1
|
Shah JR, Dong T, Phung AT, Reid T, Larson C, Sanchez AB, Oronsky B, Blair SL, Aisagbonhi O, Trogler WC, Kummel AC. Development of Adenovirus Containing Liposomes Produced by Extrusion vs. Homogenization: A Comparison for Scale-Up Purposes. Bioengineering (Basel) 2022; 9:620. [PMID: 36354531 PMCID: PMC9687354 DOI: 10.3390/bioengineering9110620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/28/2024] Open
Abstract
Adenovirus (Ad) is a widely studied viral vector for cancer therapy as it can be engineered to cause selective lysis of cancer cells. However, Ad delivery is limited in treating cancers that do not have coxsackievirus and adenovirus receptors (CAR). To overcome this challenge, Ad-encapsulated liposomes were developed that enhance the delivery of Ads and increase therapeutic efficacy. Cationic empty liposomes were manufactured first, to which an anionic Ad were added, which resulted in encapsulated Ad liposomes through charge interaction. Optimization of the liposome formula was carried out with series of formulation variables experiments using an extrusion process, which is ideal for laboratory-scale small batches. Later, the optimized formulation was manufactured with a homogenization technique-A high shear rotor-stator blending, that is ideal for large-scale manufacturing and is in compliance with Good Manufacturing Practices (GMP). Comparative in vitro transduction, physicochemical characterization, long-term storage stability at different temperature conditions, and in vivo animal studies were performed. Ad encapsulated liposomes transduced CAR deficient cells 100-fold more efficiently than the unencapsulated Ad (p ≤ 0.0001) in vitro, and 4-fold higher in tumors injected in nude mice in vivo. Both extrusion and homogenization performed similarly-with equivalent in vitro and in vivo transduction efficiencies, physicochemical characterization, and long-term storage stability. Thus, two Ad encapsulated liposomes preparation methods used herein, i.e., extrusion vs. homogenization were equivalent in terms of enhanced Ad performance and long-term storage stability; this will, hopefully, facilitate translation to the clinic.
Collapse
Affiliation(s)
- Jaimin R. Shah
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Tao Dong
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Abraham T. Phung
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Reid
- EpicentRx, Inc., La Jolla, CA 92037, USA
| | | | | | | | - Sarah L. Blair
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | - Omonigho Aisagbonhi
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92037, USA
| | - William C. Trogler
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew C. Kummel
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Adv Colloid Interface Sci 2022; 309:102757. [DOI: 10.1016/j.cis.2022.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022]
|
3
|
DoE-derived continuous and robust process for manufacturing of pharmaceutical-grade wide-range LNPs for RNA-vaccine/drug delivery. Sci Rep 2022; 12:9394. [PMID: 35672337 PMCID: PMC9172984 DOI: 10.1038/s41598-022-12100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/28/2022] [Indexed: 12/05/2022] Open
Abstract
Lipid nanoparticle (LNP) technology has become extremely demanding for delivering RNA-products and other drugs. However, there is no platform to manufacture pharmaceutical-grade LNPs with desired particle size from a wide range in continuous mode. We have developed a unique platform to obtain any specific size-range of LNPs from 60 to 180 nm satisfying pharmaceutical regulatory requirements for polydispersity index, sterility, dose uniformity and bio-functionality. We applied design of experiment (DoE) methodology and identified the critical process parameters to establish the process for global application. Cross-point validation within the response map of DoE confirmed that the platform is robust to produce specific size (± 10 nm) of LNPs within the design-range. The technology is successfully transformed to production scale and validated. Products from R&D, pilot and production batches for a candidate SARS-CoV-2 mRNA-vaccine generated equivalent biological responses. The data collectively established the robustness and bio-uniformity of doses for global RNA-vaccine/drug formulation.
Collapse
|
4
|
Dubey SK, Dey A, Singhvi G, Pandey MM, Singh V, Kesharwani P. Emerging trends of nanotechnology in advanced cosmetics. Colloids Surf B Biointerfaces 2022; 214:112440. [PMID: 35344873 DOI: 10.1016/j.colsurfb.2022.112440] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
Abstract
The cosmetic industry is dynamic and ever-evolving. Especially with the introduction and incorporation of nanotechnology-based approaches into cosmetics for evincing novel formulations that confers aesthetic as well as therapeutic benefits. Nanocosmetics acts via numerous delivery mechanisms which involves lipid nanocarrier systems, polymeric or metallic nanoparticles, nanocapsules, dendrimers, nanosponges,etc. Each of these, have particular characteristic properties, which facilitates increased drug loading, enhanced absorption, better cosmetic efficacy, and many more. This article discusses the different classes of nanotechnology-based cosmetics and the nanomaterials used for their formulation, followed by outlining the categories of nanocosmetics and the scope of their utility pertaining to skin, hair, nail, lip, and/or dental care and protection thereof. This review also highlights and discusses about the key drivers of the cosmetic industry and the impending need of corroborating a healthy regulatory framework, refocusing attention towards consumer needs and trends, inculcating sustainable techniques and tenets of green ecological principles, and lastly making strides in nano-technological advancements which will further propel the growth of the cosmetic industry.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Anuradha Dey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Murali Manohar Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
5
|
Wang J, He W, Cheng L, Zhang H, Wang Y, Liu C, Dong S, Zha W, Kong X, Yao C, Li X. A modified thin film method for large scale production of dimeric artesunate phospholipid liposomes and comparison with conventional approaches. Int J Pharm 2022; 619:121714. [DOI: 10.1016/j.ijpharm.2022.121714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 12/18/2022]
|
6
|
Efficacy of immunization with a recombinant S. aureus vaccine formulated with liposomes and ODN-CpG against natural S. aureus intramammary infections in heifers and cows. Res Vet Sci 2022; 145:177-187. [DOI: 10.1016/j.rvsc.2022.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
|
7
|
Liposomal-Based Formulations: A Path from Basic Research to Temozolomide Delivery Inside Glioblastoma Tissue. Pharmaceutics 2022; 14:pharmaceutics14020308. [PMID: 35214041 PMCID: PMC8875825 DOI: 10.3390/pharmaceutics14020308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is a lethal brain cancer with a very difficult therapeutic approach and ultimately frustrating results. Currently, therapeutic success is mainly limited by the high degree of genetic and phenotypic heterogeneity, the blood brain barrier (BBB), as well as increased drug resistance. Temozolomide (TMZ), a monofunctional alkylating agent, is the first line chemotherapeutic drug for GBM treatment. Yet, the therapeutic efficacy of TMZ suffers from its inability to cross the BBB and very short half-life (~2 h), which requires high doses of this drug for a proper therapeutic effect. Encapsulation in a (nano)carrier is a promising strategy to effectively improve the therapeutic effect of TMZ against GBM. Although research on liposomes as carriers for therapeutic agents is still at an early stage, their integration in GBM treatment has a great potential to advance understanding and treating this disease. In this review, we provide a critical discussion on the preparation methods and physico-chemical properties of liposomes, with a particular emphasis on TMZ-liposomal formulations targeting GBM developed within the last decade. Furthermore, an overview on liposome-based formulations applied to translational oncology and clinical trials formulations in GBM treatment is provided. We emphasize that despite many years of intense research, more careful investigations are still needed to solve the main issues related to the manufacture of reproducible liposomal TMZ formulations for guaranteed translation to the market.
Collapse
|
8
|
Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front Bioeng Biotechnol 2021; 9:705886. [PMID: 34568298 PMCID: PMC8459376 DOI: 10.3389/fbioe.2021.705886] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Liposomes are essentially a subtype of nanoparticles comprising a hydrophobic tail and a hydrophilic head constituting a phospholipid membrane. The spherical or multilayered spherical structures of liposomes are highly rich in lipid contents with numerous criteria for their classification, including structural features, structural parameters, and size, synthesis methods, preparation, and drug loading. Despite various liposomal applications, such as drug, vaccine/gene delivery, biosensors fabrication, diagnosis, and food products applications, their use encounters many limitations due to physico-chemical instability as their stability is vigorously affected by the constituting ingredients wherein cholesterol performs a vital role in the stability of the liposomal membrane. It has well established that cholesterol exerts its impact by controlling fluidity, permeability, membrane strength, elasticity and stiffness, transition temperature (Tm), drug retention, phospholipid packing, and plasma stability. Although the undetermined optimum amount of cholesterol for preparing a stable and controlled release vehicle has been the downside, but researchers are still focused on cholesterol as a promising material for the stability of liposomes necessitating explanation for the stability promotion of liposomes. Herein, the prior art pertaining to the liposomal appliances, especially for drug delivery in cancer therapy, and their stability emphasizing the roles of cholesterol.
Collapse
Affiliation(s)
- Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
- Cipto Mangunkusumo Hospital, The National Referral Hospital, Central Jakarta, Indonesia
- Master’s Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology, and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| |
Collapse
|
9
|
Novoa MB, Sarli M, Reidel IG, Veaute C, Valentini B, Primo ME. Neospora caninum truncated recombinant proteins formulated with liposomes and CpG-ODNs triggered a humoral immune response in cattle after immunisation and challenge. Vet Immunol Immunopathol 2021; 238:110285. [PMID: 34146834 DOI: 10.1016/j.vetimm.2021.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/06/2021] [Accepted: 06/11/2021] [Indexed: 11/29/2022]
Abstract
Abortions caused by Neospora caninum are a serious problem in cattle production and require effective immunoprophylaxis. The objective of this work was to assess the humoral immune response to four recombinant (r) N. caninum antigens in cattle after immunisation and challenge. MIC1 and MIC3 proteins from the micronemes, SRS2 from the surface of tachyzoites, and GRA7 from the dense granules were expressed as truncated recombinant proteins in Escherichia coli. Cationic liposomes (Lip) and CpG oligodeoxynucleotides (CpG-ODNs) were used as adjuvant. Steers were assigned to three groups of six steers each and were inoculated twice subcutaneously, 21 days apart. The rP + Lip + CpG-ODN group received the truncated recombinant proteins rMIC1, rMIC3, rSRS2 and rGRA7 formulated with the adjuvant; the Lip + CpG-ODN group received the adjuvant alone; and the PBS group received sterile phosphate-buffered saline. All steers were subcutaneously challenged with the NC-1 strain of N. caninum 35 days after the second dose of immunisation. Steers from the rP + Lip + CpG-ODN group developed specific IgG, IgG1 and IgG2 against the four recombinant proteins after immunisation. After challenge, IgG against rMIC1 and rMIC3 was detected in rP + Lip + CpG-ODN group and against rSRS2 and rGRA7 in all groups. IgG1 and IgG2 against the four recombinant proteins remained high after challenge in the rP + Lip + CpG-ODN group. Indirect ELISA detected anti-N. caninum antibodies after challenge in all groups, with the highest level of antibodies being detected in the rP + Lip + CpG-ODN group. The recombinant vaccine formulated with rMIC1, rMIC3, rSRS2 and rGRA7 using Lip + CpG-ODN as adjuvant was immunogenic in cattle and the humoral immune response after challenge was enhanced in vaccinated cattle.
Collapse
Affiliation(s)
- María Belén Novoa
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Route 34, km 227, 2300, Rafaela, Argentina.
| | - Macarena Sarli
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Route 34, km 227, 2300, Rafaela, Argentina
| | - Ivana Gabriela Reidel
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, S3000ZAA, Santa Fe, Argentina
| | - Carolina Veaute
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, S3000ZAA, Santa Fe, Argentina
| | - Beatriz Valentini
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Route 34, km 227, 2300, Rafaela, Argentina
| | - María Evangelina Primo
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Route 34, km 227, 2300, Rafaela, Argentina
| |
Collapse
|
10
|
van Alem CMA, Metselaar JM, van Kooten C, Rotmans JI. Recent Advances in Liposomal-Based Anti-Inflammatory Therapy. Pharmaceutics 2021; 13:pharmaceutics13071004. [PMID: 34371695 PMCID: PMC8309101 DOI: 10.3390/pharmaceutics13071004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/13/2023] Open
Abstract
Liposomes can be seen as ideal carriers for anti-inflammatory drugs as their ability to (passively) target sites of inflammation and release their content to inflammatory target cells enables them to increase local efficacy with only limited systemic exposure and adverse effects. Nonetheless, few liposomal formulations seem to reach the clinic. The current review provides an overview of the more recent innovations in liposomal treatment of rheumatoid arthritis, psoriasis, vascular inflammation, and transplantation. Cutting edge developments include the liposomal delivery of gene and RNA therapeutics and the use of hybrid systems where several liposomal bilayer features, or several drugs, are combined in a single formulation. The majority of the articles reviewed here focus on preclinical animal studies where proof-of-principle of an improved efficacy-safety ratio is observed when using liposomal formulations. A few clinical studies are included as well, which brings us to a discussion about the challenges of clinical translation of liposomal nanomedicines in the field of inflammatory diseases.
Collapse
Affiliation(s)
- Carla M. A. van Alem
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (C.M.A.v.A.); (C.v.K.)
| | - Josbert M. Metselaar
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | - Cees van Kooten
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (C.M.A.v.A.); (C.v.K.)
| | - Joris I. Rotmans
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (C.M.A.v.A.); (C.v.K.)
- Correspondence: ; Tel.: +31-(0)-7152-62148
| |
Collapse
|
11
|
Skóra B, Piechowiak T, Szychowski KA, Gmiński J. Entrapment of silver nanoparticles in L-α-phosphatidylcholine/cholesterol-based liposomes mitigates the oxidative stress in human keratinocyte (HaCaT) cells. Eur J Pharm Biopharm 2021; 166:163-174. [PMID: 34171495 DOI: 10.1016/j.ejpb.2021.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/08/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022]
Abstract
Encapsulation procedures are used to decrease the contact of toxic nanoparticles with cells; however, this field is still not well explored. Therefore, the aim of this paper was to evaluate the effect of encapsulation of silver nanoparticles in L-α-phosphatidylcholine/cholesterol-based liposomes on a human keratinocyte cell line (HaCaT). The homogenous (PdI = 0.171) spherical (~161 nm diameter) complexes were prepared by thin film hydration with the extrusion method. The UV-Vis scan and Dynamic Light Scattering measurement did not show any "free" silver nanoparticles in solutions, which was confirmed by Transmission Electron Microscope analysis. Moreover, the liposomes were tested on HaCaT cells, showing that the encapsulation process reduced the toxicity by 30%-10% at the 100 nM and 1 pM concentrations, respectively, in comparison to "free" nanoparticles, measured by resazurin reduction and lactate dehydrogenase release assays. Moreover, the caspase-3 activity was lower after 48-h treatment with LipoAgNPs than with AgNPs. The level of reactive oxygen species (ROS) after 1, 6, 48, and 72 h of treatment of HaCaT cells was significantly lower in comparison to cells treated with "bare" silver nanoparticles analyzed with the H2DCF-DA probe. The metabolic activity was strictly correlated with toxicity, indicating a lower negative impact of encapsulated nanoparticles than the "bare" ones.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, St. Sucharskiego 2, 35-225 Rzeszów, Poland.
| | - Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Ćwiklinskiej 1a, 35-601, Rzeszów, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, St. Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, Medical College, University of Information Technology and Management in Rzeszow, St. Sucharskiego 2, 35-225 Rzeszów, Poland
| |
Collapse
|
12
|
Kozani PS, Kozani PS, Malik MT. AS1411-functionalized delivery nanosystems for targeted cancer therapy. EXPLORATION OF MEDICINE 2021; 2:146-166. [PMID: 34723284 PMCID: PMC8555908 DOI: 10.37349/emed.2021.00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleolin (NCL) is a multifunctional nucleolar phosphoprotein harboring critical roles in cells such as cell proliferation, survival, and growth. The dysregulation and overexpression of NCL are related to various pathologic and oncological indications. These characteristics of NCL make it an ideal target for the treatment of various cancers. AS1411 is a synthetic quadruplex-forming nuclease-resistant DNA oligonucleotide aptamer which shows a considerably high affinity for NCL, therefore, being capable of inducing growth inhibition in a variety of tumor cells. The high affinity and specificity of AS1411 towards NCL make it a suitable targeting tool, which can be used for the functionalization of therapeutic payloaddelivery nanosystems to selectively target tumor cells. This review explores the advances in NCL-targeting cancer therapy through AS1411-functionalized delivery nanosystems for the selective delivery of a broad spectrum of therapeutic agents.
Collapse
Affiliation(s)
- Pooria Safarzadeh Kozani
- Carlos Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115/111, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 41446/66949, Iran
- Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht 41446/66949, Iran
| | - Mohammad Tariq Malik
- Departments of Microbiology and Immunology, Regenerative Medicine, and Stem Cell Biology, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
13
|
Ajeeshkumar KK, Aneesh PA, Raju N, Suseela M, Ravishankar CN, Benjakul S. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Compr Rev Food Sci Food Saf 2021; 20:1280-1306. [PMID: 33665991 DOI: 10.1111/1541-4337.12725] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/28/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Liposomes play a significant role in encapsulation of various bioactive compounds (BACs), including functional food ingredients to improve the stability of core. This technology can be used for promoting an effective application in functional food and nutraceuticals. Incorporation of traditional and emerging methods for the developments of liposome for loading BACs resulted in viable and stable liposome formulations for industrial applications. Thus, the advance technologies such as supercritical fluidic methods, microfluidization, ultrasonication with traditional methods are revisited. Liposomes loaded with plant and animal BACs have been introduced for functional food and nutraceutical applications. In general, application of liposome systems improves stability, delivery, and bioavailability of BACs in functional food systems and nutraceuticals. This review covers the current techniques and methodologies developed and practiced in liposomal preparation and application in functional foods.
Collapse
Affiliation(s)
| | | | - Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Mathew Suseela
- ICAR - Central Institute of Fisheries Technology, Cochin, Kerala, 682029, India
| | | | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
14
|
Delma KL, Lechanteur A, Evrard B, Semdé R, Piel G. Sterilization methods of liposomes: Drawbacks of conventional methods and perspectives. Int J Pharm 2021; 597:120271. [PMID: 33548365 DOI: 10.1016/j.ijpharm.2021.120271] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 01/15/2023]
Abstract
Liposomes are targeted drug delivery systems that are of great pharmaceutical and therapeutic interest. Parenteral route is the main way used for liposome administration. In this case, their sterility is a requirement. However, due to the particular sensitivity of liposomes and their tendency to physicochemical alterations, their sterilization remains a real challenge. Conventional sterilization methods such as heat, ethylene oxide, ultraviolet and gamma irradiations are considered as unsuitable for liposome sterilization and the recommended methods for obtaining sterility of liposomes are filtration and aseptic manufacturing. Unfortunately, these recommended methods are not without limitations. This review outlines the difficulties associated with the use of these different classical methods for obtaining liposome sterility. The effects on liposome physicochemical and biopharmaceutical characteristics as well as efficacy, toxicity and practical problems of these sterilization techniques have been discussed. The search for an alternative method being therefore necessary, the applicability of supercritical carbon dioxide (ScCO2) technology, which is nowadays a promising strategy for the sterilization of sensitive products such as liposomes, is also examined. It appears from this analysis that ScCO2 could effectively be an interesting alternative to achieve sterility of liposomes, but for this, sterilization assays including challenge tests and optimization studies are needed.
Collapse
Affiliation(s)
- Kouka Luc Delma
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Developments, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium; Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Developments, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Developments, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Rasmané Semdé
- Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Developments, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium.
| |
Collapse
|
15
|
Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102174] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Penoy N, Grignard B, Evrard B, Piel G. A supercritical fluid technology for liposome production and comparison with the film hydration method. Int J Pharm 2021; 592:120093. [DOI: 10.1016/j.ijpharm.2020.120093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022]
|
17
|
Skóra B, Szychowski KA, Gmiński J. A concise review of metallic nanoparticles encapsulation methods and their potential use in anticancer therapy and medicine. Eur J Pharm Biopharm 2020; 154:153-165. [PMID: 32681962 DOI: 10.1016/j.ejpb.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/29/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
Interest in the use of metallic nanoparticles (NPs) in medicine is constantly increasing. The key challenge to the introduction of NPs into anticancer treatment is to limit the contact of their surface with healthy cells and to enable specific targeting of certain tissues, for example, cancerous cells. These aspects have raised a question whether the recent methods of drug delivery allow restricting the contact of NPs with healthy and/or nontarget cells. NPs can be restricted by encapsulation, which involves entrapping them into organic layers. This review is the first to present the different approaches for the encapsulation of metallic NPs, using liposomes, dendrimers, and proteins. The types and methods of entrapping are shown in an accessible way, enriched with graphics, and the pros and cons of these methods are disputable. Furthermore, the potential uses of NP complexes in medicine are described.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| |
Collapse
|
18
|
Abstract
AbstractSupercritical fluid (SCF) technologies have emerged as a real alternative to various natural product extraction processes and pharmaceutical production to obtain micronized particles, coprecipitates, nanocomposite polymer structures and liposomes, in addition to other increasingly larger applications described in literature. In the present work, a brief literature review of the application of supercritical fluid extraction (SFE) is presented. This is evidenced by several publications and patents, contributions from several countries and the increase of industries around the world dedicated to this technique. Next, we aim to focus the analysis of SFE on a review of the literature applied to microalgae as a substitute primitive feedstock due to its high growth rate, valuable biologically active lipophilic substances, and photosynthetic efficiency without competition with food sources or needs of arable lands. We finally discussing an SCF bioprocess with a very new perspective for liposome production focalized on its potential at industrial scale.
Collapse
|
19
|
Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res 2019; 30:336-365. [DOI: 10.1080/08982104.2019.1668010] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- C. Has
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - P. Sunthar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
20
|
Reidel IG, Camussone C, Suarez Archilla GA, Calvinho LF, Veaute C. Liposomal and CpG-ODN formulation elicits strong humoral immune responses to recombinant Staphylococcus aureus antigens in heifer calves. Vet Immunol Immunopathol 2019; 212:1-8. [PMID: 31213246 DOI: 10.1016/j.vetimm.2019.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/04/2019] [Accepted: 04/30/2019] [Indexed: 12/01/2022]
Abstract
Bovine mastitis caused by Staphylococcus aureus is a serious problem in dairy production and effective immunoprophylaxis is an unmet goal so far. The objective of this work was to assess the humoral immune response of heifer calves against two recombinant S. aureus antigens: Clumping factor A (ClfA) and Fibronectin Binding Protein A (FnBPA), formulated with a novel adjuvant based on cationic liposomes (Lip) and CpG oligodeoxynucleotides (CpG-ODN). Six groups of 6-8 months old heifer calves received three doses biweekly of antigens, formulated with Al(OH)3, liposomes, CpG-ODN or Lip + CpG-ODN. Animals also received a fourth dose after a year (day 410) and a booster before calving. The administration of Al(OH)3+FnBPA/ClfA and Lip + FnBPA/ClfA + CpG-ODN induced the highest specific IgG levels, after the first 3 doses and induced a fast increase of antibodies after the fourth dose. All the formulations stimulated the production of specific IgG1, after the third and fourth dose. Specific IgG2 for both proteins was only stimulated after the fourth dose by Lip + FnBPA/ClfA + CpG-ODN. Pre-calving immunisation with Lip + FnBPA/ClfA + CpG-ODN led to the highest IgG levels during the calving period and to the production of the IgG2 subclass. The formulation was also able to stimulate the highest antibody levels in milk, 30 and 45 days after pre-calving booster. The combination of liposomes and CpG-ODN as adjuvant for a subunit vaccine, together with the immunisation schedule described, induced a strong humoral immune response with production of specific IgG2. The formulation demonstrated to induce immune memory allowing the application of a single pre-calving booster to maintain high antibody levels throughout the period of increased susceptibility to intramammary infections.
Collapse
Affiliation(s)
- Ivana Gabriela Reidel
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, S3000ZAA, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Cecilia Camussone
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina; Estación Experimental Agropecuaria Rafaela, INTA, Route 34, km 227, 2300 Rafaela, Argentina
| | | | - Luis Fernando Calvinho
- Estación Experimental Agropecuaria Rafaela, INTA, Route 34, km 227, 2300 Rafaela, Argentina
| | - Carolina Veaute
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, S3000ZAA, Santa Fe, Argentina.
| |
Collapse
|
21
|
He H, Lu Y, Qi J, Zhu Q, Chen Z, Wu W. Adapting liposomes for oral drug delivery. Acta Pharm Sin B 2019; 9:36-48. [PMID: 30766776 PMCID: PMC6362257 DOI: 10.1016/j.apsb.2018.06.005] [Citation(s) in RCA: 349] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/21/2018] [Accepted: 04/12/2018] [Indexed: 02/08/2023] Open
Abstract
Liposomes mimic natural cell membranes and have long been investigated as drug carriers due to excellent entrapment capacity, biocompatibility and safety. Despite the success of parenteral liposomes, oral delivery of liposomes is impeded by various barriers such as instability in the gastrointestinal tract, difficulties in crossing biomembranes, and mass production problems. By modulating the compositions of the lipid bilayers and adding polymers or ligands, both the stability and permeability of liposomes can be greatly improved for oral drug delivery. This review provides an overview of the challenges and current approaches toward the oral delivery of liposomes.
Collapse
Key Words
- APC, antigen-presenting cell
- AUC, area under curve
- Absorption
- BSA, bovine serum albumin
- Bioavailability
- DC, dendritic cells
- DMPC, dimyristoyl phosphatidyl choline
- DPPC, dipalmitoyl phosphotidylcholine
- Drug delivery
- FAE, follicle-associated epithelia
- FITC, fluorescein isothiocyannate
- GIT, gastrointestinal tract
- LUV, large unilamellar vesicles
- Liposomes
- MLV, multilamellar vesicles
- MRT, mean residence time
- MVL, multivesicular liposomes
- Oral
- PC, phosphatidylcholine
- PEG, polyethylene glycol
- RES, reticulo-endothelial
- SC, sodium cholate
- SDC, sodium deoxycholate
- SGC, sodium glycocholate
- SPC, soy phosphatidylcholine
- STC, sodium taurocholate
- SUV, small unilamellar vesicles
- Stability
- TPGS, tocopherol polyethylene glycol succinate
- Tgel, gelling temperature
- Tp, phase transition temperature
- UEA 1, ulex europaeus agglutinin 1
- WGA, wheat germ agglutinin
- rhEGF, recombinant human epithelial growth factor
Collapse
Affiliation(s)
- Haisheng He
- Key Laboratory of Smart Drug Delivery of MOE and PLA, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE and PLA, School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Dermatology Hospital, Shanghai 200443, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE and PLA, School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Dermatology Hospital, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Dermatology Hospital, Shanghai 200443, China
| | | | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE and PLA, School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Dermatology Hospital, Shanghai 200443, China
| |
Collapse
|
22
|
Vélez MA, Perotti MC, Hynes ER, Gennaro AM. Effect of lyophilization on food grade liposomes loaded with conjugated linoleic acid. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Lopez A, Liu J. DNA Oligonucleotide-Functionalized Liposomes: Bioconjugate Chemistry, Biointerfaces, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15000-15013. [PMID: 29936848 DOI: 10.1021/acs.langmuir.8b01368] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Interfacing DNA with liposomes has produced a diverse range of programmable soft materials, devices, and drug delivery vehicles. By simply controlling liposomal composition, bilayer fluidity, lipid domain formation, and surface charge can be systematically varied. Recent development in DNA research has produced not only sophisticated nanostructures but also new functions including ligand binding and catalysis. For noncationic liposomes, a DNA is typically covalently linked to a hydrophobic or lipid moiety that can be inserted into lipid membranes. In this article, we discuss fundamental biointerfaces formed between DNA and noncationic liposomes. The methods to prepare such conjugates and the interactions at the membrane interfaces are also discussed. The effect of DNA lateral diffusion on fluid bilayer membranes and the effect of membrane on DNA assembly are emphasized. DNA hybridization can be programmed to promote fusion of lipid membranes. Representative applications of this conjugate for drug delivery, biosensor development, and directed assembly of materials are briefly described toward the end. Some future research directions are also proposed to further understand this biointerface.
Collapse
Affiliation(s)
- Anand Lopez
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
24
|
Danaei M, Kalantari M, Raji M, Samareh Fekri H, Saber R, Asnani G, Mortazavi S, Mozafari M, Rasti B, Taheriazam A. Probing nanoliposomes using single particle analytical techniques: effect of excipients, solvents, phase transition and zeta potential. Heliyon 2018; 4:e01088. [PMID: 30603716 PMCID: PMC6307095 DOI: 10.1016/j.heliyon.2018.e01088] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/05/2018] [Accepted: 12/20/2018] [Indexed: 01/02/2023] Open
Abstract
There has been a steady increase in the interest towards employing nanoliposomes as colloidal drug delivery systems, particularly in the last few years. Their biocompatibility nature along with the possibility of encapsulation of lipid-soluble, water-soluble and amphipathic molecules and compounds are among the advantages of employing these lipidic nanocarriers. A challenge in the successful formulation of nanoliposomal systems is to control the critical physicochemical properties, which impact their in vivo performance, and validating analytical techniques that can adequately characterize these nanostructures. Of particular interest are the chemical composition of nanoliposomes, their phase transition temperature, state of the encapsulated material, encapsulation efficiency, particle size distribution, morphology, internal structure, lamellarity, surface charge, and drug release pattern. These attributes are highly important in revealing the supramolecular arrangement of nanoliposomes and incorporated drugs and ensuring the stability of the formulation as well as consistent drug delivery to target tissues. In this article, we present characterization of nanoliposomal formulations as an example to illustrate identification of key in vitro characteristics of a typical nanotherapeutic agent. Corresponding analytical techniques are discussed within the context of nanoliposome assessment, single particle analysis and ensuring uniform manufacture of therapeutic formulations with batch-to-batch consistency.
Collapse
Affiliation(s)
- M. Danaei
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - M. Kalantari
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - M. Raji
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - H. Samareh Fekri
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - R. Saber
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - G.P. Asnani
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy, Kondhwa, Pune 411 048, (Savitribai Phule Pune University), Maharashtra, India
| | - S.M. Mortazavi
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - M.R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - B. Rasti
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - A. Taheriazam
- Department of Orthopaedics, Tehran Medical Sciences Branch IAU, Azad University, 19168 93813 Tehran, Iran
| |
Collapse
|
25
|
Potential of Continuous Manufacturing for Liposomal Drug Products. Biotechnol J 2018; 14:e1700740. [DOI: 10.1002/biot.201700740] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/30/2018] [Indexed: 01/25/2023]
|
26
|
|
27
|
Chountoulesi M, Naziris N, Pippa N, Demetzos C. The significance of drug-to-lipid ratio to the development of optimized liposomal formulation. J Liposome Res 2017. [DOI: 10.1080/08982104.2017.1343836] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Maria Chountoulesi
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Naziris
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Athens, Greece
| | - Costas Demetzos
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
Sherman SE, Xiao Q, Percec V. Mimicking Complex Biological Membranes and Their Programmable Glycan Ligands with Dendrimersomes and Glycodendrimersomes. Chem Rev 2017; 117:6538-6631. [PMID: 28417638 DOI: 10.1021/acs.chemrev.7b00097] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synthetic vesicles have been assembled and coassembled from phospholipids, their modified versions, and other single amphiphiles into liposomes, and from block copolymers into polymersomes. Their time-consuming synthesis and preparation as stable, monodisperse, and biocompatible liposomes and polymersomes called for the elaboration of new synthetic methodologies. Amphiphilic Janus dendrimers (JDs) and glycodendrimers (JGDs) represent the most recent self-assembling amphiphiles capable of forming monodisperse, stable, and multifunctional unilamellar and multilamellar onion-like vesicles denoted dendrimersomes (DSs) and glycodendrimersomes (GDSs), dendrimercubosomes (DCs), glycodendrimercubosomes (GDCs), and other complex architectures. Amphiphilic JDs consist of hydrophobic dendrons connected to hydrophilic dendrons and can be thought of as monodisperse oligomers of a single amphiphile. They can be functionalized with a variety of molecules such as dyes, and, in the case of JGDs, with carbohydrates. Their iterative modular synthesis provides efficient access to sequence control at the molecular level, resulting in topologies with specific epitope sequence and density. DSs, GDSs, and other architectures from JDs and JGDs serve as powerful tools for mimicking biological membranes and for biomedical applications such as targeted drug and gene delivery and theranostics. This Review covers all aspects of the synthesis of JDs and JGDs and their biological activity and applications after assembly in aqueous media.
Collapse
Affiliation(s)
- Samuel E Sherman
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
29
|
Tao Y, Li M, Kim B, Auguste DT. Incorporating gold nanoclusters and target-directed liposomes as a synergistic amplified colorimetric sensor for HER2-positive breast cancer cell detection. Am J Cancer Res 2017; 7:899-911. [PMID: 28382162 PMCID: PMC5381252 DOI: 10.7150/thno.17927] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/03/2016] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the second leading cause of cancer-related mortality in women. Successful development of sensitive nanoprobes for breast cancer cell detection is of great importance for breast cancer diagnosis and symptomatic treatment. Herein, inspired by the intrinsic peroxidase property of gold nanoclusters, high loading, and targeting ability of ErbB2/Her2 antibody functionalized liposomes, we report that gold nanoclusters-loaded, target-directed, functionalized liposomes can serve as a robust sensing platform for amplified colorimetric detection of HER2-positive breast cancer cells. This approach allows HER2-positive breast cancer cell identification at high sensitivity with high selectivity. In addition, the colorimetric “readout” offers extra advantages in terms of low-cost, portability, and easy-to-use applications. The practicality of this platform was further proved by successful detection of HER2-positive breast cancer cells in human serum samples and in breast cancer tissue, which indicated our proposed method has potential for application in cancer theranostics.
Collapse
|
30
|
Sebaaly C, Greige-Gerges H, Stainmesse S, Fessi H, Charcosset C. Effect of composition, hydrogenation of phospholipids and lyophilization on the characteristics of eugenol-loaded liposomes prepared by ethanol injection method. FOOD BIOSCI 2016. [DOI: 10.1016/j.fbio.2016.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Sedlmeier A, Gorris HH. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem Soc Rev 2015; 44:1526-60. [PMID: 25176175 DOI: 10.1039/c4cs00186a] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photon-upconverting nanoparticles (UCNPs) can be excited by near-infrared light and emit visible light (anti-Stokes emission) which prevents autofluorescence and light scattering of biological samples. The potential for background-free imaging has attracted wide interest in UCNPs in recent years. Small and homogeneous lanthanide-doped UCNPs that display high upconversion efficiency have typically been synthesized in organic solvents. Bioanalytical applications, however, require a subsequent phase transfer to aqueous solutions. Hence, the surface properties of UCNPs must be well designed and characterized to grant both a stable aqueous colloidal dispersion and the ability to conjugate biomolecules and other ligands on the nanoparticle surface. In this review, we introduce various routes for the surface modification of UCNPs and critically discuss their advantages and disadvantages. The last part covers various analytical methods that enable a thorough examination of the progress and success of the surface functionalization.
Collapse
Affiliation(s)
- Andreas Sedlmeier
- Institute of Analytical Chemistry, Chemo- und Biosensors, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany.
| | | |
Collapse
|
32
|
Santo IE, Campardelli R, Albuquerque EC, Vieira De Melo SA, Reverchon E, Porta GD. Liposomes Size Engineering by Combination of Ethanol Injection and Supercritical Processing. J Pharm Sci 2015. [DOI: 10.1002/jps.24595] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
Jiang F, Liu B, Lu J, Li F, Li D, Liang C, Dang L, Liu J, He B, Badshah SA, Lu C, He X, Guo B, Zhang XB, Tan W, Lu A, Zhang G. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems. Int J Mol Sci 2015; 16:23784-822. [PMID: 26473828 PMCID: PMC4632726 DOI: 10.3390/ijms161023784] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023] Open
Abstract
Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX), are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems.
Collapse
Affiliation(s)
- Feng Jiang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China.
| | - Biao Liu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China.
| | - Jun Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China.
| | - Fangfei Li
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China.
| | - Defang Li
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China.
| | - Chao Liang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China.
| | - Lei Dang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China.
| | - Jin Liu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China.
| | - Bing He
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China.
| | - Shaikh Atik Badshah
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China.
| | - Cheng Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China.
| | - Xiaojuan He
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China.
| | - Baosheng Guo
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China.
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, China.
- College of Biology, Hunan University, Changsha 410000, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, China.
- College of Biology, Hunan University, Changsha 410000, China.
| | - Aiping Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China.
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China.
| |
Collapse
|
34
|
Gu MJ, Li KF, Zhang LX, Wang H, Liu LS, Zheng ZZ, Han NY, Yang ZJ, Fan TY. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging. Int J Nanomedicine 2015; 10:5187-204. [PMID: 26316749 PMCID: PMC4544817 DOI: 10.2147/ijn.s84351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI) diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III) [N,N-bis-stearylamidomethyl-N'-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs). Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA), gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor.
Collapse
Affiliation(s)
- Meng-Jie Gu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Kun-Feng Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Lan-Xin Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Huan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Li-Si Liu
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Zhuo-Zhao Zheng
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Nan-Yin Han
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Zhen-Jun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Tian-Yuan Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| |
Collapse
|
35
|
Nucleic Acid Aptamers: An Emerging Tool for Biotechnology and Biomedical Sensing. SENSORS 2015; 15:16281-313. [PMID: 26153774 PMCID: PMC4541879 DOI: 10.3390/s150716281] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
Abstract
Detection of small molecules or proteins of living cells provides an exceptional opportunity to study genetic variations and functions, cellular behaviors, and various diseases including cancer and microbial infections. Our aim in this review is to give an overview of selected research activities related to nucleic acid-based aptamer techniques that have been reported in the past two decades. Limitations of aptamers and possible approaches to overcome these limitations are also discussed.
Collapse
|
36
|
Sebaaly C, Greige-Gerges H, Agusti G, Fessi H, Charcosset C. Large-scale preparation of clove essential oil and eugenol-loaded liposomes using a membrane contactor and a pilot plant. J Liposome Res 2015; 26:126-38. [PMID: 26099849 DOI: 10.3109/08982104.2015.1057849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Based on our previous study where optimal conditions were defined to encapsulate clove essential oil (CEO) into liposomes at laboratory scale, we scaled-up the preparation of CEO and eugenol (Eug)-loaded liposomes using a membrane contactor (600 mL) and a pilot plant (3 L) based on the principle of ethanol injection method, both equipped with a Shirasu Porous Glass membrane for injection of the organic phase into the aqueous phase. Homogenous, stable, nanometric-sized and multilamellar liposomes with high phospholipid, Eug loading rates and encapsulation efficiency of CEO components were obtained. Saturation of phospholipids and drug concentration in the organic phase may control the liposome stability. Liposomes loaded with other hydrophobic volatile compounds could be prepared at large scale using the ethanol injection method and a membrane for injection.
Collapse
Affiliation(s)
- Carine Sebaaly
- a Bioactive Molecules Research Group, Department of Chemistry and Biochemistry, Faculty of Sciences 2, PRASE, Doctoral School of Sciences and Technologies, Lebanese University , Lebanon and.,b Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR-CNRS 5007 , Université Claude Bernard Lyon 1 , CPE Lyon , Villeurbanne Cedex , France
| | - Hélène Greige-Gerges
- a Bioactive Molecules Research Group, Department of Chemistry and Biochemistry, Faculty of Sciences 2, PRASE, Doctoral School of Sciences and Technologies, Lebanese University , Lebanon and
| | - Géraldine Agusti
- b Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR-CNRS 5007 , Université Claude Bernard Lyon 1 , CPE Lyon , Villeurbanne Cedex , France
| | - Hatem Fessi
- b Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR-CNRS 5007 , Université Claude Bernard Lyon 1 , CPE Lyon , Villeurbanne Cedex , France
| | - Catherine Charcosset
- b Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR-CNRS 5007 , Université Claude Bernard Lyon 1 , CPE Lyon , Villeurbanne Cedex , France
| |
Collapse
|
37
|
Affiliation(s)
- Bhushan S Pattni
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, Massachusetts 02115, United States
| | - Vladimir V Chupin
- Laboratory for Advanced Studies of Membrane Proteins, Moscow Institute of Physics and Technology , Dolgoprudny 141700, Russia
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, Massachusetts 02115, United States.,Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| |
Collapse
|
38
|
|
39
|
Charcosset C, Juban A, Valour JP, Urbaniak S, Fessi H. Preparation of liposomes at large scale using the ethanol injection method: Effect of scale-up and injection devices. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2014.09.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Khanniri E, Bagheripoor-Fallah N, Sohrabvandi S, Mortazavian AM, Khosravi-Darani K, Mohammad R. Application of Liposomes in Some Dairy Products. Crit Rev Food Sci Nutr 2015; 56:484-93. [DOI: 10.1080/10408398.2013.779571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Kalhapure RS, Suleman N, Mocktar C, Seedat N, Govender T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci 2014; 104:872-905. [PMID: 25546108 DOI: 10.1002/jps.24298] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 12/12/2022]
Abstract
Formulation scientists are recognizing nanoengineered drug delivery systems as an effective strategy to overcome limitations associated with antibiotic drug therapy. Antibiotics encapsulated into nanodelivery systems will contribute to improved management of patients with various infectious diseases and to overcoming the serious global burden of antibiotic resistance. An extensive review of several antibiotic-loaded nanocarriers that have been formulated to target drugs to infectious sites, achieve controlled drug release profiles, and address formulation challenges, such as low-drug entrapment efficiencies, poor solubility and stability is presented in this paper. The physicochemical properties and the in vitro/in vivo performances of various antibiotic-loaded delivery systems, such as polymeric nanoparticles, micelles, dendrimers, liposomes, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, nanohybirds, nanofibers/scaffolds, nanosheets, nanoplexes, and nanotubes/horn/rods and nanoemulsions, are highlighted and evaluated. Future studies that will be essential to optimize formulation and commercialization of these antibiotic-loaded nanosystems are also identified. The review presented emphasizes the significant formulation progress achieved and potential that novel nanoengineered antibiotic drug delivery systems have for enhancing the treatment of patients with a range of infections.
Collapse
Affiliation(s)
- Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | | | | | | | | |
Collapse
|
42
|
Leung AWY, Kalra J, Santos ND, Bally MB, Anglesio MS. Harnessing the potential of lipid-based nanomedicines for type-specific ovarian cancer treatments. Nanomedicine (Lond) 2014; 9:501-22. [PMID: 24746193 DOI: 10.2217/nnm.13.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancers are a group of at least five histologically and clinically distinct diseases, yet at this time patients with these different diseases are all treated with the same platinum and taxane-based chemotherapeutic regimen. With increased knowledge of histotype-specific differences that correlate with treatment responses and resistance, novel treatment strategies will be developed for each distinct disease. Type-specific or resistance-driven molecularly targeted agents will provide some specificity over traditional chemotherapies and it is argued here that nanoscaled drug delivery systems, in particular lipid-based formulations, have the potential to improve the delivery and specificity of pathway-specific drugs and broad-spectrum cytotoxic chemotherapeutics. An overview of the current understanding of ovarian cancers and the evolving clinical management of these diseases is provided. This overview is needed as it provides the context for understanding the current role of drug delivery systems in the treatment of ovarian cancer and the need to design formulations for treatment of clinically distinct forms of ovarian cancer.
Collapse
Affiliation(s)
- Ada W Y Leung
- Experimental Therapeutics, British Columbia Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
43
|
Baek SE, Lee KH, Park YS, Oh DK, Oh S, Kim KS, Kim DE. RNA aptamer-conjugated liposome as an efficient anticancer drug delivery vehicle targeting cancer cells in vivo. J Control Release 2014; 196:234-42. [PMID: 25450401 DOI: 10.1016/j.jconrel.2014.10.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/08/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023]
Abstract
To minimize the systemic toxicity prevalent to chemotherapeutics, we designed a novel anticancer drug-encapsulating liposome conjugated with an RNA aptamer specific to the prostate specific membrane antigen (PSMA), which is expressed on the surface of prostate cancer cells. The RNA aptamer-conjugated liposome, termed an aptamosome, was prepared by the post-insertion method, in which RNA aptamer-conjugated micelles were inserted into a liposome. These nanosized (90-100 nm) aptamer-conjugated liposomes specifically bind to LNCaP prostate epithelial cells that express PSMA and thus cause the nanoparticles to have significantly enhanced in vitro cellular binding and uptake as compared with nontargeted nanoparticles that lack the PSMA aptamer. Aptamosomes encapsulated with the anticancer drug doxorubicin (Dox) were significantly more toxic to the targeted LNCaP cells than to nontargeted cancer cells. Dox-encapsulating aptamosomes administered to LNCaP xenograft nude mice were selectively retained in tumor tissue. We also demonstrated in vivo anticancer efficacy of the Dox-encapsulating PSMA-aptamosomes on tumor size regression in LNCaP xenograft mice. We suggest that the encapsulation of toxic chemicals with aptamer-conjugated liposomes will enable the use of these bioconjugates in clinical practice with fewer side effects.
Collapse
Affiliation(s)
- Si Eun Baek
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Kwang Hyun Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Yong Serk Park
- Department of Biomedical Laboratory Science, Yonsei University, Wonju 220-710, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
| | - Keun-Sik Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 302-718, Republic of Korea.
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
44
|
Najlah M, Hidayat K, Omer HK, Mwesigwa E, Ahmed W, AlObaidy KG, Phoenix DA, Elhissi A. A facile approach to manufacturing non-ionic surfactant nanodipsersions using proniosome technology and high-pressure homogenization. J Liposome Res 2014; 25:32-7. [DOI: 10.3109/08982104.2014.924140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Li L, Hou J, Liu X, Guo Y, Wu Y, Zhang L, Yang Z. Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials 2014; 35:3840-50. [PMID: 24486214 DOI: 10.1016/j.biomaterials.2014.01.019] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/08/2014] [Indexed: 11/30/2022]
Abstract
BRAF gene mutation is found in more than 60% of malignant melanomas, which are difficult to treat. In this study, a new tumor-targeting liposome was developed to deliver anti-BRAF siRNA (siBraf) for the treatment of melanomas. Nucleolin is overexpressed on the surface of cancer cells. AS1411, an aptamer showing specific binding to nucleolin, was conjugated to PEGylated cationic liposome as the targeting probe ASLP (AS1411-PEG-liposome). The ASLP/siRNA complex was formed through electrostatic interaction between ASLP and siRNA. The binding of AS1411 to the surface of PEGylated liposomes was confirmed by gel electrophoresis and capillary electrophoresis. Real-time PCR and Western blot analysis showed that ASLP/siBraf exhibited strong silencing activity of BRAF gene. The much higher accumulation of the siRNA in tumor cells comparing with normal cells indicated that ASLP displayed excellent tumor-targeting capability. Notably, ASLP/siBraf showed significant silencing activity in A375 tumor xenograft mice and inhibited the melanoma growth. These results suggested that the new nucleolin-targeted siRNA delivery system by AS1411 may have the potential for the treatment of melanoma.
Collapse
Affiliation(s)
- Liyu Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jianjun Hou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinjie Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yujia Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yun Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
46
|
Kraft JC, Freeling JP, Wang Z, Ho RJY. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 2014; 103:29-52. [PMID: 24338748 PMCID: PMC4074410 DOI: 10.1002/jps.23773] [Citation(s) in RCA: 360] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/13/2022]
Abstract
Liposomes are spherical-enclosed membrane vesicles mainly constructed with lipids. Lipid nanoparticles are loaded with therapeutics and may not contain an enclosed bilayer. The majority of those clinically approved have diameters of 50-300 nm. The growing interest in nanomedicine has fueled lipid-drug and lipid-protein studies, which provide a foundation for developing lipid particles that improve drug potency and reduce off-target effects. Integrating advances in lipid membrane research has enabled therapeutic development. At present, about 600 clinical trials involve lipid particle drug delivery systems. Greater understanding of pharmacokinetics, biodistribution, and disposition of lipid-drug particles facilitated particle surface hydration technology (with polyethylene glycol) to reduce rapid clearance and provide sufficient blood circulation time for drug to reach target tissues and cells. Surface hydration enabled the liposome-encapsulated cancer drug doxorubicin (Doxil) to gain clinical approval in 1995. Fifteen lipidic therapeutics are now clinically approved. Although much research involves attaching lipid particles to ligands selective for occult cells and tissues, preparation procedures are often complex and pose scale-up challenges. With emerging knowledge in drug target and lipid-drug distribution in the body, a systems approach that integrates knowledge to design and scale lipid-drug particles may further advance translation of these systems to improve therapeutic safety and efficacy.
Collapse
Affiliation(s)
- John C Kraft
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | | | | | | |
Collapse
|
47
|
Influence of micro-mixing on the size of liposomes self-assembled from miscible liquid phases. Chem Phys Lipids 2013; 172-173:20-30. [DOI: 10.1016/j.chemphyslip.2013.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 04/21/2013] [Accepted: 04/22/2013] [Indexed: 11/24/2022]
|
48
|
Li X, Zhao Q, Qiu L. Smart ligand: aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy. J Control Release 2013; 171:152-62. [PMID: 23777885 DOI: 10.1016/j.jconrel.2013.06.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 06/06/2013] [Accepted: 06/08/2013] [Indexed: 11/27/2022]
Abstract
Aptamers are a class of oligonucleotides that can specifically bind to different targets with high affinity. Since their discovery in 1980s, aptamers have attracted considerable interests in medical applications. So far, initial research using aptamers as delivery systems has produced exciting results. In this review, we summarize recent progress in aptamer-mediated chemotherapeutic drug and siRNA delivery systems in tumor treatment. With regard to chemotherapeutic drugs, the 2 main methods for targeted delivery using aptamers are as follows: aptamer-drug systems (in which aptamers directly deliver the drug both as a carrier and as a ligand) and aptamer-nanoparticles systems (in which nanoparticles function together with aptamers for targeted delivery of drugs). For delivery of siRNA, aptamers can be utilized by the following ways to facilitate targeting: (1) linked by a connector; (2) form a chimera; and (3) combined with nanoparticles. In co-delivery system, the advantages associated with the use of aptamers are beginning to become apparent also. Here, the challenges and new perspectives in the field of aptamer-mediated delivery have been discussed.
Collapse
Affiliation(s)
- Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | | | | |
Collapse
|
49
|
Karn PR, Cho W, Park HJ, Park JS, Hwang SJ. Characterization and stability studies of a novel liposomal cyclosporin A prepared using the supercritical fluid method: comparison with the modified conventional Bangham method. Int J Nanomedicine 2013; 8:365-77. [PMID: 23378759 PMCID: PMC3556922 DOI: 10.2147/ijn.s39025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A novel method to prepare cyclosporin A encapsulated liposomes was introduced using supercritical fluid of carbon dioxide (SCF-CO2) as an antisolvent. To investigate the strength of the newly developed SCF-CO2 method compared with the modified conventional Bangham method, particle size, zeta potential, and polydispersity index (PDI) of both liposomal formulations were characterized and compared. In addition, entrapment efficiency (EE) and drug loading (DL) characteristics were analyzed by reversed-phase high-performance liquid chromatography. Significantly larger particle size and PDI were revealed from the conventional method, while EE (%) and DL (%) did not exhibit any significant differences. The SCF-CO2 liposomes were found to be relatively smaller, multilamellar, and spherical with a smoother surface as determined by transmission electron microscopy. SCF-CO2 liposomes showed no significant differences in their particle size and PDI after more than 3 months, whereas conventional liposomes exhibited significant changes in their particle size. The initial yield (%), EE (%), and DL (%) of SCF-CO2 liposomes and conventional liposomes were 90.98 ± 2.94, 92.20 ± 1.36, 20.99 ± 0.84 and 90.72 ± 2.83, 90.24 ± 1.37, 20.47 ± 0.94, respectively, which changed after 14 weeks to 86.65 ± 0.30, 87.63 ± 0.72, 18.98 ± 0.22 and 75.04 ± 8.80, 84.59 ± 5.13, 15.94 ± 2.80, respectively. Therefore, the newly developed SCF-CO2 method could be a better alternative compared with the conventional method and may provide a promising approach for large-scale production of liposomes.
Collapse
Affiliation(s)
- Pankaj Ranjan Karn
- Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Yeonsu-gu, Incheon, Republic of Korea
| | | | | | | | | |
Collapse
|
50
|
Laouini A, Charcosset C, Fessi H, Holdich R, Vladisavljević G. Preparation of liposomes: a novel application of microengineered membranes - investigation of the process parameters and application to the encapsulation of vitamin E. RSC Adv 2013. [DOI: 10.1039/c3ra23411h] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|