1
|
Duncan PJ, Romanò N, Nair SV, McClafferty H, Le Tissier P, Shipston MJ. Long-term, Dynamic Remodelling of the Corticotroph Transcriptome and Excitability After a Period of Chronic Stress. Endocrinology 2024; 165:bqae139. [PMID: 39423299 PMCID: PMC11538779 DOI: 10.1210/endocr/bqae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/23/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Chronic stress results in long-term dynamic changes at multiple levels of the hypothalamic-pituitary-adrenal (HPA) axis resulting in stress axis dysregulation with long-term impacts on human and animal health. However, the underlying mechanisms and dynamics of altered of HPA axis function, in particular at the level of pituitary corticotrophs, during a period of chronic stress and in the weeks after its cessation (defined as "recovery") are very poorly understood. Here, we address the fundamental question of how a period of chronic stress results in altered anterior pituitary corticotroph function and whether this persists in recovery, as well as the transcriptomic changes underlying this. We demonstrate that, in mice, spontaneous and corticotrophin-releasing hormone-stimulated electrical excitability of corticotrophs, essential for ACTH secretion, is suppressed for weeks to months of recovery following a period of chronic stress. Surprisingly, there are only modest changes in the corticotroph transcriptome during the period of stress, but major alterations occur in recovery. Importantly, although transcriptional changes for a large proportion of mRNAs follow the time course suppression of corticotroph excitability, many other genes display highly dynamic transcriptional changes with distinct time courses throughout recovery. Taken together, this suggests that chronic stress results in complex dynamic transcriptional and functional changes in corticotroph physiology, which are highly dynamic for weeks following cessation of chronic stress. These insights provide a fundamental new framework to further understand underlying molecular mechanisms as well approaches to both diagnosis and treatment of stress-related dysfunction of the HPA axis.
Collapse
Affiliation(s)
- Peter J Duncan
- Centre for Discovery Brain Science, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Nicola Romanò
- Centre for Discovery Brain Science, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University School of Medicine, Haining 314400, PR China
| | - Sooraj V Nair
- Centre for Discovery Brain Science, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Heather McClafferty
- Centre for Discovery Brain Science, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Paul Le Tissier
- Centre for Discovery Brain Science, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University School of Medicine, Haining 314400, PR China
| | - Michael J Shipston
- Centre for Discovery Brain Science, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University School of Medicine, Haining 314400, PR China
| |
Collapse
|
2
|
Ruvalcaba-Delgadillo Y, Martínez-Fernández DE, Luquin S, Moreno-Alcázar A, Redolar-Ripoll D, Jauregui-Huerta F, Fernández-Quezada D. Visual EMDR stimulation mitigates acute varied stress effects on morphology of hippocampal neurons in male Wistar rats. Front Psychiatry 2024; 15:1396550. [PMID: 38803673 PMCID: PMC11129278 DOI: 10.3389/fpsyt.2024.1396550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Stress is a pervasive health concern known to induce physiological changes, particularly impacting the vulnerable hippocampus and the morphological integrity of its main residing cells, the hippocampal neurons. Eye Movement Desensitization and Reprocessing (EMDR), initially developed to alleviate emotional distress, has emerged as a potential therapeutic/preventive intervention for other stress-related disorders. This study aimed to investigate the impact of Acute Variable Stress (AVS) on hippocampal neurons and the potential protective effects of EMDR. Methods Rats were exposed to diverse stressors for 7 days, followed by dendritic morphology assessment of hippocampal neurons using Golgi-Cox staining. Results AVS resulted in significant dendritic atrophy, evidenced by reduced dendritic branches and length. In contrast, rats receiving EMDR treatment alongside stress exposure exhibited preserved dendritic morphology comparable to controls, suggesting EMDR's protective role against stressinduced dendritic remodeling. Conclusions These findings highlight the potential of EMDR as a neuroprotective intervention in mitigating stress-related hippocampal alterations.
Collapse
Affiliation(s)
- Yaveth Ruvalcaba-Delgadillo
- Neuroscience Department, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | | | - Sonia Luquin
- Neuroscience Department, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ana Moreno-Alcázar
- ISOMAE Institute of Neurosciences and Psychosomatic Psychology, Sant Cugat del Vallés, Spain. Centre Fòrum Research Unit, Hospital del Mar, Barcelona, Spain
| | | | - Fernando Jauregui-Huerta
- Laboratorio de Fisiología del Comportamiento, Departamento de Fisiología, Facultad de medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - David Fernández-Quezada
- Neuroscience Department, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
3
|
Sharma A, Wulff A, Thomas A, Sonkusale S. Ultrasensitive electrochemical sensor for detection of salivary cortisol in stress conditions. Mikrochim Acta 2024; 191:103. [PMID: 38231275 DOI: 10.1007/s00604-023-06169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
A natural stress response induces elevated cortisol levels in biological fluids, such as saliva. While current sensor technologies can detect cortisol in real time, their sensitivity and reliability for human subjects have not been assured. This is due to relatively low concentrations of salivary cortisol, which fluctuate throughout the day and vary significantly between individuals. To address these challenges, we present an improved electrochemical biosensor leveraging graphene's exceptional conductivity and physicochemical properties. A 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBASE-NHS)-modified commercial graphene foam (GF) electrode is presented to realize an ultra-sensitive biosensor for cortisol detection directly in human saliva. The biosensor fabrication process entails the attachment of anti-cortisol monoclonal antibodies (mAb-cort) onto a PBASE-NHS/GF electrode through noncovalent immobilization on the vertically stratified graphene foam electrode surface. This unique immobilization strategy preserves graphene's structural integrity and electrical conductivity while facilitating antibody immobilization. The binding of cortisol to immobilized mAb-cort is read out via differential pulse voltammetry using ferri/ferro redox reactions. The immunosensor demonstrates an exceptional dynamic range of 1.0 fg mL-1 to 10,000 pg mL-1 (R2 = 0.9914) with a detection limit of 0.24 fg mL-1 (n = 3) for cortisol. Furthermore, we have established the reliability of cortisol sensors in monitoring human saliva. We have also performed multiple modes of validation, one against the established enzyme-linked immunosorbent assay (ELISA) and a second by a third-party service Salimetric on 16 student volunteers exposed to different stress levels, showing excellent correlation (r = 0.9961). These findings suggest the potential for using mAb-cort/PBASE-NHS/GF-based cortisol electrodes for monitoring salivary cortisol in the general population.
Collapse
Affiliation(s)
- Atul Sharma
- Nano Lab, Advanced Technology Laboratory, Tufts University, Medford, MA, 02155, USA
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA
| | - Alia Wulff
- Department of Psychology, Tufts University, Medford, MA, 02155, USA
| | - Ayanna Thomas
- Department of Psychology, Tufts University, Medford, MA, 02155, USA
| | - Sameer Sonkusale
- Nano Lab, Advanced Technology Laboratory, Tufts University, Medford, MA, 02155, USA.
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
4
|
Wu J, Dong L, Xiang J, Di G. Static electric field exposure decreases white blood cell count in peripheral blood through activating hypothalamic-pituitary-adrenal axis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:305-315. [PMID: 36409881 DOI: 10.1080/09603123.2022.2148636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
With the development of ultra-high-voltage (UHV) direct-current (DC) transmission, the health risk from the static electric field (SEF) generated by UHV DC transmission lines has drawn public attention. To investigate the effect of SEF exposure on white blood cell (WBC) count, mice were exposed to 56.3 kV/m SEF. Results revealed that total WBC count and lymphocyte count significantly decreased and serum levels of corticotropin-releasing hormone, adrenocorticotropic hormone and corticosterone (CORT) significantly increased after the exposure of 7d and 14d. All indices above recovered after the exposure of 21d. Analysis showed that the exposure of 7d and 14d could activate hypothalamic-pituitary-adrenal (HPA) axis. The increased CORT could bind to the glucocorticoid receptor (GR) in lymphocytes, and then promote the migration and apoptosis of lymphocytes. After the exposure of 21d, the magnitude of HPA axis activation declined through CORT-mediated negative feedback and the regulation of stress-related neural circuitry, so WBC count recovered.
Collapse
Affiliation(s)
- Jiahong Wu
- Institute of Environmental Process, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Li Dong
- Institute of Environmental Process, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Junli Xiang
- Institute of Environmental Process, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Guoqing Di
- Institute of Environmental Process, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Liu Y, Zhao X, Hu W, Ren Y, Wei Z, Ren X, Tang Z, Wang N, Chen H, Li Y, Shi Z, Qin S, Yang J. Neural habituation during acute stress signals a blunted endocrine response and poor resilience. Psychol Med 2023; 53:7735-7745. [PMID: 37309913 DOI: 10.1017/s0033291723001666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND A blunted hypothalamic-pituitary-adrenal (HPA) axis response to acute stress is associated with psychiatric symptoms. Although the prefrontal cortex and limbic areas are important regulators of the HPA axis, whether the neural habituation of these regions during stress signals both blunted HPA axis responses and psychiatric symptoms remains unclear. In this study, neural habituation during acute stress and its associations with the stress cortisol response, resilience, and depression were evaluated. METHODS Seventy-seven participants (17-22 years old, 37 women) were recruited for a ScanSTRESS brain imaging study, and the activation changes between the first and last stress blocks were used as the neural habituation index. Meanwhile, participants' salivary cortisol during test was collected. Individual-level resilience and depression were measured using questionnaires. Correlation and moderation analyses were conducted to investigate the association between neural habituation and endocrine data and mental symptoms. Validated analyses were conducted using a Montreal Image Stress Test dataset in another independent sample (48 participants; 17-22 years old, 24 women). RESULTS Neural habituation of the prefrontal cortex and limbic area was negatively correlated with cortisol responses in both datasets. In the ScanSTRESS paradigm, neural habituation was both positively correlated with depression and negatively correlated with resilience. Moreover, resilience moderated the relationship between neural habituation in the ventromedial prefrontal cortex and cortisol response. CONCLUSIONS This study suggested that neural habituation of the prefrontal cortex and limbic area could reflect motivation dysregulation during repeated failures and negative feedback, which might further lead to maladaptive mental states.
Collapse
Affiliation(s)
- Yadong Liu
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Xiaolin Zhao
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Weiyu Hu
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yipeng Ren
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Zhenni Wei
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Xi Ren
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Zihan Tang
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Nan Wang
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Haopeng Chen
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yizhuo Li
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Zhenhao Shi
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Juan Yang
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Campeau S, McNulty C, Stanley JT, Gerber AN, Sasse SK, Dowell RD. Determination of steady-state transcriptome modifications associated with repeated homotypic stress in the rat rostral posterior hypothalamic region. Front Neurosci 2023; 17:1173699. [PMID: 37360161 PMCID: PMC10288150 DOI: 10.3389/fnins.2023.1173699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Chronic stress is epidemiologically correlated with physical and psychiatric disorders. Whereas many animal models of chronic stress induce symptoms of psychopathology, repeated homotypic stressors to moderate intensity stimuli typically reduce stress-related responses with fewer, if any, pathological symptoms. Recent results indicate that the rostral posterior hypothalamic (rPH) region is a significant component of the brain circuitry underlying response reductions (habituation) associated with repeated homotypic stress. To test whether posterior hypothalamic transcriptional regulation associates with the neuroendocrine modifications induced by repeated homotypic stress, RNA-seq was performed in the rPH dissected from adult male rats that experienced either no stress, 1, 3, or 7 stressful loud noise exposures. Plasma samples displayed reliable increases of corticosterone in all stressed groups, with the smallest increase in the group exposed to 7 loud noises, indicating significant habituation compared to the other stressed groups. While few or no differentially expressed genes were detected 24-h after one or three loud noise exposures, relatively large numbers of transcripts were differentially expressed between the group exposed to 7 loud noises when compared to the control or 3-stress groups, respectively, which correlated with the corticosterone response habituation observed. Gene ontology analyses indicated multiple significant functional terms related to neuron differentiation, neural membrane potential, pre- and post-synaptic elements, chemical synaptic transmission, vesicles, axon guidance and projection, glutamatergic and GABAergic neurotransmission. Some of the differentially expressed genes (Myt1l, Zmat4, Dlx6, Csrnp3) encode transcription factors that were independently predicted by transcription factor enrichment analysis to target other differentially regulated genes in this study. A similar experiment employing in situ hybridization histochemical analysis in additional animals validated the direction of change of the 5 transcripts investigated (Camk4, Gabrb2, Gad1, Grin2a and Slc32a) with a high level of temporal and regional specificity for the rPH. In aggregate, the results suggest that distinct patterns of gene regulation are obtained in response to a repeated homotypic stress regimen; they also point to a significant reorganization of the rPH region that may critically contribute to the phenotypic modifications associated with repeated homotypic stress habituation.
Collapse
Affiliation(s)
- Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
| | - Connor McNulty
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
| | - Jacob T. Stanley
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States
- BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Anthony N. Gerber
- Department of Medicine, National Jewish Health, Denver, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Sarah K. Sasse
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Robin D. Dowell
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States
- BioFrontiers Institute, University of Colorado, Boulder, CO, United States
- Department of Computer Science, University of Colorado, Boulder, CO, United States
| |
Collapse
|
8
|
Brown TH, Hargrove TW, Homan P, Adkins DE. Racialized Health Inequities: Quantifying Socioeconomic and Stress Pathways Using Moderated Mediation. Demography 2023; 60:675-705. [PMID: 37218993 PMCID: PMC10841571 DOI: 10.1215/00703370-10740718] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Racism drives population health inequities by shaping the unequal distribution of key social determinants of health, such as socioeconomic resources and exposure to stressors. Research on interrelationships among race, socioeconomic resources, stressors, and health has proceeded along two lines that have largely remained separate: one examining differential effects of socioeconomic resources and stressors on health across racialized groups (moderation processes), and the other examining the role of socioeconomic resources and stressors in contributing to racial inequities in health (mediation processes). We conceptually and analytically integrate these areas using race theory and a novel moderated mediation approach to path analysis to formally quantify the extent to which an array of socioeconomic resources and stressors-collectively and individually-mediate racialized health inequities among a sample of older adults from the Health and Retirement Study. Our results yield theoretical contributions by showing how the socioeconomic status-health gradient and stress processes are racialized (24% of associations examined varied by race), substantive contributions by quantifying the extent of moderated mediation of racial inequities (approximately 70%) and the relative importance of various social factors, and methodological contributions by showing how commonly used simple mediation approaches that ignore racialized moderation processes overestimate-by between 5% and 30%-the collective roles of socioeconomic status and stressors in accounting for racial inequities in health.
Collapse
Affiliation(s)
- Tyson H. Brown
- Department of Sociology and Population Research Institute, Duke University, Durham, NC, USA
| | - Taylor W. Hargrove
- Department of Sociology and Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patricia Homan
- Department of Sociology, Center for Demography and Population Health, and Pepper Institute on Aging and Public Policy, Florida State University, Tallahassee, FL, USA
| | - Daniel E. Adkins
- Department of Sociology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
9
|
Valcarce DG, Riesco MF, Cuesta-Martín L, Esteve-Codina A, Martínez-Vázquez JM, Robles V. Stress decreases spermatozoa quality and induces molecular alterations in zebrafish progeny. BMC Biol 2023; 21:70. [PMID: 37013516 PMCID: PMC10071778 DOI: 10.1186/s12915-023-01570-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Chronic stress can produce a severe negative impact on health not only in the exposed individuals but also in their offspring. Indeed, chronic stress may be contributing to the current worldwide scenario of increasing infertility and decreasing gamete quality in human populations. Here, we evaluate the effect of chronic stress on behavior and male reproductive parameters in zebrafish. Our goal is to provide information on the impact that chronic stress has at molecular, histological, and physiological level in a vertebrate model species. RESULTS We evaluated the effects of a 21-day chronic stress protocol covering around three full waves of spermatogenesis in Danio rerio adult males. The induction of chronic stress produced anxiety-like behavior in stressed males as assessed by a novel tank test. At a molecular level, the induction of chronic stress consistently resulted in the overexpression of two genes related to endoplasmic reticulum (ER) stress in the brain. Gene set enrichment analysis (GSEA) of testes suggested a dysregulation of the nonsense-mediated decay (NMD) pathway, which was also confirmed on qPCR analysis. Histological analysis of the testicle did not show significant differences in terms of the relative proportions of each germ-cell type; however, the quality of sperm from stressed males was compromised in terms of motility. RNA-seq analysis in stress-derived larval progenies revealed molecular alterations, including those predicted to affect translation initiation, DNA repair, cell cycle control, and response to stress. CONCLUSIONS Induction of chronic stress during a few cycles of spermatogenesis in the vertebrate zebrafish model affects behavior, gonadal gene expression, final gamete quality, and progeny. The NMD surveillance pathway (a key cellular mechanism that regulates the stability of both normal and mutant transcripts) is severely affected in the testes by chronic stress and therefore the control and regulation of RNAs during spermatogenesis may be affected altering the molecular status in the progeny.
Collapse
Affiliation(s)
- David G Valcarce
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16. 39004, Santander, Spain
| | - Marta F Riesco
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Leyre Cuesta-Martín
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Juan Manuel Martínez-Vázquez
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16. 39004, Santander, Spain
| | - Vanesa Robles
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| |
Collapse
|
10
|
Duarte JO, Planeta CS, Crestani CC. Vulnerability and resilience to cardiovascular and neuroendocrine effects of stress in adult rats with historical of chronic stress during adolescence. Life Sci 2023; 318:121473. [PMID: 36746355 DOI: 10.1016/j.lfs.2023.121473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
AIMS This study investigated the influence of exposure to stress during adolescence in autonomic, cardiovascular, neuroendocrine and somatic changes evoked by chronic stress in adult rats. MAIN METHODS Animals were subjected to a 10-days protocol of repeated restraint stress (RRS, habituating) or chronic variable stress (CVS, non-habituating) during adolescence, adulthood, or repeated exposure to either RRS or CVS in adolescence and adulthood (adolescence+adulthood group). The trials to measure autonomic, cardiovascular, neuroendocrine and somatic changes in all experimental groups were performed in adulthood. KEY FINDINGS CVS increased basal circulating corticosterone levels and caused adrenal hypertrophy in the adolescence+adulthood group, an effect not identified in animals subjected to this stressor only in adulthood or adolescence. CVS also caused a sympathetically-mediated resting tachycardia in the adulthood group. This effect of CVS was not identified in the adolescence+adulthood group once the increased cardiac sympathetic activity was buffered by a decrease in intrinsic heart rate in these animals. Moreover, the impairment in baroreflex function observed in the adulthood group subjected to CVS was shifted to an improvement in animals subjected to repeated exposure to this stressor during adolescence and adulthood. The RRS in the adolescence+adulthood group caused a sympathetically-mediated resting tachycardia, which was not observed in the adulthood group. SIGNIFICANCE Our findings suggest that enduring effects of adverse events during adolescence included a vulnerability to neuroendocrine changes and a resilience to autonomic and cardiovascular dysfunctions caused by the CVS. Furthermore, results of RRS indicated a vulnerability to cardiovascular and autonomic changes evoked by homotypic stressors.
Collapse
Affiliation(s)
- Josiane O Duarte
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Cleopatra S Planeta
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
| |
Collapse
|
11
|
Hou Y, Gao Y, Guo S, Zhang Z, Chen R, Zhang X. Applications of spatially resolved omics in the field of endocrine tumors. Front Endocrinol (Lausanne) 2023; 13:993081. [PMID: 36704039 PMCID: PMC9873308 DOI: 10.3389/fendo.2022.993081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Endocrine tumors derive from endocrine cells with high heterogeneity in function, structure and embryology, and are characteristic of a marked diversity and tissue heterogeneity. There are still challenges in analyzing the molecular alternations within the heterogeneous microenvironment for endocrine tumors. Recently, several proteomic, lipidomic and metabolomic platforms have been applied to the analysis of endocrine tumors to explore the cellular and molecular mechanisms of tumor genesis, progression and metastasis. In this review, we provide a comprehensive overview of spatially resolved proteomics, lipidomics and metabolomics guided by mass spectrometry imaging and spatially resolved microproteomics directed by microextraction and tandem mass spectrometry. In this regard, we will discuss different mass spectrometry imaging techniques, including secondary ion mass spectrometry, matrix-assisted laser desorption/ionization and desorption electrospray ionization. Additionally, we will highlight microextraction approaches such as laser capture microdissection and liquid microjunction extraction. With these methods, proteins can be extracted precisely from specific regions of the endocrine tumor. Finally, we compare applications of proteomic, lipidomic and metabolomic platforms in the field of endocrine tumors and outline their potentials in elucidating cellular and molecular processes involved in endocrine tumors.
Collapse
Affiliation(s)
- Yinuo Hou
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shudi Guo
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhibin Zhang
- General Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
12
|
Panagiotou M, Velegraki IM, Gerakini O, Bacopoulou F, Charalampopoulou M, Louvardi M, Tigani X, Mantzou A, Vlachakis D, Kanaka-Gantenbein C, Chrousos GP, Darviri C. Pythagorean Self-Awareness Intervention Promoted Healthy Dietary Patterns, Controlled Body Mass Index, and Reduced Self-Reported Stress Levels of Primary School Children: Α One-Arm Pilot Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1425:13-22. [PMID: 37581777 DOI: 10.1007/978-3-031-31986-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Stress is common in childhood and an important factor that affects behavior later in adulthood. The aim of this study was to assess the effects of the Pythagorean Self-Awareness Intervention (PSAI), a holistic "cognitive reconstruction" technique to assess primary school children's stress levels, adherence to the Mediterranean diet, and body mass index. Secondary outcome measures included relations with peers, sleep, and hair cortisol concentrations. This one-arm pilot study took place in a primary school, from February to June 2019. Participants were 32 pupils attending the second grade of primary school who received the 8-week PSAI to adopt healthy behaviors and lifestyle. Self-report measures were applied for the evaluation of various variables at the beginning and the end of the eight-week intervention. There were statistically significant reductions in stress levels (p = 0.00), nightmares' frequency (p = 0.00), body mass index (p = 0.03), and bully scale (p = 0.00), and improvement in Mediterranean diet quality (p = 0.00). Hair cortisol concentrations increased (p = 0.02). The social scale significantly increased. Bedtime remained the same after the intervention. This pilot trial showed that the PSAI promoted healthy dietary patterns, controlled children's body mass index, and reduced their self-reported stress levels. Further research on the implementation of this holistic program on children is suggested, in well-powered randomized controlled trials.
Collapse
Affiliation(s)
- Marilena Panagiotou
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Orsalia Gerakini
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece.
| | | | - Maya Louvardi
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Xanthi Tigani
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aimilia Mantzou
- First Department of Pediatrics, Aghia Sophia Children's Hospital, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Christina Kanaka-Gantenbein
- First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair in Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Christina Darviri
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Markov DD, Novosadova EV. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. BIOLOGY 2022; 11:1621. [PMID: 36358321 PMCID: PMC9687170 DOI: 10.3390/biology11111621] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Major depressive disorder (MDD) is one of the most common mood disorders worldwide. A lack of understanding of the exact neurobiological mechanisms of depression complicates the search for new effective drugs. Animal models are an important tool in the search for new approaches to the treatment of this disorder. All animal models of depression have certain advantages and disadvantages. We often hear that the main drawback of the chronic unpredictable mild stress (CUMS) model of depression is its poor reproducibility, but rarely does anyone try to find the real causes and sources of such poor reproducibility. Analyzing the articles available in the PubMed database, we tried to identify the factors that may be the sources of the poor reproducibility of CUMS. Among such factors, there may be chronic sleep deprivation, painful stressors, social stress, the difference in sex and age of animals, different stress susceptibility of different animal strains, handling quality, habituation to stressful factors, various combinations of physical and psychological stressors in the CUMS protocol, the influence of olfactory and auditory stimuli on animals, as well as the possible influence of various other factors that are rarely taken into account by researchers. We assume that careful inspection of these factors will increase the reproducibility of the CUMS model between laboratories and allow to make the interpretation of the obtained results and their comparison between laboratories to be more adequate.
Collapse
|
14
|
Correa BHM, Becari L, Peliky Fontes MA, Simões-e-Silva AC, Kangussu LM. Involvement of the Renin-Angiotensin System in Stress: State of the Art and Research Perspectives. Curr Neuropharmacol 2022; 20:1212-1228. [PMID: 34554902 PMCID: PMC9886820 DOI: 10.2174/1570159x19666210719142300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Along with other canonical systems, the renin-angiotensin system (RAS) has shown important roles in stress. This system is a complex regulatory proteolytic cascade composed of various enzymes, peptides, and receptors. Besides the classical (ACE/Ang II/AT1 receptor) and the counter-regulatory (ACE2/Ang-(1-7)/Mas receptor) RAS axes, evidence indicates that nonclassical components, including Ang III, Ang IV, AT2 and AT4, can also be involved in stress. OBJECTIVE AND METHODS This comprehensive review summarizes the current knowledge on the participation of RAS components in different adverse environmental stimuli stressors, including air jet stress, cage switch stress, restraint stress, chronic unpredictable stress, neonatal isolation stress, and post-traumatic stress disorder. RESULTS AND CONCLUSION In general, activation of the classical RAS axis potentiates stress-related cardiovascular, endocrine, and behavioral responses, while the stimulation of the counter-regulatory axis attenuates these effects. Pharmacological modulation in both axes is optimistic, offering promising perspectives for stress-related disorders treatment. In this regard, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are potential candidates already available since they block the classical axis, activate the counter-regulatory axis, and are safe and efficient drugs.
Collapse
Affiliation(s)
- Bernardo H. M. Correa
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Luca Becari
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Marco Antônio Peliky Fontes
- Department of Physiology & Biophysics - Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Ana Cristina Simões-e-Silva
- Department of Pediatrics, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas M. Kangussu
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; ,Address correspondence to this author at the Department of Morphology, Biological Sciences Institute – Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Tel: (+55-31) 3409-2772; E-mail:
| |
Collapse
|
15
|
Maia MS, dos Santos GL, Porto CC. Work-related stress among physiotherapists from the musculoskeletal area: An observational study. Work 2022; 71:1163-1173. [DOI: 10.3233/wor-205195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND: Stress is a consequence of or a general reaction to an action or situation that leads to physical, psychological or both demands on a person, which can cause major disabilities in different aspects of life. This study verified the presence and stress phase of physiotherapists in the musculoskeletal area, identifying the factors associated with stress. METHOD: Presence and phase of stress were assessed using the Lipp’s Stress Symptoms Inventory for Adults, and sociodemographic, work, and subjective data through a structured questionnaire designed by the authors. RESULTS: 91 physiotherapists from 219 presented stress (41.55%). The presence of stress was associated to the workplace (p = 0.006, x2 = 20.01), number of patients per week (p = 0.023, x2 = 7.55), weekly working hours (p = 0.023, x2 = 7.56), and the perception of the work influenced their personal life (p < 0.001, x2 = 14.81). 56.04% of the physiotherapists were in the resistance phase. CONCLUSIONS: Approximately half of the physiotherapists showed signs of stress. Moreover, workplace, number of working hours, number of patients per week and the perception of the influence of work on personal life were important aspects to stress.
Collapse
Affiliation(s)
- Maurício Silveira Maia
- Faculdade de Medicina, Programa de Ciências da Saúde, Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brasil
- Universidade Estadual de Goiás (UEG), Escola Superior de Educação Física e Fisioterapia do Estado de Goiás (Eseffego), Goiânia, Goiás, Brasil
| | - Gabriela Lopes dos Santos
- Universidade Estadual de Goiás (UEG), Escola Superior de Educação Física e Fisioterapia do Estado de Goiás (Eseffego), Goiânia, Goiás, Brasil
- Curso de Fisioterapia, Instituto de Ciências e da Saúde, Faculdade Alfredo Nasser, Aparecida de Goiânia, Goiás, Brasil
- Departamento de Fisioterapia, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brasil
| | - Celmo Celeno Porto
- Faculdade de Medicina, Programa de Ciências da Saúde, Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brasil
| |
Collapse
|
16
|
Barretto-de-Souza L, Benini R, Reis-Silva LL, Crestani CC. Role of CRF 1 and CRF 2 receptors in the lateral hypothalamus in cardiovascular and anxiogenic responses evoked by restraint stress in rats: Evaluation of acute and chronic exposure. Neuropharmacology 2022; 212:109061. [PMID: 35452627 DOI: 10.1016/j.neuropharm.2022.109061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/13/2022]
Abstract
We investigated the role of corticotropin-releasing factor (CRF) neurotransmission within the lateral hypothalamus (LH) in cardiovascular and anxiogenic-like responses evoked by acute and repeated restraint stress in rats. For this, animals were subjected to intra-LH microinjection of a selective CRF1 (CP376395) or CRF2 (antisauvagine-30) receptor antagonist before either an acute or the 10th session of restraint stress. Restraint-evoked arterial pressure and heart rate increases, tail skin temperature decrease and anxiogenic-like effect in the elevated plus maze (EPM) were evaluated. We also assessed the effect of 10 daily sessions of restraint on expression of CRF1 and CRF2 receptors within the LH. We identified that antagonism of either CRF1 or CRF2 receptor within the LH decreased the tachycardia during both the acute and 10th session of restraint, but the effect of the CRF1 receptor antagonist was more pronounced during the 10th session. Acute restraint stress also caused anxiogenic-like effect, and this response was inhibited in animals treated with either CP376395 or antisauvagine-30. Anxiety-like behaviors were not changed following the 10th session of restraint, and pharmacological treatments did not affect the behavior in the EPM in chronically stressed animals. Repeated restraint also did not change the level of the CRF receptors within the LH. Taken together, the findings indicate that CRF1 and CRF2 receptors within the LH are involved in tachycardic and anxiogenic-like responses to aversive stimuli. Control of tachycardia by the CRF1 receptor is sensitized by previous stressful experience, and this effect seems to be independent of changes in expression of the receptor.
Collapse
Affiliation(s)
- Lucas Barretto-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Ricardo Benini
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Lilian Liz Reis-Silva
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| |
Collapse
|
17
|
Özümerzifon Y, Ross A, Brinza T, Gibney G, Garber CE. Exploring a Dance/Movement Program on Mental Health and Well-Being in Survivors of Intimate Partner Violence During a Pandemic. Front Psychiatry 2022; 13:887827. [PMID: 35722545 PMCID: PMC9204421 DOI: 10.3389/fpsyt.2022.887827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS The aim of this study was to explore the feasibility and benefits of a 12-session dance/movement program for intimate partner violence survivors' mental health and PTSD symptoms during the COVID-19 Pandemic. The specific purposes were fourfold: (1) To determine the feasibility of delivering a virtual dance/movement workshop program; (2) to examine the effects of the program on symptoms of PTSD and psychological distress; (3) to determine whether heart rate variability improves; and (4) to describe the individual and shared experiences of a subgroup of participants of the program. METHODS Forty-five women ages 23-48 years were randomized to a 12-session virtual creative dance/movement program or a usual care control group, and completed questionnaires about PTSD and mental health symptoms, general health, physical activity, and underwent a brief measurement of heart rate variability. A subset of the intervention group participated in a semi-structured focus group. RESULTS The results of the study showed that the female survivors of intimate partner violence who participated in the virtual workshops felt better, and they experienced improved affect and reduced tension. They found new ways to express themselves, attune to their bodies, learn new self-care habits, and build community as they engaged in the workshops. Over the course of the study, the participants' symptoms of PTSD and psychological distress lessened. There were no changes in heart rate variability. CONCLUSIONS This complex study was successfully completed during a global pandemic and resulted in improvements in some mental health symptoms and overall well-being. Given the importance of this work with intimate partner violence survivors, further work exploring dance/movement workshops for participants virtually and in-person is needed.
Collapse
Affiliation(s)
| | - Allison Ross
- Sanctuary for Families, Inc., New York, NY, United States
| | - Tessa Brinza
- Gina Gibney Dance, Inc., New York, NY, United States
| | - Gina Gibney
- Gina Gibney Dance, Inc., New York, NY, United States
| | - Carol Ewing Garber
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, United States
| |
Collapse
|
18
|
Egger ST, Knorr M, Bobes J, Bernstein A, Seifritz E, Vetter S. Real-Time Assessment of Stress and Stress Response Using Digital Phenotyping: A Study Protocol. Front Digit Health 2021; 2:544418. [PMID: 34713030 PMCID: PMC8521792 DOI: 10.3389/fdgth.2020.544418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Stress is a complex phenomenon that may have a negative influence on health and well-being; consequently, it plays a pivotal role in mental health. Although the incidence of mental disorders has been continuously rising, development of prevention and treatment methods has been rather slow. Through the ubiquitous presence of smartphones and wearable devices, people can monitor stress parameters in everyday life. However, the reliability and validity of such monitoring are still unsatisfactory. Methods: The aim of this trial is to find a relationship between psychological stress and saliva cortisol levels on the one hand and physiological parameters measured by smartphones in combination with a commercially available wearable device on the other. Participants include cohorts of individuals with and without a psychiatric disorder. The study is conducted in two settings: one naturalistic and one a controlled laboratory environment, combining ecological momentary assessment (EMA) and digital phenotyping (DP). EMA is used for the assessment of challenging and stressful situations coincidentally happening during a whole observation week. DP is used during a controlled stress situation with the Trier Social Stress Test (TSST) as a standardized psychobiological paradigm. Initially, participants undergo a complete psychological screening and profiling using a standardized psychometric test battery. EMA uses a smartphone application, and the participants keep a diary about their daily routine, activities, well-being, sleep, and difficult and stressful situations they may encounter. DP is conducted through wearable devices able to continuously monitor physiological parameters (i.e., heart rate, heart rate variability, skin conductivity, temperature, movement and acceleration). Additionally, saliva cortisol samples are repeatedly taken. The TSST is conducted with continuous measurement of the same parameters measured during the EMA. Discussion: We aim to identify valid and reliable digital biomarkers for stress and stress reactions. Furthermore, we expect to find a way of early detection of psychological stress in order to evolve new opportunities for interventions reducing stress. That may allow us to find new ways of treating and preventing mental disorders. Trial Registration: The competing ethics committee of the Canton of Zurich, Switzerland, approved the study protocol V05.1 May 28, 2019 [BASEC: 2019-00814]; the trial was registered at ClinicalTrials.gov [NCT04100213] on September 19, 2019.
Collapse
Affiliation(s)
- Stephan T Egger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, Psychiatric University Hospital of Zurich, University of Zurich, Zurich, Switzerland.,Department of Psychiatry, Faculty of Medicine, University of Oviedo, CIBERSAM, Oviedo, Spain
| | - Marius Knorr
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, Psychiatric University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Julio Bobes
- Department of Psychiatry, Faculty of Medicine, University of Oviedo, CIBERSAM, Oviedo, Spain
| | - Abraham Bernstein
- Department of Informatics, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, Psychiatric University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Stefan Vetter
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, Psychiatric University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Feriani DJ, Sousa AS, Delbin MA, Ruberti OM, Crestani CC, Rodrigues B. Spleen tissue changes after restraint stress: effects of aerobic exercise training. Stress 2021; 24:572-583. [PMID: 33792481 DOI: 10.1080/10253890.2021.1895112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Inflammation has been described as a prominent mechanism involved in dysfunctions and diseases evoked by chronic stress. Notably, the spleen is an immune organ controlled by sympathetic and glucocorticoid mechanisms, but the impact of chronic stress in the spleen is not entirely understood. Besides, the impact of aerobic exercise training on the effects of chronic stress in the spleen has never been reported. Therefore, this study aimed to assess the changes caused in the spleen by repeated restraint stress and the effect of aerobic exercise training performed after a period of chronic restraint stress in rats. We identified that daily exposure to restraint stress (120 min per session, for 14 consecutive days) increased corticosterone and noradrenaline content, gene expression of glucocorticoid and β2-adrenergic receptors, TNF-α and IL-6 levels, and increased pro-oxidant substances in the spleen. Circulating levels of corticosterone were also increased in chronically stressed animals. Exercise training (1 h a day/5 days per week, for 60 days) increased glucocorticoid receptor gene expression, interleukin (IL)-10 and antioxidant mechanisms in the spleen. Exercise also decreased splenic noradrenaline, tumoral necrosis factor (TNF)-α, and IL-6 contents. Lastly, the effects of repeated restraint stress in the spleen were mitigated in animals subjected to aerobic training. Taken together, the results reported in the present study indicate that aerobic exercise training is a relevant non-pharmacological therapeutic approach to dysfunctions in the spleen caused by a period of stress.
Collapse
Affiliation(s)
- Daniele J Feriani
- Laboratory of Cardiovascular Investigation and Exercise (LICE), School of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil
| | - Andressa S Sousa
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria Andreia Delbin
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Olívia M Ruberti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carlos C Crestani
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Bruno Rodrigues
- Laboratory of Cardiovascular Investigation and Exercise (LICE), School of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
20
|
Gomes-de-Souza L, Bianchi PC, Costa-Ferreira W, Tomeo RA, Cruz FC, Crestani CC. CB 1 and CB 2 receptors in the bed nucleus of the stria terminalis differently modulate anxiety-like behaviors in rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110284. [PMID: 33609604 DOI: 10.1016/j.pnpbp.2021.110284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/01/2023]
Abstract
The endocannabinoid system is implicated in anxiety, but the brain sites involved are not completely understood. The bed nucleus of the stria terminalis (BNST) has been related to anxiety and responses to aversive threats. Besides, endocannabinoid neurotransmission acting via CB1 receptors was identified in the BNST. However, the presence of CB2 receptors and the role of BNST endocannabinoid system in anxiety-like behaviors have never been reported. Therefore, this study investigated the presence of CB1 and CB2 receptors in the BNST and their role in anxiety-like behaviors. For this, gene expression of the endocannabinoid receptors was evaluated in samples from anterior and posterior BNST. Besides, behaviors were evaluated in the elevated plus-maze (EPM) in unstressed rats (trait anxiety-like behavior) and after exposure to restraint stress (restraint-evoked anxiety-like behavior) in rats treated with either the CB1 receptor antagonist AM251 or the CB2 receptor antagonist JTE907 into the anterior BNST. The presence of CB1 and CB2 receptors gene expression was identified in anterior and posterior divisions of the BNST. Bilateral microinjection of AM251 into the anterior BNST dose-dependently increased EPM open arms exploration in unstressed animals and inhibited the anxiety-like behavior in the EPM evoked by restraint. Conversely, intra-BNST microinjection of JTE907 decreased EPM open arms exploration in a dose-dependent manner and inhibited restraint-evoked behavioral changes in the EPM. Taken together, these results indicate that CB1 and CB2 receptors present in the BNST are involved in control of anxiety-like behaviors, and control by the latter is affected by previous stress experience.
Collapse
Affiliation(s)
- Lucas Gomes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Paula C Bianchi
- Department of Pharmacology, Paulista Medicine School, São Paulo Federal University, São Paulo, Brazil
| | - Willian Costa-Ferreira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Rodrigo A Tomeo
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Fábio C Cruz
- Department of Pharmacology, Paulista Medicine School, São Paulo Federal University, São Paulo, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
21
|
Palamarchuk IS, Vaillancourt T. Mental Resilience and Coping With Stress: A Comprehensive, Multi-level Model of Cognitive Processing, Decision Making, and Behavior. Front Behav Neurosci 2021; 15:719674. [PMID: 34421556 PMCID: PMC8377204 DOI: 10.3389/fnbeh.2021.719674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Aversive events can evoke strong emotions that trigger cerebral neuroactivity to facilitate behavioral and cognitive shifts to secure physiological stability. However, upon intense and/or chronic exposure to such events, the neural coping processes can be maladaptive and disrupt mental well-being. This maladaptation denotes a pivotal point when psychological stress occurs, which can trigger subconscious, "automatic" neuroreactivity as a defence mechanism to protect the individual from potential danger including overwhelming unpleasant feelings and disturbing or threatening thoughts.The outcomes of maladaptive neural activity are cognitive dysfunctions such as altered memory, decision making, and behavior that impose a risk for mental disorders. Although the neurocognitive phenomena associated with psychological stress are well documented, the complex neural activity and pathways related to stressor detection and stress coping have not been outlined in detail. Accordingly, we define acute and chronic stress-induced pathways, phases, and stages in relation to novel/unpredicted, uncontrollable, and ambiguous stressors. We offer a comprehensive model of the stress-induced alterations associated with multifaceted pathophysiology related to cognitive appraisal and executive functioning in stress.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada.,School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
Chaves T, Fazekas CL, Horváth K, Correia P, Szabó A, Török B, Bánrévi K, Zelena D. Stress Adaptation and the Brainstem with Focus on Corticotropin-Releasing Hormone. Int J Mol Sci 2021; 22:ijms22169090. [PMID: 34445795 PMCID: PMC8396605 DOI: 10.3390/ijms22169090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Stress adaptation is of utmost importance for the maintenance of homeostasis and, therefore, of life itself. The prevalence of stress-related disorders is increasing, emphasizing the importance of exploratory research on stress adaptation. Two major regulatory pathways exist: the hypothalamic–pituitary–adrenocortical axis and the sympathetic adrenomedullary axis. They act in unison, ensured by the enormous bidirectional connection between their centers, the paraventricular nucleus of the hypothalamus (PVN), and the brainstem monoaminergic cell groups, respectively. PVN and especially their corticotropin-releasing hormone (CRH) producing neurons are considered to be the centrum of stress regulation. However, the brainstem seems to be equally important. Therefore, we aimed to summarize the present knowledge on the role of classical neurotransmitters of the brainstem (GABA, glutamate as well as serotonin, noradrenaline, adrenaline, and dopamine) in stress adaptation. Neuropeptides, including CRH, might be co-localized in the brainstem nuclei. Here we focused on CRH as its role in stress regulation is well-known and widely accepted and other CRH neurons scattered along the brain may also complement the function of the PVN. Although CRH-positive cells are present on some parts of the brainstem, sometimes even in comparable amounts as in the PVN, not much is known about their contribution to stress adaptation. Based on the role of the Barrington’s nucleus in micturition and the inferior olivary complex in the regulation of fine motoric—as the main CRH-containing brainstem areas—we might assume that these areas regulate stress-induced urination and locomotion, respectively. Further studies are necessary for the field.
Collapse
Affiliation(s)
- Tiago Chaves
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Csilla Lea Fazekas
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Horváth
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Pedro Correia
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Adrienn Szabó
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Bibiána Török
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Bánrévi
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
| | - Dóra Zelena
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
23
|
Colonna CH, Henriquez AR, House JS, Motsinger-Reif AA, Alewel DI, Fisher A, Ren H, Snow SJ, Schladweiler MC, Miller DB, Miller CN, Kodavanti PRS, Kodavanti UP. The Role of Hepatic Vagal Tone in Ozone-Induced Metabolic Dysfunction in the Liver. Toxicol Sci 2021; 181:229-245. [PMID: 33662111 DOI: 10.1093/toxsci/kfab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Air pollution has been associated with metabolic diseases and hepatic steatosis-like changes. We have shown that ozone alters liver gene expression for metabolic processes through neuroendocrine activation. This study aimed to further characterize ozone-induced changes and to determine the impact of hepatic vagotomy (HV) which reduces parasympathetic influence. Twelve-week-old male Wistar-Kyoto rats underwent HV or sham surgery 5-6 days before air or ozone exposure (0 or 1 ppm; 4 h/day for 1 or 2 days). Ozone-induced lung injury, hyperglycemia, glucose intolerance, and increases in circulating cholesterol, triglycerides, and leptin were similar in rats with HV and sham surgery. However, decreases in circulating insulin and increased HDL and LDL were observed only in ozone-exposed HV rats. Ozone exposure resulted in changed liver gene expression in both sham and HV rats (sham > HV), however, HV did not change expression in air-exposed rats. Upstream target analysis revealed that ozone-induced transcriptomic changes were similar to responses induced by glucocorticoid-mediated processes in both sham and HV rats. The directionality of ozone-induced changes reflecting cellular response to stress, metabolic pathways, and immune surveillance was similar in sham and HV rats. However, pathways regulating cell-cycle, regeneration, proliferation, cell growth, and survival were enriched by ozone in a directionally opposing manner between sham and HV rats. In conclusion, parasympathetic innervation modulated ozone-induced liver transcriptional responses for cell growth and regeneration without affecting stress-mediated metabolic changes. Thus, impaired neuroendocrine axes and parasympathetic innervation could collectively contribute to adverse effects of air pollutants on the liver.
Collapse
Affiliation(s)
- Catherine H Colonna
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - John S House
- Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Alison A Motsinger-Reif
- Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Anna Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Hongzu Ren
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Desinia B Miller
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Colette N Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Prasada Rao S Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
24
|
Hajdú G, Gecse E, Taisz I, Móra I, Sőti C. Toxic stress-specific cytoprotective responses regulate learned behavioral decisions in C. elegans. BMC Biol 2021; 19:26. [PMID: 33563272 PMCID: PMC7874617 DOI: 10.1186/s12915-021-00956-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recognition of stress and mobilization of adequate "fight-or-flight" responses is key for survival and health. Previous studies have shown that exposure of Caenorhabditis elegans to pathogens or toxins simultaneously stimulates cellular stress and detoxification responses and aversive behavior. However, whether a coordinated regulation exists between cytoprotective stress responses and behavioral defenses remains unclear. RESULTS Here, we show that exposure of C. elegans to high concentrations of naturally attractive food-derived odors, benzaldehyde and diacetyl, induces toxicity and food avoidance behavior. Benzaldehyde preconditioning activates systemic cytoprotective stress responses involving DAF-16/FOXO, SKN-1/Nrf2, and Hsp90 in non-neuronal cells, which confer both physiological (increased survival) and behavioral tolerance (reduced food avoidance) to benzaldehyde exposure. Benzaldehyde preconditioning also elicits behavioral cross-tolerance to the structurally similar methyl-salicylate, but not to the structurally unrelated diacetyl. In contrast, diacetyl preconditioning augments diacetyl avoidance, weakens physiological diacetyl tolerance, and does not induce apparent molecular defenses. The inter-tissue connection between cellular and behavioral defenses is mediated by JNK-like stress-activated protein kinases and the neuropeptide Y receptor NPR-1. Reinforcement of the stressful experiences using spaced training forms stable stress-specific memories. Memory retrieval by the olfactory cues leads to avoidance of food contaminated by diacetyl and context-dependent behavioral decision to avoid benzaldehyde only if there is an alternative, food-indicative odor. CONCLUSIONS Our study reveals a regulatory link between conserved cytoprotective stress responses and behavioral avoidance, which underlies "fight-or-flight" responses and facilitates self-protection in real and anticipated stresses. These findings imply that variations in the efficiency of physiological protection during past episodes of stress might shape current behavioral decisions.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Eszter Gecse
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - István Taisz
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
- Current Address: Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - István Móra
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
25
|
Costa-Ferreira W, Gomes-de-Souza L, Crestani CC. Role of angiotensin receptors in the medial amygdaloid nucleus in autonomic, baroreflex and cardiovascular changes evoked by chronic stress in rats. Eur J Neurosci 2021; 53:763-777. [PMID: 33372338 DOI: 10.1111/ejn.15094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 01/27/2023]
Abstract
This study investigated the role of AT1 , AT2 and Mas angiotensinergic receptors within the MeA in autonomic, cardiovascular and baroreflex changes evoked by a 10-day (1 hr daily) repeated restraint stress (RRS) protocol. Analysis of cardiovascular function after the end of the RRS protocol indicated increased values of arterial pressure, without heart rate changes. Arterial pressure increase was not affected by acute MeA treatment after the RRS with either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319 or the selective Mas receptor antagonist A-779. Analysis of heart rate variability indicated that RRS increased the sympathetic tone to the heart, which was inhibited by MeA treatment with either losartan, PD123319 or A-779. Baroreflex function assessed using the pharmacological approach via intravenous infusion of vasoactive agents revealed a facilitation of tachycardia evoked by blood pressure decrease in chronically stressed animals, which was inhibited by MeA treatment with losartan. Conversely, baroreflex responses during spontaneous fluctuations of blood pressure were impaired by RRS, and this effect was not affected by injection of the angiotensinergic receptor antagonists into the MeA. Altogether, the data reported in the present study suggest an involvement of both angiotensinergic receptors present in the MeA in autonomic imbalance evoked by RRS, as well as an involvement of MeA AT1 receptor in the enhanced baroreflex responses during full range of blood pressure changes. Results also indicate that RRS-evoked increase in arterial pressure and impairment of baroreflex responses during spontaneous variations of arterial pressure are independent of MeA angiotensinergic receptors.
Collapse
Affiliation(s)
- Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Lucas Gomes-de-Souza
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| |
Collapse
|
26
|
P11 deficiency increases stress reactivity along with HPA axis and autonomic hyperresponsiveness. Mol Psychiatry 2021; 26:3253-3265. [PMID: 33005029 PMCID: PMC8505237 DOI: 10.1038/s41380-020-00887-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Patients suffering from mood disorders and anxiety commonly exhibit hypothalamic-pituitary-adrenocortical (HPA) axis and autonomic hyperresponsiveness. A wealth of data using preclinical animal models and human patient samples indicate that p11 deficiency is implicated in depression-like phenotypes. In the present study, we used p11-deficient (p11KO) mice to study potential roles of p11 in stress responsiveness. We measured stress response using behavioral, endocrine, and physiological readouts across early postnatal and adult life. Our data show that p11KO pups respond more strongly to maternal separation than wild-type pups, even though their mothers show no deficits in maternal behavior. Adult p11KO mice display hyperactivity of the HPA axis, which is paralleled by depression- and anxiety-like behaviors. p11 was found to be highly enriched in vasopressinergic cells of the paraventricular nucleus and regulates HPA hyperactivity in a V1B receptor-dependent manner. Moreover, p11KO mice display sympathetic-adrenal-medullary (SAM) axis hyperactivity, with elevated adrenal norepinephrine and epinephrine levels. Using conditional p11KO mice, we demonstrate that this SAM hyperactivity is partially regulated by the loss of p11 in serotonergic neurons of the raphe nuclei. Telemetric electrocardiogram measurements show delayed heart rate recovery in p11KO mice in response to novelty exposure and during expression of fear following auditory trace fear conditioning. Furthermore, p11KO mice have elevated basal heart rate in fear conditioning tests indicating increased autonomic responsiveness. This set of experiments provide strong and versatile evidence that p11 deficiency leads to HPA and SAM axes hyperresponsiveness along with increased stress reactivity.
Collapse
|
27
|
Abramova O, Zorkina Y, Ushakova V, Zubkov E, Morozova A, Chekhonin V. The role of oxytocin and vasopressin dysfunction in cognitive impairment and mental disorders. Neuropeptides 2020; 83:102079. [PMID: 32839007 DOI: 10.1016/j.npep.2020.102079] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
Abstract
Oxytocin (OXT) and arginine-vasopressin (AVP) are structurally homologous peptide hormones synthesized in the hypothalamus. Nowadays, the role of OXT and AVP in the regulation of social behaviour and emotions is generally known. However, recent researches indicate that peptides also participate in cognitive functioning. This review presents the evidence that the OXT/AVP systems are involved in the formation of social, working, spatial and episodic memory, mediated by such brain structures as the hippocampal CA2 and CA3 regions, amygdala and prefrontal cortex. Some data have demonstrated that the OXT receptor's polymorphisms are associated with impaired memory in humans, and OXT knockout in mice is connected with memory deficit. Additionally, OXT and AVP are involved in mental disorders' progression. Stress-induced imbalance of the OXT/AVP systems leads to an increased risk of various mental disorders, including depression, schizophrenia, and autism. At the same time, cognitive deficits are observed in stress and mental disorders, and perhaps peptide hormones play a part in this. The final part of the review describes possible therapeutic strategies for the use of OXT and AVP for treatment of various mental disorders.
Collapse
Affiliation(s)
- Olga Abramova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.
| | - Yana Zorkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Valeria Ushakova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Russia
| | - Eugene Zubkov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Anna Morozova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
28
|
Costa R, Carvalho MSM, Brandão JDP, Moreira RP, Cunha TS, Casarini DE, Marcondes FK. Modulatory action of environmental enrichment on hormonal and behavioral responses induced by chronic stress in rats: Hypothalamic renin-angiotensin system components. Behav Brain Res 2020; 397:112928. [PMID: 32987059 DOI: 10.1016/j.bbr.2020.112928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Environmental enrichment (EE) has been studied as a protocol that can improve brain plasticity and may protect against negative insults such as chronic stress. The aim of this study was to evaluate the effects of EE on the hormonal and behavioral responses induced by chronic mild unpredictable stress (CMS) in rats, considering the involvement of the renin-angiotensin system. Male adult rats were divided into 4 groups: control, CMS, EE, and CMS + EE, and the experimental protocol lasted for 7 weeks. EE was performed during 7 weeks, 5 days per week, 2 h per day. CMS was applied during weeks 3, 4, and 5. After the CMS (week 6), depression-like behavior was evaluated by forced swimming and sucrose consumption tests, anxiety level was evaluated using the elevated plus-maze test, and memory was evaluated using the Y-maze test. On week 7, the animals were euthanized and basal plasma levels of corticosterone and catecholamines were determined. The hypothalamus was isolated and tissue levels of angiotensin peptides were evaluated. CMS increased plasma corticosterone, norepinephrine, and epinephrine basal concentrations, induced depression-like behaviors, impaired memory, and increased hypothalamic angiotensin I, II, and IV concentrations. EE decreased stress hormones secretion, depression-like behaviors, memory impairment, and hypothalamic angiotensin II induced by stress. Reductions of anxiety-like behavior and norepinephrine secretion were observed in both stressed and unstressed groups. The results indicated that EE seemed to protect adult rats against hormonal and behavioral CMS effects, and that the reduction of angiotensin II could contribute to these effects.
Collapse
Affiliation(s)
- Rafaela Costa
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Maeline Santos Morais Carvalho
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | | | - Roseli Peres Moreira
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Tatiana Sousa Cunha
- Science and Technology Institute, Federal University of São Paulo, São José Dos Campos, SP, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Klein Marcondes
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| |
Collapse
|
29
|
Goetschius LG, Hein TC, McLanahan SS, Brooks-Gunn J, McLoyd VC, Dotterer HL, Lopez-Duran N, Mitchell C, Hyde LW, Monk CS, Beltz AM. Association of Childhood Violence Exposure With Adolescent Neural Network Density. JAMA Netw Open 2020; 3:e2017850. [PMID: 32965498 PMCID: PMC7512058 DOI: 10.1001/jamanetworkopen.2020.17850] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022] Open
Abstract
Importance Adverse childhood experiences are a public health issue with negative sequelae that persist throughout life. Current theories suggest that adverse childhood experiences reflect underlying dimensions (eg, violence exposure and social deprivation) with distinct neural mechanisms; however, research findings have been inconsistent, likely owing to variability in how the environment interacts with the brain. Objective To examine whether dimensional exposure to childhood adversity is associated with person-specific patterns in adolescent resting-state functional connectivity (rsFC), defined as synchronized activity across brain regions when not engaged in a task. Design, Setting, and Participants A sparse network approach in a large sample with substantial representation of understudied, underserved African American youth was used to conduct an observational, population-based longitudinal cohort study. A total of 183 adolescents aged 15 to 17 years from Detroit, Michigan; Toledo, Ohio; and Chicago, Illinois, who participated in the Fragile Families and Child Wellbeing Study were eligible for inclusion. Environmental data from birth to adolescence were collected via telephone and in-person interviews, and neuroimaging data collected at a university lab. The study was conducted from February 1, 1998, to April 26, 2017, and data analysis was performed from January 3, 2019, to May 22, 2020. Exposures Composite variables representing violence exposure and social deprivation created from primary caregiver reports on children at ages 3, 5, and 9 years. Main Outcomes and Measures Resting-state functional connectivity person-specific network metrics (data-driven subgroup membership, density, and node degree) focused on connectivity among a priori regions of interest in 2 resting-state networks (salience network and default mode) assessed with functional magnetic resonance imaging. Results Of the 183 eligible adolescents, 175 individuals (98 girls [56%]) were included in the analysis; mean (SD) age was 15.88 (0.53) years and 127 participants (73%) were African American. Adolescents with high violence exposure were 3.06 times more likely (95% CI, 1.17-8.92) to be in a subgroup characterized by high heterogeneity (few shared connections) and low network density (sparsity). Childhood violence exposure, but not social deprivation, was associated with reduced rsFC density (β = -0.25; 95% CI, -0.41 to -0.05; P = .005), with fewer salience network connections (β = -0.26; 95% CI, -0.43 to -0.08; P = .005) and salience network-default mode connections (β = -0.20; 95% CI, -0.38 to -0.03; P = .02). Violence exposure was associated with node degree of right anterior insula (β = -0.29; 95% CI, -0.47 to -0.12; P = .001) and left inferior parietal lobule (β = -0.26; 95% CI, -0.44 to -0.09; P = .003). Conclusions and Relevance The findings of this study suggest that childhood violence exposure is associated with adolescent neural network sparsity. A community-detection algorithm, blinded to child adversity, grouped youth exposed to heightened violence based only on patterns of rsFC. The findings may have implications for understanding how dimensions of adverse childhood experiences impact individualized neural development.
Collapse
Affiliation(s)
| | - Tyler C. Hein
- Department of Psychology, University of Michigan, Ann Arbor
- Serious Mental Illness Treatment Resource and Evaluation Center, Office of Mental Health and Suicide Prevention, Department of Veterans Affairs, Ann Arbor, Michigan
| | - Sara S. McLanahan
- Department of Sociology, Princeton University, Princeton, New Jersey
| | - Jeanne Brooks-Gunn
- Teachers College & College of Physicians and Surgeons, Columbia University, New York, New York
| | | | | | | | - Colter Mitchell
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor
- Population Studies Center of the Institute for Social Research, University of Michigan, Ann Arbor
| | - Luke W. Hyde
- Department of Psychology, University of Michigan, Ann Arbor
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor
| | - Christopher S. Monk
- Department of Psychology, University of Michigan, Ann Arbor
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor
- Neuroscience Graduate Program, University of Michigan, Ann Arbor
- Department of Psychiatry, University of Michigan, Ann Arbor
| | | |
Collapse
|
30
|
Santos CE, Benini R, Crestani CC. Spontaneous recovery, time course, and circadian influence on habituation of the cardiovascular responses to repeated restraint stress in rats. Pflugers Arch 2020; 472:1495-1506. [PMID: 32827263 DOI: 10.1007/s00424-020-02451-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
We investigated the spontaneous recovery, time course, and the influence of the time of day on the habituation of the cardiovascular responses with repeated exposure to restraint stress in male rats. Habituation of the corticosterone response to repeated restraint stress was also evaluated. The circulating corticosterone response decreased during both the stress and recovery periods of the tenth session of restraint. Habituation of the cardiovascular responses was identified as a faster return to baseline values of the heart rate (HR) and blood pressure (BP) during the recovery period of the tenth session of restraint. Habituation of the HR and BP was still observed after 10 days of discontinuation of the repeated exposure to restraint stress. However, spontaneous recovery of habituated responses was observed 20 days after the final restraint stress session. Time course analysis revealed decreased HR response during the recovery period of the third restraint session, without further reduction on the fifth, seventh, and tenth sessions. Decreased BP response was identified on the third and fifth sessions, whereas reduced tail skin temperature response was observed only on the fifth and seventh sessions. Regarding the time of day, habituation of the tachycardiac response was identified at the tenth session when repeated restraint stress was performed in the morning and night periods, but not in the afternoon. These findings provided evidence of spontaneous recovery of the habituation of cardiovascular responses to repeated restraint stress. Moreover, cardiovascular habituation was dependent on the number of trials and time of day.
Collapse
Affiliation(s)
- Carlos E Santos
- Department of Drugs and Pharmaceutics, Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara KM 01 (Campus Universitário), Araraquara, SP, 14800-903, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Ricardo Benini
- Department of Drugs and Pharmaceutics, Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara KM 01 (Campus Universitário), Araraquara, SP, 14800-903, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Department of Drugs and Pharmaceutics, Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara KM 01 (Campus Universitário), Araraquara, SP, 14800-903, Brazil. .,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
31
|
Associations of Food-Chewing Discomfort with Health Behaviors and Cognitive and Physical Health Using Pooled Data from the Korean Health Panel (2010-2013). Nutrients 2020; 12:nu12072105. [PMID: 32708584 PMCID: PMC7400811 DOI: 10.3390/nu12072105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022] Open
Abstract
Using 4 years of pooled data from the Korean Health Panel (2010-2013), the prevalence of food-chewing discomfort in adults over the age of 19 was investigated and the cross-sectional relationship between food-chewing discomfort and health behaviors and cognitive and physical health was identified. The prevalence of food-chewing discomfort was 31%: young adults (<40 years), 17.9%; middle-aged adults (40-64 years), 28.9%; and older adults (≥65 years), 57.1% (p < 0.0001). When food-chewing discomfort was sometimes, often, or always rather than never, odds ratios (ORs) were analyzed after controlling for sociodemographic characteristics. Significant OR results of target variables were smoking (OR 1.15, 1.37, 1.50), drinking (1.08, 0.87, 0.73), problem drinking (1.87, 1.67, 1.34), abstinence from drinking (1.23, 1.34, 1.42), nonphysical activity (OR 0.87 only significant, 0.94 nonsignificant, 1.10 nonsignificant), memory decline (2.07, 2.56, 3.31), decision-making difficulty (1.76, 2.78, 4.37), limitation of daily life due to illness (2.29, 3.60, 3.92), and the presence of a chronic disease (1.28, 1.62, 1.73), respectively. In conclusion, there were associations of food-chewing discomfort with increased smoking and decreased alcohol consumption, with increased difficulty in decision-making and memory decline, limitations in daily life due to disease, and the presence of chronic diseases. Therefore, it is necessary to investigate the causal relationship between chewing and health behaviors and cognitive and physical health through longitudinal studies.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The world is experiencing the evolving situation associated with the outbreak of the Corona Virus Disease-2019 (COVID-19) virus, and there is more of need than ever for stress management and self-care. In this article, we will define the physiological, psychological and social aspects, stages, and components of stress reactions in the context of COVID-19, review the relevant literature on stress reactions, and offer some guidance on how to help patients mitigate the physiological and psychological impact of the pandemic through resilience-building techniques. RECENT FINDINGS There is continued evidence that the fight or flight response involves activation throughout the body at physiological, biochemical and immune levels. This response can be mitigated through increasing parasympathetic nervous system activation as well as cognitive and behavioral interventions. SUMMARY This article will review the stress, provide a theoretical layout to predict upcoming response, and offer clinicians some practical interventions to employ as the stress of the COVID-19 pandemic continues.
Collapse
|
33
|
Golla A, Østby H, Kermen F. Chronic unpredictable stress induces anxiety-like behaviors in young zebrafish. Sci Rep 2020; 10:10339. [PMID: 32587370 PMCID: PMC7316714 DOI: 10.1038/s41598-020-67182-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/02/2020] [Indexed: 01/12/2023] Open
Abstract
Exposure to stress during early life affects subsequent behaviors and increases the vulnerability to adult pathologies, a phenomenon that has been well documented in humans and rodents. In this study, we introduce a chronic unpredictable stress protocol adapted to young zebrafish, which is an increasingly popular vertebrate model in neuroscience research. We exposed zebrafish to a series of intermittent and unpredictable mild stressors from day 10 to 17 post-fertilization. The stressed fish showed a reduced exploration of a novel environment one day post-stress and an increased responsiveness to dark-light transition two days post-stress, indicative of heightened anxiety-related behaviors. The stress-induced decrease in exploration lasted for at least three days and returned to control levels within one week. Moreover, stressed fish were on average 8% smaller than their control siblings two days post-stress and returned to control levels within one week. All together, our results demonstrate that young zebrafish exposed to chronic unpredictable stress develop growth and behavioral alterations akin to those observed in rodent models.
Collapse
Affiliation(s)
- Archana Golla
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Henrik Østby
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Florence Kermen
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway.
| |
Collapse
|
34
|
Xue Y, Wei SQ, Wang PX, Wang WY, Liu EQ, Traub RJ, Cao DY. Down-regulation of Spinal 5-HT 2A and 5-HT 2C Receptors Contributes to Somatic Hyperalgesia induced by Orofacial Inflammation Combined with Stress. Neuroscience 2020; 440:196-209. [PMID: 32497757 DOI: 10.1016/j.neuroscience.2020.05.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/04/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022]
Abstract
Patients suffering with functional somatic pain syndromes such as temporomandibular disorders (TMD) and fibromyalgia syndrome (FMS) have some similar symptoms, but the underlying cause is still unclear. The purpose of this study was to investigate whether 5-HT2A and 5-HT2C receptors in the spinal cord contribute to somatic hyperalgesia induced by orofacial inflammation combined with different modes of stress. Ovariectomized rats were injected subcutaneously with estradiol and bilateral masseter muscles were injected with complete Freund's adjuvant followed by stress. Somatic sensitivity was assessed with thermal and mechanical stimulation. The anxiety- and depression-like behaviors were measured by immobility time, sucrose preference, elevated plus maze and open field tests. The expression of 5-HT2A and 5-HT2C receptors in the spinal cord was examined by Western blot. Orofacial inflammation combined with 11 day forced swim stress (FSS) induced persistent mechanical allodynia for 15 days and thermal hyperalgesia for 2 days. The mechanical and thermal hyperalgesia lasted for 43 days and 30 days respectively following orofacial inflammation combined with 11 day heterotypic stress. Orofacial inflammation combined with stress induced anxiety- and depression-like behaviors. The expression of 5-HT2A and 5-HT2C receptors significantly decreased in the orofacial inflammation combined with stress groups. Intrathecal injection of 5-HT2A or 5-HT2C receptor agonist reversed somatic hyperalgesia. The results suggest that down-regulation of 5-HT2A and 5-HT2C receptors in the spinal cord contributes to somatic hyperalgesia induced by orofacial inflammation combined with stress, indicating that 5-HT2A and 5-HT2C receptors may be potential targets in the treatment of TMD comorbid with FMS.
Collapse
Affiliation(s)
- Yang Xue
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China
| | - Si-Qi Wei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China
| | - Pei-Xing Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China
| | - Wu-Yin Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China
| | - En-Qi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | - Richard J Traub
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, UM Center to Advance Chronic Pain Research, 650 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
35
|
Benini R, Oliveira LA, Gomes-de-Souza L, Rodrigues B, Crestani CC. Habituation of the cardiovascular response to restraint stress is inhibited by exposure to other stressor stimuli and exercise training. J Exp Biol 2020; 223:jeb219501. [PMID: 32205360 DOI: 10.1242/jeb.219501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/13/2020] [Indexed: 01/06/2023]
Abstract
This study evaluated the effect of exposure to either a chronic variable stress (CVS) protocol or social isolation, as well as treadmill exercise training, in the habituation of the cardiovascular response upon repeated exposure to restraint stress in rats. The habituation of the corticosterone response to repeated restraint stress was also evaluated. For this, animals were subjected to either acute or 10 daily sessions of 60 min of restraint stress. CVS and social isolation protocols lasted for 10 consecutive days, whereas treadmill training was performed for 1 h per day, 5 days per week for 8 weeks. We observed that the increase in serum corticosterone was reduced during both the stress and the recovery period of the 10th session of restraint. Habituation of the cardiovascular response was identified in terms of a faster return of heart rate to baseline values during the recovery period of the 10th session of restraint. The increase in blood pressure and the decrease in tail skin temperature were similar at the 1st and 10th session of restraint. Exposure to CVS, social isolation or treadmill exercise training inhibited the habituation of the restraint-evoked tachycardia. Additionally, CVS increased the blood pressure response at the 10th session of restraint, whereas social isolation enhanced both the tachycardia during the first session and the drop in skin temperature at the 10th session of restraint. Taken together, these findings provide new evidence that pathologies evoked by stress might be related to impairment in the habituation process to homotypic stressors.
Collapse
Affiliation(s)
- Ricardo Benini
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP 14800-903, Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP 13565-905, Brazil
| | - Leandro A Oliveira
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP 14800-903, Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP 13565-905, Brazil
| | - Lucas Gomes-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP 14800-903, Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP 13565-905, Brazil
| | - Bruno Rodrigues
- Department of Adapted Physical Activity, Faculty of Physical Education, University of Campinas - UNICAMP, Campinas, SP 13083-851, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP 14800-903, Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
36
|
Zhou YF, Huang JC, Zhang P, Fan FM, Chen S, Fan HZ, Cui YM, Luo XG, Tan SP, Wang ZR, Feng W, Yuan Y, Yang FD, Savransky A, Ryan M, Goldwaser E, Chiappelli J, Rowland LM, Kochunov P, Tan YL, Hong LE. Choroid Plexus Enlargement and Allostatic Load in Schizophrenia. Schizophr Bull 2020; 46:722-731. [PMID: 31603232 PMCID: PMC7147577 DOI: 10.1093/schbul/sbz100] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although schizophrenia is a brain disorder, increasing evidence suggests that there may be body-wide involvement in this illness. However, direct evidence of brain structures involved in the presumed peripheral-central interaction in schizophrenia is still unclear. Seventy-nine previously treatment-naïve first-episode schizophrenia patients who were within 2-week antipsychotics initial stabilization, and 41 age- and sex-matched healthy controls were enrolled in the study. Group differences in subcortical brain regional structures measured by MRI and the subclinical cardiovascular, metabolic, immune, and neuroendocrine biomarkers as indexed by allostatic load, and their associations were explored. Compared with controls, patients with schizophrenia had significantly higher allostatic load (P = .001). Lateral ventricle (P < .001), choroid plexus (P < .001), and thalamus volumes (P < .001) were significantly larger, whereas amygdala volume (P = .001) was significantly smaller in patients. The choroid plexus alone was significantly correlated with higher allostatic load after age, sex, education level, and the total intracranial volume were taken into account (t = 3.60, P < .001). Allostatic load was also significantly correlated with PANSS positive (r = 0.28, P = .016) and negative (r = -0.31, P = .008) symptoms, but in opposite directions. The peripheral multisystemic and central nervous system abnormalities in schizophrenia may interact through the choroid plexus during the early stage of the illness. The choroid plexus might provide a sensitive structural biomarker to study the treatment and prevention of brain-periphery interaction abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Yan-Fang Zhou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Jun-Chao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Feng-Mei Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Hong-Zhen Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Yi-Min Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, P. R. China
| | - Xing-Guang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Shu-Ping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Zhi-Ren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Wei Feng
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Ying Yuan
- School of Foreign Languages and Literature, Tianjin University, Tianjin, P. R. China
| | - Fu-De Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Anya Savransky
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Meghann Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Eric Goldwaser
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Yun-Long Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China,To whom correspondence should be addressed; Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China; tel: +86-(10)-83024319, fax: +86-(10)-62710156, e-mail:
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
37
|
Nonaka K, Aida J, Takubo K, Yamazaki Y, Gao X, Komatsu A, Takakuma S, Kakizaki M, Inoshita N, Gomi F, Ishiwata T, Chong JM, Arai T, Sasano H. Correlation Between Telomere Attrition of Zona Fasciculata and Adrenal Weight Reduction in Older Men. J Clin Endocrinol Metab 2020; 105:5634040. [PMID: 31745564 DOI: 10.1210/clinem/dgz214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
CONTEXT Although numerous theories are reported on sex differences in longevity, the underlying biological mechanisms remain unknown. We previously reported that telomere length in the zona reticularis cells of the human adrenal cortex was significantly longer in older than that in younger subjects. However, we could not evaluate sex differences in the telomere lengths. OBJECTIVE To compare the telomere lengths of adrenocortical and adrenal medullar cells between men and women from infancy through older adulthood. METHODS Adrenal glands of 30 male (aged 0 to 100 years) and 25 female (aged 0 to 104 years) autopsied subjects were retrieved from autopsy files. Using quantitative fluorescence in situ hybridization, relative telomere lengths were determined in the parenchymal cells of the 3 adrenocortical zones and medulla. Age-related changes in the weight of adrenal glands were also investigated. MAIN RESULTS Older male subjects (aged 65 years or older) had significantly shorter telomere lengths in zona fasciculata (ZF) cells compared to the corresponding female subjects. In men, older subjects exhibited a significant age-related reduction in adrenal weight; however, no age-related changes in adrenal weight were detected in women. CONCLUSION Telomere attrition of ZF cells was correlated with adrenal weight reduction in older men but not in older women, suggesting a decreased number of ZF cells in older men. This may help us understand the possible biological mechanisms of sex difference in longevity of humans.
Collapse
Affiliation(s)
- K Nonaka
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Sakae-cho, Itabashi-ku, Tokyo, Japan
- Department of Pathology, Tohoku University Graduate School of Medicine, Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Junko Aida
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Kaiyo Takubo
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Xin Gao
- Department of Pathology, Tohoku University Graduate School of Medicine, Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Akiko Komatsu
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Shoichiro Takakuma
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Mototsune Kakizaki
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Naoko Inoshita
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Fujiya Gomi
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Ja-Mun Chong
- Department of Pathology, Tokyo Metropolitan Health and Medical Treatment Corporation Toshima Hospital, Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Seiryo-machi, Aoba-ku, Sendai, Japan
| |
Collapse
|
38
|
Pan MH, Zhu SR, Duan WJ, Ma XH, Luo X, Liu B, Kurihara H, Li YF, Chen JX, He RR. "Shanghuo" increases disease susceptibility: Modern significance of an old TCM theory. JOURNAL OF ETHNOPHARMACOLOGY 2019; 250:112491. [PMID: 31863858 DOI: 10.1016/j.jep.2019.112491] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Shanghuo", a concept based on Traditional Chinese Medicine (TCM) theory, describes a status of Yin-Yang imbalance when Yang overwhelms Yin. The imbalance of Yin-Yang resembles the breaking of homeostasis and manifests by the impaired physiological functions, which leads to the onset, recurrence, and progression of diseases. Since ancient times, Chinese Materia Medica (CMM), such as herbal tea, has been applied as a treatment for "Shanghuo". AIM OF THE STUDY This review is aimed to describe the origin of "Shanghuo" from the Yin-Yang theory in TCM, as well as explore the relevance and correlations between "Shanghuo" and diseases susceptibility from the perspective of modern medicine. We also propose several strategies from CMM to improve the status of "Shanghuo" for the purpose of treating diseases. METHODS Systematic research of articles with keywords including Shanghuo, Yin-Yang, emotional stress and disease susceptibility was done by using the literature databases (Web of Science, Google Scholar, PubMed, CNKI). Related books, PhD and master's dissertations were also researched. Full scientific plant names were validated by "The Plant List" (www.theplantlist.org). RESULTS To date, a large number of publications have reported research on sub-health status, but studies about the theory or intervention of "Shanghuo" are rarely found. The articles we reviewed indicate that accumulated emotional stress is critical for the cause of "Shanghuo". As a status similar to sub-health, "Shanghuo" is also manifested by impaired physiological functions and decreased nonspecific resistance, which increase susceptibility to various diseases. What's more, some studies highlight the importance of TCM treatment towards "Shanghuo" in maintaining normal physiological functions, such as immunity, lipid metabolism and ROS clearance. CONCLUSIONS Researches on "Shanghuo" and its mechanism are every rare currently and are in need of investigation in the future. Studies on disease susceptibility recently are mostly about susceptible genes that relate to a few parts of people, however, for most of the people, accumulated emotional stress or other stressors is accountable for the susceptibility of diseases. Given that emotional stress plays an important factor in the causation of "Shanghuo", we reviewed the articles about this relevance and discussed the connection of "Shanghuo" with disease susceptibility in a novel perspective. In addition, we have reviewed the disease susceptibility model of restraint stress from its biochemical manifestation to application in CMM assessment. Although it would be a breakthrough in evaluating CMM efficacy of attenuating disease-susceptibility, understanding the comprehensive theory and establishing more models of "Shanghuo" would be required in further investigation.
Collapse
Affiliation(s)
- Ming-Hai Pan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Si-Rui Zhu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong, Guangzhou, 510006, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao-Hui Ma
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiang Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Jia-Xu Chen
- College of Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
39
|
Stress experience and hormone feedback tune distinct components of hypothalamic CRH neuron activity. Nat Commun 2019; 10:5696. [PMID: 31836701 PMCID: PMC6911111 DOI: 10.1038/s41467-019-13639-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
Stress leaves a lasting impression on an organism and reshapes future responses. However, the influence of past experience and stress hormones on the activity of neural stress circuits remains unclear. Hypothalamic corticotropin-releasing hormone (CRH) neurons orchestrate behavioral and endocrine responses to stress and are themselves highly sensitive to corticosteroid (CORT) stress hormones. Here, using in vivo optical recordings, we find that CRH neurons are rapidly activated in response to stress. CRH neuron activity robustly habituates to repeated presentations of the same, but not novel stressors. CORT feedback has little effect on CRH neuron responses to acute stress, or on habituation to repeated stressors. Rather, CORT preferentially inhibits tonic CRH neuron activity in the absence of stress stimuli. These findings reveal how stress experience and stress hormones modulate distinct components of CRH neuronal activity to mediate stress-induced adaptations. Stress activates corticotropin-releasing hormone (CRH) neurons in the hypothalamus, but how their activity is regulated during and after stress is unclear. Here, the authors show that stress habituation and corticosteroid feedback tune different components of CRH neuron activity.
Collapse
|
40
|
Rowland NE, Toth LA. Analytic and Interpretational Pitfalls to Measuring Fecal Corticosterone Metabolites in Laboratory Rats and Mice. Comp Med 2019; 69:337-349. [PMID: 31578162 DOI: 10.30802/aalas-cm-18-000119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Minimization and alleviation of stress are generally viewed as desirable aspects of laboratory animal management and use. However, achieving that goal requires an unambiguous and valid measure of stress. Glucocorticoid concentrations are commonly used as a physiologic index of stress. Measurement of glucocorticoids in blood, serum or plasma clearly reflects many types of both acute and chronic stress. However, the rapid rise in concentrations of circulating glucocorticoids that occurs even with relatively simple manipulations such as handling has led to the increased use of fecal glucocorticoid metabolite (FCM) assays, which provide a temporally integrated measure that may allow a more accurate interpretation of chronic stressors. In this review, we consider 3 aspects of glucocorticoids as a measure of stress. First, we discuss the analytic and interpretational pitfalls of using FCM concentrations as an index of stress in mice and rats. Second, we consider evidence that some degree of stress may benefit animals by priming physiologic and behavioral adaptations that render the animals more resilient in the face of stress. Finally, we use 2 situations-social housing and food restriction-to illustrate the concept of hormesis-a biologic phenomenon in which a low dose or intensity of a challenge has a beneficial effect, whereas exposure to high doses or intensities is detrimental.
Collapse
Affiliation(s)
- Neil E Rowland
- Department of Psychology, University of Florida, Gainesville, Florida;,
| | - Linda A Toth
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, Illinois
| |
Collapse
|
41
|
Intricacies of the Molecular Machinery of Catecholamine Biosynthesis and Secretion by Chromaffin Cells of the Normal Adrenal Medulla and in Pheochromocytoma and Paraganglioma. Cancers (Basel) 2019; 11:cancers11081121. [PMID: 31390824 PMCID: PMC6721535 DOI: 10.3390/cancers11081121] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
The adrenal medulla is composed predominantly of chromaffin cells producing and secreting the catecholamines dopamine, norepinephrine, and epinephrine. Catecholamine biosynthesis and secretion is a complex and tightly controlled physiologic process. The pathways involved have been extensively studied, and various elements of the underlying molecular machinery have been identified. In this review, we provide a detailed description of the route from stimulus to secretion of catecholamines by the normal adrenal chromaffin cell compared to chromaffin tumor cells in pheochromocytomas. Pheochromocytomas are adrenomedullary tumors that are characterized by uncontrolled synthesis and secretion of catecholamines. This uncontrolled secretion can be partly explained by perturbations of the molecular catecholamine secretory machinery in pheochromocytoma cells. Chromaffin cell tumors also include sympathetic paragangliomas originating in sympathetic ganglia. Pheochromocytomas and paragangliomas are usually locally confined tumors, but about 15% do metastasize to distant locations. Histopathological examination currently poorly predicts future biologic behavior, thus long term postoperative follow-up is required. Therefore, there is an unmet need for prognostic biomarkers. Clearer understanding of the cellular mechanisms involved in the secretory characteristics of pheochromocytomas and sympathetic paragangliomas may offer one approach for the discovery of novel prognostic biomarkers for improved therapeutic targeting and monitoring of treatment or disease progression.
Collapse
|
42
|
Costa-Ferreira W, Morais-Silva G, Gomes-de-Souza L, Marin MT, Crestani CC. The AT1 Receptor Antagonist Losartan Does Not Affect Depressive-Like State and Memory Impairment Evoked by Chronic Stressors in Rats. Front Pharmacol 2019; 10:705. [PMID: 31293424 PMCID: PMC6598205 DOI: 10.3389/fphar.2019.00705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
The present study investigated the effect of the treatment with the angiotensin II type 1 receptor (AT1) antagonist losartan in the depressive-like state and memory impairment evoked by exposure to either homotypic (i.e., repeated exposure to the same type of stressor) or heterotypic (i.e., exposure to different aversive stimuli) chronic stressors in rats. For this, male Wistar rats were subjected to a 10 days regimen of repeated restraint stress (RRS, homotypic stressor) or chronic variable stress (CVS, heterotypic stressor) while being concurrently treated daily with losartan (30 mg/kg/day, p.o.). Depressive-like state was evaluated by analysis of the alterations considered as markers of depression (decreased sucrose preference and body weight and coat state deterioration), whereas cognitive non-emotional performance was tested using the novel object recognition (NOR) test. Locomotor activity was also evaluated in the open field test. Both RRS and CVS impaired sucrose preference and caused coat state deterioration, whereas only CVS impaired body weight gain. Besides, RRS impaired short-term memory (but not long-term memory) in the NOR test. Neither depressive-like state nor memory impairment evoked by the chronic stressors was affected by the treatment with losartan. Nevertheless, CVS increased the locomotion, which was inhibited by losartan. Taken together, these results provide evidence that the chronic treatment with losartan does not affect the depressive-like state and memory impairment evoked by either homotypic or heterotypic chronic stress regimens in rats.
Collapse
Affiliation(s)
- Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Gessynger Morais-Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Lucas Gomes-de-Souza
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Marcelo T Marin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| |
Collapse
|
43
|
Benini R, Oliveira LA, Gomes-de-Souza L, Crestani CC. Habituation of the cardiovascular responses to restraint stress in male rats: influence of length, frequency and number of aversive sessions. Stress 2019; 22:151-161. [PMID: 30632936 DOI: 10.1080/10253890.2018.1532992] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Habituation of cardiovascular responses upon repeated exposure to stress is controversial. Hence, we hypothesized that habituation of cardiovascular stress responses is influenced by length, frequency, and number of stress sessions in male Wistar rats. Blood pressure and heart rate were recorded via femoral artery catheterization and the tail cutaneous temperature was evaluated using a thermal imager. We observed a faster return of heart rate to baseline values during the post-stress period of the 10th daily session in rats subjected to either 60 (n = 8) or 120 min (n = 7), but not 30 min (n = 7), of restraint. Daily sessions of 120 min also decreased blood pressure during the recovery of the 10th session. The faster return of heart rate to baseline values during the post-stress period at the 10th session in rats exposed to daily 60 min sessions (n = 9) was not identified at the 5th (n = 9) and 20th (n = 9) sessions. Regarding frequency, the tachycardia during the 10th session was enhanced in rats subjected to 60 min of restraint presented every other day (n = 9) and decreased in rats subjected to a protocol of five daily sessions followed by two resting days (n = 9). Thirty-minute sessions of restraint presented twice a day (n = 9) and a protocol of three daily sessions followed by a resting day (n = 9) did not affect the restraint-evoked cardiovascular responses at the 10th session. These results provide evidence of habituation of the cardiovascular responses upon repeated exposure to restraint stress, which is dependent on length, frequency, and number of trials. Lay summary Cardiovascular responses decrease upon repeated exposure to restraint stress. The decrease in cardiovascular stress responses is observed as a faster return to basal values during the post-stress period. The cardiovascular stress response decrease (habituation to stress) is dependent on the length, frequency, and number of stress sessions.
Collapse
Affiliation(s)
- Ricardo Benini
- a a Laboratory of Pharmacology, School of Pharmaceutical Sciences , São Paulo State University (UNESP) , Araraquara , SP, Brazil
- b b Joint UFSCar-UNESP Graduate Program in Physiological Sciences , São Carlos , SP, Brazil
| | - Leandro A Oliveira
- a a Laboratory of Pharmacology, School of Pharmaceutical Sciences , São Paulo State University (UNESP) , Araraquara , SP, Brazil
- b b Joint UFSCar-UNESP Graduate Program in Physiological Sciences , São Carlos , SP, Brazil
| | - Lucas Gomes-de-Souza
- a a Laboratory of Pharmacology, School of Pharmaceutical Sciences , São Paulo State University (UNESP) , Araraquara , SP, Brazil
- b b Joint UFSCar-UNESP Graduate Program in Physiological Sciences , São Carlos , SP, Brazil
| | - Carlos C Crestani
- a a Laboratory of Pharmacology, School of Pharmaceutical Sciences , São Paulo State University (UNESP) , Araraquara , SP, Brazil
- b b Joint UFSCar-UNESP Graduate Program in Physiological Sciences , São Carlos , SP, Brazil
| |
Collapse
|
44
|
Abstract
The causes of essential hypertension remain an enigma. Interactions between genetic and external factors are generally recognized to act as aetiological mechanisms that trigger the pathogenesis of high blood pressure. However, the questions of which genes and factors are involved, and when and where such interactions occur, remain unresolved. Emerging evidence indicates that the hypertensive response to pressor stimuli, like many other physiological and behavioural adaptations, can become sensitized to particular stimuli. Studies in animal models show that, similarly to other response systems controlled by the brain, hypertensive response sensitization (HTRS) is mediated by neuroplasticity. The brain circuitry involved in HTRS controls the sympathetic nervous system. This Review outlines evidence supporting the phenomenon of HTRS and describes the range of physiological and psychosocial stressors that can produce a sensitized hypertensive state. Also discussed are the cellular and molecular changes in the brain neural network controlling sympathetic tone involved in long-term storage of information relating to stressors, which could serve to maintain a sensitized state. Finally, this Review concludes with a discussion of why a sensitized hypertensive response might previously have been beneficial and increased biological fitness under some environmental conditions and why today it has become a health-related liability.
Collapse
Affiliation(s)
- Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA.
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA.
- The François M. Abboud Cardiovascular Center, Iowa City, IA, USA.
| | - Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- The François M. Abboud Cardiovascular Center, Iowa City, IA, USA
| |
Collapse
|
45
|
Vieira JO, Duarte JO, Costa-Ferreira W, Crestani CC. Influence of pre-existing hypertension on neuroendocrine and cardiovascular changes evoked by chronic stress in female rats. Psychoneuroendocrinology 2018; 97:111-119. [PMID: 30015006 DOI: 10.1016/j.psyneuen.2018.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/07/2018] [Accepted: 07/08/2018] [Indexed: 12/12/2022]
Abstract
This study investigated neuroendocrine, autonomic, and cardiovascular changes evoked by daily exposure to the same type of stressor (homotypic) or different aversive stressor stimuli (heterotypic) in 60-days-old female normotensive Wistar rats and female spontaneously hypertensive rats (SHR). Both strains of rats were exposed for 10 consecutive days to either the homotypic stressor repeated restraint stress (RRS) or the heterotypic stressor chronic unpredictable stress (CUS). As expected, SHR had higher baseline blood pressure values and impaired baroreflex activity in relation to normotensive animals. Besides, SHR presented higher plasma corticosterone levels and decreased thymus weight. Both RRS and CUS increased baseline plasma corticosterone concentration and decreased body weight gain in both normotensive and SHR rats. In addition, both stress protocols caused hypertrophy of adrenal glands in normotensive rats. Regarding the cardiovascular effects, RRS increased basal heart rate in both rat strains, which was mediated by an increase in sympathetic tone to the heart. Besides, RRS increased baroreflex-mediated tachycardia in SHR animals, while CUS increased cardiac parasympathetic activity and pacemaker activity in normotensive rats. Taken together, these results indicate a stress type-specific effect, as identified by a vulnerability of both strains to the deleterious cardiovascular effects evoked by the homotypic stressor and a resilience to the impact of the heterotypic stressor. Vulnerability of hypertensive rats was evidenced by the absence of CUS-evoked adaptive cardiovascular responses and an increase of baroreflex tachycardia in SHR animals subjected to RRS. The somatic and HPA axis changes were overall independent of the chronic stress regimen and pre-existing hypertension.
Collapse
Affiliation(s)
- Jonas O Vieira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, UNESP, Araraquara, SP, Brazil; Joint UFSCar-UNESP - Univ Estadual Paulista Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Josiane O Duarte
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, UNESP, Araraquara, SP, Brazil; Joint UFSCar-UNESP - Univ Estadual Paulista Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Willian Costa-Ferreira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, UNESP, Araraquara, SP, Brazil; Joint UFSCar-UNESP - Univ Estadual Paulista Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, UNESP, Araraquara, SP, Brazil; Joint UFSCar-UNESP - Univ Estadual Paulista Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
46
|
Firoozmand LT, Sanches A, Damaceno-Rodrigues NR, Perez JD, Aragão DS, Rosa RM, Marcondes FK, Casarini DE, Caldini EG, Cunha TS. Blockade of AT1 type receptors for angiotensin II prevents cardiac microvascular fibrosis induced by chronic stress in Sprague-Dawley rats. Stress 2018; 21:484-493. [PMID: 29676198 DOI: 10.1080/10253890.2018.1462328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To test the effects of chronic-stress on the cardiovascular system, the model of chronic mild unpredictable stress (CMS) has been widely used. The CMS protocol consists of the random, intermittent, and unpredictable exposure of laboratory animals to a variety of stressors, during 3 consecutive weeks. In this study, we tested the hypothesis that exposure to the CMS protocol leads to left ventricle microcirculatory remodeling that can be attenuated by angiotensin II receptor blockade. Male Sprague-Dawley rats were randomly assigned into four groups: Control, Stress, Control + losartan, and Stress + losartan (N = 6, each group, losartan: 20 mg/kg/day). The rats were euthanized 15 days after CMS exposure, and blood samples and left ventricle were collected. Rats submitted to CMS presented increased glycemia, corticosterone, noradrenaline and adrenaline concentration, and losartan reduced the concentration of the circulating amines. Cardiac angiotensin II, measured by high-performance liquid chromatography (HPLC), was significantly increased in the CMS group, and losartan treatment reduced it, while angiotensin 1-7 was significantly higher in the CMS losartan-treated group as compared with CMS. Histological analysis, verified by transmission electron microscopy, showed that rats exposed to CMS presented increased perivascular collagen and losartan effectively prevented the development of this process. Hence, CMS induced a state of microvascular disease, with increased perivascular collagen deposition, that may be the trigger for further development of cardiovascular disease. In this case, CMS fibrosis is associated with increased production of catecholamines and with a disruption of renin-angiotensin system balance, which can be prevented by angiotensin II receptor blockade.
Collapse
Affiliation(s)
| | - Andrea Sanches
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (FOP-UNICAMP), Piracicaba, Brazil
| | - Nilsa Regina Damaceno-Rodrigues
- Laboratory of Cell Biology (LIM59), Department of Pathology, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Juliana Dinéia Perez
- Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Rodolfo Mattar Rosa
- Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Fernanda Klein Marcondes
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (FOP-UNICAMP), Piracicaba, Brazil
| | - Dulce Elena Casarini
- Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Elia Garcia Caldini
- Laboratory of Cell Biology (LIM59), Department of Pathology, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Tatiana Sousa Cunha
- Institute of Science and Technology, Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil
| |
Collapse
|
47
|
Nürnberg E, Horschitz S, Schloss P, Meyer-Lindenberg A. Basal glucocorticoid receptor activation induces proliferation and inhibits neuronal differentiation of human induced pluripotent stem cell-derived neuronal precursor cells. J Steroid Biochem Mol Biol 2018; 182:119-126. [PMID: 29751108 DOI: 10.1016/j.jsbmb.2018.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/21/2018] [Accepted: 04/25/2018] [Indexed: 11/23/2022]
Abstract
Glucocorticoids (GC) have first been shown to originate from the adrenal glands where synthesis and release is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. Recently, it was shown that GC and other steroid hormones are also synthesized in the central nervous system, so-called neurosteroids. GC bind to specific GC receptors (GR) which function as ligand-activated transcription factors. GR are expressed in nearly all cell types in the brain, and therefore GC have a strong impact on neuronal development. Most knowledge of the influence of GC on neurodevelopment has been obtained from animal research. Recent advances in stem cell technology made it possible to generate neuronal precursor cells (NPCs) and neurons from human induced pluripotent stem cells (hiPSCs). To explore the cellular mechanism of GC affecting human neuronal development, we quantified the proliferation and differentiation of hiPSCs-derived NPCs in the absence and presence of the selective high-affinity GR agonist dexamethasone and the selective GR antagonist mifepristone, respectively. Our results show that inhibition of GR significantly reduced proliferation of NPCs and promoted differentiation whereas GR activation suppressed neuronal differentiation. This implies that neuronal GC must be present in NPCs for proliferation. Consequently we identified the presence of 11-β-hydroxylase CYP11B1, which hydroxylates the respective steroid precursors to bioactive GC, in NPCs. We propose that hiPSC technology offers an ideal system to get more insight into the synthesising and regulatory pathways in steroidogenesis in human neurons and to differentiate between the mechanism by which adrenal GC and neuronal GC impact on neurodevelopment.
Collapse
Affiliation(s)
- Elina Nürnberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, 68159, Mannheim, Germany; Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
| | - Sandra Horschitz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, 68159, Mannheim, Germany
| | - Patrick Schloss
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, 68159, Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, 68159, Mannheim, Germany
| |
Collapse
|
48
|
Brindley RL, Bauer MB, Walker LA, Quinlan MA, Carneiro AMD, Sze JY, Blakely RD, Currie KPM. Adrenal serotonin derives from accumulation by the antidepressant-sensitive serotonin transporter. Pharmacol Res 2018; 140:56-66. [PMID: 29894763 DOI: 10.1016/j.phrs.2018.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/30/2022]
Abstract
Adrenal chromaffin cells comprise the neuroendocrine arm of the sympathetic nervous system and secrete catecholamines to coordinate the appropriate stress response. Deletion of the serotonin (5-HT) transporter (SERT) gene in mice (SERT-/- mice) or pharmacological block of SERT function in rodents and humans augments this sympathoadrenal stress response (epinephrine secretion). The prevailing assumption is that loss of CNS SERT alters central drive to the peripheral sympathetic nervous system. Adrenal chromaffin cells also prominently express SERT where it might coordinate accumulation of 5-HT for reuse in the autocrine control of stress-evoked catecholamine secretion. To help test this hypothesis, we have generated a novel mouse model with selective excision of SERT in the peripheral sympathetic nervous system (SERTΔTH), generated by crossing floxed SERT mice with tyrosine hydroxylase Cre driver mice. SERT expression, assessed by western blot, was abolished in the adrenal gland but not perturbed in the CNS of SERTΔTH mice. SERT-mediated [3H] 5-HT uptake was unaltered in midbrain, hindbrain, and spinal cord synaptosomes, confirming transporter function was intact in the CNS. Endogenous midbrain and whole blood 5-HT homeostasis was unperturbed in SERTΔTH mice, contrasting with the depleted 5-HT content in SERT-/- mice. Selective SERT excision reduced adrenal gland 5-HT content by ≈ 50% in SERTΔTH mice but had no effect on adrenal catecholamine content. This novel model confirms that SERT expressed in adrenal chromaffin cells is essential for maintaining wild-type levels of 5-HT and provides a powerful tool to help dissect the role of SERT in the sympathetic stress response.
Collapse
Affiliation(s)
- Rebecca L Brindley
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA; Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Mary Beth Bauer
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville TN, USA
| | - L Anne Walker
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Meagan A Quinlan
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN, USA; Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, USA
| | - Ana M D Carneiro
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Ji-Ying Sze
- Department of Molecular Pharmacology and Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, USA; Florida Atlantic University Brain Institute, Jupiter, FL, USA
| | - Kevin P M Currie
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA; Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville TN, USA.
| |
Collapse
|
49
|
Epigallocatechin-3-gallate confers protection against corticosterone-induced neuron injuries via restoring extracellular signal-regulated kinase 1/2 and phosphatidylinositol-3 kinase/protein kinase B signaling pathways. PLoS One 2018; 13:e0192083. [PMID: 29373584 PMCID: PMC5786317 DOI: 10.1371/journal.pone.0192083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Extensive studies suggested epigallocatechin-3-gallate (EGCG) has significant neuroprotection against multiple central neural injuries, but the underlying mechanisms still remain poorly elucidated. Here we provide evidence to support the possible involvement of extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol-3 kinase/ protein kinase B (PI3K/AKT) pathways in EGCG-mediated protection against corticosterone-induced neuron injuries. As an essential stress hormone, corticosterone could induce obvious neurotoxicity in primary hippocampal neurons. Pre-treatment with EGCG ameliorated the corticosterone-induced neuronal injuries; however, it was blocked by pharmacological inhibitors for ERK1/2 (U0126) and PI3K/AKT (LY294002). Furthermore, the results confirmed that EGCG restored the corticosterone-induced decrease of ERK1/2 and PI3K/AKT phosphorylation, and attenuated the corticosterone-induced reduction of peroxisome proliferators-activated receptor-γ coactivator-1α (PGC-1α) expression and ATP production. Taken together, these findings indicated that EGCG has significant neuroprotection against corticosterone-induced neuron injuries partly via restoring the ERK1/2 and PI3K/AKT signaling pathways as well as the PGC-1α-mediated ATP production.
Collapse
|
50
|
PHARMACOLOGICAL EFFECTS OF KB-28 COMPOUND UNDER CHRONIC IMMOBILIZATION STRESS CONDITIONS. WORLD OF MEDICINE AND BIOLOGY 2018. [DOI: 10.26724/2079-8334-2018-1-63-160-163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|