrogen sulfide as a gaseous neurotransmitter and immunomodulator. Prevention requires control of exposure and rigorous training to stop doomed rescue attempts attempted without self-contained breathing apparatus, especially in confined spaces, and in sudden release in the oil and gas sector, which result in multiple avoidable deaths.
Collapse
|
17
|
Intoxication aiguë à l’hydrogène sulfuré. MEDECINE INTENSIVE REANIMATION 2012. [DOI: 10.1007/s13546-012-0503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Olson KR. Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling. J Comp Physiol B 2012; 182:881-97. [PMID: 22430869 DOI: 10.1007/s00360-012-0654-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/17/2012] [Accepted: 02/21/2012] [Indexed: 02/07/2023]
Abstract
Sulfur is a versatile molecule with oxidation states ranging from -2 to +6. From the beginning, sulfur has been inexorably entwined with the evolution of organisms. Reduced sulfur, prevalent in the prebiotic Earth and supplied from interstellar sources, was an integral component of early life as it could provide energy through oxidization, even in a weakly oxidizing environment, and it spontaneously reacted with iron to form iron-sulfur clusters that became the earliest biological catalysts and structural components of cells. The ability to cycle sulfur between reduced and oxidized states may have been key in the great endosymbiotic event that incorporated a sulfide-oxidizing α-protobacteria into a host sulfide-reducing Archea, resulting in the eukaryotic cell. As eukaryotes slowly adapted from a sulfidic and anoxic (euxinic) world to one that was highly oxidizing, numerous mechanisms developed to deal with increasing oxidants; namely, oxygen, and decreasing sulfide. Because there is rarely any reduced sulfur in the present-day environment, sulfur was historically ignored by biologists, except for an occasional report of sulfide toxicity. Twenty-five years ago, it became evident that the organisms in sulfide-rich environments could synthesize ATP from sulfide, 10 years later came the realization that animals might use sulfide as a signaling molecule, and only within the last 4 years did it become apparent that even mammals could derive energy from sulfide generated in the gastrointestinal tract. It has also become evident that, even in the present-day oxic environment, cells can exploit the redox chemistry of sulfide, most notably as a physiological transducer of oxygen availability. This review will examine how the legacy of sulfide metabolism has shaped natural selection and how some of these ancient biochemical pathways are still employed by modern-day eukaryotes.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine South Bend, 1234 Notre Dame Avenue, South Bend, IN 46617, USA,
| |
Collapse
|
19
|
Dongó E, Hornyák I, Benkő Z, Kiss L. The cardioprotective potential of hydrogen sulfide in myocardial ischemia/reperfusion injury (Review). ACTA ACUST UNITED AC 2011; 98:369-81. [DOI: 10.1556/aphysiol.98.2011.4.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Liu X, Gong C, Jiang X. Inhibitory effects of enterococci on the production of hydrogen sulfide by hydrogen sulfide-producing bacteria in raw meat. J Appl Microbiol 2011; 111:83-92. [PMID: 21518155 DOI: 10.1111/j.1365-2672.2011.05034.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Applying competitive exclusion micro-organisms to control hydrogen sulfide (H₂S) gas produced by hydrogen sulfide-producing bacteria (SPB) in chicken meat. METHODS AND RESULTS Five SPB strains, isolated from animal by-products, were used for screening lactic acid bacteria (LAB) that can inhibit the production of H₂S by SPB in trypticase soy broth supplemented with L-cysteine (TSB-L-cys). A sensitive and accurate test strip method was developed for H₂S determination in real time. One LAB strain, isolate L86, from cheese whey, demonstrated the highest inhibitory activity against the production of H₂S by SPB. The isolate L86 was confirmed as Enterococcus faecium that does not possess genes encoding for vancomycin resistance based on PCR analysis. Enterococcus faecium strain L86 reduced (P < 0·05) the yield of H₂S upto 51·2% in 10 h at 35°C in TSB-L-cys medium. In fresh chicken meat, the yield of H₂S produced by the artificially inoculated SPB was reduced (P < 0·05) by 48·6, 49·7 and 69·8% in 10 h at 35, 30 and 25°C, respectively. Enterococcus faecium strain L86 also reduced (P < 0·05) by 53·8% on the yield of H₂S produced by the indigenous SPB in partially spoiled chicken meat at 35°C for 10 h. CONCLUSIONS Enterococcus faecium strain L86 is effective on inhibiting the production of H₂S by SPB. SIGNIFICANCE AND IMPACT OF THE STUDY The application of this biological agent to raw animal by-products will provide a safer working environment in rendering processing plants and produce higher-quality rendered products.
Collapse
Affiliation(s)
- X Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.
| | | | | |
Collapse
|
21
|
Olson KR. The therapeutic potential of hydrogen sulfide: separating hype from hope. Am J Physiol Regul Integr Comp Physiol 2011; 301:R297-312. [PMID: 21543637 DOI: 10.1152/ajpregu.00045.2011] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H(2)S) has become the hot new signaling molecule that seemingly affects all organ systems and biological processes in which it has been investigated. It has also been shown to have both proinflammatory and anti-inflammatory actions and proapoptotic and anti-apoptotic effects and has even been reported to induce a hypometabolic state (suspended animation) in a few vertebrates. The exuberance over potential clinical applications of natural and synthetic H(2)S-"donating" compounds is understandable and a number of these function-targeted drugs have been developed and show clinical promise. However, the concentration of H(2)S in tissues and blood, as well as the intrinsic factors that affect these levels, has not been resolved, and it is imperative to address these points to distinguish between the physiological, pharmacological, and toxicological effects of this molecule. This review will provide an overview of H(2)S metabolism, a summary of many of its reported "physiological" actions, and it will discuss the recent development of a number of H(2)S-donating drugs that show clinical potential. It will also examine some of the misconceptions of H(2)S chemistry that have appeared in the literature and attempt to realign the definition of "physiological" H(2)S concentrations upon which much of this exuberance has been established.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, South Bend, Indiana 46617, USA.
| |
Collapse
|
22
|
Abstract
Hydrogen sulfide is a relatively common, frequently lethal, and unique occupational hazard for which research since 1990 has uncovered many anomalies and subtleties and a previously unsuspected physiological role for the endogenous agent. The result has been uncertainty and misunderstanding, particularly for persons new to the literature. This review addresses evidence that settles past controversies, guides practical issues in evaluating human toxicity, addresses unresolved issues involving chronic exposure, and points the way to a deeper understanding of the agent and its effects.
Collapse
Affiliation(s)
- Tee L. Guidotti
- Tee L. Guidotti, Medical Advisory Services, PO Box 7479, Gaithersburg, MD 20898, USA
| |
Collapse
|
23
|
Yalamanchili C, Smith MD. Acute hydrogen sulfide toxicity due to sewer gas exposure. Am J Emerg Med 2008; 26:518.e5-7. [PMID: 18410836 DOI: 10.1016/j.ajem.2007.08.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 08/23/2007] [Indexed: 11/24/2022] Open
Abstract
Hydrogen sulfide toxicity is a known risk for individuals working in the petroleum, sewer, maritime, and mining industries. Concern regarding exposure has led to the development of safety precautions and treatment guidelines. The US government imposes safety measures including self-contained breathing masks and exposure time limits to hydrogen sulfide gas. Current treatment methods, however, are not strongly supported by research. Acute exposure to hydrogen sulfide gas still poses a significant life threat. In this report, we discuss a case of a sewer worker exposed to deadly concentrations of hydrogen sulfide. Safety precautions and treatment options available to those exposed to high doses of hydrogen sulfide gas are explored.
Collapse
|
24
|
Policastro MA, Otten EJ. Case files of the University of Cincinnati fellowship in medical toxicology: two patients with acute lethal occupational exposure to hydrogen sulfide. J Med Toxicol 2008; 3:73-81. [PMID: 18072164 DOI: 10.1007/bf03160912] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Michael A Policastro
- University of Cincinnati, Division of Toxicology, Department of Emergency Medicine, OH 45267-0769, USA.
| | | |
Collapse
|
25
|
|