1
|
Armenta-Guirado BI, Mérida-Ortega Á, López-Carrillo L, Denova-Gutiérrez E. Diet quality indices are associated with breast cancer by molecular subtypes in Mexican women. Eur J Nutr 2024; 63:3223-3233. [PMID: 39325098 DOI: 10.1007/s00394-024-03502-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Inconclusive epidemiological evidence suggests that diet quality indices may influence breast cancer (BC) risk; however, the evidence does not consider the molecular expression of this cancer. PURPOSE We aimed to evaluate if diet quality is related to molecular subtypes of BC, in women residing in Northern Mexico. METHODS This is a secondary analysis of 1,045 incident cases and 1,030 population controls from a previous case-control study, conducted between 2007 and 2011 in Northern Mexico. Information about the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) was obtained from medical records to classify BC as luminal (ER + and/or PR+/HER2-), HER2+ (ER+/-and/or PR+/-/HER2+), or triple-negative (TN) (ER- and PR-/HER2-) cases. Food consumption was assessed with a semi-quantitative food frequency questionnaire. Diet quality was evaluated using the Mexican Diet Quality Index (MxDQI) and the Mexican Alternative Healthy Eating Index (MxAHEI). We used unconditional logistic regression models to estimate the association between Mexican diet quality indices and BC molecular subtypes. RESULTS The MxDQI was related to lower odds of BC (ORT3vsT1=0.24; 95%CI: 0.18, 0.31). Similarly, MxAHEI was negatively associated with BC (ORT3vsT1=0.43; 95%CI: 0.34, 0.54). The associations of both indices remained significant in the ER + and ER- tumors, and in the BC luminal and HER2 + molecular subtypes, except in the TN molecular subtype for MxAHEI, which was not statistically significant. CONCLUSIONS Our findings showed that MxDQI and MxAHEI were negatively associated with BC risk regardless of its molecular subtype.
Collapse
Affiliation(s)
- Brianda Ioanna Armenta-Guirado
- Department of Health Sciences, University of Sonora Blvd, Bordo Nuevo S/N, Blvd. Antiguo Ejido Providencia. CP. Cajeme, Sonora, 85010, México
| | - Ángel Mérida-Ortega
- The Center for Population Health Research, National Institute of Public Health, Avenida Universidad #655, Col. Santa María Ahuacatitlán, Cuernavaca, México
| | - Lizbeth López-Carrillo
- The Center for Population Health Research, National Institute of Public Health, Avenida Universidad #655, Col. Santa María Ahuacatitlán, Cuernavaca, México
| | - Edgar Denova-Gutiérrez
- Center for Nutrition and Health Research, National Institute of Public Health, Avenida Universidad #655, Col. Santa María Ahuacatitlán, Cuernavaca, México.
| |
Collapse
|
2
|
Yin JL, Li YZ, Wang R, Song XJ, Zhao LG, Wang DD, Liu JC, Liu PC, Wang JY, Shi YC, Liu FH, Chen X, Sun MH, Men YX, Xu J, Ma S, Qin Y, Gao S, Zhao YH, Gao X, Qi L, Zhang XH, Gong TT, Wu QJ. Dietary patterns and risk of multiple cancers: umbrella review of meta-analyses of prospective cohort studies. Am J Clin Nutr 2024:S0002-9165(24)01415-1. [PMID: 39603532 DOI: 10.1016/j.ajcnut.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Numerous prospective cohort studies have investigated the influence of dietary patterns on the risks of various cancers, although the findings differed. OBJECTIVES To evaluate the associations of dietary patterns with risks of various cancers and assess the strength and validity of the evidence. METHODS Relevant articles were retrieved from the PubMed, EMBASE, Web of Science, and Cochrane library databases from inception to February 22, 2024. The included systematic reviews were meta-analyses of prospective cohort studies that reported an effect size to calculate the association between dietary patterns and cancer risk. The quality of the included studies was evaluated using a measurement tool to assess systematic reviews and the certainty of evidence was assessed using credibility assessment of evidence. Outcomes of interest included any incident cancers. This study was registered with PROSPERO (CRD42023425237). RESULTS Overall, 74 meta-analyses from 30 articles were identified. Three meta-analyses (4.1%) were graded as convincing evidence and included associations between adherence to the 2007 World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) dietary recommendations (per 1-unit score increase) and lower risk of all cancers (relative risk [RR] = 0.93, 95% confidence interval [CI]: 0.92, 0.95), whereas negative associations were found comparing the highest compared with lowest categories for a prudent diet (RR = 0.89, 95% CI: 0.85, 0.93) and vegetable-fruit-soybean diet (RR = 0.87, 95% CI: 0.83, 0.92) in relation to breast cancer. After credibility assessment of evidence by Grading of Recommendations, Assessment, Development, and Evaluation, 4 (5.4%) meta-analyses were classified as high, including adherence to the 2007 WCRF/AICR dietary recommendations and decreased risks of all cancers, breast cancer, colorectal cancer, and prostate cancer. CONCLUSIONS These findings suggest that adherence to certain healthy dietary patterns is associated with lower risk of all cancers and certain individual cancers. This study was registered at crd.york.ac.uk, PROSPERO as CRD42023425237 and /PROSPERO/display_record.php?RecordID=425237.
Collapse
Affiliation(s)
- Jia-Li Yin
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ran Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Jian Song
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Long-Gang Zhao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Dong-Dong Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Cheng Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pei-Chen Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Yi Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Chen Shi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xing Chen
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming-Hui Sun
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xuan Men
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jin Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Qin
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiang Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Fudan University, Shanghai, China
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Xue-Hong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
3
|
Ding Q, Ma X, Zhang Z, Lu P, Liu M. Pooled and global burdens and trends of five common cancers attributable to diet in 204 countries and territories from 1990 to 2019: an analysis of the Global Burden of Disease Study. Eur J Cancer Prev 2024; 33:485-492. [PMID: 38568190 PMCID: PMC11446530 DOI: 10.1097/cej.0000000000000884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/02/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVE Increasing evidence has shown that dietary behaviors are closely correlated with the carcinogenesis and progression of many types of cancer. However, few studies have assessed the global diet-related burden of cancer. This study aimed to estimate the pooled burdens and trends of five types of cancers attributable to dietary behaviors. METHODS Data regarding cancer attributable to dietary behaviors were extracted from the Global Burden of Disease study 2019, including the death cases and age-standardized death rates, and disability-adjusted life years (DALYs) estimated according to diseases, age, sex, the socio-demographic index (SDI) and location. RESULTS According to the Global Burden of Disease study 2019, five types of cancer were affected by dietary behaviors: colon and rectum cancer; tracheal, bronchus and lung cancer; stomach cancer; esophageal cancer and breast cancer. Unhealthy dietary behaviors for cancer caused a total of 605.4 thousand deaths and 13951.3 thousand DALYs globally. The burden of cancer attributable to dietary risks was higher for men than for women. The highest age-standardized death rates in 2019 were observed in southern Latin America, and the lowest rates were observed in North Africa and the Middle East. The greatest increases in the age-standardized death rates, from 1990 to 2019, were found in Western Sub-Saharan Africa, with the greatest decreases in Central Asia. The highest attributable proportions of death or DALYs were colon and rectum cancer. The greatest diet-related cancer burden was observed in regions with a high-middle SDI. CONCLUSION Global age-standardized deaths and DALYs rates attributable to diet-related cancer are considerable and cause a substantial burden. Successful population-wide initiatives targeting unhealthy dietary behaviors would reduce this burden.
Collapse
Affiliation(s)
- Qiang Ding
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Xiaoli Ma
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Gastroenterology, People’s Hospital of Yuan’an County, Yichang City, Hubei Province, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Panpan Lu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Mei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| |
Collapse
|
4
|
Li X, Xu L, Ou QJ, Xu H, Chen YY, Fang YJ, Zhang CX. Serum Pyridoxal 5'-Phosphate and Pyridoxic Acid Ratio Index with Prognosis of Colorectal Cancer: A Prospective Cohort Study. Nutrients 2024; 16:3685. [PMID: 39519518 PMCID: PMC11547691 DOI: 10.3390/nu16213685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Studies on the association between serum vitamin B6 status and colorectal cancer prognosis are limited and have yielded inconsistent results. This study investigated the association of pyridoxal 5'-phosphate (PLP) and pyridoxic acid ratio (PAr) index with colorectal cancer survival. METHODS A total of 1286 colorectal cancer patients diagnosed since 2010 were selected from the Guangdong Colorectal Cancer Cohort study. Serum levels of PLP, pyridoxal, and 4-pyridoxic acid were measured using ultra-high-performance liquid chromatography-tandem mass spectrometry. The study followed overall mortality and colorectal cancer-specific mortality until December 2023. Multivariable Cox proportional hazards regression models were applied to calculate hazard ratios (HRs) and 95% confidence intervals (95% CIs). Restricted cubic spline and stratified analysis were performed. RESULTS During a median follow-up of 77.36 months, 331 deaths were recorded, with 293 specifically attributed to colorectal cancer. Higher PLP levels were associated with a longer overall survival (HRQ4 vs. Q1, 0.63; 95% CI: 0.46, 0.87; p for trend = 0.008) and colorectal cancer-specific survival (HRQ4 vs. Q1, 0.62; 95% CI: 0.44, 0.87; p for trend = 0.006). Non-linear associations were observed between serum PLP and overall and colorectal cancer-specific survival (p for non-linear < 0.05). However, PAr was not significantly associated with either overall survival (HRQ4 vs. Q1, 1.03; 95% CI: 0.75, 1.41) or colorectal cancer-specific survival (HRQ4 vs. Q1, 1.01; 95% CI: 0.72, 1.42). The association between serum PLP and both overall survival and colorectal cancer-specific survival (p for interaction < 0.05) varied by alcohol drinking status. CONCLUSIONS Higher serum PLP levels, but not PAr, may be associated with improved overall and colorectal cancer-specific survival.
Collapse
Affiliation(s)
- Xue Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lei Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Jian Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Huan Xu
- Chronic Noncommunicable Disease Prevention and Control Department, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yuan-Yuan Chen
- Chronic Noncommunicable Disease Prevention and Control Department, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yu-Jing Fang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cai-Xia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
5
|
Goel N, Hernandez A, Cole SW. Social Genomic Determinants of Health: Understanding the Molecular Pathways by Which Neighborhood Disadvantage Affects Cancer Outcomes. J Clin Oncol 2024; 42:3618-3627. [PMID: 39178356 DOI: 10.1200/jco.23.02780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 08/25/2024] Open
Abstract
PURPOSE Neighborhoods represent complex environments with unique social, cultural, physical, and economic attributes that have major impacts on disparities in health, disease, and survival. Neighborhood disadvantage is associated with shorter breast cancer recurrence-free survival (RFS) independent of individual-level (race, ethnicity, socioeconomic status, insurance, tumor characteristics) and health system-level determinants of health (receipt of guideline-concordant treatment). This persistent disparity in RFS suggests unaccounted mechanisms such as more aggressive tumor biology among women living in disadvantaged neighborhoods compared with advantaged neighborhoods. The objective of this article was to provide a clear framework and biological mechanistic explanation for how neighborhood disadvantage affects cancer survival. METHODS Development of a translational epidemiological framework that takes a translational disparities approach to study cancer outcome disparities through the lens of social genomics and social epigenomics. RESULTS The social genomic determinants of health, defined as the physiological gene regulatory pathways (ie, neural/endocrine control of gene expression and epigenetic processes) through which contextual factors, particularly one's neighborhood, can affect activity of the cancer genome and the surrounding tumor microenvironment to alter disease progression and treatment outcomes. CONCLUSION We propose a novel, multilevel determinants of health model that takes a translational epidemiological approach to evaluate the interplay between political, health system, social, psychosocial, individual, and social genomic determinants of health to understand social disparities in oncologic outcomes. In doing so, we provide a concrete biological pathway through which the effects of social processes and social epidemiology come to affect the basic biology of cancer and ultimately clinical outcomes and survival.
Collapse
Affiliation(s)
- Neha Goel
- Department of Surgery, Division of Surgical Oncology, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Alexandra Hernandez
- Department of Surgery, Division of Surgical Oncology, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Steven W Cole
- Department of Psychiatry/ Biobehavioral Sciences and Medicine, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA
| |
Collapse
|
6
|
Obón-Santacana M, Moratalla-Navarro F, Guinó E, Carreras-Torres R, Díez-Obrero V, Bars-Cortina D, Ibáñez-Sanz G, Rodríguez-Alonso L, Mata A, García-Rodríguez A, Devall M, Casey G, Li L, Moreno V. Diet Impacts on Gene Expression in Healthy Colon Tissue: Insights from the BarcUVa-Seq Study. Nutrients 2024; 16:3131. [PMID: 39339731 PMCID: PMC11434945 DOI: 10.3390/nu16183131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Introduction: The global rise of gastrointestinal diseases, including colorectal cancer and inflammatory bowel diseases, highlights the need to understand their causes. Diet is a common risk factor and a crucial regulator of gene expression, with alterations observed in both conditions. This study aims to elucidate the specific biological mechanisms through which diet influences the risk of bowel diseases. (2) Methods: We analyzed data from 436 participants from the BarcUVa-Seq population-based cross-sectional study utilizing gene expression profiles (RNA-Seq) from frozen colonic mucosal biopsies and dietary information from a semi-quantitative food frequency questionnaire. Dietary variables were evaluated based on two dietary patterns and as individual variables. Differential expression gene (DEG) analysis was performed for each dietary factor using edgeR. Protein-protein interaction (PPI) analysis was conducted with STRINGdb v11 for food groups with more than 10 statistically significant DEGs, followed by Reactome-based enrichment analysis for the resulting networks. (3) Results: Our findings reveal that food intake, specifically the consumption of blue fish, alcohol, and potatoes, significantly influences gene expression in the colon of individuals without tumor pathology, particularly in pathways related to DNA repair, immune system function, and protein glycosylation. (4) Discussion: These results demonstrate how these dietary components may influence human metabolic processes and affect the risk of bowel diseases.
Collapse
Affiliation(s)
- Mireia Obón-Santacana
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ferran Moratalla-Navarro
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabet Guinó
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Robert Carreras-Torres
- Digestive Diseases and Microbiota Group, Department of Gastroenterology, Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr. Josep Trueta, 17190 Salt, Girona, Spain
| | - Virginia Díez-Obrero
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - David Bars-Cortina
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Gemma Ibáñez-Sanz
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Gastroenterology Department, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Lorena Rodríguez-Alonso
- Gastroenterology Department, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Alfredo Mata
- Digestive System Service, Moisés Broggi Hospital, 08970 Sant Joan Despí, Spain
| | - Ana García-Rodríguez
- Endoscopy Unit, Digestive System Service, Viladecans Hospital-IDIBELL, 08840 Viladecans, Barcelona, Spain
| | - Matthew Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Graham Casey
- Department of Genome Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
7
|
Wang Y, Qin J, Sharma A, Dakal TC, Wang J, Pan T, Bhushan R, Chen P, Setiawan MF, Schmidt-Wolf IGH, Li F. Exploring the promise of regulator of G Protein Signaling 20: insights into potential mechanisms and prospects across solid cancers and hematological malignancies. Cancer Cell Int 2024; 24:305. [PMID: 39227952 PMCID: PMC11373255 DOI: 10.1186/s12935-024-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024] Open
Abstract
RGS (Regulator of G protein signaling) proteins have long captured the fascination of researchers due to their intricate involvement across a wide array of signaling pathways within cellular systems. Their diverse and nuanced functions have positioned them as continual subjects of scientific inquiry, especially given the implications of certain family members in various cancer types. Of particular note in this context is RGS20, whose clinical relevance and molecular significance in hepatocellular carcinoma we have recently investigated. These investigations have prompted questions into the prevalence of pathogenic mutations within the RGS20 gene and the intricate network of interacting proteins that could contribute to the complex landscape of cancer biology. In our study, we aim to unravel the mutations within the RGS20 gene and the multifaceted interplay between RGS20 and other proteins within the context of cancer. Expanding on this line of inquiry, our research is dedicated to uncovering the intricate mechanisms of RGS20 in various cancers. In particular, we have redirected our attention to examining the role of RGS20 within hematological malignancies, with a specific focus on multiple myeloma and follicular lymphoma. These hematological cancers hold significant promise for further investigation, as understanding the involvement of RGS20 in their pathogenesis could unveil novel therapeutic strategies and treatment avenues. Furthermore, our exploration has extended to encompass the latest discoveries concerning the potential involvement of RGS20 in diseases affecting the central nervous system, thereby broadening the scope of its implications beyond oncology to encompass neurobiology and related fields.
Collapse
Affiliation(s)
- Yulu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiading Qin
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Jieyu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tiantian Pan
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ravi Bhushan
- Department of Zoology, M.S. College, Motihari, Bihar, India
| | - Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Maria F Setiawan
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Fei Li
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
8
|
Zhang Y, Xu W, Peng C, Ren S, Mustafe Hidig S, Zhang C. Exploring the role of m7G modification in Cancer: Mechanisms, regulatory proteins, and biomarker potential. Cell Signal 2024; 121:111288. [PMID: 38971569 DOI: 10.1016/j.cellsig.2024.111288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The dysregulation of N(7)-methylguanosine (m7G) modification is increasingly recognized as a key factor in the pathogenesis of cancers. Aberrant expression of these regulatory proteins in various cancers, including lung, liver, and bladder cancers, suggests a universal role in tumorigenesis. Studies have established a strong correlation between the expression levels of m7G regulatory proteins, such as Methyltransferase like 1 (METTL1) and WD repeat domain 4 (WDR4), and clinical parameters including tumor stage, grade, and patient prognosis. For example, in hepatocellular carcinoma, high METTL1 expression is associated with advanced tumor stage and poor prognosis. Similarly, WDR4 overexpression in colorectal cancer correlates with increased tumor invasiveness and reduced patient survival. This correlation underscores the potential of these proteins as valuable biomarkers for cancer diagnosis and prognosis. Additionally, m7G modification regulatory proteins influence cancer progression by modulating the expression of target genes involved in critical biological processes, including cell proliferation, apoptosis, migration, and invasion. Their ability to regulate these processes highlights their significance in the intricate network of molecular interactions driving tumor development and metastasis. Given their pivotal role in cancer biology, m7G modification regulatory proteins are emerging as promising therapeutic targets. Targeting these proteins could offer a novel approach to disrupt the malignant behavior of cancer cells and enhance treatment outcomes. Furthermore, their diagnostic and prognostic value could aid in the early detection of cancer and the selection of appropriate therapeutic strategies, ultimately enhancing patient management and survival rates. This review aims to explore the mechanisms of action of RNA m7G modification regulatory proteins in tumors and their potential applications in cancer progression and treatment. By delving into the roles of these regulatory proteins, we intend to provide a theoretical foundation for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shenli Ren
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sakarie Mustafe Hidig
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Zhejiang University School of Medicine Fourth Affiliated Hospital, Yiwu, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Agrawal P, Kaur J, Singh J, Rasane P, Sharma K, Bhadariya V, Kaur S, Kumar V. Genetics, Nutrition, and Health: A New Frontier in Disease Prevention. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:326-338. [PMID: 38015713 DOI: 10.1080/27697061.2023.2284997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
The field of nutrition research has traditionally focused on the effects of macronutrients and micronutrients on the body. However, it has become evident that individuals have unique genetic makeups that influence their response to food. Nutritional genomics, which includes nutrigenetics and nutrigenomics, explores the interaction between an individual's genetic makeup, diet, and health outcomes. Nutrigenetics studies the impact of genetic variation on an individual's response to dietary nutrients, while nutrigenomics investigates how dietary components affect gene regulation and expression. These disciplines seek to understand the impact of diet on the genome, transcriptome, proteome, and metabolome. It provides insights into the mechanisms underlying the effect of diet on gene expression. Nutrients can cause the modification of genetic expression through epigenetic changes, such as DNA methylation and histone modifications. The aim of nutrigenomics is to create personalized diets based on the unique metabolic profile of an individual, gut microbiome, and genetic makeup to prevent diseases and promote health. Nutrigenomics has the potential to revolutionize the field of nutrition by combining the practicality of personalized nutrition with knowledge of genetic factors underlying health and disease. Thus, nutrigenomics offers a promising approach to improving health outcomes (in terms of disease prevention) through personalized nutrition strategies based on an individual's genetic and metabolic characteristics.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Kartik Sharma
- Faculty of Agro-Industry, Prince of Songkla University, Songkla, Thailand
| | - Vishesh Bhadariya
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Vikas Kumar
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
10
|
Zhang H, Wang H, Qin L, Lin S. Garlic-derived compounds: Epigenetic modulators and their antitumor effects. Phytother Res 2024; 38:1329-1344. [PMID: 38194996 DOI: 10.1002/ptr.8108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
Cancer is a highly heterogeneous disease that poses a serious threat to human health worldwide. Despite significant advances in the diagnosis and treatment of cancer, the prognosis and survival rate of cancer remain poor due to late diagnosis, drug resistance, and adverse reactions. Therefore, it is very necessary to study the development mechanism of cancer and formulate effective therapeutic interventions. As widely available bioactive substances, natural products have shown obvious anticancer potential, especially by targeting abnormal epigenetic changes. The main active part of garlic is organic sulfur compounds, of which diallyl trisulfide (DATS) content is the highest, accounting for more than 40% of the total composition. The garlic-derived compounds have been recognized as an antioxidant for cancer prevention and treatment. However, the molecular mechanism of the antitumor effect of garlic-derived compounds remains unclear. Recent studies have identified garlic-derived compound DATS that plays critical roles in enhancing CpG demethylation or promoting histone acetylation as an epigenetic inhibitor. Here, we review the therapeutic progress of garlic-derived compounds against cancer through epigenetic pathways.
Collapse
Affiliation(s)
- Huan Zhang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, China
| | - Lin Qin
- Department of Endoscopic Diagnosis and Treatment, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
11
|
Pietrzak S, Marciniak W, Derkacz R, Matuszczak M, Kiljańczyk A, Baszuk P, Bryśkiewicz M, Sikorski A, Gronwald J, Słojewski M, Cybulski C, Gołąb A, Huzarski T, Dębniak T, Lener MR, Jakubowska A, Kluz T, Scott RJ, Lubiński J. Correlation between Selenium and Zinc Levels and Survival among Prostate Cancer Patients. Nutrients 2024; 16:527. [PMID: 38398851 PMCID: PMC10891521 DOI: 10.3390/nu16040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The most prevalent type of cancer among males is prostate cancer. Survival is considered quite good, but it can be further improved when risk factors are optimized. One of these factors is micronutrients, including Se and Zn. To our knowledge, the interaction between Se and Zn and prostate cancer remains undescribed. This study aimed to investigate the optimal levels of selenium (Se) and zinc (Zn) and their impact on the survival of individuals diagnosed with prostate cancer. A total of 338 prostate cancer patients were enrolled in this study, which was conducted in Poland between 2009 and 2015. Mass spectrometry, which uses inductively coupled plasma mass, was used to assess serum element levels before treatment. The study participants were categorized into quartiles (QI-QIV) based on the distributions of Se and Zn levels observed among surviving participants. Cox regression was used to assess the association between serum Se and Zn levels and the survival of prostate cancer patients. Our results reveal the effect of combined Se and Zn levels on survival in prostate cancer patients (SeQI-ZnQI vs. SeQIV-ZnQIV; HR = 20.9). These results need further research to establish Se/Zn norms for different populations.
Collapse
Affiliation(s)
- Sandra Pietrzak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Milena Matuszczak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Adam Kiljańczyk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Marta Bryśkiewicz
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Andrzej Sikorski
- Department of Urology and Urological Oncology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 71-899 Szczecin, Poland; (A.S.); (M.S.); (A.G.)
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Marcin Słojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 71-899 Szczecin, Poland; (A.S.); (M.S.); (A.G.)
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Adam Gołąb
- Department of Urology and Urological Oncology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 71-899 Szczecin, Poland; (A.S.); (M.S.); (A.G.)
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
- Department of Clinical Genetics and Pathology, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Góra, Poland
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Marcin R. Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland;
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Rodney J. Scott
- Priority Research Centre for Cancer Research, Innovation and Translation, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia;
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
- Division of Molecular Medicine, Pathology North, John Hunter Hospital, New Lambton, NSW 2305, Australia
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| |
Collapse
|
12
|
Prabhu KS, Sadida HQ, Kuttikrishnan S, Junejo K, Bhat AA, Uddin S. Beyond genetics: Exploring the role of epigenetic alterations in breast cancer. Pathol Res Pract 2024; 254:155174. [PMID: 38306863 DOI: 10.1016/j.prp.2024.155174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Breast cancer remains a major global health challenge. Its rising incidence is attributed to factors such as delayed diagnosis, the complexity of its subtypes, and increasing drug resistance, all contributing to less-than-ideal patient outcomes. Central to the progression of breast cancer are epigenetic aberrations, which significantly contribute to drug resistance and the emergence of cancer stem cell traits. These include alterations in DNA methylation, histone modifications, and the expression of non-coding RNAs. Understanding these epigenetic changes is crucial for developing advanced breast cancer management strategies despite their complexity. Investigating these epigenetic modifications offers the potential for novel diagnostic markers, more accurate prognostic indicators, and the identification of reliable predictors of treatment response. This could lead to the development of new targeted therapies. However, this requires sustained, focused research efforts to navigate the challenges of understanding breast cancer carcinogenesis and its epigenetic underpinnings. A deeper understanding of epigenetic mechanisms in breast cancer can revolutionize personalized medicine. This could lead to significant improvements in patient care, including early detection, precise disease stratification, and more effective treatment options.
Collapse
Affiliation(s)
- Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Hana Q Sadida
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer Research Program, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ajaz A Bhat
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer Research Program, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
13
|
Neja S, Dashwood WM, Dashwood RH, Rajendran P. Histone Acyl Code in Precision Oncology: Mechanistic Insights from Dietary and Metabolic Factors. Nutrients 2024; 16:396. [PMID: 38337680 PMCID: PMC10857208 DOI: 10.3390/nu16030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer etiology involves complex interactions between genetic and non-genetic factors, with epigenetic mechanisms serving as key regulators at multiple stages of pathogenesis. Poor dietary habits contribute to cancer predisposition by impacting DNA methylation patterns, non-coding RNA expression, and histone epigenetic landscapes. Histone post-translational modifications (PTMs), including acyl marks, act as a molecular code and play a crucial role in translating changes in cellular metabolism into enduring patterns of gene expression. As cancer cells undergo metabolic reprogramming to support rapid growth and proliferation, nuanced roles have emerged for dietary- and metabolism-derived histone acylation changes in cancer progression. Specific types and mechanisms of histone acylation, beyond the standard acetylation marks, shed light on how dietary metabolites reshape the gut microbiome, influencing the dynamics of histone acyl repertoires. Given the reversible nature of histone PTMs, the corresponding acyl readers, writers, and erasers are discussed in this review in the context of cancer prevention and treatment. The evolving 'acyl code' provides for improved biomarker assessment and clinical validation in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sultan Neja
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Antibody & Biopharmaceuticals Core, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
14
|
Zheng Q, Gong Z, Li B, Cheng R, Luo W, Huang C, Wang H. Identification and characterization of CLEC11A and its derived immune signature in gastric cancer. Front Immunol 2024; 15:1324959. [PMID: 38348052 PMCID: PMC10859539 DOI: 10.3389/fimmu.2024.1324959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction C-type lectin domain family 11 member A (CLEC11A) was characterized as a growth factor that mainly regulates hematopoietic function and differentiation of bone cells. However, the involvement of CLEC11A in gastric cancer (GC) is not well understood. Methods Transcriptomic data and clinical information pertaining to GC were obtained and analyzed from publicly available databases. The relationships between CLEC11A and prognoses, genetic alterations, tumor microenvironment (TME), and therapeutic responses in GC patients were analyzed by bioinformatics methods. A CLEC11A-derived immune signature was developed and validated, and its mutational landscapes, immunological characteristics as well as drug sensitivities were explored. A nomogram was established by combining CLEC11A-derived immune signature and clinical factors. The expression and carcinogenic effects of CLEC11A in GC were verified by qRT-PCR, cell migration, invasion, cell cycle analysis, and in vivo model analysis. Myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and T cells in tumor samples extracted from mice were analyzed utilizing flow cytometry analysis. Results CLEC11A was over-expressed in GC, and the elevated CLEC11A expression indicated an unfavorable prognosis in GC patients. CLEC11A was involved in genomic alterations and associated with the TME in GC. Moreover, elevated CLEC11A was found to reduce the benefit of immunotherapy according to immunophenoscore (IPS) and the tumor immune dysfunction, exclusion (TIDE). After validation, the CLEC11A-derived immune signature demonstrated a consistent ability to predict the survival outcomes in GC patients. A nomogram that quantifies survival probability was constructed to improve the accuracy of prognosis prediction in GC patients. Using shRNA to suppress the expression of CLEC11A led to significant inhibitions of cell cycle progression, migration, and invasion, as well as a marked reduction of in vivo tumor growth. Moreover, the flow cytometry assay showed that the knock-down of CLEC11A increased the infiltration of cytotoxic CD8+ T cells and helper CD4+ T into tumors while decreasing the percentage of M2 macrophages, MDSCs, and Tregs. Conclusion Collectively, our findings revealed that CLEC11A could be a prognostic and immunological biomarker in GC, and CLEC11A-derived immune signature might serve as a new option for clinicians to predict outcomes and formulate personalized treatment plans for GC patients.
Collapse
Affiliation(s)
- Qing Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Zhenqi Gong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Baizhi Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Runzi Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Weican Luo
- Shantou University Medical College, Shantou, China
| | - Cong Huang
- Department of Ultrasound, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Huaiming Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
15
|
Khabour OF, Abuhammad S, Alzoubi KH, Alkofahi AS. Coriandrum sativum and Aloysia triphylla can Protect the Development of Cancer: An in Vivo Study using Mouse Painting Assay. Curr Cancer Drug Targets 2024; 24:455-462. [PMID: 37592785 DOI: 10.2174/1568009623666230817101757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
AIM The aim of this study is to examine the protective properties of Coriandrum sativum and Aloysia triphylla against the development of skin cancer. METHODS The skin cancer balb/c mouse model was utilized in the study. Plant extracts were administered to animals using oral gavage. In addition, skin cancer was induced using 7,12-dimethylbenz( a) anthracene (DMBA). RESULTS The study found that A. triphylla extract reduced both tumor incidence (P<0.01) and papilloma frequency (P<0.001) and delayed the onset of tumor development (P<0.001). The A. triphylla extract did not affect tumor size in animals. C. sativum leaf extract reduced the number of tumors per animal, the incidence of tumors, and the frequency of papilloma (P<0.05). In addition, it delayed (P<0.01) the onset of tumors. Treatment of animals with C. sativum seed extract reduced the frequency of papilloma (P<0.05) and delayed the onset of tumors (P<0.05). However, the examined plant extracts did not impact the size of tumors induced by DMBA (P>0.05). CONCLUSION The findings of this study revealed that C. sativum and A. triphylla could protect against cancer development as indicated using the animal model of skin painting assay.
Collapse
Affiliation(s)
- Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Sawsan Abuhammad
- Department of Maternal and Child Health, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad S Alkofahi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
16
|
Aslam S, Iqbal R, Saeed RF, Akram N, Ijaz F, Liaqat I, Aslam AS. Nutritional Genomics and Cancer Prevention. Cancer Treat Res 2024; 191:217-244. [PMID: 39133410 DOI: 10.1007/978-3-031-55622-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The scientific innovations have emphasized the importance of diet for one's health and wellbeing. The genetic revolution has enhanced our understanding about the effect of nutrients on genomic and transcriptomic profiles and gene-nutrition interactions (nutritional genomics). Furthermore, the contribution of micronutrient insufficiencies and macronutrient excess is evident in the development and progression of many diseases, especially cancer. It is speculated that nutrients have capacity to implicitly affect the physiological and pathophysiological processes via gene expression various regulatory processes. Moreover, the nutrients are known to affect the cellular networks involved in cancer progression and cancer inhibitory mechanisms targeting apoptosis or impaired angiogenesis. The interplay of regulatory processes in physiological systems and nutrients provides basis for the nutrigenomics. The functional genomics data further argue that cellular and molecular processes involved in the cancer progression are possibly programed genes during early development which may persist into adulthood and become detrimental. The incorporation of the functional interactions between nutrients and the genome has revolutionized the field of personalized medicine and provided the foundation for targeted cancer therapy through nutrients. There is growing evidence on the beneficial impacts of eating habits on lowering the risk of cancer, even if it can be difficult to pinpoint the precise role of nutrients. The nutrigenomic information may provide bases to develop disease prevention and treatment via nutrition, at the molecular level.
Collapse
Affiliation(s)
- Shaista Aslam
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Riffat Iqbal
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Rida Fatima Saeed
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Nuzhat Akram
- Hamdard College of Medicine, Hamdard University, Karachi, Pakistan
| | - Farhat Ijaz
- CMH Lahore Medical College & IOD (NUMS), Lahore, Pakistan
| | - Irfana Liaqat
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
17
|
Aliabadi A, Khanniri E, Mahboubi-Rabbani M, Bayanati M. Dual COX-2/15-LOX inhibitors: A new avenue in the prevention of cancer. Eur J Med Chem 2023; 261:115866. [PMID: 37862815 DOI: 10.1016/j.ejmech.2023.115866] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
Dual cyclooxygenase 2/15-lipoxygenase inhibitors constitute a valuable alternative to classical non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 (cyclooxygenase-2) inhibitors for the treatment of inflammatory diseases, as well as preventing the cancer. Indeed, these latter present diverse side effects, which are reduced or absent in dual-acting agents. In this review, COX-2 and 15-LOX (15-lipoxygenase) pathways are first described in order to highlight the therapeutic interest of designing such compounds. Various structural families of dual inhibitors are illustrated. This study discloses various structural families of dual 15-LOX/COX-2 inhibitors, thus pave the way to design potentially-active anticancer agents with balanced dual inhibition of these enzymes.
Collapse
Affiliation(s)
- Ali Aliabadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Khanniri
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahboubi-Rabbani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maryam Bayanati
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Gu J, Xie S, Li X, Wu Z, Xue L, Wang S, Wei W. Identification of plasma proteomic signatures associated with the progression of cardia gastric cancer and precancerous lesions. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:286-294. [PMID: 39036665 PMCID: PMC11256680 DOI: 10.1016/j.jncc.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 07/23/2024] Open
Abstract
Objective Considering that there are no effective biomarkers for the screening of cardia gastric cancer (CGC), we developed a noninvasive diagnostic approach, employing data-independent acquisition (DIA) proteomics to identify candidate protein markers. Methods Plasma samples were obtained from 40 subjects, 10 each for CGC, cardia high-grade dysplasia (CHGD), cardia low-grade dysplasia (CLGD), and healthy controls. Proteomic profiles were obtained through liquid chromatography-mass spectrometry (LC-MS/MS-based DIA proteomics. Candidate plasma proteins were identified by weighted gene co-expression network analysis (WGCNA) combined with machine learning and further validated by the Human Protein Atlas (HPA) database. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the biomarker panel. Results There was a clear distinction in proteomic features among CGC, CHGD, CLGD, and the healthy controls. According to the WGCNA, we found 42 positively associated and 164 inversely associated proteins related to CGC progression and demonstrated several canonical cancer-associated pathways. Combined with the results from random forests, LASSO regression, and immunohistochemical results from the HPA database, we identified three candidate proteins (GSTP1, CSRP1, and LY6G6F) that could together distinguish CLGD (AUC = 0.91), CHGD (AUC = 0.99) and CGC (AUC = 0.98) from healthy controls with excellent accuracy. Conclusions The panel of protein biomarkers showed promising diagnostic potential for CGC and precancerous lesions. Further validation and a larger-scale study are warranted to assess its potential clinical applications, suggesting a potential avenue for CGC prevention in the future.
Collapse
Affiliation(s)
- Jianhua Gu
- Office of National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Shuanghua Xie
- Office of National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xinqing Li
- Office of National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeming Wu
- iPhenome Biotechnology (Dalian), Inc., Dalian, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaoming Wang
- Office of National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenqiang Wei
- Office of National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Mietus-Snyder M, Perak AM, Cheng S, Hayman LL, Haynes N, Meikle PJ, Shah SH, Suglia SF. Next Generation, Modifiable Cardiometabolic Biomarkers: Mitochondrial Adaptation and Metabolic Resilience: A Scientific Statement From the American Heart Association. Circulation 2023; 148:1827-1845. [PMID: 37902008 DOI: 10.1161/cir.0000000000001185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Cardiometabolic risk is increasing in prevalence across the life span with disproportionate ramifications for youth at socioeconomic disadvantage. Established risk factors and associated disease progression are harder to reverse as they become entrenched over time; if current trends are unchecked, the consequences for individual and societal wellness will become untenable. Interrelated root causes of ectopic adiposity and insulin resistance are understood but identified late in the trajectory of systemic metabolic dysregulation when traditional cardiometabolic risk factors cross current diagnostic thresholds of disease. Thus, children at cardiometabolic risk are often exposed to suboptimal metabolism over years before they present with clinical symptoms, at which point life-long reliance on pharmacotherapy may only mitigate but not reverse the risk. Leading-edge indicators are needed to detect the earliest departure from healthy metabolism, so that targeted, primordial, and primary prevention of cardiometabolic risk is possible. Better understanding of biomarkers that reflect the earliest transitions to dysmetabolism, beginning in utero, ideally biomarkers that are also mechanistic/causal and modifiable, is critically needed. This scientific statement explores emerging biomarkers of cardiometabolic risk across rapidly evolving and interrelated "omic" fields of research (the epigenome, microbiome, metabolome, lipidome, and inflammasome). Connections in each domain to mitochondrial function are identified that may mediate the favorable responses of each of the omic biomarkers featured to a heart-healthy lifestyle, notably to nutritional interventions. Fuller implementation of evidence-based nutrition must address environmental and socioeconomic disparities that can either facilitate or impede response to therapy.
Collapse
|
20
|
He S, Ji Z, Zhang Q, Zhang X, Chen J, Hu J, Wang R, Ding Y. Investigation of LGALS2 expression in the TCGA database reveals its clinical relevance in breast cancer immunotherapy and drug resistance. Sci Rep 2023; 13:17445. [PMID: 37838802 PMCID: PMC10576795 DOI: 10.1038/s41598-023-44777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
Breast cancer (BRCA) is known as the leading cause of death in women worldwide and has a poor prognosis. Traditional therapeutic strategies such as surgical resection, radiotherapy and chemotherapy can cause adverse reactions such as drug resistance. Immunotherapy, a new treatment approach with fewer side effects and stronger universality, can prolong the survival of BRCA patients and even achieve clinical cure. However, due to population heterogeneity and other reasons, there are still certain factors that limit the efficacy of immunotherapy. Therefore, the importance of finding new tumor immune biomarker cannot be emphasized enough. Studies have reported that LGALS2 was closely related to immunotherapy efficacy, however, it is unclear whether it can act as an immune checkpoint for BRCA immunotherapy. In the current study, changes in LGALS2 expression were analyzed in public datasets such as TCGA-BRCA. We found that LGALS2 expression was associated with immune infiltration, drug resistance and other characteristics of BRCA. Moreover, high LGALS2 expression was closely related to immunotherapy response, and was associated with methylation modifications and clinical resistance for the first time. These findings may help to elucidate the role of LGALS2 in BRCA for the development and clinical application of future immunotherapy strategies against BRCA.
Collapse
Affiliation(s)
- Song He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, People's Republic of China
- Department of Basic Medicine, Changzhi Medical College, Changzhi, 046000, Shanxi, People's Republic of China
| | - Qing Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Xiwen Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jian Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jinping Hu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Ruiqing Wang
- The Eye Center in the Second Hospital of Jilin University, Ziqiang Street 218#, Nanguan District, Changchun, Jilin, 130041, People's Republic of China.
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
21
|
Chiappetta S, Bottino V. Obesity-associated cancer prevention. THE LANCET. HEALTHY LONGEVITY 2023; 4:e520-e521. [PMID: 37716361 DOI: 10.1016/s2666-7568(23)00176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023] Open
Affiliation(s)
- Sonja Chiappetta
- Bariatric and Metabolic Surgery Unit, Department of General Surgery, Ospedale Evangelico Betania, Naples 80147, Italy.
| | - Vincenzo Bottino
- Department of General Surgery, Ospedale Evangelico Betania, Naples, Italy
| |
Collapse
|
22
|
Wahab MRA, Palaniyandi T, Ravi M, Viswanathan S, Baskar G, Surendran H, Gangadharan SGD, Rajendran BK. Biomarkers and biosensors for early cancer diagnosis, monitoring and prognosis. Pathol Res Pract 2023; 250:154812. [PMID: 37741139 DOI: 10.1016/j.prp.2023.154812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Cancers continue to be of major concern due to their serious global socioeconomic impact, apart from the continued increase in the incidence of various cancer types. A major challenge that this disease poses is due to the low "early detection" rates which limit the therapeutic outcomes for the affected individuals. Current research has highlighted the discovering biomarkers that help in early cancer detection and the development of technologies for the detection and quantification of such biomarkers. Biomarkers range from proteins to nucleic acids, and can be specific to a particular cancer type. Detection and quantification of such biomarkers at low levels from biological samples is being made possible by the advent of developing biosensors and by using biomedical engineering technologies such as tumor-on-a-chip models. Here, we present biomarkers that can be helpful for the early detection of breast, colorectal, esophageal, lung, liver, ovarian, and prostate cancer. In addition, we discuss the potential of circulating tumor cell DNA (ctDNA) as an early diagnostic marker. Finally, biosensors available for the detection of cancer biomarkers, which is a recent advancement in this area of research, are discussed.
Collapse
Affiliation(s)
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, Tamil Nadu, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095
| | - S G D Gangadharan
- Department of Medical Oncology, Madras Medical College, R. G. G. G. H., Chennai, Tamil Nadu, India
| | | |
Collapse
|
23
|
Nowak-Perlak M, Ziółkowski P, Woźniak M. A promising natural anthraquinones mediated by photodynamic therapy for anti-cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155035. [PMID: 37603973 DOI: 10.1016/j.phymed.2023.155035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Experimental studies emphasize the therapeutic potential of plant-derived photosensitizers used in photodynamic therapy. Moreover, several in vitro and in vivo research present the promising roles of less-known anthraquinones that can selectively target cancer cells and eliminate them after light irradiation. This literature review summarizes the current knowledge of chosen plant-based-photosensitizers in PDT to show the results of emodin, aloe-emodin, parietin, rubiadin, hypericin, and soranjidiol in photodynamic therapy of cancer treatment and describe the comprehensive perspective of their role as natural photosensitizers. METHODS Literature searches of chosen anthraquinones were conducted on PubMed.gov with keywords: "emodin", "aloe-emodin", "hypericin", "parietin", "rubiadin", "soranjidiol" with "cancer" and "photodynamic therapy". RESULTS According to literature data, this review concentrated on all existing in vitro and in vivo studies of emodin, aloe-emodin, parietin, rubiadin, soranjidiol used as natural photosensitizers emphasizing their effectiveness and detailed mechanism of action in anticancer therapy. Moreover, comprehensive preclinical and clinical studies on hypericin reveal that the above-described substances may be included in the phototoxic treatment of different cancers. CONCLUSIONS Overall, this review presented less-known anthraquinones with their promising molecular mechanisms of action. It is expected that in the future they may be used as natural PSs in cancer treatment as well as hypericin.
Collapse
Affiliation(s)
- Martyna Nowak-Perlak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland.
| | - Piotr Ziółkowski
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland
| |
Collapse
|
24
|
Wang H, Wang Z, Zhang Z, Liu J, Hong L. β-Sitosterol as a Promising Anticancer Agent for Chemoprevention and Chemotherapy: Mechanisms of Action and Future Prospects. Adv Nutr 2023; 14:1085-1110. [PMID: 37247842 PMCID: PMC10509430 DOI: 10.1016/j.advnut.2023.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Cancer is one of the primary causes of death worldwide, and its incidence continues to increase yearly. Despite significant advances in research, the search for effective and nontoxic preventive and therapeutic agents remains greatly important. Cancer is a multimodal disease, where various mechanisms play significant roles in its occurrence and progression. This highlights the need for multitargeted approaches that are not only safe and inexpensive but also provide effective alternatives for current therapeutic regimens. β-Sitosterol (SIT), the most abundant phytosterol found in various plant foods, represents such an option. Preclinical evidence over the past few decades has overwhelmingly shown that SIT exhibits multiple anticancer activities against varied cancers, such as liver, cervical, colon, stomach, breast, lung, pancreatic, and prostate cancers, in addition to leukemia, multiple myeloma, melanoma, and fibrosarcoma. In this article, we present the latest advances and perspectives on SIT-systematically summarizing its antitumor mechanisms of action into 7 main sections and combining current challenges and prospects-for its use as a promising agent for cancer prevention and treatment. In particular, SIT plays a role in cancer prevention and treatment mainly by enhancing apoptosis, inducing cell cycle arrest, bidirectionally regulating oxidative stress, improving metabolic reprogramming, inhibiting invasion and metastasis, modulating immunity and inflammation, and combating drug resistance. Although SIT holds such great promise, the poor aqueous solubility and bioavailability coupled with low targeting efficacy limit its therapeutic efficacy and clinical application. Further research on novel drug delivery systems may improve these deficiencies. Overall, through complex and pleiotropic mechanisms, SIT has good potential for tumor chemoprevention and chemotherapy. However, no clinical trials have yet proven this potential. This review provides theoretical basis and rationality for the further design and conduct of clinical trials to confirm the anticancer activity of SIT.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihui Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
25
|
Açar Y, Akbulut G. Nutritional Epigenetics and Phytochemicals in Cancer Formation. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:700-705. [PMID: 36416668 DOI: 10.1080/27697061.2022.2147106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Nutrigenetics and nutrigenomics are two concepts in the area of nutritional genomics. Epigenetics is a new discipline with significant potential in the prevention and management of certain carcinomas and diseases. Epigenetics consists of DNA methylation, histone modification, non-coding RNAs, and telomerase activity. Epigenetic-based mechanisms act on the inhibition of cancer cells by modulating enzymes such as DNA methyltransferase and histone deacetylase, as well as non-coding RNAs. Phytochemicals are natural bioactive components of plant origin that have antioxidant, anti-inflammatory, and anti-angiogenic effects on various diseases, especially cancer. The epigenetic diet is a nutritional model based on the consumption of various phytochemicals such as epigallocatechin-3-gallate, morin, caffeic acid phenyl ester, apigenin, genistein, curcumin, resveratrol, and sulforaphane. Phytochemicals exert their effects on cancer-based by reducing cell proliferation, invasion, and metastasis and increasing cell apoptosis. Simultaneously, it has functions such as reducing oncogenes that have effects on cancer etiology and increasing tumor suppressor genes.Key teaching pointsCancer is a chronic disease with a high mortality rate, in which various genetic and environmental factors are involved in its etiology.Protooncogenes, tumor suppressor genes, and DNA repair genes are among the gene groups that form the basis of cancer and genetic structure.The bidirectional interaction between nutrition and the human genome has been effective in the emergence of the concepts of nutrigenetics and nutrigenomics.Epigenetic diet is a diet based on the consumption of foods such as soy, grapes, blueberries, turmeric, cruciferous vegetables, and green tea, which induce epigenetic mechanisms that protect against cancer and aging.
Collapse
Affiliation(s)
- Yasemin Açar
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| | - Gamze Akbulut
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| |
Collapse
|
26
|
Wen C, Dechsupa N, Yu Z, Zhang X, Liang S, Lei X, Xu T, Gao X, Hu Q, Innuan P, Kantapan J, Lü M. Pentagalloyl Glucose: A Review of Anticancer Properties, Molecular Targets, Mechanisms of Action, Pharmacokinetics, and Safety Profile. Molecules 2023; 28:4856. [PMID: 37375411 DOI: 10.3390/molecules28124856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Pentagalloyl glucose (PGG) is a natural hydrolyzable gallotannin abundant in various plants and herbs. It has a broad range of biological activities, specifically anticancer activities, and numerous molecular targets. Despite multiple studies available on the pharmacological action of PGG, the molecular mechanisms underlying the anticancer effects of PGG are unclear. Here, we have critically reviewed the natural sources of PGG, its anticancer properties, and underlying mechanisms of action. We found that multiple natural sources of PGG are available, and the existing production technology is sufficient to produce large quantities of the required product. Three plants (or their parts) with maximum PGG content were Rhus chinensis Mill, Bouea macrophylla seed, and Mangifera indica kernel. PGG acts on multiple molecular targets and signaling pathways associated with the hallmarks of cancer to inhibit growth, angiogenesis, and metastasis of several cancers. Moreover, PGG can enhance the efficacy of chemotherapy and radiotherapy by modulating various cancer-associated pathways. Therefore, PGG can be used for treating different human cancers; nevertheless, the data on the pharmacokinetics and safety profile of PGG are limited, and further studies are essential to define the clinical use of PGG in cancer therapies.
Collapse
Affiliation(s)
- Chengli Wen
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou 646000, China
| | - Xu Zhang
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Sicheng Liang
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xianying Lei
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tao Xu
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaolan Gao
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qinxue Hu
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Phattarawadee Innuan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muhan Lü
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
27
|
Sun WX, Shu YP, Yang XY, Huang W, Chen J, Yu NN, Zhao M. Effects of folic acid supplementation in pregnant mice on glucose metabolism disorders in male offspring induced by lipopolysaccharide exposure during pregnancy. Sci Rep 2023; 13:7984. [PMID: 37198280 DOI: 10.1038/s41598-023-31690-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/15/2023] [Indexed: 05/19/2023] Open
Abstract
The DOHaD theory suggests that adverse environmental factors in early life may lead to the development of metabolic diseases including diabetes and hypertension in adult offspring through epigenetic mechanisms such as DNA methylation. Folic acid (FA) is an important methyl donor in vivo and participates in DNA replication and methylation. The preliminary experimental results of our group demonstrated that lipopolysaccharide (LPS, 50 µg/kg/d) exposure during pregnancy could lead to glucose metabolism disorders in male offspring, but not female offspring; however, the effect of folic acid supplementation on glucose metabolism disorders in male offspring induced by LPS exposure remains unclear. Therefore, in this study, pregnant mice were exposed to LPS on gestational day (GD) 15-17 and were given three doses of FA supplementation (2 mg/kg, 5 mg/kg, or 40 mg/kg) from mating to lactation to explore its effect on glucose metabolism in male offspring and the potential mechanism. This study confirmed that FA supplementation of 5 mg/kg in pregnant mice improved glucose metabolism in LPS-exposed offspring during pregnancy by regulating gene expression.
Collapse
Affiliation(s)
- Wan-Xiao Sun
- Department of Basic Nursing, School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Medical College, Hefei, 230601, Anhui, China
| | - Yi-Ping Shu
- Department of Basic Nursing, School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Xin-Yu Yang
- Department of Basic Nursing, School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wei Huang
- Department of Basic Nursing, School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jing Chen
- Department of Basic Nursing, School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Hospital, Hefei, 230022, Anhui, China
| | - Ning-Ning Yu
- Department of Basic Nursing, School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Mei Zhao
- Department of Basic Nursing, School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
28
|
Fagbohun OF, Gillies CR, Murphy KPJ, Rupasinghe HPV. Role of Antioxidant Vitamins and Other Micronutrients on Regulations of Specific Genes and Signaling Pathways in the Prevention and Treatment of Cancer. Int J Mol Sci 2023; 24:ijms24076092. [PMID: 37047063 PMCID: PMC10093825 DOI: 10.3390/ijms24076092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Cancer is an escalating global issue, with 19.3 million new cases and 9.9 million deaths in 2020. Therefore, effective approaches to prevent cancer are urgently required. Diet plays a significant role in determining cancer risk. Nutrients and food bioactives influence specific signaling pathways in the body. Recently, there have been significant advances in cancer prevention research through nutrigenomics or with the effects of dietary components on the genome. Google Scholar, PubMed, and Scopus databases were used to search for peer-reviewed articles between 2017 and 2023. Criteria used were vitamins, minerals, tumors, cancer, genes, inflammation, signaling pathways, and nutrigenomics. Among the total of 1857 articles available, the highest relevant 90 articles that specifically discussed signaling pathways and genes on cancer cell lines and human cancer patients were selected and reviewed. Food sources are rich in antioxidant micronutrients, which are effective in activating or regulating signaling pathways involved in pathogenesis and cancer therapy by activating enzymes such as mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and phosphatidylinositol 3-kinase (PI3K). The micronutrients are involved in the regulation of β-catenin (WNT/β-catenin) including mutations in Kras and epidermal growth factor receptor (EGFR) alongside inhibition of the NF-kB pathway. The most common mechanism of cancer prevention by these micronutrients is their antioxidative, anti-inflammation, and anti-apoptosis effects. This review discusses how nutrigenomics is essential and beneficial for developing cancer prevention and treatment approaches.
Collapse
Affiliation(s)
- Oladapo F Fagbohun
- Department Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 2R8, Canada
| | - Caroline R Gillies
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 2R8, Canada
| | - Kieran P J Murphy
- Department of Medical Imaging, Faculty of Medicine, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - H P Vasantha Rupasinghe
- Department Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 2R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
29
|
Liu WJ, Zhao Y, Chen X, Miao ML, Zhang RQ. Epigenetic modifications in esophageal cancer: An evolving biomarker. Front Genet 2023; 13:1087479. [PMID: 36704345 PMCID: PMC9871503 DOI: 10.3389/fgene.2022.1087479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Esophageal cancer is a widespread cancer of the digestive system that has two main subtypes: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EA). In the diverse range of cancer therapy schemes, the side effects of conventional treatments remain an urgent challenge to be addressed. Therefore, the pursuit of novel drugs with multiple targets, good efficacy, low side effects, and low cost has become a hot research topic in anticancer therapy. Based on this, epigenetics offers an attractive target for the treatment of esophageal cancer, where major mechanisms such as DNA methylation, histone modifications, non-coding RNA regulation, chromatin remodelling and nucleosome localization offer new opportunities for the prevention and treatment of esophageal cancer. Recently, research on epigenetics has remained at a high level of enthusiasm, focusing mainly on translating the basic research into the clinical setting and transforming epigenetic alterations into targets for cancer screening and detection in the clinic. With the increasing emergence of tumour epigenetic markers and antitumor epigenetic drugs, there are also more possibilities for anti-esophageal cancer treatment. This paper focuses on esophageal cancer and epigenetic modifications, with the aim of unravelling the close link between them to facilitate precise and personalized treatment of esophageal cancer.
Collapse
Affiliation(s)
- Wen-Jian Liu
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuan Zhao
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xu Chen
- School of Basic Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Man-Li Miao
- School of Basic Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ren-Quan Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
30
|
Liao Y, Yang J. Status of nutrition labeling knowledge, attitude, and practice (KAP) of residents in the community and structural equation modeling analysis. Front Nutr 2023; 10:1097562. [PMID: 37139447 PMCID: PMC10149812 DOI: 10.3389/fnut.2023.1097562] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 05/05/2023] Open
Abstract
Objective Unhealthy foods were a major contributor to the occurrence of chronic non-communicable diseases. The promotion of nutrition labeling in the community can effectively help residents to choose healthy foods, which plays an important role in the prevention of chronic diseases. However, the public awareness of this measure is not clear. Our study used a structural equation model based on the KAP theory to analyze the interaction mechanisms among knowledge, attitude, and practice and aimed to evaluate the relationships among nutrition knowledge, attitude, and practice of residents, which can provide the basis of policy formulation for nutrition education and behavior intervention. Methods We carried out a cross-sectional study from May 2022 to July 2022 in the "Community Health Service Center", and each "Community Service Station" in Yinchuan use a self-designed questionnaire and convenience sampling to evaluate resident nutrition labeling KAP status. This study adopted the structural equation modeling approach to analyze a survey of Chinese individuals through the cognitive processing model, interrelated nutrition knowledge, nutrition label knowledge, attitude, and practice. Results According to the principle of sample size estimation, a total of 636 individuals were investigated, with the ratio of male to female being 1:1.2. The average score of community residents' nutrition knowledge was 7.48 ± 3.24, and the passing rate was 19.4%. Most residents had a positive attitude toward nutrition labeling, but the awareness rate was only 32.7% and the utilization rate was 38.5%. Univariate analysis showed that women had higher knowledge scores than men (p < 0.05), and young people had higher scores than older adults (p < 0.05), and the difference was significant. Based on the KAP structural equation model (SEM), residents' nutrition knowledge will directly affect their attitude toward nutrition labeling. Attitude played a greater role as an indirect effect between knowledge and behavior, while trust limits residents' practice of nutrition labeling and then affects their practice. It could be explained that nutrition knowledge was the prerequisite for label reading behavior, and attitude was the intermediary effect. Conclusion The nutrition knowledge and nutrition labeling knowledge of respondents hardly directly support the practice of nutrition labeling, but it can influence the use behavior by forming a positive attitude. The KAP model is suitable for explaining residents' use of nutrition labeling in the region. Future research should focus on better understanding the motivations of residents to use nutrition labeling and the opportunity to use nutrition labeling in real-life shopping settings.
Collapse
Affiliation(s)
- Yinxia Liao
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jianjun Yang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, China
- *Correspondence: Jianjun Yang
| |
Collapse
|
31
|
Cui MY, Yi X, Zhu DX, Wu J. Identification of Differentially Expressed Genes Related to the Lipid Metabolism of Esophageal Squamous Cell Carcinoma by Integrated Bioinformatics Analysis. Curr Oncol 2022; 30:1-18. [PMID: 36661650 PMCID: PMC9858068 DOI: 10.3390/curroncol30010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose: In recent years, lipid metabolism has been reprogrammed to meet the energy and substrate needs of tumorigenesis and development and is a potential new target for cancer treatment. However, the regulatory mechanism of lipid metabolism in esophageal squamous cell carcinoma is not well understood. Methods: We first downloaded the esophageal squamous cell carcinoma (ESCC) gene dataset in the GEO and TCGA databases and analyzed the central differentially expressed genes (DEGs) of ESCC through bioinformatics. Afterwards, the GSEA method was used to analyze the lipid metabolism-related pathway of the central gene in the pathological process of ESCC, and it was determined that the central gene OIP5 was significantly related to the fatty acid metabolism pathway. Our heatmap also revealed that the enrichment of the ACSL family in ESCC tissues was more pronounced than in normal tissues. We hypothesized that OIP5 can regulate the fatty acid metabolism process in ESCC cells and affect the tumorigenic ability of ESCC. Further statistical analysis and experiment were conducted to determine the lipid metabolism-related gene, OIP5′s, expression pattern and clinical significance in ESCC, analyze the effect of OIP5 expression on fatty acid metabolism-related enzymes in ESCC, revealing the specific mechanism of OIP5 that promotes ESCC development. Conclusions: Our study established a correlation between OIP5 expression and clinicopathological factors (tumor size, T stage, N stage, and clinical grade) in esophageal squamous cell carcinoma (p < 0.05). We have also experimentally demonstrated that OIP5 regulates ESCC fatty acid metabolism by influencing the expression of the key enzyme ACSL1 in lipid metabolism.
Collapse
Affiliation(s)
| | | | - Dan-Xia Zhu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian St, Changzhou 213003, China
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian St, Changzhou 213003, China
| |
Collapse
|
32
|
Tao SS, Wang P, Wang XY, Yin KJ, Yang XK, Wang ZX, Wang DG, Pan HF. Causal effect of polyunsaturated fatty acids on bone mineral density and fracture. Front Nutr 2022; 9:1014847. [PMID: 36570136 PMCID: PMC9772990 DOI: 10.3389/fnut.2022.1014847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background Polyunsaturated fatty acids (PUFAs) are closely related to osteoporosis. To test their causal relationship, we conducted a Mendelian randomization (MR) analysis. Methods We analyzed the causal relationship between four PUFAs measures, n-3 PUFAs (n-3), n-6 PUFAs (n-6), the ratio of n-3 PUFAs to total fatty acids (n-3 pct), and the ratio of n-6 PUFAs to n-3 PUFAs (n-6 to n-3), and five measures of osteoporosis, including estimated bone mineral density (eBMD), forearm (FA) BMD, femoral neck (FN) BMD, lumbar spine (LS) BMD, and fracture, using two-sample MR analysis. In order to verify the direct effect between PUFAs and BMD, we chose interleukin-6 (IL-6), tumor necrosis factor-β (TNF-β), and bone morphogenetic proteins 7 (BMP-7), three markers or cytokines strongly related to BMD, as possible confounding factors, and analyzed the possible causal relationships between them and PUFAs or BMD by MR. Inverse variance weighting (IVW), MR-Egger, weighted and weighted median were conducted. MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) and MR-Egger regression methods were used to evaluate the potential pleiotropy of instrumental variables (IVs) and outliers were identified by MR-PRESSO. Cochran's Q statistic was used to detect the heterogeneity among IVs. Leave-one-out sensitivity analysis was used to find SNPs that have a significant impact on the results. All results were corrected by the Bonferroni correction. Results The IVW results showed that n-3 PUFAs (OR = 1.030, 95% CI: 1.013, 1.047, P = 0.001) and n-6 PUFAs (OR = 1.053, 95% CI: 1.034, 1.072, P < 0.001) were positively correlated with eBMD, while n-6 to n-3 (OR = 0.947, 95% CI: 0.924, 0.970, P < 0.001) were negatively correlated with eBMD. These casual relationships still existed after Bonferroni correction. There were positive effects of n-3 PUFAs on FA BMD (OR = 1.090, 95% CI: 1.011, 1.176, P = 0.025) and LS BMD (OR = 1.056, 95% CI: 1.011, 1.104, P = 0.014), n-3 pct on eBMD (OR = 1.028, 95% CI: 1.002, 1.055, P = 0.035) and FA BMD (OR = 1.090, 95% CI: 1.011, 1.174, P = 0.025), n-6 to n-3 on LS BMD (OR = 1.071, 95% CI: 1.021, 1.124, P = 0.005); negative effects of n-3 pct on fracture (OR = 0.953, 95% CI: 0.918, 0.988, P = 0.009) and n-6 to n-3 on FA BMD (OR = 0.910, 95% CI: 0.837, 0.988, P = 0.025). However, these causal effects all disappeared after Bonferroni correction (all P > 0.0025). None of IL-6, TNF-β, and BMP-7 had a causal effect on PUFA and BMD simultaneously (all P > 0.05). Conclusion Evidence from this MR study supports the genetically predicted causal effects of n-3, n-6, n-3 pct, and n-6 to n-3 on eBMD. In addition, n-3 not only associate with FA BMD and LS BMD through its own level and n-6 to n-3, but also link to fracture through n-3 pct.
Collapse
Affiliation(s)
- Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China,Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Peng Wang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xin-Yi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,The First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Kang-Jia Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiao-Ke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhi-Xin Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,*Correspondence: De-Guang Wang,
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China,Hai-Feng Pan, ,
| |
Collapse
|
33
|
Srivastava S, Dubey AK, Madaan R, Bala R, Gupta Y, Dhiman BS, Kumar S. Emergence of nutrigenomics and dietary components as a complementary therapy in cancer prevention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89853-89873. [PMID: 36367649 DOI: 10.1007/s11356-022-24045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Cancer is an illness characterized by abnormal cell development and the capability to infiltrate or spread to rest of the body. A tumor is the term for this abnormal growth that develops in solid tissues like an organ, muscle, or bone and can spread to other parts of the body through the blood and lymphatic systems. Nutrition is a critical and immortal environmental component in the development of all living organisms encoding the relationship between a person's nutrition and their genes. Nutrients have the ability to modify gene expression and persuade alterations in DNA and protein molecules which is researched scientifically in nutrigenomics. These interactions have a significant impact on the pharmacokinetic properties of bioactive dietary components as well as their site of action/molecular targets. Nutrigenomics encompasses nutrigenetics, epigenetics, and transcriptomics as well as other "omic" disciplines like proteomics and metabolomics to explain the vast disparities in cancer risk among people with roughly similar life style. Clinical trials and researches have evidenced that alternation of dietary habits is potentially one of the key approaches for reducing cancer risk in an individual. In this article, we will target how nutrigenomics and functional food work as preventive therapy in reducing the risk of cancer.
Collapse
Affiliation(s)
| | - Ankit Kumar Dubey
- Institute of Scholars, Bengaluru, 577102, Karnataka, India.
- iGlobal Research and Publishing Foundation, New Delhi, 110059, India.
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rajni Bala
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Yugam Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| |
Collapse
|
34
|
Nutrigenomics: An inimitable interaction amid genomics, nutrition and health. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Epigenetics: Promising journey so far but ways to go in head neck cancer. Oral Oncol 2022; 135:106194. [DOI: 10.1016/j.oraloncology.2022.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
|
36
|
Lycium barbarum polysaccharide modulates gut microbiota to alleviate rheumatoid arthritis in a rat model. NPJ Sci Food 2022; 6:34. [PMID: 35864275 PMCID: PMC9304368 DOI: 10.1038/s41538-022-00149-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Rheumatoid arthritis (RA) seriously impairs the quality of life of sufferers. It has been shown that Lycium barbarum polysaccharide (LBP), a natural active indigestible ingredient with medicinal and edible functions, can effectively relieve RA, however, whether this effect is related to gut microbiota is not known. This study aimed to explore the RA alleviating mechanism of LBP mediated by gut microbiota using a collagen-induced arthritis rat model. The results showed that LBP significantly changed the gut microflora structure accompanied with the RA alleviation. Specifically, a LBP intervention reduced the relative abundance of Lachnospiraceae_NK4A136_group and uncultured_bacterium_f_Ruminococcaceae and significantly increased the abundance of Romboutsia, Lactobacillus, Dubosiella and Faecalibaculum. The mRNA contents of several colonic epithelial genes including Dpep3, Gstm6, Slc27a2, Col11a2, Sycp2, SNORA22, Tnni1, Gpnmb, Mypn and Acsl6, which are potentially associated to RA, were down-regulated due to the DNA hypermethylation, possibly caused by the elevating content of a bacterial metabolite S-adenosyl methionine (SAM). In conclusion, our current study suggests that LBP alleviated RA by reshaping the composition of intestinal microflora which may generate SAM, inducing DNA hypermethylation of RA-related genes in the host intestinal epithelium and subsequently reducing their expression.
Collapse
|
37
|
Liang X, Zhang H, Wang Z, Zhang X, Dai Z, Zhang J, Luo P, Zhang L, Hu J, Liu Z, Bi C, Cheng Q. JMJD8 Is an M2 Macrophage Biomarker, and It Associates With DNA Damage Repair to Facilitate Stemness Maintenance, Chemoresistance, and Immunosuppression in Pan-Cancer. Front Immunol 2022; 13:875786. [PMID: 35898493 PMCID: PMC9309472 DOI: 10.3389/fimmu.2022.875786] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background JMJD8 has recently been identified as a cancer-related gene, but current studies provide limited information. We aimed to clarify its roles and the potential mechanisms in pan-cancer. Methods Pan-cancer bulk sequencing data and online web tools were applied to analyze JMJD8’s correlations with prognosis, genome instability, cancer stemness, DNA repair, and immune infiltration. Moreover, single-cell datasets, SpatialDB database, and multiple fluorescence staining were used to validate the association between JMJD8 expression and M2 macrophages. Further, we utilized ROCplotter and cMap web tool to analyze the therapeutic responses and screened JMJD8-targeted compounds, respectively, and we used AlphaFold2 and Discovery Studio to conduct JMJD8 homology modeling and molecular docking. Results We first noticed that JMJD8 was an oncogene in many cancer types. High JMJD8 was associated with lower genome stability. We then found that high JMJD8 correlated with high expression of mismatch repair genes, stemness, homologous repair gene signature in more than 9 cancers. ESTIMATE and cytokine analyses results presented JMJD8’s association with immunosuppression. Also, immune checkpoint CD276 was positively relevant to JMJD8. Subsequently, we validated JMJD8 as the M2 macrophage marker and showed its connection with other immunosuppressive cells and CD8+ T-cell depression. Finally, potential JMJD8-targeted drugs were screened out and docked to JMJD8 protein. Conclusion We found that JMJD8 was a novel oncogene, and it correlated with immunosuppression and DNA repair. JMJD8 was highly associated with immune checkpoint CD276 and was an M2 macrophage biomarker in many cancers. This study will reveal JMJD8’s roles in pan-cancer and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jason Hu
- Department of Neonatology, Yale School of Medicine, New Haven, CT, United States
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Changlong Bi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Quan Cheng, ; Changlong Bi,
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Quan Cheng, ; Changlong Bi,
| |
Collapse
|
38
|
Kim H, Kim JK. Evidence on Statins, Omega-3, and Prostate Cancer: A Narrative Review. World J Mens Health 2022; 40:412-424. [PMID: 35021299 PMCID: PMC9253794 DOI: 10.5534/wjmh.210139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Dietary intake selections might play a crucial role in prostate cancer (PCa) occurrence and progression. Several studies have investigated whether statin use could reduce PCa risk but with conflicting results. Nevertheless, a significantly decreased incidence of advanced PCa has been consistently noted. Statins may also reduce the risk of biochemical recurrence (BCR) in men with PCa after receiving active treatment. However, the influence of statin usage on BCR and PCa progression in men with high prostate-specific antigen levels has been found to be insignificant. In contrast, the combined use of a statin and metformin was significantly related to the survival status of PCa patients. However, some studies have revealed that the intake of long-chain omega-3 fatty acid (ω-3) from fish or fish oil supplements may elevate PCa risk. Several meta-analyses on ω-3 consumption and PCa have shown controversial results for the relationship between PCa and ω-3 consumption. However, studies with positive results for various genotypes, fatty acid intake or levels, and PCA risk are emerging. This review highlights the association among statins, ω-3, and PCa. The findings summarized here may be helpful for clinicians counseling patients related to PCa.
Collapse
Affiliation(s)
- Hwanik Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jung Kwon Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
39
|
Dall’Asta M, Barbato M, Rocchetti G, Rossi F, Lucini L, Marsan PA, Colli L. Nutrigenomics: an underestimated contribution to the functional role of polyphenols. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Effects of different ratios of omega-6:omega-3 fatty acids in the diet of sows on the proteome of milk-derived extracellular vesicles. J Proteomics 2022; 264:104632. [DOI: 10.1016/j.jprot.2022.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
|
41
|
Bordoni L, Malinowska AM, Petracci I, Szwengiel A, Gabbianelli R, Chmurzynska A. Diet, Trimethylamine Metabolism, and Mitochondrial DNA: An Observational Study. Mol Nutr Food Res 2022; 66:e2200003. [PMID: 35490412 DOI: 10.1002/mnfr.202200003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/14/2022] [Indexed: 12/11/2022]
Abstract
SCOPE Mitochondrial DNA copy number (mtDNAcn) and its methylation level in the D-loop area have been correlated with metabolic health and are suggested to vary in response to environmental stimuli, including diet. Circulating levels of trimethylamine-n-oxide (TMAO), which is an oxidative derivative of the trimethylamine (TMA) produced by the gut microbiome from dietary precursors, have been associated with chronic diseases and are suggested to have an impact on mitochondrial dynamics. This study is aimed to investigate the relationship between diet, TMA, TMAO, and mtDNAcn, as well as DNA methylation. METHODS AND RESULTS Two hundred subjects with extreme (healthy and unhealthy) dietary patterns are recruited. Dietary records are collected to assess their nutrient intake and diets' quality (Healthy Eating Index). Blood levels of TMA and TMAO, circulating levels of TMA precursors and their dietary intakes are measured. MtDNAcn, nuclear DNA methylation long interspersed nuclear element 1 (LINE-1), and strand-specific D-loop methylation levels are assessed. There is no association between dietary patterns and mtDNAcn. The TMAO/TMA ratio is negatively correlated with d-loop methylation levels but positively with mtDNAcn. CONCLUSIONS These findings suggest a potential association between TMA metabolism and mitochondrial dynamics (and mtDNA), indicating a new avenue for further research.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, 62032, MC, Italy
| | - Anna M Malinowska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, 60-624, Poland
| | - Irene Petracci
- School of Advanced Studies, University of Camerino, Camerino, 62032, MC, Italy
| | - Artur Szwengiel
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznań, 60-624, Poland
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, 62032, MC, Italy
| | - Agata Chmurzynska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, 60-624, Poland
| |
Collapse
|
42
|
Selenium Supplementation during Puberty and Young Adulthood Mitigates Obesity-Induced Metabolic, Cellular and Epigenetic Alterations in Male Rat Physiology. Antioxidants (Basel) 2022; 11:antiox11050895. [PMID: 35624758 PMCID: PMC9138167 DOI: 10.3390/antiox11050895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Selenium (Se) role in obesity is not clear. In addition, information on Se’s role in male physiology, specifically in obesity, is scarce. We conducted this study to evaluate the efficacy of Se supplementation, specifically during puberty until young adulthood, against obesity-induced deregulation of metabolic, cellular, and epigenetic parameters in epididymal fat and/or sperm cells in a rat model. High-fat-diet consumption by male rats during puberty and young adulthood significantly increased body weight, adipocyte size, oxidative stress, deregulated expression of genes associated with inflammation (Adiponectin, IL-6, TNF-α), adipogenesis (CEBPα), estrogen biosynthesis (CYP19) and epigenetic processes in epididymal adipose tissue (Dnmt3a), as well as altered microRNA expression vital for spermatogenesis in sperm cells (miR-15b and miR-497). On the other hand, Se supplementation significantly decreased oxidative stress and mitigated these molecular/epigenetic alterations in epididymal adipose tissue or sperm cells. Our results indicate that selenium supplementation during puberty/young adulthood could improve male physiology in the context of obesity. In addition, it suggests that Se could potentially positively affect offspring health.
Collapse
|
43
|
The Role of Epigenetic Modifications in Human Cancers and the Use of Natural Compounds as Epidrugs: Mechanistic Pathways and Pharmacodynamic Actions. Biomolecules 2022; 12:biom12030367. [PMID: 35327559 PMCID: PMC8945214 DOI: 10.3390/biom12030367] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is a complex disease resulting from the genetic and epigenetic disruption of normal cells. The mechanistic understanding of the pathways involved in tumor transformation has implicated a priori predominance of epigenetic perturbations and a posteriori genetic instability. In this work, we aimed to explain the mechanistic involvement of epigenetic pathways in the cancer process, as well as the abilities of natural bioactive compounds isolated from medicinal plants (flavonoids, phenolic acids, stilbenes, and ketones) to specifically target the epigenome of tumor cells. The molecular events leading to transformation, angiogenesis, and dissemination are often complex, stochastic, and take turns. On the other hand, the decisive advances in genomics, epigenomics, transcriptomics, and proteomics have allowed, in recent years, for the mechanistic decryption of the molecular pathways of the cancerization process. This could explain the possibility of specifically targeting this or that mechanism leading to cancerization. With the plasticity and flexibility of epigenetic modifications, some studies have started the pharmacological screening of natural substances against different epigenetic pathways (DNA methylation, histone acetylation, histone methylation, and chromatin remodeling) to restore the cellular memory lost during tumor transformation. These substances can inhibit DNMTs, modify chromatin remodeling, and adjust histone modifications in favor of pre-established cell identity by the differentiation program. Epidrugs are molecules that target the epigenome program and can therefore restore cell memory in cancerous diseases. Natural products isolated from medicinal plants such as flavonoids and phenolic acids have shown their ability to exhibit several actions on epigenetic modifiers, such as the inhibition of DNMT, HMT, and HAT. The mechanisms of these substances are specific and pleiotropic and can sometimes be stochastic, and their use as anticancer epidrugs is currently a remarkable avenue in the fight against human cancers.
Collapse
|
44
|
Esposito MV, Fosso B, Nunziato M, Casaburi G, D'Argenio V, Calabrese A, D'Aiuto M, Botti G, Pesole G, Salvatore F. Microbiome composition indicate dysbiosis and lower richness in tumor breast tissues compared to healthy adjacent paired tissue, within the same women. BMC Cancer 2022; 22:30. [PMID: 34980006 PMCID: PMC8722097 DOI: 10.1186/s12885-021-09074-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background Breast cancer (BC) is the most common malignancy in women, in whom it reaches 20% of the total neoplasia incidence. Most BCs are considered sporadic and a number of factors, including familiarity, age, hormonal cycles and diet, have been reported to be BC risk factors. Also the gut microbiota plays a role in breast cancer development. In fact, its imbalance has been associated to various human diseases including cancer although a consequential cause-effect phenomenon has never been proven. Methods The aim of this work was to characterize the breast tissue microbiome in 34 women affected by BC using an NGS-based method, and analyzing the tumoral and the adjacent non-tumoral tissue of each patient. Results The healthy and tumor tissues differed in bacterial composition and richness: the number of Amplicon Sequence Variants (ASVs) was higher in healthy tissues than in tumor tissues (p = 0.001). Moreover, our analyses, able to investigate from phylum down to species taxa for each sample, revealed major differences in the two richest phyla, namely, Proteobacteria and Actinobacteria. Notably, the levels of Actinobacteria and Proteobacteria were, respectively, higher and lower in healthy with respect to tumor tissues. Conclusions Our study provides information about the breast tissue microbial composition, as compared with very closely adjacent healthy tissue (paired samples within the same woman); the differences found are such to have possible diagnostic and therapeutic implications; further studies are necessary to clarify if the differences found in the breast tissue microbiome are simply an association or a concausative pathogenetic effect in BC. A comparison of different results on similar studies seems not to assess a universal microbiome signature, but single ones depending on the environmental cohorts’ locations. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09074-y.
Collapse
Affiliation(s)
- Maria Valeria Esposito
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131, Napoli, NA, Italy.,CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Napoli, Italy
| | - Bruno Fosso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Giovanni Amendola, 122/O, 70126, Bari, BA, Italy
| | - Marcella Nunziato
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131, Napoli, NA, Italy.,CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Napoli, Italy
| | | | - Valeria D'Argenio
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131, Napoli, NA, Italy.,CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Napoli, Italy.,Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - Alessandra Calabrese
- Department of Senology, Istituto Nazionale Tumori - IRCCS, 'Fondazione Pascale', Via Mariano Semmola, 53, 80131, Napoli, NA, Italy
| | - Massimiliano D'Aiuto
- Department of Senology, Istituto Nazionale Tumori - IRCCS, 'Fondazione Pascale', Via Mariano Semmola, 53, 80131, Napoli, NA, Italy.,Clinica Villa Fiorita, Via Filippo Saporito, 24, 81031, Aversa, CE, Italy
| | - Gerardo Botti
- Scientific Directorate, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, Via Mariano Semmola, 53, 80131, Napoli, NA, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Giovanni Amendola, 122/O, 70126, Bari, BA, Italy. .,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Piazza Umberto I, 1, BA, 70121, Bari, Italy.
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131, Napoli, NA, Italy. .,CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Napoli, Italy.
| |
Collapse
|
45
|
Construction and Validation of a Potent Epigenetic Modification-Related Prognostic Signature for Osteosarcoma Patients. JOURNAL OF ONCOLOGY 2021; 2021:2719172. [PMID: 34853590 PMCID: PMC8629625 DOI: 10.1155/2021/2719172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022]
Abstract
Background Increasing evidence has shown that tumorigenesis correlates with aberrant epigenetic factors, such as DNA methylation, histone modification, RNA m6A modification, RNA binding proteins, and transcription factors. However, it is unclear that how epigenetic genes linked with alteration contribute to osteosarcoma's incidence and clinical prognosis. We developed an epigenetic modification-related prognostic model that may improve the diagnosis and prognosis of osteosarcoma. Methods We investigated the epigenetic modification-associated genes and their clinical significance in osteosarcoma in this research. Our gene transcriptome data were obtained from the TARGET database and the GEO database. Bioinformatics techniques were used to investigate their functionalities. The diagnostic and prognostic models were constructed using univariate and multivariate Cox regression. In addition, we developed a nomogram indicating the practicability of the prognostic model described above. Results A risk score model constructed based on four epigenetic modification-related genes (MYC, TERT, EIF4E3, and RBM34) can effectively predict the prognosis of patients with osteosarcoma. Based on the risk score and clinical features, we constructed a nomogram. Conclusion Epigenetic modification-related genes have been identified as important prognostic markers that may assist in osteosarcoma therapy therapeutic decision-making.
Collapse
|
46
|
Liu G, Zhang S, Zhao X, Li C, Gong M. Advances and Limitations of Next Generation Sequencing in Animal Diet Analysis. Genes (Basel) 2021; 12:genes12121854. [PMID: 34946803 PMCID: PMC8701983 DOI: 10.3390/genes12121854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Diet analysis is a critical content of animal ecology and the diet analysis methods have been constantly improving and updating. Contrary to traditional methods of high labor intensity and low resolution, the next generation sequencing (NGS) approach has been suggested as a promising tool for dietary studies, which greatly improves the efficiency and broadens the application range. Here we present a framework of adopting NGS and DNA metabarcoding into diet analysis, and discuss the application in aspects of prey taxa composition and structure, intra-specific and inter-specific trophic links, and the effects of animal feeding on environmental changes. Yet, the generation of NGS-based diet data and subsequent analyses and interpretations are still challenging with several factors, making it possible still not as widely used as might be expected. We suggest that NGS-based diet methods must be furthered, analytical pipelines should be developed. More application perspectives, including nutrient geometry, metagenomics and nutrigenomics, need to be incorporated to encourage more ecologists to infer novel insights on they work.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Wetland Ecological Function and Restoration in Beijing City, Wetland Research Institute of Chinese Academy of Forestry Sciences, Beijing 100091, China; (G.L.); (X.Z.); (C.L.)
| | - Shumiao Zhang
- Beijing Milu Ecological Research Center, Beijing 100076, China;
| | - Xinsheng Zhao
- Key Laboratory of Wetland Ecological Function and Restoration in Beijing City, Wetland Research Institute of Chinese Academy of Forestry Sciences, Beijing 100091, China; (G.L.); (X.Z.); (C.L.)
| | - Chao Li
- Key Laboratory of Wetland Ecological Function and Restoration in Beijing City, Wetland Research Institute of Chinese Academy of Forestry Sciences, Beijing 100091, China; (G.L.); (X.Z.); (C.L.)
| | - Minghao Gong
- Key Laboratory of Wetland Ecological Function and Restoration in Beijing City, Wetland Research Institute of Chinese Academy of Forestry Sciences, Beijing 100091, China; (G.L.); (X.Z.); (C.L.)
- Correspondence: ; Tel.: +86-010-62884159
| |
Collapse
|
47
|
Maiuolo J, Gliozzi M, Carresi C, Musolino V, Oppedisano F, Scarano F, Nucera S, Scicchitano M, Bosco F, Macri R, Ruga S, Cardamone A, Coppoletta A, Mollace A, Cognetti F, Mollace V. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021; 13:nu13113834. [PMID: 34836091 PMCID: PMC8619660 DOI: 10.3390/nu13113834] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death globally, associated with multifactorial pathophysiological components. In particular, genetic mutations, infection or inflammation, unhealthy eating habits, exposition to radiation, work stress, and/or intake of toxins have been found to contribute to the development and progression of cancer disease states. Early detection of cancer and proper treatment have been found to enhance the chances of survival and healing, but the side effects of anticancer drugs still produce detrimental responses that counteract the benefits of treatment in terms of hospitalization and survival. Recently, several natural bioactive compounds were found to possess anticancer properties, capable of killing transformed or cancerous cells without being toxic to their normal counterparts. This effect occurs when natural products are associated with conventional treatments, thereby suggesting that nutraceutical supplementation may contribute to successful anticancer therapy. This review aims to discuss the current literature on four natural bioactive extracts mostly characterized by a specific polyphenolic profile. In particular, several activities have been reported to contribute to nutraceutical support in anticancer treatment: (1) inhibition of cell proliferation, (2) antioxidant activity, and (3) anti-inflammatory activity. On the other hand, owing to their attenuation of the toxic effect of current anticancer therapies, natural antioxidants may contribute to improving the compliance of patients undergoing anticancer treatment. Thus, nutraceutical supplementation, along with current anticancer drug treatment, may be considered for better responses and compliance in patients with cancer. It should be noted, however, that when data from studies with bioactive plant preparations are discussed, it is appropriate to ensure that experiments have been conducted in accordance with accepted pharmacological research practices so as not to disclose information that is only partially correct.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annarita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annachiara Mollace
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
48
|
Horie K, Maeda H, Nanashima N, Oey I. Potential Vasculoprotective Effects of Blackcurrant ( Ribes nigrum) Extract in Diabetic KK-A y Mice. Molecules 2021; 26:molecules26216459. [PMID: 34770868 PMCID: PMC8587626 DOI: 10.3390/molecules26216459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023] Open
Abstract
Polyphenols are bioactive compounds found naturally in fruits and vegetables; they are widely used in disease prevention and health maintenance. Polyphenol-rich blackcurrant extract (BCE) exerts beneficial effects on vascular health in menopausal model animals. However, the vasculoprotective effects in diabetes mellitus (DM) and atherosclerotic vascular disease secondary to DM are unknown. Therefore, we investigated whether BCE is effective in preventing atherosclerosis using KK-Ay mice as a diabetes model. The mice were divided into three groups and fed a high-fat diet supplemented with 1% BCE (BCE1), 3% BCE (BCE2), or Control for 9 weeks. The mice in the BCE2 group showed a considerable reduction in the disturbance of elastic lamina, foam cell formation, and vascular remodeling compared to those in the BCE1 and Control groups. Immunohistochemical staining indicated that the score of endothelial nitric oxide synthase staining intensity was significantly higher in both BCE2 (2.9) and BCE1 (1.9) compared to that in the Control (1.1). Furthermore, the score for the percentage of alpha-smooth muscle actin was significantly lower in the BCE2 (2.9%) than in the Control (2.1%). Our results suggest that the intake of anthocyanin-rich BCE could have beneficial effects on the blood vessels of diabetic patients.
Collapse
Affiliation(s)
- Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan;
- Correspondence: ; Tel.: +81-172-39-5527
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan;
| | - Naoki Nanashima
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan;
| | - Indrawati Oey
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
49
|
Mierziak J, Kostyn K, Boba A, Czemplik M, Kulma A, Wojtasik W. Influence of the Bioactive Diet Components on the Gene Expression Regulation. Nutrients 2021; 13:3673. [PMID: 34835928 PMCID: PMC8619229 DOI: 10.3390/nu13113673] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Diet bioactive components, in the concept of nutrigenetics and nutrigenomics, consist of food constituents, which can transfer information from the external environment and influence gene expression in the cell and thus the function of the whole organism. It is crucial to regard food not only as the source of energy and basic nutriments, crucial for living and organism development, but also as the factor influencing health/disease, biochemical mechanisms, and activation of biochemical pathways. Bioactive components of the diet regulate gene expression through changes in the chromatin structure (including DNA methylation and histone modification), non-coding RNA, activation of transcription factors by signalling cascades, or direct ligand binding to the nuclear receptors. Analysis of interactions between diet components and human genome structure and gene activity is a modern approach that will help to better understand these relations and will allow designing dietary guidances, which can help maintain good health.
Collapse
Affiliation(s)
- Justyna Mierziak
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Kamil Kostyn
- Department of Genetics, Plant Breeding & Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24A, 50-363 Wroclaw, Poland;
| | - Aleksandra Boba
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Magdalena Czemplik
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Anna Kulma
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Wioleta Wojtasik
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| |
Collapse
|
50
|
Kocabas Ş, Sanlier N. A comprehensive overview of the complex relationship between epigenetics, bioactive components, cancer, and aging. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34623201 DOI: 10.1080/10408398.2021.1986803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Among age-related diseases, the incidence of cancer increases significantly due to the overlap of some molecular pathways between cancer and aging. While the genetic influence on the human lifespan is estimated to be about 20-25%, epigenetic changes play an important role in modulating individual health status, aging. Aging and age-related conditions are processes that can be modified by both genetic, environmental factors, including dietary habits. Epigenetics is a new discipline has significant potential to be applied for the prevention, management of certain carcinomas and diseases. Epigenetic modifications may play an important role in disease occurrence and pathogenesis. Some nutritional components can be significantly effective in the prevention of breast, skin, esophagus, colorectal, prostate, pancreatic, lung cancers. It contains minerals, vitamins, and some bioactive components (curcumin, indole 3 carbinol, di-indolylmethane, sulforaphane, epigallocatechin-3-gallate, genistein, resveratrol, pterostilbene, apigenin, etc.) regulatory processes. However, compelling evidence suggests that dietary habits can manipulate the aging process and/or its consequences, have health benefits. Aging processes become complex when combined with the relational role of bioactive nutritional components on gene expression. In this review, the relationship between epigenetic processes caused by DNA methylylation, histone modification, non-coding m-RNA, and telomerase activity, the risk of aging and cancer is discussed.
Collapse
Affiliation(s)
- Şule Kocabas
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, Turkey
| |
Collapse
|