1
|
Pei H, Wang Y, He W, Zhang Y, Yang L, Li J, Ma Y, Hu X, Li S, Li J, Hu K, Liu A, Ao X, Teng H, Li R, Li Q, Zou L, Liu S, Yang Y. Characterization of ornithine decarboxylase with histidine decarboxylase activity in natural histidine decarboxylase gene deletion Enterobacter hormaechei RH3. Food Microbiol 2025; 125:104644. [PMID: 39448154 DOI: 10.1016/j.fm.2024.104644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024]
Abstract
Histamine is predominantly produced in sausages via the decarboxylation of histidine by bacteria. Furthermore, histamine-producing bacteria usually possess the enzyme histidine decarboxylase (hdc). Enterobacter hormaechei RH3 isolated from sausages exhibited significant levels of histamine production despite the absence of hdc. In this study, we elucidated the previously unidentified mechanism underlying histamine production by RH3. We identified an enzyme, NehdX-772, exhibiting the hdc activity from the cell lysate supernatant of RH3, which was annotated as ornithine decarboxylase. The optimal activity of NehdX-772 was recorded at 35 °C and pH 6.0, and it could tolerate a salt concentration of 2.5% (w/v) NaCl. Moreover, artificial inoculation revealed that NehdX-772 was synthesized at significant levels in sausages, leading to an increase in histamine levels. The discovery of NehdX-772 explains the underlying mechanism of histamine production by RH3 and can be applied to decrease histamine production in sausages.
Collapse
Affiliation(s)
- Huijie Pei
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yilun Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Wei He
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yue Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Lamei Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Jinhai Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yixuan Ma
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Shuhong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Hui Teng
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Ran Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China.
| |
Collapse
|
2
|
Wang T, Wang Y, Zeng Y, Tian X, Xu X. A molecular imprinted ratiometric fluorescence sensor based on blue/orange MXene quantum dots for visual detection of histamine. Food Chem 2024; 460:140519. [PMID: 39067390 DOI: 10.1016/j.foodchem.2024.140519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Histamine is a highly toxic biogenic amine in food, making its sensitive and rapid detection methods vital for the assurance of edible safety and human health. Here, we explored for the first time a smartphone-enabled ratiometric imprinted fluorescence sensor based on blue/orange MXene quantum dots (MQDs) for fluorescence and visual detection of histamine. A linear relationship between the concentration of histamine and the fluorescence response of the sensor was found in the range of 1-60 μM with a limit of detection (LOD) of 21.9 nM for fluorescence detection and 92.2 nM for visual detection. In addition, the method was validated for the detection of real samples with excellent recoveries from 96.52% to 105.32%. Therefore, this work greatly expands the application of MQDs in the fluorescence sensing field, as well as provides a visual strategy for in-situ detection of histamine in food.
Collapse
Affiliation(s)
- Tianyao Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu Wang
- Guangzhou Institute for Food Inspection, Guangzhou 510410, China
| | - You Zeng
- Guangzhou Institute for Food Inspection, Guangzhou 510410, China
| | - Xingguo Tian
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyan Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Gou L, Li L, Wei S, Tian Y, Hou X, Wu L. Sensitive detection of histamine utilizing the SERS platform combined with an azo coupling reaction and a composite hydrophobic layer. Talanta 2024; 278:126531. [PMID: 39002262 DOI: 10.1016/j.talanta.2024.126531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Herein, the surface-enhanced Raman scattering (SERS) platform was combined with an azo coupling reaction and an aluminum alloy covered with a hydrophobic layer of praseodymium oxide and stearic acid complexes for the detection of histamine. The praseodymium oxide on aluminum alloy was successfully synthesized by the rare-earth-salt-solution boiling bath method and modified by stearic acid. Its surface exhibits a water contact angle (WCA) of 125.0°. Through the azo derivatization reaction with 3-amino-5-mercapto-1,2,4-triazole (AMTA) diazonium salts, histamine can be converted into the derivatization product with higher Raman activity. The mixture of the derivatization product and β-cyclodextrin-modified Ag nanoparticles (β-CD-AgNPs) were dropped onto the surface of an aluminum alloy covered with a hydrophobic layer of praseodymium oxide and stearic acid complexes, and dried for SERS measurement. The intensity ratio between the SERS peaks at 1246 cm-1 and 1104 cm-1 (I1246/I1104) of the derivatization product was used for the quantification of histamine. Under the selected conditions, the limit of detection (LOD) and the limit of quantification (LOQ) for this method were 7.2 nM (S/N = 3) and 24 nM (S/N = 10), respectively. The relative standard deviation (RSD) of this method for the determination of 1 μM histamine was 6.1 % (n = 20). The method was also successfully used for the determination of histamine in fish samples with recoveries ranging from 92 % to 111 %. The present method is simple, sensitive, reliable, and may provide a new approach for preparing the composite hydrophobic layer that can enhance SERS signals through hydrophobic condensation effect. Meanwhile, it may have a promising future in the determination of small molecular compounds containing an imidazole ring.
Collapse
Affiliation(s)
- Lichen Gou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ling Li
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Siqi Wei
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yunfei Tian
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China; Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Wu
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
4
|
Chong T, Olivieri B, Skypala IJ. Food-triggered anaphylaxis in adults. Curr Opin Allergy Clin Immunol 2024; 24:341-348. [PMID: 39079158 DOI: 10.1097/aci.0000000000001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
PURPOSE OF REVIEW Adult food allergy, either unresolved from childhood, or new-onset in adult-life, is known to be increasingly prevalent. Although much of the reported anaphylaxis in adults is due to drug reactions, foods are becoming an increasingly important trigger, affecting adults of all ages, with a wide variation in food triggers which are often quite different to those reported in children. RECENT FINDINGS Peanuts are well known to cause anaphylaxis in some adult populations, but other legumes such as soy may be more relevant in others. Reactions to natto, fermented soybeans, are currently mainly reported in Japan, but changing dietary practices and an increase in plant-based eating mean natto, other forms of soy and other legumes are increasingly linked to anaphylaxis in Western countries. Anaphylaxis to red meat, caused by sensitization to galactose-α-1,3-galactose and first reported in North America, is now a more world-wide concern. Co-factor induced anaphylaxis is increasingly associated with both wheat allergy and lipid transfer protein allergy. SUMMARY More research is urgently needed to characterize adult food allergy, its triggers and symptom severity. Unusual food triggers and potential co-factors should be considered, so that anaphylaxis in adults can be correctly managed, not merely labelled as idiopathic.
Collapse
Affiliation(s)
| | - Bianca Olivieri
- Department of Medicine, Asthma, Allergy and Clinical Immunology Section, University of Verona, Verona, Italy
| | - Isabel J Skypala
- Royal Brompton & Harefield Hospitals, part of Guys & St Thomas NHS Foundation Trust
- Department of Inflammation & Repair, Imperial College, London, UK
| |
Collapse
|
5
|
Buczkowska M, Szczyrba A, Szajnoga D, Górski M, Malinowska-Borowska J, Domagalska J, Rozentryt P. The Factors Influencing the Concentration of Histamine in Jarred Baby Foods Containing Fish, Considering Evaluation of Daily Histamine Intake. J Food Prot 2024; 87:100328. [PMID: 39009284 DOI: 10.1016/j.jfp.2024.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Histamine is one of the biogenic amines produced naturally in the human body, but also in foods, especially those rich in protein. Exogenous and endogenous histamine is subject to degradation in vivo, but in the case of sensitive groups, including children, these degradation processes may be less intense, resulting in adverse health effects from histamine excess. The aim of the study was to determine the histamine content in jarred baby foods containing fish, taking into account the selected product characteristics and storage conditions. The study included 140 meals with added fish, intended for infants and young children, from 5 leading manufacturers available in Poland. The infant meals were analyzed on the day of opening, after 24 h and 48 h of storage in the refrigerator and at room temperature. Histamine concentration was determined by ELISA. The THQ was calculated from the EDI values for histamine. Histamine was present in all analyzed baby foods. On the day of opening, the products had a lower content of this monoamine (Me = 2.59 mg/kg), which increased systematically during storage. Samples taken at 2 °C after 48 h showed an average histamine content of 4.4 mg/kg, while products stored at 22 °C at the same time showed a 1.8-fold higher concentration of this monoamine (Me = 7.9 mg/kg). Dishes containing tuna and sea fish had higher histamine levels on average than those containing pollock. The storage conditions of the children's food had a significant effect on histamine concentration. The level of histamine in baby foods was related to the amount and type of fish in certain products. The results indicate the need for increased awareness of the risks associated with histamine, especially in a group of people with increased sensitivity to this amine, which may include infants and young children.
Collapse
Affiliation(s)
- Marta Buczkowska
- Department of Chronic Diseases and Civilization-related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 18 Piekarska Street, 41-902 Bytom, Poland.
| | - Anna Szczyrba
- Doctoral School of the Medical University of Silesia in Katowice, Faculty of Public Health in Bytom Medical University of Silesia, Poland, Poland
| | - Dominika Szajnoga
- Second Scientific Association of Department of Chronic Diseases and Civilization-related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia, 18 Piekarska Street, 41-902 Bytom, Poland
| | - Michał Górski
- Department of Chronic Diseases and Civilization-related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 18 Piekarska Street, 41-902 Bytom, Poland
| | - Jolanta Malinowska-Borowska
- Department of Chronic Diseases and Civilization-related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 18 Piekarska Street, 41-902 Bytom, Poland
| | - Joanna Domagalska
- Department of Environmental Health, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 18 Piekarska Street, 41-902 Bytom, Poland
| | - Piotr Rozentryt
- Department of Chronic Diseases and Civilization-related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 18 Piekarska Street, 41-902 Bytom, Poland
| |
Collapse
|
6
|
Schneider E, O'Riordan KJ, Clarke G, Cryan JF. Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis. Nat Metab 2024; 6:1454-1478. [PMID: 39174768 DOI: 10.1038/s42255-024-01108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The prevalence of brain disorders, including stress-related neuropsychiatric disorders and conditions with cognitive dysfunction, is rising. Poor dietary habits contribute substantially to this accelerating trend. Conversely, healthy dietary intake supports mood and cognitive performance. Recently, the communication between the microorganisms within the gastrointestinal tract and the brain along the gut-brain axis has gained prominence as a potential tractable target to modulate brain health. The composition and function of the gut microbiota is robustly influenced by dietary factors to alter gut-brain signalling. To reflect this interconnection between diet, gut microbiota and brain functioning, we propose that a diet-microbiota-gut-brain axis exists that underpins health and well-being. In this Review, we provide a comprehensive overview of the interplay between diet and gut microbiota composition and function and the implications for cognition and emotional functioning. Important diet-induced effects on the gut microbiota for the development, prevention and maintenance of neuropsychiatric disorders are described. The diet-microbiota-gut-brain axis represents an uncharted frontier for brain health diagnostics and therapeutics across the lifespan.
Collapse
Affiliation(s)
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
7
|
Rentzos G, Weisheit A, Ekerljung L, van Odijk J. Measurement of diamine oxidase (DAO) during low-histamine or ordinary diet in patients with histamine intolerance. Eur J Clin Nutr 2024; 78:726-731. [PMID: 38769188 PMCID: PMC11300302 DOI: 10.1038/s41430-024-01448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND/OBJECTIVES Quantification of diamine oxidase (DAO) concentrations in serum has been proposed as an adjunctive diagnostic modality for the evaluation of histamine intolerance (HIT). Limited empirical data exist concerning the influence of dietary patterns on DAO levels. SUBJECTS/METHODS In the context of a prospective study employing a crossover design, 18 individuals diagnosed with HIT were randomized to initiate either a low histamine diet (LHD) or a conventional mixed diet (MXD). Serum DAO concentrations were measured at the commencement of the study and following each dietary phase. A control group underwent analogous DAO assessments without imposition of dietary constraints. RESULTS During the time when a diet restricted in histamine was implemented, noticeable differences in changes in DAO levels did not become apparent when compared to the changes observed during the mixed (MXD) phase. Specifically, among the group, 10 of the 18 patients exhibited elevated DAO values subsequent to the LHD regimen, while the remaining eight displayed either reduced or unchanging DAO levels. The prevalence of elevated DAO levels in the LHD group did not differ significantly from that observed in the control group during the MXD phase. Additionally, during the LHD phase, patients reported a significant reduction in gastrointestinal and cutaneous symptoms. CONCLUSIONS This prospective investigation underscores the enduring utility of a histamine-restricted diet, coupled with structured dietary reintroduction, as an efficacious diagnostic approach for individuals presenting with suspected food-related histamine hypersensitivity. Notably, the measurement of DAO levels appears to furnish only a limited capacity to discern dietary-induced fluctuations. Notwithstanding, the dynamics of DAO alteration do not appear to exhibit a discernible association with specific dietary patterns, a finding consistent across both patient and control groups.
Collapse
Affiliation(s)
- Georgios Rentzos
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Adina Weisheit
- Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, 413 46, Gothenburg, Sweden
| | - Linda Ekerljung
- Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, 413 46, Gothenburg, Sweden
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Jenny van Odijk
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.
- Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, 413 46, Gothenburg, Sweden.
| |
Collapse
|
8
|
Kato S, Ishiba Y, Takinoue M, Onoe H. Histamine-Responsive Hydrogel Biosensors Based on Aptamer Recognition and DNA-Driven Swelling Hydrogels. ACS APPLIED BIO MATERIALS 2024; 7:4093-4101. [PMID: 38833550 DOI: 10.1021/acsabm.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Detection of chemical substances is essential for living a healthy and cultural life in the modern world. One type of chemical sensing technology, biosensing, uses biological components with molecular recognition abilities, enabling a broad spectrum of sensing targets. Short single-stranded nucleic acids called aptamers are one of the biological molecules used in biosensing, and sensing methods combining aptamers and hydrogels have been researched for simple sensing applications. In this research, we propose a hydrogel-based biosensor that uses aptamer recognition and DNA-driven swelling hydrogels for the rapid detection of histamine. Aptamer recognition and DNA-driven swelling hydrogels are directly linked via DNA molecular reactions, enabling rapid sensing. We selected histamine, a major food poisoning toxin, as our sensing target and detected the existence of histamine within 10 min with significance. Because this sensing foundation uses aptamers, which have a vast library of targets, we believe this system can be expanded to various targets, broadening the application of hydrogel-based biosensors.
Collapse
Affiliation(s)
- Satofumi Kato
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yurika Ishiba
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Masahiro Takinoue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan
| | - Hiroaki Onoe
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
9
|
Frigerio J, Campone L, Giustra MD, Buzzelli M, Piccoli F, Galimberti A, Cannavacciuolo C, Ouled Larbi M, Colombo M, Ciocca G, Labra M. Convergent technologies to tackle challenges of modern food authentication. Heliyon 2024; 10:e32297. [PMID: 38947432 PMCID: PMC11214499 DOI: 10.1016/j.heliyon.2024.e32297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
The authentication process involves all the supply chain stakeholders, and it is also adopted to verify food quality and safety. Food authentication tools are an essential part of traceability systems as they provide information on the credibility of origin, species/variety identity, geographical provenance, production entity. Moreover, these systems are useful to evaluate the effect of transformation processes, conservation strategies and the reliability of packaging and distribution flows on food quality and safety. In this manuscript, we identified the innovative characteristics of food authentication systems to respond to market challenges, such as the simplification, the high sensitivity, and the non-destructive ability during authentication procedures. We also discussed the potential of the current identification systems based on molecular markers (chemical, biochemical, genetic) and the effectiveness of new technologies with reference to the miniaturized systems offered by nanotechnologies, and computer vision systems linked to artificial intelligence processes. This overview emphasizes the importance of convergent technologies in food authentication, to support molecular markers with the technological innovation offered by emerging technologies derived from biotechnologies and informatics. The potential of these strategies was evaluated on real examples of high-value food products. Technological innovation can therefore strengthen the system of molecular markers to meet the current market needs; however, food production processes are in profound evolution. The food 3D-printing and the introduction of new raw materials open new challenges for food authentication and this will require both an update of the current regulatory framework, as well as the development and adoption of new analytical systems.
Collapse
Affiliation(s)
- Jessica Frigerio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20216, Milano, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20216, Milano, Italy
| | - Marco Davide Giustra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20216, Milano, Italy
| | - Marco Buzzelli
- Department of Informatics Systems and Communication, University of Milano-Bicocca, viale Sarca, 336, 20216, Milano, Italy
| | - Flavio Piccoli
- Department of Informatics Systems and Communication, University of Milano-Bicocca, viale Sarca, 336, 20216, Milano, Italy
| | - Andrea Galimberti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20216, Milano, Italy
| | - Ciro Cannavacciuolo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20216, Milano, Italy
| | - Malika Ouled Larbi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20216, Milano, Italy
| | - Miriam Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20216, Milano, Italy
| | - Gianluigi Ciocca
- Department of Informatics Systems and Communication, University of Milano-Bicocca, viale Sarca, 336, 20216, Milano, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20216, Milano, Italy
| |
Collapse
|
10
|
Ma N, Guo J, Li Z, Xu L, Zhang K, Xu T, Chang G, Loor JJ, Shen X. Disturbances of Ruminal Microbiota and Liver Inflammation, Mediated by LPS and Histamine, in Dairy Cows Fed a High-Concentrate Diet. Animals (Basel) 2024; 14:1495. [PMID: 38791713 PMCID: PMC11117260 DOI: 10.3390/ani14101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The ecosystem of ruminal microbiota profoundly affects the health and milk production of dairy cows. High-concentrate diets are widely used in dairy farms and evoke a series of metabolic disorders. Several studies have reported the effects of high-concentrate diets on the ruminal microbiome, while the effect of changes in ruminal microbial flora, induced by high-concentrate diet feeding, on the liver of dairy cows has not been studied before. In this study, 12 mid-lactating Holstein Friesian cows (weight of 455 ± 28 kg; parities of 2.5 ± 0.5; starting milk yield of 31.59 ± 3.2 kg/d; DMI of 21.7 ± 1.1 kg/d; and a DIM at the start of the experiment of 135 ± 28 d) were fitted with ruminal fistulas, as well as with portal and hepatic vein catheters. All cows were randomly divided into 2 groups; then, they fed with low-concentrate diets (LC, concentrate: forage = 40:60) and high-concentrate diets (HC, concentrate: forage = 60:40) for 18 weeks. The forage sources were corn silage and alfalfa hay. After the cows of two groups were euthanized over two consecutive days, ruminal microbiota; the concentration of LPS in the rumen content; cecum content; the levels of blood and histamine in rumen fluid, blood, and the liver; the histopathological status of the rumen and cecum; and the inflammatory response of the liver were assessed in dairy cows under conditions of subacute ruminal acidosis (SARA). These conditions were caused by high-concentrate diet feeding. All data were analyzed using the independent t-test in SPSS. The results showed that high-concentrate diet feeding increased the concentration of LPS and histamine in the rumen and plasma of veins (p < 0.05). The abundance of Bacteroidetes at the phylum level, and of both Bacteroidetes and Saccharibacteria at the genus level, was decreased, while the abundance of Firmicutes at the phylum level and Oscillibacter at the genus level was increased by high-concentrate diet feeding. The decreased pH values of ruminal contents (LC = 6.02, HC = 5.90, p < 0.05) and the increased level of LPS in the rumen (LC = 4.921 × 105, HC = 7.855 × 105 EU/mL, p < 0.05) and cecum (LC = 11.960 × 105, HC = 13.115 × 105 EU/mL, p < 0.01) induced the histopathological destruction of the rumen and cecum, combined with the increased mRNA expression of IL-1β (p < 0.05). The histamine receptor H1R and the NF-κB signaling pathway were activated in the liver samples taken from the HC group. In conclusion, the elevated concentrations of LPS and histamine in the gut may be related to changes in the ruminal microbiota. LPS and histamine induced the inflammatory response in the ruminal epithelium, cecum epithelium, and liver. However, the cause-effect mechanism needs to be proved in future research. Our study offers a novel therapeutic strategy by manipulating ruminal microbiota and metabolism to decrease LPS and histamine release and to improve the health of dairy cows.
Collapse
Affiliation(s)
- Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Junfei Guo
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Zhenfu Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Lei Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Kai Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Tianle Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| |
Collapse
|
11
|
Del Rio B, Fernandez M, Redruello B, Ladero V, Alvarez MA. New insights into the toxicological effects of dietary biogenic amines. Food Chem 2024; 435:137558. [PMID: 37783126 DOI: 10.1016/j.foodchem.2023.137558] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Biogenic amines (BA) are molecules with biological functions, which can accumulate at toxic concentrations in foods. Several microorganisms have been identified as responsible for their accumulation at elevated concentrations. Histamine, tyramine and putrescine are the BA most commonly found at highest concentrations. The ingestion of food containing high BA concentrations leads to intoxication with symptoms depending on the BA and the amount consumed. Moreover, there is evidence of synergy between different BA, something of toxicological importance given that some foods accumulate different BA. This work reviews the BA toxic effects and examines recent discoveries regarding their synergy, cytotoxicity and genotoxicity. These advances in the toxicological consequences of ingesting BA contaminated foods support the need to regulate their presence in foods to preserve the consumer's health. However, more research efforts -focused on the establishment of risk assessments- are needed to reach a consensus in their limits in different food matrices.
Collapse
Affiliation(s)
- Beatriz Del Rio
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain
| | - María Fernandez
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain
| | - Begoña Redruello
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain
| | - Victor Ladero
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain.
| | - Miguel A Alvarez
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
12
|
Wang J, Tang Y, Zheng J, Xie Z, Zhou J, Wu Y. DNAzyme-based and smartphone-assisted colorimetric biosensor for ultrasensitive and highly selective detection of histamine in meats. Food Chem 2024; 435:137526. [PMID: 37742463 DOI: 10.1016/j.foodchem.2023.137526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Herein, a colorimetric biosensor for histamine detection in meat is first established based on the enhancement of DNAzyme with peroxidase-mimic activity. Histamine can boost the generation of G-quadruplex sequences, and make them more easily bond with hemin to produce many DNAzyme molecules. In addition, histamine increases the affinity of DNAzyme to the substrate 3,3',5,5'-tetramethylbenzidine (TMB). Therefore, the obtained DNAzyme can catalyze H2O2 and dissolved oxygen to produce many reactive oxygen species (ROS), which cause the TMB molecule to lose two electrons and generate yellow products, exhibiting a clear absorption peak at 450 nm. The colorimetric biosensor has excellent sensitivity, and the detection limit is as low as 38 μg·L-1 for histamine. Moreover, the biosensor has high selectivity and anti-interference ability, and exhibits a good recovery rate in actual meats. The above results show that the strategy has potential for application in the detection of trace histamine in meats.
Collapse
Affiliation(s)
- Junjun Wang
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yue Tang
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd, Yibin 644000, Sichuan Province, China
| | - Zhengmin Xie
- Wuliangye Yibin Co., Ltd, Yibin 644000, Sichuan Province, China
| | - Jianli Zhou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yuangen Wu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; College of Life Sciences, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
13
|
Zhang B, Zhang J, Lang Y, Wang Z, Cai D, Yu X, Lin X. A sea urchin-shaped nanozyme mediated dual-mode immunoassay nanoplatform for sensitive point-of-care testing histamine in food samples. Food Chem 2024; 433:137281. [PMID: 37659293 DOI: 10.1016/j.foodchem.2023.137281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Rapid detection of histamine remains a challenge due to the complexity of food matrices. Based on the high peroxidase-like activity of sea urchin-shaped Pt@Au NPs (SU-Pt@Au NPs), a novel dual-mode nanoplatform is developed for the sensitive detection of histamine utilizing an indirect competitive enzyme-linked immunosorbent assay. According to the colorimetric-based UV-vis nanoplatform, histamine is sensitively detected with a liner range from 0.5 to 100 ng/mL and a limit of detection (LOD) as low as 0.3 ng/mL. Then, a smartphone-loaded color picker APP can intelligently detect histamine in point-of-care testing (POCT) based on the R/B ratio of the color channels, with a detection range of 0.5 to 1000 ng/mL and a LOD as low as 0.15 ng/mL, significantly expanding the detection range. Such an easy-to-use and sensitive detection system is employed to quantify histamine in Pacific saury, crab, and pork samples, indicating outstanding application potential in protein-rich meat food safety.
Collapse
Affiliation(s)
- Biao Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jingyi Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yihan Lang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zicheng Wang
- Tianjin Sprite Biological Technology, Tianjin 300021, China
| | - Danfeng Cai
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai 519000, China.
| |
Collapse
|
14
|
Wang D, Zhao Y, Chen S, Wei Y, Yang X, Li C, Wang Y. Elucidating the potential of chlorogenic acid for controlling Morganella psychrotolerans growth and histamine formation. J Appl Microbiol 2024; 135:lxad308. [PMID: 38140945 DOI: 10.1093/jambio/lxad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023]
Abstract
AIM To investigate the inhibitory impact of chlorogenic acid (CGA) on the growth of Morganella psychrotolerans and its ability to form histamine. METHODS AND RESULTS The antimicrobial effect of CGA on M. psychrotolerans was evaluated using the minimum inhibitory concentration (MIC) method, revealing an MIC value of 10 mg ml-1. The alkaline phosphatase (AKP) activity, cell membrane potential, and scanning electron microscopy images revealed that CGA treatment disrupted cell structure and cell membrane. Moreover, CGA treatment led to a dose-dependent decrease in crude histidine decarboxylase (HDC) activity and gene expression of histidine decarboxylase (hdc). Molecular docking analysis demonstrated that CGA interacted with HDC through hydrogen bonds. Furthermore, in situ investigation confirmed the efficacy of CGA in controlling the growth of M. psychrotolerans and significantly reducing histamine formation in raw tuna. CONCLUSION CGA had good activity in controlling the growth of M. psychrotolerans and histamine formation.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Ya Wei
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| |
Collapse
|
15
|
Bent RK, Kugler C, Faihs V, Darsow U, Biedermann T, Brockow K. Placebo-Controlled Histamine Challenge Disproves Suspicion of Histamine Intolerance. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3724-3731.e11. [PMID: 37648152 DOI: 10.1016/j.jaip.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Histamine intolerance (HIT) is frequently diagnosed in patients with polysymptomatic otherwise unexplained symptoms. OBJECTIVES To exclude HIT by a single-blind placebo-controlled histamine challenge (SBPCHC), to study clinical features of patients with positive challenge, and to examine the predictability of HIT by biomarkers. METHODS SBPCHC was performed in 59 patients with suspected HIT. History and clinical data, including serum diamine oxidase (DAO) and histamine skin test wheal size of patients with positive versus negative SBPCHC, were compared. RESULTS Patients were predominantly middle-aged women (84.7%). Three-quarters reported improvement but never resolution of symptoms during a histamine-low diet. Histamine provocation was safe; only 1 patient was treated with antihistamines. Thirty-seven patients (62.7%) displayed symptoms to placebo. HIT was excluded in 50 patients (84.7%). Objective symptoms occurred in 4 of 59 cases (6.8%) after histamine but not after placebo challenge. These were diagnosed with "plausible HIT" because reactions occurring by chance could not be excluded. Another 5 patients (8.5%) were diagnosed with "possible HIT" after case-dependent detailed analysis. Patients with plausible/possible HIT had reported more gastrointestinal symptoms (P = .01), but comparable diet response and equal histamine skin prick test wheal sizes to those without HIT. Serum DAO activity tended to be lower in patients with HIT (P = .08), but was highly variable in those without, limiting its value as a biomarker. CONCLUSIONS SBPCHC disproves HIT in the majority of patients. Placebo-controlled challenges are needed as placebo reactions were frequent. Gastrointestinal symptoms after food intake and reduced DAO levels are markers for HIT; however, specificity is not sufficient enough for making the diagnosis.
Collapse
Affiliation(s)
- Rebekka Karolin Bent
- Department of Dermatology and Allergy Biederstein, Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Claudia Kugler
- Department of Dermatology and Allergy Biederstein, Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Valentina Faihs
- Department of Dermatology and Allergy Biederstein, Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Ulf Darsow
- Department of Dermatology and Allergy Biederstein, Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, Faculty of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
16
|
Mihele DM, Nistor PA, Bruma G, Mitran CI, Mitran MI, Condrat CE, Tovaru M, Tampa M, Georgescu SR. Mast Cell Activation Syndrome Update-A Dermatological Perspective. J Pers Med 2023; 13:1116. [PMID: 37511729 PMCID: PMC10381535 DOI: 10.3390/jpm13071116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Mast cells (MCs) are infamous for their role in potentially fatal anaphylaxis reactions. In the last two decades, a more complex picture has emerged, as it has become obvious that MCs are much more than just IgE effectors of anaphylaxis. MCs are defenders against a host of infectious and toxic aggressions (their interactions with other components of the immune system are not yet fully understood) and after the insult has ended, MCs continue to play a role in inflammation regulation and tissue repair. Unfortunately, MC involvement in pathology is also significant. Apart from their role in allergies, MCs can proliferate clonally to produce systemic mastocytosis. They have also been implicated in excessive fibrosis, keloid scaring, graft rejection and chronic inflammation, especially at the level of the skin and gut. In recent years, the term MC activation syndrome (MCAS) was proposed to account for symptoms caused by MC activation, and clear diagnostic criteria have been defined. However, not all authors agree with these criteria, as some find them too restrictive, potentially leaving much of the MC-related pathology unaccounted for. Here, we review the current knowledge on the physiological and pathological roles of MCs, with a dermatological emphasis, and discuss the MCAS classification.
Collapse
Affiliation(s)
- Dana Mihaela Mihele
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Paul Andrei Nistor
- Internal Medicine Department, Emergency University Hospital Bucharest, 169 Independence Blvd, 050098 Bucharest, Romania
| | - Gabriela Bruma
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Cristina Iulia Mitran
- Microbiology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Madalina Irina Mitran
- Microbiology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Carmen Elena Condrat
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Mihaela Tovaru
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Mircea Tampa
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Simona Roxana Georgescu
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| |
Collapse
|
17
|
Munir MA, Jamal JA, Said MM, Ibrahim S, Ahmad MS. Polyurethane Application to Transform Screen-Printed Electrode for Rapid Identification of Histamine Isolated from Fish. SCIENTIFICA 2023; 2023:5444256. [PMID: 37051152 PMCID: PMC10085648 DOI: 10.1155/2023/5444256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The toxicity of histamine has attracted numerous researchers to develop a method for histamine determination purposes. The Food and Drug Administration (FDA) unequivocally prohibits the consumption of histamine above 50 mg·kg-1. Thus, an innovation in histamine detection in fish has been developed in this research. The investigation of the histamine level in fish has been conducted by using an electrochemical sensor approach and producing a polymer via molecularly imprinted polymer (MIP) on a screen-printed electrode. The technique was validated by assessing the shifts in electron shifting using the cyclic voltammetry (CV) approach and electrochemical impedance spectroscopy (EIS), whereas differential pulse voltammetry (DPV) was applied to validate the sensor method. The instruments showed a linear response ranging from 1-1000 nmol·L-1, with a detection limit of MIP/SPE at 1.765 nmol·L-1 and 709 nmol·L-1 for the NIP/SPE, respectively. The sensing technique was employed to determine the histamine level in selected samples at room temperature (25°C). The outcomes of this study indicated that the validated chemical sensor allowed accurate and precise detection of fish samples and can be categorized as a simple approach. The instrument is inexpensive and suitable for on-site detection.
Collapse
Affiliation(s)
- Muhammad Abdurrahman Munir
- Department of Pharmacy, Faculty of Health Sciences, Alma Ata University, 55184 Bantul, Yogyakarta, Indonesia
| | - Jamia Azdina Jamal
- Drug and Herbal Centre, Faculty of Pharmacy, National University of Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50330, Malaysia
| | - Mazlina Mohd Said
- Drug and Herbal Centre, Faculty of Pharmacy, National University of Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50330, Malaysia
| | | | - Mohamad Syahrizal Ahmad
- Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| |
Collapse
|
18
|
Ferrante MC, Mercogliano R. Focus on Histamine Production During Cheese Manufacture and Processing: A Review. Food Chem 2023; 419:136046. [PMID: 37058863 DOI: 10.1016/j.foodchem.2023.136046] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Histamine (HIS) intoxication is a poisoning caused by histamine in food. Cheese is one of the most common dairy products associated with histamine levels which vary depending on the processing methods. The final content of histamine in cheese is influenced by intrinsic and extrinsic factors, their interactions, and contamination stemming from food processing. The application of control measures may be useful to inhibit/reduce production during cheese manufacture and processing but have a limited effect. To reduce histamine intoxication outbreaks from cheese consumption the introduction of quality control programs and appropriate risk mitigation options should be applied along the dairy chain from an overall perspective of food safety based on individual susceptibility and consumer sensitivity. As key food safety, this topic should be considered in future regulations in dairy products because the lack of a clear law on HIS limits in cheese may result in a significant potential deviation from the EU food safety strategy.
Collapse
|
19
|
Abdulhakeem MA, Alreshidi M, Bardakci F, Hamadou WS, De Feo V, Noumi E, Snoussi M. Molecular Identification of Bacteria Isolated from Marketed Sparus aurata and Penaeus indicus Sea Products: Antibiotic Resistance Profiling and Evaluation of Biofilm Formation. Life (Basel) 2023; 13:life13020548. [PMID: 36836905 PMCID: PMC9963372 DOI: 10.3390/life13020548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Marketed fish and shellfish are a source of multidrug-resistant and biofilm-forming foodborne pathogenic microorganisms. METHODS Bacteria isolated from Sparus aurata and Penaeus indicus collected from a local market in Hail region (Saudi Arabia) were isolated on selective and chromogenic media and identified by using 16S RNA sequencing technique. The exoenzyme production and the antibiotic susceptibility patterns of all identified bacteria were also tested. All identified bacteria were tested for their ability to form biofilm by using both qualitative and quantitative assays. RESULTS Using 16S RNA sequencing method, eight genera were identified dominated by Vibrio (42.85%), Aeromonas (23.80%), and Photobacterium (9.52%). The dominant species were V. natrigens (23.8%) and A. veronii (23.80%). All the identified strains were able to produce several exoenzymes (amylases, gelatinase, haemolysins, lecithinase, DNase, lipase, and caseinase). All tested bacteria were multidrug-resistant with a high value of the multiple antibiotic index (MARI). The antibiotic resistance index (ARI) was about 0.542 for Vibrio spp. and 0.553 for Aeromonas spp. On Congo red agar, six morphotypes were obtained, and 33.33% were slime-positive bacteria. Almost all tested microorganisms were able to form a biofilm on glass tube. Using the crystal violet technique, the tested bacteria were able to form a biofilm on glass, plastic, and polystyrene abiotic surfaces with different magnitude. CONCLUSIONS Our findings suggest that marketed S. aurata and P. indicus harbor various bacteria with human interest that are able to produce several related-virulence factors.
Collapse
Affiliation(s)
- Mohammad A. Abdulhakeem
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail P.O. Box 2440, Saudi Arabia
- Correspondence: (M.A.); (E.N.)
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Emira Noumi
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
- Correspondence: (M.A.); (E.N.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
20
|
Bioactive Amines in Wines. The Assessment of Quality Descriptors by Flow Injection Analysis with Tandem Mass Spectrometry. Molecules 2022; 27:molecules27248690. [PMID: 36557822 PMCID: PMC9783241 DOI: 10.3390/molecules27248690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Biogenic amines (BAs) occur in a wide variety of foodstuffs, mainly from the decomposition of proteins by the action of microorganisms. They are involved in several cellular functions but may become toxic when ingested in high amounts through the diet. In the case of oenological products, BAs are already present in low concentrations in must, and their levels rise dramatically during the fermentation processes. This paper proposes a rapid method for the determination of BAs in wines and related samples based on precolumn derivatization with dansyl chloride and further detection by flow injection analysis with tandem mass spectrometry. Some remarkable analytes such as putrescine, ethanolamine, histamine, and tyramine have been quantified in the samples. Concentrations obtained have shown interesting patterns, pointing out the role of BAs as quality descriptors. Furthermore, it has been found that the BA content also depends on the vinification practices, with malolactic fermentation being a significant step in the formation of BAs. From the point of view of health, concentrations found in the samples are, in general, below 10 mg L-1, so the consumption of these products does not represent any special concern. In conclusion, the proposed method results in a suitable approach for a fast screening of this family of bioactive compounds in wines to evaluate quality and health issues.
Collapse
|
21
|
Ratiometric fluorescent nanosystem based on upconversion nanoparticles for histamine determination in seafood. Food Chem 2022; 390:133194. [DOI: 10.1016/j.foodchem.2022.133194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 11/18/2022]
|
22
|
Zhang L, Wu JL, Xu P, Guo S, Zhou T, Li N. Soy protein degradation drives diversity of amino-containing compounds via Bacillus subtilis natto fermentation. Food Chem 2022; 388:133034. [PMID: 35483288 DOI: 10.1016/j.foodchem.2022.133034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
Abstract
Food fermentation has been playing an important role in producing bioactive components (e.g., peptides), which exert many healthy effects. In this study, it was observed that natto possessed significantly higher angiotensin I-converting enzyme (ACE) inhibitory effect than soybean. Meanwhile, a total of 246 amino-containing compounds were identified via LC-Q-TOF-MS/MS, including amino acids, dipeptides, tripeptides, O-methyl-peptide, and biogenic amines, 187 of them were only detected in natto. Of the list, dipeptides, with ACE inhibitory abilities or potentials, were found to be the most significantly up-regulated class and positively correlated with significantly increased ACE inhibitory activity of natto. Moreover, dynamic profiling elucidated the increased dipeptides were generated from water soluble and insoluble protein via Bacillus subtilis natto fermentation. Taken together, this study enriches the chemical diversity of natto and provides an in-depth insight into the degradation mechanism of soy protein during natto fermentation, which can be extended to other functional foods.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China.
| | - Pan Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingting Zhou
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China.
| |
Collapse
|
23
|
Dkhar DS, Kumari R, Mahapatra S, Divya, Kumar R, Tripathi T, Chandra P. Antibody-receptor bioengineering and its implications in designing bioelectronic devices. Int J Biol Macromol 2022; 218:225-242. [PMID: 35870626 DOI: 10.1016/j.ijbiomac.2022.07.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Antibodies play a crucial role in the defense mechanism countering pathogens or foreign antigens in eukaryotes. Its potential as an analytical and diagnostic tool has been exploited for over a century. It forms immunocomplexes with a specific antigen, which is the basis of immunoassays and aids in developing potent biosensors. Antibody-based sensors allow for the quick and accurate detection of various analytes. Though classical antibodies have prolonged been used as bioreceptors in biosensors fabrication due to their increased fragility, they have been engineered into more stable fragments with increased exposure of their antigen-binding sites in the recent era. In biosensing, the formats constructed by antibody engineering can enhance the signal since the resistance offered by a conventional antibody is much more than these fragments. Hence, signal amplification can be observed when antibody fragments are utilized as bioreceptors instead of full-length antibodies. We present the first systematic review on engineered antibodies as bioreceptors with the description of their engineering methods. The detection of various target analytes, including small molecules, macromolecules, and cells using antibody-based biosensors, has been discussed. A comparison of the classical polyclonal, monoclonal, and engineered antibodies as bioreceptors to construct highly accurate, sensitive, and specific sensors is also discussed.
Collapse
Affiliation(s)
- Daphika S Dkhar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rahul Kumar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; Regional Director's Office, Indira Gandhi National Open University (IGNOU), Regional Centre Kohima, Kenuozou, Kohima 797001, India.
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
24
|
Wu J, Wu Y, Feng W, Chen Q, Wang D, Liu M, Yu H, Zhang Y, Wang T. Role of Microbial Metabolites of Histidine in the Development of Colitis. Mol Nutr Food Res 2022; 66:e2101175. [PMID: 35585003 DOI: 10.1002/mnfr.202101175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/17/2022] [Indexed: 12/31/2022]
Abstract
SCOPE Colitis is a chronic relapsing inflammatory disease of colon. Clinical studies show that meat-rich diet plays a critical role in the relapse of colitis. However, it is unclear whether the microbial metabolites of histidine, which is an amino acid widely found in meat, have an impact on the health of the intestine. METHODS AND RESULTS Six metabolites of histidine are given to IEC-6 cells. The cell activity measurement shows that imidazole propionate (IMP) is the most detrimental metabolite. Then, IMP is injected to mice by rectal administration, with blood and colon tissues collected for the measurement of colitis related parameters. The results show that treatment with IMP significantly increased NF-κB, iNOS, and IL-6, decreased number of goblet cell, and inhibited expressions of miR-146b. However, overexpression of miR-146b in mice rescues the decline of the physical condition. Additionally, Notch receptor 1 (Notch1) is identified as a target gene of miR-146b. Further analysis shows that miR-146b restored the abundance of goblet cells by regulating Notch1 signaling pathway. CONCLUSION IMP is able to induce intestinal inflammation, impairs the intestinal barrier, and affects the proliferation of goblet cells. The underlined mechanism may partially contribute to the dysregulation of miR-146b/Notch1 axis.
Collapse
Affiliation(s)
- Jiaqi Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Yuzheng Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Wen Feng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Qian Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Dan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Mengyang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| |
Collapse
|
25
|
Sánchez-Pérez S, Comas-Basté O, Costa-Catala J, Iduriaga-Platero I, Veciana-Nogués MT, Vidal-Carou MC, Latorre-Moratalla ML. The Rate of Histamine Degradation by Diamine Oxidase Is Compromised by Other Biogenic Amines. Front Nutr 2022; 9:897028. [PMID: 35694170 PMCID: PMC9175030 DOI: 10.3389/fnut.2022.897028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Nowadays, certain uncertainties related to the onset of histamine adverse effects remain unsolved and still require further research. Questions still to be resolved include the wide range of doses at which dietary histamine may trigger symptoms of intoxication (100-10,000 mg/kg) or the appearance of symptoms of histamine intolerance after the consumption of foods presumable without histamine. It seems feasible that other amines, by acting as competitive substrates, could interfere with histamine degradation by the intestinal enzyme diamine oxidase (DAO). Therefore, the aim of this study was to elucidate the interference of different amines on the rate of histamine degradation by DAO. A series of in vitro enzymatic assays were performed using histamine as the reaction substrate combined with different proportions of putrescine, cadaverine, tyramine, spermidine, and spermine (1:0.25, 1:1, 1:4, 1:20). Putrescine and cadaverine significantly delayed histamine degradation at all tested concentrations (p < 0.001). The greatest effect was observed when putrescine or cadaverine concentrations were 20-fold higher than that of histamine, its degradation being reduced by 70 and 80%, respectively, compared to histamine alone (28.16 ± 1.0 mU). In contrast, tyramine, spermidine and spermine significantly inhibited the histamine degradation rate only at the highest concentration (1:20), reducing it by 32-45%. These results demonstrate that other biogenic amines interfere with histamine metabolization by DAO in vitro, the extent depending on the substrate. These findings could explain why susceptibility to dietary histamine is so variable and account for the discrepancies in the scientific databases regarding the amount of histamine that triggers adverse health effects.
Collapse
Affiliation(s)
- Sònia Sánchez-Pérez
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
| | - Oriol Comas-Basté
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
| | - Judit Costa-Catala
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
| | - Irache Iduriaga-Platero
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
| | - M. Teresa Veciana-Nogués
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
| | - M. Carmen Vidal-Carou
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
| | - M. Luz Latorre-Moratalla
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
| |
Collapse
|
26
|
Fu HJ, Su R, Luo L, Chen ZJ, Sørensen TJ, Hildebrandt N, Xu ZL. Rapid and Wash-Free Time-Gated FRET Histamine Assays Using Antibodies and Aptamers. ACS Sens 2022; 7:1113-1121. [PMID: 35312279 DOI: 10.1021/acssensors.2c00085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Histamine (HA) is an indicator of food freshness and quality. However, high concentrations of HA can cause food poisoning. Simple, rapid, sensitive, and specific quantification can enable efficient screening of HA in food and beverages. However, conventional assays are complicated and time-consuming, as they require multiple incubation, washing, and separation steps. Here, we demonstrate that time-gated Förster resonance energy transfer (TG-FRET) between terbium (Tb) complexes and organic dyes can be implemented in both immunosensors and aptasensors for simple HA quantification using a rapid, single-step, mix-and-measure assay format. Both biosensors could quantify HA at concentrations relevant in food poisoning with limits of detection of 0.19 μg/mL and 0.03 μg/mL, respectively. Excellent specificity was documented against the structurally similar food components tryptamine and l-histidine. Direct applicability of the TG-FRET assays was demonstrated by quantifying HA in spiked fish and wine samples with both excellent concentration recovery and agreement with conventional multistep enzyme-linked immunosorbent assays (ELISAs). Our results show that the simplicity and rapidity of TG-FRET assays do not compromise sensitivity, specificity, and reliability, and both immunosensors and aptasensors have a strong potential for their implementation in advanced food safety screening.
Collapse
Affiliation(s)
- Hui-Jun Fu
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse - UMR6014 & FR3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, 76000 Rouen, France
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse - UMR6014 & FR3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, 76000 Rouen, France
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse - UMR6014 & FR3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, 76000 Rouen, France
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Université Paris-Saclay, 91405 Orsay, France
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
27
|
Zhao Y, Zhang X, Jin H, Chen L, Ji J, Zhang Z. Histamine Intolerance-A Kind of Pseudoallergic Reaction. Biomolecules 2022; 12:454. [PMID: 35327646 PMCID: PMC8945898 DOI: 10.3390/biom12030454] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Histamine intolerance (HIT) is a common disorder associated with impaired histamine metabolism. Notwithstanding, it is often misdiagnosed as other diseases because of its lack of specific clinical manifestations. HIT did not gain traction until the early 21st century. In this review, we will focus on the latest research and elaborate on the clinical manifestations of HIT, including its manifestations in special populations such as atopic dermatitis (AD) and chronic urticaria (CU), as well as the latest understanding of its etiology and pathogenesis. In addition, we will explore the latest treatment strategies for HIT and the treatment of specific cases.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.Z.); (X.Z.); (L.C.)
- Department of Dermatology and Venereology, Suzhou Medical College of Soochow University, Suzhou 215000, China;
| | - Xiaoyan Zhang
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.Z.); (X.Z.); (L.C.)
- Department of Dermatology and Venereology, Suzhou Medical College of Soochow University, Suzhou 215000, China;
| | - Hengxi Jin
- Department of Dermatology and Venereology, Suzhou Medical College of Soochow University, Suzhou 215000, China;
| | - Lu Chen
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.Z.); (X.Z.); (L.C.)
- Department of Dermatology and Venereology, Suzhou Medical College of Soochow University, Suzhou 215000, China;
| | - Jiang Ji
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.Z.); (X.Z.); (L.C.)
- Department of Dermatology and Venereology, Suzhou Medical College of Soochow University, Suzhou 215000, China;
| | - Zhongwei Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
28
|
Annunziata L, Schirone M, Campana G, De Massis MR, Scortichini G, Visciano P. Histamine in fish and fish products: An 8-year survey. Follow up and official control activities in the Abruzzo region (Central Italy). Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
29
|
Pais GL, Meloni D, Mudadu AG, Crobu L, Pulina A, Chessa G. Colorimetric Analysis and Determination of Histamine in Samples of Yellowfin Tuna ( Thunnus albacares) Marketed in Sardinia (Italy) by a Combination of Rapid Screening Methods and LC-MS/MS. Foods 2022; 11:foods11050639. [PMID: 35267272 PMCID: PMC8909452 DOI: 10.3390/foods11050639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
The consumption of fishery products has been steadily increasing in recent decades. Among the quantitatively more important species, the yellowfin tuna (Thunnus albacares), is one of the main at-risk species as regards the possibility to present important levels of histamine and to be associated with the so-called “Scombroid Fish Poisoning”. The main aim of the present study was to evaluate the colorimetric parameters, the occurrence, and the quantification of histamine contamination in yellowfin tuna samples marketed in Sardinia (Italy) by a combination of rapid screening and official control methods. A total of 20 samples of yellowfin tuna loins collected from large retailers, fishmongers and local markets were analyzed for the qualitative and quantitative determination of histamine by the lateral flow test HistaSure™ Fish Rapid Test and LC-MS/MS, respectively. Moreover, all the samples were examined to assess the conformity with the EU rules on labelling and subjected to colorimetric analysis according to the CIE-L*a*b* standard. Visual inspection of yellowfin tuna labels highlighted a 30% of non-compliances. A significant (p < 0.05) difference was reported for brightness (L *), redness (a *), and yellowness (b *). The results of histamine occurrence agreed with the food safety criteria (<100 mg/kg) laid down in EC Regulation 2073/2005 in the 95% and in the 90% of the samples with the rapid screening methods and LC-MS/MS, respectively. A highly significant sessional variation (p < 0.00001) was pointed out. Moreover, the two methods showed an agreement rate of 85%. The results of the present study confirmed the utility of lateral flow tests for the fast qualitative determination of histamine in yellowfin tuna. Rapid screening test should be strengthened by comparison with the official method especially in case of uncertain or positive results.
Collapse
Affiliation(s)
- Giovanni Luigi Pais
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.L.P.); (L.C.)
| | - Domenico Meloni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.L.P.); (L.C.)
- Correspondence: ; Tel.: +39-079-229-570
| | - Alessandro Graziano Mudadu
- Veterinary Public Health Institute of Sardinia, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (A.G.M.); (A.P.); (G.C.)
| | - Luigi Crobu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.L.P.); (L.C.)
| | - Alessandro Pulina
- Veterinary Public Health Institute of Sardinia, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (A.G.M.); (A.P.); (G.C.)
| | - Giannina Chessa
- Veterinary Public Health Institute of Sardinia, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (A.G.M.); (A.P.); (G.C.)
| |
Collapse
|
30
|
Xu X, Wu X, Zhuang S, Zhang Y, Ding Y, Zhou X. Colorimetric Biosensor Based on Magnetic Enzyme and Gold Nanorods for Visual Detection of Fish Freshness. BIOSENSORS 2022; 12:135. [PMID: 35200395 PMCID: PMC8870018 DOI: 10.3390/bios12020135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 05/24/2023]
Abstract
Histamine, an important safety index for aquatic products, can also be used as a freshness indicator for red-fleshed fish. In this work, magnetic graphene oxide (Fe3O4@GO, MGO) was applied to immobilize diamine oxidase (DAO) through a method of adsorption and covalent bonding. Under the optimized conditions, magnetic DAO prepared by adsorption immobilization had a higher enzyme activity than that of free enzyme, which was selected for the sensor construction. A colorimetric biosensor based on magnetic DAO induced etching of gold nanorods (AuNRs) was developed for the detection of histamine in fish. The developed biosensor showed an excellent response toward histamine with a low detection limit of 1.23 μM and had negligible interference from other diamines. With increasing the histamine concentration, the AuNRs after the reaction exhibited colors ranging from dark green to blue-green, blue, purple, red, and colorless. The etching induced multicolor change of AuNRs indicated the presence of different contents of histamine in mackerel during storage, and was consistent with the overall change in the content of the total volatile basic nitrogen (TVB-N). Thus, it was indicated that the proposed colorimetric biosensor with a naked-eye-detectable readout has a great potential to evaluate the freshness of red-fleshed fish high in histamine.
Collapse
Affiliation(s)
- Xia Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.X.); (X.W.); (S.Z.); (Y.Z.); (Y.D.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
- Ninghai ZJUT Academy of Science and Technology, Ninghai 315600, China
| | - Xiaotian Wu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.X.); (X.W.); (S.Z.); (Y.Z.); (Y.D.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Shunqian Zhuang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.X.); (X.W.); (S.Z.); (Y.Z.); (Y.D.)
| | - Yucong Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.X.); (X.W.); (S.Z.); (Y.Z.); (Y.D.)
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.X.); (X.W.); (S.Z.); (Y.Z.); (Y.D.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.X.); (X.W.); (S.Z.); (Y.Z.); (Y.D.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| |
Collapse
|
31
|
Yemmen C, Gargouri M. Potential hazards associated with the consumption of Scombridae fish: Infection and toxicity from raw material and processing. J Appl Microbiol 2022; 132:4077-4096. [PMID: 35179276 DOI: 10.1111/jam.15499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Scombridae fish (tuna, bonito, and mackerel) have significant ecological and economic values. They are very appreciated by consumers worldwide for their high-quality flesh and for their high nutritional value. However, consumption of Scombridae fish is potentially hazardous. Indeed, several cases of infections and toxicity linked to the consumption of Scombridae fish as raw, or processed food products have been reported worldwide. In this review, we presented the most common health risks associated with Scombridae fish consumption. Diseases associated with the consumption of these fish are generally infectious or toxic and are caused by biological hazards such as bacteria, viruses, parasites, or chemicals hazards that enter the body through contaminated fish (Polycyclic Aromatic Hydrocarbons, histamine) or by physical contaminants such as heavy metals. The risks of contamination exist throughout the food chain, from primary production to the preparation of products for consumption.
Collapse
Affiliation(s)
- Chiraz Yemmen
- Biocatalysis and Industrial Enzymes Group, Laboratory of Microbial Ecology and Technology, Carthage University, National Institute of Applied Sciences and Technology, BP, Tunis, Tunisia
| | - Mohamed Gargouri
- Biocatalysis and Industrial Enzymes Group, Laboratory of Microbial Ecology and Technology, Carthage University, National Institute of Applied Sciences and Technology, BP, Tunis, Tunisia
| |
Collapse
|
32
|
Jiang Q, Wang Z, Wang G, Liu K, Xu W, Shang C, Gou X, Liu T, Fang Y. A Configurationally Tunable Perylene Bisimide Derivative‐based Fluorescent Film Sensor for the Reliable Detection of Volatile Basic Nitrogen towards Fish Freshness Evaluation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qingwei Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
- School of Materials Science and Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Wenjun Xu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Congdi Shang
- School of Food Science and Engineering, Northwest A&F University Yangling Shaanxi 712100 China
| | - Xinyu Gou
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
- School of Materials Science and Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| |
Collapse
|
33
|
Galluzzo FG, Cammilleri G, Cicero A, Pantano L, Pulvirenti A, Macaluso A, Cicero N, Calabrese V, Ferrantelli V. The cold chain and the COVID-19 pandemic: an unusual increase in histamine content in fish samples collected in Southern Italy during lockdown. FOOD QUALITY AND SAFETY 2022. [PMCID: PMC8689998 DOI: 10.1093/fqsafe/fyab031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Objectives We analysed 900 samples of fresh (250) and processed (650) fish products collected in Sicily (Southern Italy) in 2020 during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic (hereafter: COVID-19). Materials and methods The samples were divided temporally based on five phases relating to the various restrictions imposed by the Italian government in this period. The validated method of ultra-high performance liquid chromatography (UHPLC) combined with a diode array detector (DAD) was then employed for the analysis. Results The samples collected during the Phase I lockdown period and after it had ended (Phase II) revealed significant increases in the mean histamine levels: 41.89±87.58 mg/kg -1 and 24.91±76.76 mg/kg -1, respectively. The 11 (1.3% of the total) fresh fish samples that were identified as being non-compliant with EC Reg. 2073/2005 were only found during these two periods. All the processed samples were always compliant. The histamine values decreased as the restrictions eased, achieving a mean value of 11.16±9.3 mgkg -1 (Phase III). Conclusions There was an increase in the incidence of fish samples that were non-compliant with EC Reg. 2073/2005 compared to previous surveillance data. These results provide a first report on the effect of lockdown measures on food safety and the cold chain. Our findings must cause food safety operators to intensify their controls over fresh fish products in such periods to safeguard consumer health. Further studies are required to evaluate whether the same trend would be observed with other food contaminants.
Collapse
Affiliation(s)
| | | | - Antonello Cicero
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Licia Pantano
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Andrea Pulvirenti
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Modena, Italy
| | - Andrea Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Nicola Cicero
- Dipartimento SASTAS, Università degli studi di Messina, Messina, Italy
| | - Vittorio Calabrese
- Dipartimento di Scienze biomediche e biotecnologiche, Università degli studi di Catania, Catania, Italy
| | | |
Collapse
|
34
|
Ma S, Wang Y, Zhang W, Wang Y, Li G. Solid-Contact Ion-Selective Electrodes for Histamine Determination. SENSORS (BASEL, SWITZERLAND) 2021; 21:6658. [PMID: 34640978 PMCID: PMC8512055 DOI: 10.3390/s21196658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Solid-contact ion-selective electrodes for histamine (HA) determination were fabricated and studied. Gold wire (0.5 mm diameter) was coated with poly(3,4-ethlenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) as a solid conductive layer. The polyvinyl chloride matrix embedded with 5,10,15,20-tetraphenyl(porphyrinato)iron(iii) chloride as an ionophore, 2-nitrophenyloctyl ether as a plasticizer and potassium tetrakis(p-chlorophenyl) borate as an ion exchanger was used to cover the PEDOT:PSS layer as a selective membrane. The characteristics of the HA electrodes were also investigated. The detection limit of 8.58 × 10-6 M, the fast response time of less than 5 s, the good reproducibility, the long-term stability and the selectivity in the presence of common interferences in biological fluids were satisfactory. The electrode also performed stably in the pH range of 7-8 and the temperature range of 35-41 °C. Additionally, the recovery rate of 99.7% in artificial cerebrospinal fluid showed the potential for the electrode to be used in biological applications.
Collapse
Affiliation(s)
| | | | | | | | - Guang Li
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; (S.M.); (Y.W.); (W.Z.); (Y.W.)
| |
Collapse
|
35
|
ZHAO Y, TALHA M. Evaluation of food safety problems based on the fuzzy comprehensive analysis method. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.47321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yingwen ZHAO
- Guizhou Rural Economy and Culture Institute, China
| | | |
Collapse
|
36
|
Wang X, Chen Y, Yu R, Wang R, Xu Z. A sensitive biomimetic enzyme-linked immunoassay method based on Au@Pt@Au composite nanozyme label and molecularly imprinted biomimetic antibody for histamine detection. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1978945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Xiaofeng Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Yongfeng Chen
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Runze Yu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Ruiqiang Wang
- Shandong Cayon Testing Co., Ltd., Jining, People’s Republic of China
| | - Zhixiang Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| |
Collapse
|
37
|
Kartikaningsih H, Yahya Y, Yuniar T, Jaziri AA, Zzaman W, Kobun R, Huda N. The nutritional value, bacterial count and sensory attributes of little tuna (Euthynnus affinis) floss incorporated with the banana blossom. POTRAVINARSTVO 2021. [DOI: 10.5219/1657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The study aimed to evaluate the addition of banana blossom (12.5, 25, 37.5, and 50% w/w) on nutritional quality, histamine content, bacterial count, and sensory characteristic in the fish floss prepared from little tuna (Euthynnus affinis). The crude protein content, essential amino acids, lipid, and polyunsaturated fatty acids (PUFA) steadily decreased (p <0.05), while the crude fibre, carbohydrate, and ash components of the tuna floss, increased significantly (p <0.05) with increasing levels of banana blossom. The contents of protein, fat, ash, fibre, carbohydrate, and moisture ranged 28.13 – 30.27%, 14.79 – 18.02%, 4.45 – 5.68%, 2.6 – 3.5%, 27.81 – 31.01, and 16.45 – 17.39%, respectively, and most of them met the Indonesian National Standard. For essential and non-essential amino acids, the level varied about 102.82 mg.g-1 to 206.76 mg.g-1 and 79.71 mg.g-1 to 138.76 mg.g-1, respectively in the treated tuna flosses. Moreover, ranging 13.72 – 16.29% of PUFA was found in all treated flosses. The most significant effect was found in the histamine levels of the tuna flosses, especially in the 50% added floss sample. Moreover, bacterial counts and heavy metals content were lower than the maximum limits regulated by the Indonesian National Standard. For sensory evaluation, the banana blossom-added samples significantly increased (p >0.05) the acceptability score for all attributes assessed. Taken together, the tuna floss added with 37.5% of banana blossom may be potentially developed as a low-histamine tuna-based product with high ffibre andEPA+DHA, as well as highly acceptable for consumers.
Collapse
|
38
|
Shulpekova YO, Nechaev VM, Popova IR, Deeva TA, Kopylov AT, Malsagova KA, Kaysheva AL, Ivashkin VT. Food Intolerance: The Role of Histamine. Nutrients 2021; 13:3207. [PMID: 34579083 PMCID: PMC8469513 DOI: 10.3390/nu13093207] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
Histamine is a natural amine derived from L-histidine. Although it seems that our knowledge about this molecule is wide and diverse, the importance of histamine in many regulatory processes is still enigmatic. The interplay between different types of histamine receptors and the compound may cause ample effects, including histamine intoxication and so-called histamine intolerance or non-allergic food intolerance, leading to disturbances in immune regulation, manifestation of gastroenterological symptoms, and neurological diseases. Most cases of clinical manifestations of histamine intolerance are non-specific due to tissue-specific distribution of different histamine receptors and the lack of reproducible and reliable diagnostic markers. The diagnosis of histamine intolerance is fraught with difficulties, in addition to challenges related to the selection of a proper treatment strategy, the regular course of recovery, and reduced amelioration of chronic symptoms due to inappropriate treatment prescription. Here, we reviewed a history of histamine uptake starting from the current knowledge about its degradation and the prevalence of histamine precursors in daily food, and continuing with the receptor interactions after entering and the impacts on the immune, central nervous, and gastrointestinal systems. The purpose of this review is to build an extraordinarily specific method of histamine cycle assessment in regard to non-allergic intolerance and its possible dire consequences that can be suffered.
Collapse
Affiliation(s)
- Yulia O. Shulpekova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.O.S.); (V.M.N.); (I.R.P.); (V.T.I.)
| | - Vladimir M. Nechaev
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.O.S.); (V.M.N.); (I.R.P.); (V.T.I.)
| | - Irina R. Popova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.O.S.); (V.M.N.); (I.R.P.); (V.T.I.)
| | - Tatiana A. Deeva
- Department of Biological Chemistry, Sechenov University, 119991 Moscow, Russia;
| | - Arthur T. Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 123098 Moscow, Russia; (A.T.K.); (A.L.K.)
| | - Kristina A. Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 123098 Moscow, Russia; (A.T.K.); (A.L.K.)
| | - Anna L. Kaysheva
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 123098 Moscow, Russia; (A.T.K.); (A.L.K.)
| | - Vladimir T. Ivashkin
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.O.S.); (V.M.N.); (I.R.P.); (V.T.I.)
| |
Collapse
|
39
|
Xu X, Wu X, Ding Y, Zhou X. Multicolorimetric sensing of histamine in fishes based on enzymatic etching of gold nanorods. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
DeBEER J, Bell JW, Nolte F, Arcieri J, Correa G. Histamine Limits by Country: A Survey and Review. J Food Prot 2021; 84:1610-1628. [PMID: 33984131 DOI: 10.4315/jfp-21-129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 11/11/2022]
Abstract
Histamine is a biogenic amine and a food safety hazard, and it is the only biogenic amine regulated by statute or hazard analysis and critical control point guidance. This article reviews the regulations for histamine levels in fish in countries around the world, including maximum limits or levels and sampling procedures in different fish preparations. The maximum histamine levels, sampling plans, and fish products are listed. The country-by-country regulations for maximum histamine acceptance levels in some food products vary by a factor of 8, from 50 ppm in some countries to a maximum of 400 ppm in other countries. For similar food products, the maximum histamine levels vary by a factor of 4 (from 50 ppm to 200 ppm) in, for example, fresh tuna. The country-by-country sampling plans vary widely as well, and these, too, are covered in detail.
Collapse
Affiliation(s)
- John DeBEER
- Chicken of the Sea International, 1630 Burgundy Road, Encinitas, California 92024, USA
| | - Jon W Bell
- National Oceanic and Atmospheric Administration (NOAA), National Seafood Inspection Laboratory, Pascagoula, Mississippi, USA
| | - Fred Nolte
- Fred Nolte Consulting, 2503 West 5th Avenue, Vancouver, British Columbia, Canada V6K 1S9
| | - Julian Arcieri
- Grupo Alimentario de Atlántico S.A. (GRALCO S.A.), Barranquilla, Colombia
| | - Gerson Correa
- Sociedad Ecuatoriana de Alimentos y Frigorificos Manta C.A. (SEAFMAN), Manta, Ecuador
| |
Collapse
|
41
|
de Gregorio C, Ferrazzo G, Koniari I, Kounis NG. Acute coronary syndrome from scombroid poisoning: a narrative review of case reports. Clin Toxicol (Phila) 2021; 60:1-9. [PMID: 34396875 DOI: 10.1080/15563650.2021.1959605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Scombroid syndrome constitutes a toxic illness caused by ingestion of improperly stored fish, usually contaminated by Gram-negative bacteria producing histamine and other toxins. Scombroid currently accounts for approximately 5% of food toxicities in the United States. Though cardiovascular complications are infrequent, some patients experienced acute coronary syndrome (ACS) on admission to hospital. This article focuses on the main pathophysiology, clinical features, therapy, and outcomes in scombroid-related ACS. METHODS Starting from the consolidated knowledge on histaminergic syndromes, we performed a literature search for studies describing patient series and single cases presenting at emergency department with scombroid toxicity complicated by myocardial ischemia. RESULTS After a pathophysiological overview on histaminergic syndromes, we carefully analyzed a dataset of 19 patients from 13 studies, published from 1997 to December 2020. Electrocardiographic, echocardiographic, angiographic features, clinical course, hospital complications, and therapeutic approach were described. Shared and differential aspects of scombroid ACS with typical atherosclerotic ischemia, Kounis, MINOCA and Takotsubo syndromes are also discussed. CONCLUSION An ischemic heart scombroid syndrome may occur in some patients after the eating of improperly stored fish food. Currently available studies indicate this as a benign condition, except for patients with history of coronary artery disease, previous ACS, or anaphylaxis. Of clinical concern, there is a potential of hemodynamic failure in the acute stage, even in apparently healthy people.
Collapse
Affiliation(s)
- Cesare de Gregorio
- Department of Clinical and Experimental Medicine, University of Messina Medical School, Messina, Italy
| | - Giuseppe Ferrazzo
- Department of Clinical and Experimental Medicine, University of Messina Medical School, Messina, Italy
| | - Ioanna Koniari
- Department of Cardiology, University Hospital of South Manchester, NHS Foundation Trust, Manchester, United Kingdom
| | - Nicholas G Kounis
- Department of Cardiology, University of Patras Medical School, Patras, Greece
| |
Collapse
|
42
|
Oliveira H, Blocquel C, Santos M, Fretigny M, Correia T, Gonçalves A, Cabado AG, López LB, Raaholt BW, Ferraris F, Iacoponi F, Cubadda F, Mantovani A, Vallet E, Vlaemynck G, Fernández-Arribas J, Eljarrat E, López E, López de Alda M, Panicz R, Sobczak M, Eljasik P, Cunha S, Ferreira R, Fernandes JO, Sousa S, Domingues VF, Delerue-Matos C, Marques A, Nunes ML. Semi-industrial development of nutritious and healthy seafood dishes from sustainable species. Food Chem Toxicol 2021; 155:112431. [PMID: 34293428 DOI: 10.1016/j.fct.2021.112431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to devise innovative, tailor-made, appealing, tasty and semi-industrialized dishes, using sustainable and under-utilized seafood species (bib, common dab, common carp, blue mussel and blue whiting), that can meet the specific nutritional and functional needs of children (8-10-years), pregnant women (20-40-years) and seniors (≥60-years). Hence, contests were organised among cooking schools from 6 European countries and the best recipes/dishes were reformulated, semi-industrially produced and chemically and microbiologically evaluated. The dishes intended for: (i) children and pregnant women had EPA + DHA and I levels that reached the target quantities, supporting the claim as "high in I"; and (ii) seniors were "high in protein" (24.8%-Soup_S and 34.0%-Balls_S of the energy was provided by proteins), "high in vitamin B12", and had Na contents (≤0.4%) below the defined limit. All dishes reached the vitamin D target value. Sausages_C, Roulade_P, Fillet_P and Balls_S had a well-balanced protein/fat ratio. Roulade_P presented the highest n-3 PUFA/n-6 PUFA ratio (3.3), while Sausages_C the lowest SFA/UNS ratio (0.2). Dishes were considered safe based on different parameters (e.g. Hg-T, PBDEs, Escherichia coli). All represent dietary sources contributing to meet the reference intakes of target nutrients (33->100%), providing valuable options to overcome nutritional and functional imbalances of the three groups.
Collapse
Affiliation(s)
- Helena Oliveira
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; IPMA, I.P, Portuguese Institute for the Sea and Atmosphere, I.P, Division of Aquaculture, Upgrading and Bioprospection, Av. Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal.
| | | | - Marta Santos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; IPMA, I.P, Portuguese Institute for the Sea and Atmosphere, I.P, Division of Aquaculture, Upgrading and Bioprospection, Av. Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal.
| | | | - Tatiana Correia
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; IPMA, I.P, Portuguese Institute for the Sea and Atmosphere, I.P, Division of Aquaculture, Upgrading and Bioprospection, Av. Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal.
| | - Amparo Gonçalves
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; IPMA, I.P, Portuguese Institute for the Sea and Atmosphere, I.P, Division of Aquaculture, Upgrading and Bioprospection, Av. Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal.
| | - Ana G Cabado
- ANFACO CECOPESCA - Ctra. Colexio Universitario, Pontevedra, 16, 36310, Vigo, Spain.
| | - Lucía Blanco López
- ANFACO CECOPESCA - Ctra. Colexio Universitario, Pontevedra, 16, 36310, Vigo, Spain.
| | | | - Francesca Ferraris
- ISS, Istituto Superiore di Sanità - National Institute of Health, Department of Food Safety, Nutrition and Veterinary Public Health, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Francesca Iacoponi
- ISS, Istituto Superiore di Sanità - National Institute of Health, Department of Food Safety, Nutrition and Veterinary Public Health, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Francesco Cubadda
- ISS, Istituto Superiore di Sanità - National Institute of Health, Department of Food Safety, Nutrition and Veterinary Public Health, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Alberto Mantovani
- ISS, Istituto Superiore di Sanità - National Institute of Health, Department of Food Safety, Nutrition and Veterinary Public Health, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Elisabeth Vallet
- Ethic ocean, Tour ESSOR, 14 rue Scandicci, 93500, Pantin, France.
| | - Geertrui Vlaemynck
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Department Technology and Food Science, Brusselsesteenweg 370, 9090, Melle, Belgium.
| | - Julio Fernández-Arribas
- Water, Environment and Food Chemistry, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Ethel Eljarrat
- Water, Environment and Food Chemistry, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Esther López
- Water, Environment and Food Chemistry, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Miren López de Alda
- Water, Environment and Food Chemistry, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Remigiusz Panicz
- West Pomeranian University of Technology in Szczecin, Faculty of Food Sciences and Fisheries, Department of Meat Science, Szczecin, Poland.
| | - Małgorzata Sobczak
- West Pomeranian University of Technology in Szczecin, Faculty of Food Sciences and Fisheries, Department of Meat Science, Szczecin, Poland.
| | - Piotr Eljasik
- West Pomeranian University of Technology in Szczecin, Faculty of Food Sciences and Fisheries, Department of Meat Science, Szczecin, Poland.
| | - Sara Cunha
- LAQV/Requimte-Faculty Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Ricardo Ferreira
- LAQV/Requimte-Faculty Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - José O Fernandes
- LAQV/Requimte-Faculty Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Sara Sousa
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4200-072, Porto, Portugal.
| | - Valentina F Domingues
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4200-072, Porto, Portugal.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4200-072, Porto, Portugal.
| | - António Marques
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; IPMA, I.P, Portuguese Institute for the Sea and Atmosphere, I.P, Division of Aquaculture, Upgrading and Bioprospection, Av. Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal.
| | - Maria Leonor Nunes
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
43
|
Crobu L, Mudadu AG, Melillo R, Pais GL, Meloni D. Qualitative determination of histamine in canned yellowfin tuna ( Thunnus albacares) marketed in Sardinia (Italy) by rapid screening methods. Ital J Food Saf 2021; 10:9379. [PMID: 34322399 PMCID: PMC8273629 DOI: 10.4081/ijfs.2021.9379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
Histamine is produced by the bacterial decarboxylation of histidine, an ammino acid present in large amount especially in scombroid fish such as tuna. Fish containing high levels of histamine have been associated with many instances of “scombroid poisoning”. Since histamine is heat resistant, its presence has been used as an indicator of the good manufacturing practice and of the preservation state of canned tuna. In this study we have applied a rapid screening method to determine the presence of histamine in canned tuna marketed in Sardinia (Italy). A total of 165 samples of canned tuna were screened for the qualitative determination of histamine by HistaSure™ Fish Rapid Test. The results were consistently in agreement with the food safety criteria (<100 mg/kg of histamine) laid down in EC Regulation 2073/2005 (as amended). The HistaSure™ kit was confirmed as a rapid screening method for the presence of histamine in canned tuna.
Collapse
Affiliation(s)
- Luigi Crobu
- Department of Veterinary Medicine, University of Sassari
| | | | - Rita Melillo
- Veterinary Public Health Institute of Sardinia, Sassari, Italy
| | | | | |
Collapse
|
44
|
Hrubisko M, Danis R, Huorka M, Wawruch M. Histamine Intolerance-The More We Know the Less We Know. A Review. Nutrients 2021; 13:2228. [PMID: 34209583 PMCID: PMC8308327 DOI: 10.3390/nu13072228] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
The intake of food may be an initiator of adverse reactions. Food intolerance is an abnormal non-immunological response of the organism to the ingestion of food or its components in a dosage normally tolerated. Despite the fact that food intolerance is spread throughout the world, its diagnosing is still difficult. Histamine intolerance (HIT) is the term for that type of food intolerance which includes a set of undesirable reactions as a result of accumulated or ingested histamine. Manifestations may be caused by various pathophysiological mechanisms or a combination of them. The problem with a "diagnosis" of HIT is precisely the inconstancy and variety of the manifestations in the same individual following similar stimuli. The diagnosing of HIT therefore requires a complex time-demanding multidisciplinary approach, including the systematic elimination of disorders with a similar manifestation of symptoms. Among therapeutic approaches, the gold standard is a low-histamine diet. A good response to such a diet is considered to be confirmation of HIT. Alongside the dietary measures, DAO supplementation supporting the degradation of ingested histamine may be considered as subsidiary treatment for individuals with intestinal DAO deficiency. If antihistamines are indicated, the treatment should be conscious and time-limited, while 2nd or 3rd generation of H1 antihistamines should take precedence.
Collapse
Affiliation(s)
- Martin Hrubisko
- Department of Clinical Allergology and Immunology, Oncological Institute of St. Elizabeth, Heydukova 2157/10, 812 50 Bratislava, Slovakia;
- Institute of Immunology and Allergology, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Radoslav Danis
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine at Comenius University of Bratislava, Špitálska 24, 831 72 Bratislava, Slovakia;
| | - Martin Huorka
- Department of Gastroenterology and Hepatology, University Hospital Bratislava, Ružinovská 6, 821 01 Bratislava, Slovakia;
| | - Martin Wawruch
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine at Comenius University of Bratislava, Špitálska 24, 831 72 Bratislava, Slovakia;
| |
Collapse
|
45
|
Pereira E, Elliot EL, Singleton LS, Otto M, Tesfai A, Doyle M, Hawk H, Bloodgood S, Benner RA, Ross MP, Scott A, Kristof MC, Fox T, Bridgman B, Long N, Livsey K, Rubenstein A, Garner K, Nicholas D, Chuang Y, Viveiros B, Waggener C, Klontz K, Viazis S. An Outbreak Investigation of Scombrotoxin Fish Poisoning Illnesses in the United States Linked to Yellowfin Tuna Imported from Vietnam-2019. J Food Prot 2021; 84:962-972. [PMID: 33428741 DOI: 10.4315/jfp-20-456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/06/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Scombrotoxin fish poisoning (SFP) is caused by the ingestion of certain fish species with elevated concentrations of histamine due to decomposition. In fall 2019, the U.S. Food and Drug Administration (FDA) was notified of 51 SFP cases including two hospitalizations from 11 states through the FDA consumer complaint system or directly from state partners. A case patient was defined as an individual who experienced a histamine-type reaction after consumption of tuna imported from Vietnam and an illness onset between 14 August and 24 November 2019. A traceback investigation was initiated at 19 points of service to identify a common tuna source. The FDA and state partners collected 34 product samples throughout the distribution chain, including from a case patient's home, points of service, distributors, and the port of entry. Samples were analyzed for histamine by sensory evaluation and/or chemical testing. Case patients reported exposure to tuna imported from Vietnam. The traceback investigation identified two Vietnamese manufacturers as the sources of the tuna. Twenty-nine samples were confirmed as decomposed by sensory evaluation and/or were positive for elevated histamine concentrations by chemical testing. Both Vietnamese companies were placed on an import alert. Seven U.S. companies and one Vietnamese company initiated voluntary recalls. The FDA released public communication naming the U.S. importers to help suppliers and distributors identify the product and effectuate the foreign company's recall. This SFP outbreak investigation highlights the complexities of the federal outbreak response, specifically related to imported food. Cultural considerations regarding imported foods should be addressed during outbreak responses when timing is critical. Collaboration with countries where confidentiality agreements are not in place can limit information sharing and the speed of public health responses. HIGHLIGHTS
Collapse
Affiliation(s)
- Evelyn Pereira
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Elisa L Elliot
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Lauren Shade Singleton
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Mark Otto
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Adiam Tesfai
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Matthew Doyle
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Heather Hawk
- U.S. Food and Drug Administration, Office of Regulatory Affairs, Jefferson, Arkansas 72079
| | - Steven Bloodgood
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Ronald A Benner
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Dauphin Island, Alabama 36528
| | - Mary P Ross
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Allison Scott
- U.S. Food and Drug Administration, Office of Regulatory Affairs, Rockville, Maryland 20857
| | - Matthew C Kristof
- U.S. Food and Drug Administration, Office of Regulatory Affairs, Long Beach, California 90831
| | - Teresa Fox
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Brandon Bridgman
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Alameda, California 94502
| | - Nicholas Long
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Kimberly Livsey
- U.S. Food and Drug Administration, Office of Regulatory Affairs, Atlanta, Georgia 30309
| | - Alister Rubenstein
- U.S. Food and Drug Administration, Office of the Commissioner, White Oak, Maryland 20993
| | - Kimberly Garner
- U.S. Food and Drug Administration, Office of the Commissioner, White Oak, Maryland 20993
| | - David Nicholas
- Bureau of Community Environmental Health and Food Protection, New York State Department of Health, Albany, New York 12237
| | - Yayu Chuang
- Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, New York 10016
| | - Brendalee Viveiros
- Center for Food Protection, Rhode Island Department of Health, Providence, Rhode Island 02908; and
| | - Christopher Waggener
- Division of Consolidated Laboratory Services, Virginia Department of General Services, Richmond, Virginia 23219, USA
| | - Karl Klontz
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Stelios Viazis
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| |
Collapse
|
46
|
Durban R, Groetch M, Meyer R, Coleman Collins S, Elverson W, Friebert A, Kabourek J, Marchand SM, McWilliam V, Netting M, Skypala I, Van Brennan T, Vassilopoulou E, Vlieg-Boerstra B, Venter C. Dietary Management of Food Allergy. Immunol Allergy Clin North Am 2021; 41:233-270. [PMID: 33863482 DOI: 10.1016/j.iac.2021.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide food allergy prevalence is increasing, especially in children. Food allergy management strategies include appropriate avoidance measures and identifying suitable alternatives for a nutritionally sound diet. Individualized dietary intervention begins teaching label reading, which differs among countries or regions. Dietary intervention must result in a nutritionally sound plan including alternatives to support optimal growth and development. Inappropriate or incomplete dietary advice may increase the risk of adverse reactions, growth faltering, and nutrient deficiencies. Evidence indicates input from a registered dietitian improves nutritional outcomes. Nutritional input plays a critical role managing nutritional disorders related to food allergy.
Collapse
Affiliation(s)
- Raquel Durban
- Carolina Asthma & Allergy Center, 2600 E 7th St unit a, Charlotte, NC 28204, USA
| | - Marion Groetch
- Division of Allergy & Immunology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1198, New York, NY 10029, USA
| | - Rosan Meyer
- Department of Pediatrics, Imperial College, London, UK
| | | | - Wendy Elverson
- Boston Children's Hospital Center for Nutrition, 333 Longwood Avenue, 4th floor, Boston, MA 02115, USA
| | - Alyssa Friebert
- Allergy and Immunology Clinic, 13123 East 16th Avenue Box 270, Aurora, CO 80045, USA
| | - Jamie Kabourek
- University of Nebraska-Lincoln, Food Innovation Center, Room 279c, 1901 North 21 Street, Lincoln, NE 68588, USA
| | - Stephanie M Marchand
- Department of Pediatrics, The Warren Alpert School of Medicine at Brown University, 593 Eddy Street, Providence, RI 02903, USA; Food and Nutrition Services, Hasbro Children's Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Vicki McWilliam
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - Merryn Netting
- Women and Kids Theme, South Australian Health and Medical Research Institute, 72 King William Road, North Adelaide, South Australia 5006, Australia; Department of Pediatrics, University of Adelaide, Adelaide, South Australia, Australia; Nurition Department, Women's and Children's Health Network, North Adelaide 5006, South Australia, Australia
| | - Isabel Skypala
- Imperial College, London, UK; Department of Allergy and Clinical Immunology, Royal Brompton & Harefield NHS Foundation Trust, Royal Brompton Hospital, 4th Floor Fulham Wing, Sydney Street, London SW3 6NP, UK
| | - Taryn Van Brennan
- Children's Hospital of Colorado, 13123 East 16th Avenue Box B518 Anschutz Medical Campus, Aurora CO 80045, USA
| | - Emillia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki 57400, Greece
| | - Berber Vlieg-Boerstra
- Department of Pediatrics, OLVG Hospital, PO Box 95500, Amsterdam 1090HM, The Netherlands
| | - Carina Venter
- Children's Hospital of Colorado, 13123 East 16th Avenue Box B518 Anschutz Medical Campus, Aurora CO 80045, USA.
| |
Collapse
|
47
|
Histamine Intolerance in Children: A Narrative Review. Nutrients 2021; 13:nu13051486. [PMID: 33924863 PMCID: PMC8144954 DOI: 10.3390/nu13051486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
Histamine intolerance is defined as a disequilibrium of accumulated histamine and the capacity for histamine degradation. This clinical term addresses a non-immunologically mediated pathology when histamine ingested with food is not particularly high, however its degradation is decreased. This paper aims to provide a narrative review on etiopathology, epidemiology, possible diagnostic algorithms and diagnostic challenges of histamine intolerance in children. The clinical picture of histamine intolerance in children is similar to that observed in adults apart from male predominance found in paediatric patients. Both in children and adults, a histamine-reduced diet is typically the treatment of choice. Diamine oxidase supplementation offers another treatment option. There is no symptom or test pathognomonic for histamine intolerance. Nevertheless, manifestations of chronic gastrointestinal symptoms, measurements of diamine oxidase deficits, positive results of histamine provocation tests and improvement in symptoms with histamine-reduced diet considerably increase the probability of histamine intolerance diagnosis. These factors have been included in the proposed diagnostic algorithm for histamine intolerance. In children histamine intolerance most likely co-occurs with allergies and bowel diseases, which creates an additional diagnostic challenge. As the evidence for children is poor further research is needed the determine epidemiology, validate diagnostic algorithms and establish possible treatment options regarding histamine intolerance.
Collapse
|
48
|
Dabadé DS, Jacxsens L, Miclotte L, Abatih E, Devlieghere F, De Meulenaer B. Survey of multiple biogenic amines and correlation to microbiological quality and free amino acids in foods. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107497] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
49
|
Neree AT, Soret R, Marcocci L, Pietrangeli P, Pilon N, Mateescu MA. Vegetal diamine oxidase alleviates histamine-induced contraction of colonic muscles. Sci Rep 2020; 10:21563. [PMID: 33299054 PMCID: PMC7726047 DOI: 10.1038/s41598-020-78134-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
Excess of histamine in gut lumen generates a pronounced gastrointestinal discomfort, which may include diarrhea and peristalsis dysfunctions. Deleterious effects of histamine can be alleviated with antihistamine drugs targeting histamine receptors. However, many antihistamine agents come with various undesirable side effects. Vegetal diamine oxidase (vDAO) might be a relevant alternative owing to its histaminase activity. Mammalian intestinal mucosa contains an endogenous DAO, yet possessing lower activity compared to that of vDAO preparation. Moreover, in several pathological conditions such as inflammatory bowel disease and irritable bowel syndrome, this endogenous DAO enzyme can be lost or inactivated. Here, we tested the therapeutic potential of vDAO by focusing on the well-known effect of histamine on gut motility. Using ex vivo and in vitro assays, we found that vDAO is more potent than commercial anti-histamine drugs at inhibiting histamine-induced contraction of murine distal colon muscles. We also identified pyridoxal 5′-phosphate (the biologically active form of vitamin B6) as an effective enhancer of vDAO antispasmodic activity. Furthermore, we discovered that rectally administered vDAO can be retained on gut mucosa and remain active. These observations make administration of vDAO in the gut lumen a valid alternative treatment for histamine-induced intestinal dysfunctions.
Collapse
Affiliation(s)
- Armelle Tchoumi Neree
- Department of Chemistry, Research Chair on Enteric Dysfunctions "Allerdys", University of Quebec at Montreal, Montreal, QC, H3C 3P8, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada
| | - Rodolphe Soret
- Department of Biological Sciences, Research Chair on Rare Genetic Diseases, University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada
| | - Lucia Marcocci
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Paola Pietrangeli
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Nicolas Pilon
- Department of Biological Sciences, Research Chair on Rare Genetic Diseases, University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada. .,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada. .,Department of Pediatrics, University of Montreal, Montreal, QC, H3T 1C5, Canada.
| | - Mircea Alexandru Mateescu
- Department of Chemistry, Research Chair on Enteric Dysfunctions "Allerdys", University of Quebec at Montreal, Montreal, QC, H3C 3P8, Canada. .,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada.
| |
Collapse
|
50
|
Li YF, Lin ZZ, Hong CY, Huang ZY. Histamine detection in fish samples based on indirect competitive ELISA method using iron-cobalt co-doped carbon dots labeled histamine antibody. Food Chem 2020; 345:128812. [PMID: 33601655 DOI: 10.1016/j.foodchem.2020.128812] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Due to complex matrixes and specific reagent deficiency, the rapid detection of histamine is still a challenge to date. Based on the high peroxidase-like activity of iron-cobalt co-doped carbon dots, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was established for histamine detection using the mimic enzyme labeled with histamine antibody (His-Ab). Through the competitive binding of the labeled His-Ab to solid-phase and sample antigens, histamine content was detected with a linear range of 2.5-150 μg mL-1. The detection limit based on 3σ/K was 0.50 mg kg-1, which was much lower than those of commercial His-kit and HPLC methods. The ic-ELISA method was applied to histamine detection in fish samples with the recovery of (103.4 ± 0.5)%, which was in accord with those of commercial His-kit and HPLC methods. The results indicated that the established ic-ELISA method was suitable for rapid detection of histamine in fish samples with high accuracy, sensitivity and stability.
Collapse
Affiliation(s)
- Yi-Fang Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zheng-Zhong Lin
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Cheng-Yi Hong
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhi-Yong Huang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|