1
|
Han M, Hou M, Yang S, Gao Z. Oral responsive delivery systems for probiotics targeting the intestinal tract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39424610 DOI: 10.1002/jsfa.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
The increasing prevalence of health issues, driven by sedentary lifestyles and unhealthy diets in modern society, has led to a growing demand for natural dietary supplements to support overall health and well-being. Probiotic dietary supplements have garnered widespread recognition for their potential health benefits. However, their efficacy is often hindered by the hostile conditions of the gastrointestinal tract. To surmount this challenge, biomaterial-based microencapsulation techniques have been extensively employed to shield probiotics from the harsh environments of stomach acid and bile salts, facilitating their precise delivery to the colon for optimal nutritional effects. With consideration of the distinctive gastrointestinal tract milieu, probiotic delivery systems have been categorized into pH-responsive release, enzyme-responsive release, redox-responsive release and pressure-triggered release systems. These responsive delivery systems have not only demonstrated improved probiotic survival rates in the stomach, but also successful release in the intestines, facilitating enhanced adhesion and colonization of probiotics within the gut. Consequently, these responsive delivery systems contribute to the effectiveness of probiotic supplementation in intervening with gastrointestinal diseases. This review provides a comprehensive overview of the diverse oral responsive delivery systems tailored for probiotics targeting the intestinal tract. Furthermore, the review critically examines the limitations and future prospects of these approaches. This review offers valuable guidance for the effective delivery of probiotics to the intestinal tract, enhancing the potential of probiotics as dietary supplements to promote gastrointestinal health and well-being. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengxin Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuang Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Okafor NI. Microencapsulation Techniques in HIV Pediatric Formulations: Advances and Future Outlook. Adv Pharmacol Pharm Sci 2024; 2024:5081655. [PMID: 39421019 PMCID: PMC11483870 DOI: 10.1155/2024/5081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 10/19/2024] Open
Abstract
The treatment of human immunodeficiency virus (HIV) in children has persistently been complex and tedious on a global scale. This is because adult and pediatric HIV treatments follow a similar therapeutic approach. Due to the dearth of clinically licensed pediatric antiretroviral drug (ARVD) therapy, children with HIV worldwide are prescribed unlicensed drugs each year. This has triggered likelihood of poor drug adherence, therapeutic failure, and even adverse reactions brought on by a variety of factors, including pill size and quantity, which is the main cause of swallowing difficulties, repeated administration of these various ARVDs, many of which have poor solubility and cause severe side effects in children, and unpalatability of the drug, which is one of the criteria for pediatric formulations. Thus, there is a necessity for investigation into several advanced microencapsulation techniques that could curb these challenges. Microencapsulation techniques have explored in drug delivery for encapsulation and manufacture of different nanoparticles that have shown significant potential in mitigating and surmounting different constraints, such as taste masking, enhanced drug solubility and bioavailability, and production of micronized fine powders for treatment of varying diseases. Nevertheless, the usage of these technologies in HIV pediatric formulations has garnered relatively little attention. Thus, this review has paid a keen interest in examining several microencapsulation strategies for potential utilization in the development of HIV pediatric formulations.
Collapse
Affiliation(s)
- Nnamdi Ikemefuna Okafor
- Department of Pharmaceutical Sciences, University of the Western Cape, Robert Sobukwe Drive, Bellville, Cape Town, South Africa
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Mancera-López ME, Barrera-Cortés J. Influence of Chitosan on the Viability of Encapsulated and Dehydrated Formulations of Vegetative Cells of Actinomycetes. Polymers (Basel) 2024; 16:2691. [PMID: 39408403 PMCID: PMC11478721 DOI: 10.3390/polym16192691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
This study focuses on developing an encapsulated and dehydrated formulation of vegetative actinobacteria cells for an efficient application in sustainable agriculture, both as a fungicidal agent in crop protection and as a growth-stimulating agent in plants. Three strains of actinobacteria were used: one from a collection (Streptomyces sp.) and two natives to agricultural soil, which were identified as S3 and S6. Vegetative cells propagated in a specific liquid medium for mycelium production were encapsulated in various alginate-chitosan composites produced by extrusion. Optimal conditions for cell encapsulation were determined, and cell damage from air-drying at room temperature was evaluated. The fresh and dehydrated composites were characterized by porosity, functional groups, size and shape, and their ability to protect the immobilized vegetative cells' viability. Actinomycetes were immobilized in capsules of 2.1-2.7 mm diameter with a sphericity index ranging from 0.058 to 0.112. Encapsulation efficiency ranged from 50% to 88%, and cell viability after drying varied between 44% and 96%, depending on the composite type, strain, and airflow. Among the three immobilized and dried strains, S3 and S6 showed greater resistance to encapsulation and drying with a 4 L·min-1 airflow when immobilized in coated and core-shell composites. Encapsulation in alginate-chitosan matrices effectively protects vegetative actinobacteria cells during dehydration, maintaining their viability and functionality for agricultural applications.
Collapse
Affiliation(s)
| | - Josefina Barrera-Cortés
- Biotechnology and Bioengineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Zacatenco Unit, Mexico City 07360, Mexico;
| |
Collapse
|
4
|
Ruszkowska M, Tańska M, Miedzianka J, Kowalczewski PŁ. Field Cricket ( Gryllus bimaculatus) and Spirulina ( Arthrospira platensis) Powders as Environmentally Friendly Protein Enrichment Ingredients in Corn Snacks. Foods 2024; 13:2390. [PMID: 39123581 PMCID: PMC11311995 DOI: 10.3390/foods13152390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Unconventional protein sources are currently extensively studied as food ingredients. This study aimed to evaluate the effect of 1.5% and 3% field cricket powder (GB) and 2-8% of its mixture (1:1) with spirulina powder (S) on the nutritional value, physicochemical properties, and sensory characteristics of corn extrudates. Additionally, 2% baking powder (BP) was added to assess its impact on the properties of the enriched extrudates. The results showed that both GB and GB + S improved nutritional value, with protein content increasing by up to 46% and higher levels of essential amino acids, particularly leucine and valine. However, these ingredients decreased the expansion ratio (by up to 15%), colour lightness (by up to 30%), and yellowness (by up to 47%) and increased the hardness (by up to 25%) of the corn extrudates. The S addition positively influenced product storage stability but decreased its sensory acceptance, especially aroma and taste. The BP addition mitigated the negative effects of higher GB and GB + S concentrations, particularly on sensory characteristics. In conclusion, incorporating up to 6% of the GB + S mixture provides a higher protein content with only minor changes to the product's characteristics compared to GB. Ratings exceeding 4.2 points indicate the good acceptability of these snacks.
Collapse
Affiliation(s)
- Millena Ruszkowska
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland
| | - Małgorzata Tańska
- Department of Food Plant Chemistry and Processing, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland;
| | - Joanna Miedzianka
- Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | | |
Collapse
|
5
|
Guo C, Li Y, Zhang H, Zhang Q, Wu X, Wang Y, Sun F, Shi S, Xia X. A review on improving the sensitivity and color stability of naturally sourced pH-sensitive indicator films. Compr Rev Food Sci Food Saf 2024; 23:e13390. [PMID: 39031881 DOI: 10.1111/1541-4337.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 07/22/2024]
Abstract
Naturally sourced pH-sensitive indicator films are of interest for real-time monitoring of food freshness through color changes because of their safety. Therefore, natural pigments for indicator films are required. However, pigment stability is affected by environmental factors, which can in turn affect the sensitivity and color stability of the pH-sensitive indicator film. First, natural pigments (anthocyanin, betalain, curcumin, alizarin, and shikonin) commonly used in pH-sensitive indicator films are presented. Subsequently, the mechanisms behind the change in pigment color under different pH environments and their applications in monitoring food freshness are also described. Third, influence factors, such as the sources, types, and pH sensitivity of pigments, as well as environmental parameters (light, temperature, humidity, and oxygen) of sensitivity and color stability, are analyzed. Finally, methods for improving the pH-sensitive indicator film are explored, encapsulation of natural pigments, incorporation of a hydrophobic film-forming matrix or function material, and protective layer have been shown to enhance the color stability of indicator films, the addition of copigments or mental ions, blending of different natural pigments, and the utilization of electrospinning have been proved to increase the color sensitivity of indicator films. This review could provide theoretical support for the development of naturally sourced pH-sensitive indicator films with high stability and sensitivity and facilitate the development in the field of monitoring food freshness.
Collapse
Affiliation(s)
- Chang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaodan Wu
- Heilongjiang North Fish Fishing Industry Group Co., Ltd, Daqing, Heilongjiang, China
| | - Ying Wang
- Heilongjiang North Fish Fishing Industry Group Co., Ltd, Daqing, Heilongjiang, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Lavertu JD, Bawa KK, Hrapovic S, Fu D, Oh JK, Hemraz UD. Fabrication of thermo-responsive multicore microcapsules using a facile extrusion process. RSC Adv 2024; 14:20105-20112. [PMID: 38915334 PMCID: PMC11194665 DOI: 10.1039/d4ra03131h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
A process employing extrusion was used to produce multicore microcapsules composed of multiple beads. The inner beads were made from κ-carrageenan (κ-c), a thermo-responsive linear sulphated polymer whose gelling temperature ranges at 40-60 °C, depending on the concentration of κ-c polymer and the amount of potassium chloride used for gelation. The resulting beads were then enveloped by chitosan through gelation with sodium triphosphate. The pesticide ammonium glufosinate was encapsulated in the κ-c/chitosan multicore microcapsules for demonstration of controlled release of the encapsulant. It was found that in response to an external stimulus, such as elevated temperature or solar simulation, the microcapsules exhibit the gradual release of encapsulated pesticide molecules from multicore microcapsules, compared with beads only. This process of making multicore microcapsules can be extended to other polymer pairs based on applications. This work is relevant to agriculture, where the controlled-release of the pesticides or fertilizers could be triggered by the sun and/or temperature changes, thus extending the residual period of the chemicals as well as decreasing the extent of pollution by leaching of abundant chemicals.
Collapse
Affiliation(s)
- Jean-Danick Lavertu
- Aquatic and Crop Resource Development, National Research Council of Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada
| | - Kamaljeet Kaur Bawa
- Department of Chemistry and Biochemistry, Concordia University Montreal Quebec H4B 1R6 Canada
| | - Sabahudin Hrapovic
- Aquatic and Crop Resource Development, National Research Council of Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada
| | - Dong Fu
- Aquatic and Crop Resource Development, National Research Council of Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University Montreal Quebec H4B 1R6 Canada
| | - Usha D Hemraz
- Aquatic and Crop Resource Development, National Research Council of Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada
- Human Health Therapeutics, National Research Council of Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada
| |
Collapse
|
7
|
Zhang Z, Feng Y, Wang H, He H. Synergistic modification of hot-melt extrusion and nobiletin on the multi-scale structures, interactions, thermal properties, and in vitro digestibility of rice starch. Front Nutr 2024; 11:1398380. [PMID: 38812933 PMCID: PMC11133735 DOI: 10.3389/fnut.2024.1398380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
Background Rice starch has high digestibility due to its large carbohydrate content. Synergistic modification of hot-melt extrusion (HME) and additives such as flavonoids, hydrocolloids, proteins, lipids, and other additives has the tendency to retard the rate of starch hydrolysis. Hence, the current investigation aimed to study the combined effect of the HME-assisted addition of nobiletin (NOB, 0, 2, 4, and 6%) on the multi-scale structures, interactions, thermal, and digestibility characteristics of rice starch. Methods The study employed density functional theory calculations and an infrared second derivative of an Fourier-transform infrared (FTIR) spectrometer to analyze the interactions between NOB and starch. The physicochemical properties of the starch extrudates were characterized by FTIR, 13C nuclear magnetic resonance, X-ray diffraction, and differential scanning calorimetry, while the digestibility was evaluated using an in vitro digestion model. Results HME was found to disrupt the crystalline structure, helix structure, short-ordered structure, and thermal properties of starch. The interaction between NOB and starch involved hydrophobic interactions and hydrogen bonds, effectively preventing the molecular chains of starch from interacting with each other and disrupting their double helix structure. The addition of NOB led to the formation of a highly single-helical V-type crystalline structure, along with the formation of ordered structural domains. Consequently, the combined treatment significantly enhanced the ordered structure and thermal stability of starch, thus effectively leading to an increase in resistant starch and slowly digestion starch. Discussion The study underscores that synergistic modification of HME and NOB holds promise for enhancing both the nutritional value and functional properties of rice starch. These findings offer valuable insights for developing high-quality rice starch products with broader applications.
Collapse
Affiliation(s)
- Zhihong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, China
| | - Ying Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, China
| | - Honglan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, China
| | - Hai He
- Department of Nutrition and Food Hygiene, School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, China
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| |
Collapse
|
8
|
Han M, Yang S, Song J, Gao Z. Layer-by-layer coated probiotics with chitosan and liposomes demonstrate improved stability and antioxidant properties in vitro. Int J Biol Macromol 2024; 258:128826. [PMID: 38123040 DOI: 10.1016/j.ijbiomac.2023.128826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Probiotics are of increasing interest for their potential health benefits, but their survival and adhesion in the harsh gastrointestinal environment remain a concern. This study explored a single-cell encapsulation technique to enhance probiotic survival and adhesion in the gastrointestinal tract. We encapsulated probiotics in curcumin-loaded liposomes, further coated them with polymers using layer-by-layer techniques. The coated probiotics were evaluated for survival in simulated gastrointestinal conditions, adhesion to colonic mucus, and scavenging of reactive oxygen species (ROS). The results showed that multi-layer encapsulation increased probiotic size at the nanoscale, enhancing their survival in simulated gastrointestinal conditions. Upon reaching the colon, the shedding of the coating coincided with probiotic proliferation. Additionally, the coated probiotics exhibited increased adhesion to colonic mucus. Moreover, the coating acted as a protective barrier for effectively scavenging reactive oxygen radicals, ensuring probiotic survival in inflammatory environments. This study combines the synergistic effects of probiotics and curcumin, underscoring the promise of single-cell encapsulation techniques in improving the efficacy of probiotics for addressing colitis-related diseases.
Collapse
Affiliation(s)
- Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Shuang Yang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jiangling Song
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
9
|
Li S, Jiang S, Jia W, Guo T, Wang F, Li J, Yao Z. Natural antimicrobials from plants: Recent advances and future prospects. Food Chem 2024; 432:137231. [PMID: 37639892 DOI: 10.1016/j.foodchem.2023.137231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
Plant-based antimicrobial substances have emerged as promising alternatives to conventional antibiotics and preservatives. Although many review studies have been done in this field, many of these reviews solely focus on specific compounds from particular perspectives. This paper aims to provide a comprehensive review on the various types of plant-based antimicrobial substances, the extraction and purification processes, as well as the application and safety issues. Combining different natural plant-derived substances shows promise in enhancing antimicrobial activities. Moreover, despite the existence of various methods (e.g., microwave-assisted extraction, supercritical fluid extraction) to extract and purify antimicrobial substances, isolating pure compounds remains a laborious process. Sustainability issues should also be considered when developing extraction methods. Additionally, the extraction process generates a significant amount of plant waste, necessitating proper utilization to ensure economic viability. Lastly, not all plant-derived substances are safe, and further research is needed to investigate their toxicity before widespread application.
Collapse
Affiliation(s)
- Shuo Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Wenting Jia
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Tongming Guo
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
10
|
Homayouni-Rad A, Mortazavian AM, Pourjafar H, Moghadam SK. Extrusion and Co-extrusion: A Technology in Probiotic Encapsulation with Alternative Materials. Curr Pharm Biotechnol 2024; 25:1986-2000. [PMID: 38275053 DOI: 10.2174/0113892010264234231219073231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 01/27/2024]
Abstract
Encapsulation, in particular extrusion and co-extrusion, is a common practice to protect probiotics from the harsh conditions of the digestive tract as well as processing. Hydrocolloids, including proteins and carbohydrates, natural or modified, are a group of ingredients used as the wall material in extrusion. Hydrocolloids, due to their specific properties, can significantly improve the probiotic survivability of the final powder during the microencapsulation process and storage. The present article will discuss the different kinds of hydrocolloids used for microencapsulation of probiotics by extrusion and co-extrusion, along with new sources of novel gums and their potential as wall material.
Collapse
Affiliation(s)
- Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir M Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Saba Kamalledin Moghadam
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Homroy S, Chopra R, Singh PK, Dhiman A, Chand M, Talwar B. Role of encapsulation on the bioavailability of omega-3 fatty acids. Compr Rev Food Sci Food Saf 2024; 23:e13272. [PMID: 38284597 DOI: 10.1111/1541-4337.13272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 01/30/2024]
Abstract
Omega-3 fatty acids (omega-3 FAs) have been widely recognized for their therapeutic advantages, including anti-inflammatory and cardioprotective properties. They have shown promise in enhancing regulatory function, promotingdevelopment and mitigating the progression of diabetes and cancer. The scientific communities, along with industries, are actively endorsing initiatives aimed at increasing the daily intake of lipids rich in omega-3 FAs. Nevertheless, incorporating polyunsaturated FAs (PUFAs) into food products poses several challenges due to their susceptibility to oxidation when exposed to oxygen, high temperatures, and moisture. This oxidative deterioration results in undesirable flavours and a loss of nutritional value. Various methods, including physical blending, interesterification, and encapsulation, have been utilized as ways to enhance the stability of edible oils rich in PUFA against oxidation. Encapsulation has emerged as a proven strategy for enhancing the oxidative stability and functional properties of omega-3 FA-rich oils. Multiple encapsulation methods have been developed to stabilize and improve the delivery of omega-3 FAs in food products. The selection of an appropriate encapsulation method depends on the desired application of the encapsulated oil. In addition, encapsulation enhances the bioavailability of omega-3 FAs by promoting increased absorption of the encapsulated form in the intestinal epithelium. This review discusses the techniques and principles of omega-3 FA-rich oil encapsulation and its role in improving stability and bioavailability. Furthermore, it also investigates the potential health benefits of these encapsulated oils. This review explores the variations in bioavailability based on encapsulation techniques and processing, offering vital insights for nutrition and product development.
Collapse
Affiliation(s)
- Snigdha Homroy
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Priyanka Kumari Singh
- Department of Food and Nutrition & Food Technology, Institute of Home Economics, University of Delhi, Delhi, India
| | - Aishwarya Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Monika Chand
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Binanshu Talwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| |
Collapse
|
12
|
Mattos Rocha Olivieri C, Aparecida Manólio Soares Freitas R, Alfredo Gomes Arêas J. Jatobá-do-cerrado (Hymenaea stigonocarpa Mart.) pulp positively affects plasma and hepatic lipids and increases short-chain fatty acid production in hamsters fed a hypercholesterolemic diet. Food Res Int 2024; 175:113766. [PMID: 38129058 DOI: 10.1016/j.foodres.2023.113766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
This study aimed to assess the impact of jatobá pulp, in its fresh (FJ) and extruded (EJ) forms, on lipid metabolism and intestinal fermentation parameters in hamsters. In a 21-day experiment, we determined the parameters of the animal lipid metabolism and colonic production of short chain fatty acids in four different groups. Control (C), fresh pulp (FJ) and extruded pulp (EJ) were fed using hypercholesterolemic diets, and the reference (R) was fed using AIN93 meal. R and C diets contained cellulose, FJ and EJ were added by jatobá pulp as a fiber source. The results showed that FJ and EJ exhibited lower levels of triglycerides, total cholesterol, LDL-c, non-HDL-c serum levels, liver lipids, and liver weight compared to C. The EJ had higher bile acid excretion in stool than the C. EJ and FJ exhibited lower excreted fiber compared to R and C, implying greater fermentation. Furthermore, the production of short-chain fatty acids (SCFA) in the cecum of FJ and EJ animals exceeded that of the C. Acetic and propionic acids were more abundant in the FJ and EJ diets, with FJ producing more butyric acid than the other groups.In conclusion, jatobá pulp maintained at normal levels of total cholesterol, LDL and HDL-associated cholesterol, non-HDL cholesterol, and serum triglycerides, while also reducing the accumulation of hepatic lipids. Jatobá also promoted SCFA formation and fermentation, making it a valuable ingredient for preventing chronic diseases.
Collapse
Affiliation(s)
- Camila Mattos Rocha Olivieri
- Department of Nutrition, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP 01246-904, Brazil.
| | | | - José Alfredo Gomes Arêas
- Department of Nutrition, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP 01246-904, Brazil.
| |
Collapse
|
13
|
Ligarda-Samanez CA, Choque-Quispe D, Moscoso-Moscoso E, Pozo LMF, Ramos-Pacheco BS, Palomino-Rincón H, Gutiérrez RJG, Peralta-Guevara DE. Effect of Inlet Air Temperature and Quinoa Starch/Gum Arabic Ratio on Nanoencapsulation of Bioactive Compounds from Andean Potato Cultivars by Spray-Drying. Molecules 2023; 28:7875. [PMID: 38067603 PMCID: PMC10708246 DOI: 10.3390/molecules28237875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Nanoencapsulation of native potato bioactive compounds by spray-drying improves their stability and bioavailability. The joint effect of the inlet temperature and the ratio of the encapsulant (quinoa starch/gum arabic) on the properties of the nanocapsules is unknown. The purpose of this study was to determine the best conditions for the nanoencapsulation of these compounds. The effects of two inlet temperatures (96 and 116 °C) and two ratios of the encapsulant (15 and 25% w/v) were evaluated using a factorial design during the spray-drying of native potato phenolic extracts. During the study, measurements of phenolic compounds, flavonoids, anthocyanins, antioxidant capacity, and various physical and structural properties were carried out. Higher inlet temperatures increased bioactive compounds and antioxidant capacity. However, a higher concentration of the encapsulant caused the dilution of polyphenols and anthocyanins. Instrumental analyses confirmed the effective encapsulation of the nuclei in the wall materials. Both factors, inlet temperature, and the encapsulant ratio, reduced the nanocapsules' humidity and water activity. Finally, the ideal conditions for the nanoencapsulation of native potato bioactive compounds were determined to be an inlet temperature of 116 °C and an encapsulant ratio of 15% w/v. The nanocapsules obtained show potential for application in the food industry.
Collapse
Affiliation(s)
- Carlos A. Ligarda-Samanez
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - David Choque-Quispe
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Elibet Moscoso-Moscoso
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Lizeth M. Flores Pozo
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Betsy S. Ramos-Pacheco
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Henry Palomino-Rincón
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Rodrigo J. Guzmán Gutiérrez
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Diego E. Peralta-Guevara
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| |
Collapse
|
14
|
Wang Z, Zhou D, Liu D, Zhu B. Food-grade encapsulated polyphenols: recent advances as novel additives in foodstuffs. Crit Rev Food Sci Nutr 2023; 63:11545-11560. [PMID: 35776082 DOI: 10.1080/10408398.2022.2094338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A growing inclination among consumers toward the consumption of natural products has propelled the usage of natural compounds as novel additives. Polyphenols are among the most popular candidates of natural food additives with multiple functionalities and bioactivities but are limited by instability. In this regard, a series of food-grade encapsulated polyphenols has been tailored for incorporating into food formulations as novel additives, which could better satisfy the complicated industry processing. This review seeks to present the most recent discussions regarding their application status in diverse foodstuffs as novel additives, involving functionalities, action mechanisms, and relevant encapsulation technologies. The scientific findings confirm that such novel additives show positive effects on physicochemical, sensory, and nutritional properties as well as the shelf life of diverse food matrices. However, poor heat resistance is still the major defect that restricts their application in thermal processes. Future research should focus on the evaluation of the compatibility and applicability of encapsulated polyphenols in real food processes as well as track and deepen their molecular action mechanisms in the context of complex foodstuffs. Innovation of existing encapsulation technologies should also be concerned in the future to bridge the gap between lab and scale-up production.
Collapse
Affiliation(s)
- Zonghan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou, Zhejiang, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Dayong Zhou
- National Engineering Research Center of Seafood, Dalian, China
- College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou, Zhejiang, China
- Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Dalian, China
- College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
15
|
Zhao D, Li Z, Xia J, Kang Y, Sun P, Xiao Z, Niu Y. Research progress of starch as microencapsulated wall material. Carbohydr Polym 2023; 318:121118. [PMID: 37479436 DOI: 10.1016/j.carbpol.2023.121118] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/23/2023]
Abstract
Starch is non-toxic, low cost, and possesses good biocompatibility and biodegradability. As a natural polymer material, starch is an ideal choice for microcapsule wall materials. Starch-based microcapsules have a wide range of applications and application prospects in fields such as food, pharmaceuticals, cosmetics, and others. This paper firstly reviews the commonly used wall materials and preparation methods of starch-based microcapsules. Then the effect of starch wall materials on microcapsule properties is introduced in detail. It is expected to provide researchers with design inspiration and ideas for the development of starch-based microcapsules. Next the applications of starch-based microcapsules in various fields are presented. Finally, the future trends of starch-based microcapsules are discussed. Molecular simulation, green chemistry, and solutions to the main problems faced by resistant starch microcapsules may be the future research trends of starch-based microcapsules.
Collapse
Affiliation(s)
- Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Zhibin Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Jiayi Xia
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
16
|
Ligarda-Samanez CA, Moscoso-Moscoso E, Choque-Quispe D, Ramos-Pacheco BS, Arévalo-Quijano JC, la Cruz GD, Huamán-Carrión ML, Quispe-Quezada UR, Gutiérrez-Gómez E, Cabel-Moscoso DJ, Muñoz-Melgarejo M, Calsina Ponce WC. Native Potato Starch and Tara Gum as Polymeric Matrices to Obtain Iron-Loaded Microcapsules from Ovine and Bovine Erythrocytes. Polymers (Basel) 2023; 15:3985. [PMID: 37836034 PMCID: PMC10575126 DOI: 10.3390/polym15193985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Iron deficiency leads to ferropenic anemia in humans. This study aimed to encapsulate iron-rich ovine and bovine erythrocytes using tara gum and native potato starch as matrices. Solutions containing 20% erythrocytes and different proportions of encapsulants (5, 10, and 20%) were used, followed by spray drying at 120 and 140 °C. Iron content in erythrocytes ranged between 2.24 and 2.52 mg of Fe/g; microcapsules ranged from 1.54 to 2.02 mg of Fe/g. Yields varied from 50.55 to 63.40%, and temperature and encapsulant proportion affected moisture and water activity. Various red hues, sizes, and shapes were observed in the microcapsules. SEM-EDS analysis revealed the surface presence of iron in microcapsules with openings on their exterior, along with a negative zeta potential. Thermal and infrared analyses confirmed core encapsulation within the matrices. Iron release varied between 92.30 and 93.13% at 120 min. Finally, the most effective treatments were those with higher encapsulant percentages and dried at elevated temperatures, which could enable their utilization in functional food fortification to combat anemia in developing countries.
Collapse
Affiliation(s)
- Carlos A. Ligarda-Samanez
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (M.L.H.-C.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Elibet Moscoso-Moscoso
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (M.L.H.-C.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - David Choque-Quispe
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (M.L.H.-C.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Betsy S. Ramos-Pacheco
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (M.L.H.-C.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - José C. Arévalo-Quijano
- Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Germán De la Cruz
- Agricultural Science Faculty, Universidad Nacional de San Cristobal de Huamanga, Ayacucho 05000, Peru;
| | - Mary L. Huamán-Carrión
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (M.L.H.-C.)
| | - Uriel R. Quispe-Quezada
- Agricultural and Forestry Business Engineering, Universidad Nacional Autónoma de Huanta, Ayacucho 05000, Peru;
| | - Edgar Gutiérrez-Gómez
- Engineering and Management Faculty, Universidad Nacional Autónoma de Huanta, Ayacucho 05000, Peru;
| | | | | | | |
Collapse
|
17
|
Carvalho SG, Dos Santos AM, Polli Silvestre AL, Tavares AG, Chorilli M, Daflon Gremião MP. Multifunctional systems based on nano-in-microparticles as strategies for drug delivery: advances, challenges, and future perspectives. Expert Opin Drug Deliv 2023; 20:1231-1249. [PMID: 37786284 DOI: 10.1080/17425247.2023.2263360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
INTRODUCTION Innovative delivery systems are a promising and attractive approach for drug targeting in pharmaceutical technology. Among the various drug delivery systems studied, the association of strategies based on nanoparticles and microparticles, called nano-in-microparticles, has been gaining prominence as it allows targeting in a specific and personalized way, considering the physiological barriers faced in each disease. AREAS COVERED This review proposes to discuss nano-in-micro systems, updated progress on the main biomaterials used in the preparation of these systems, preparation techniques, physiological considerations, applications and challenges, and possible strategies for drug administration. Finally, we bring future perspectives for advances in clinical and field translation of multifunctional systems based on nano-in-microparticles. EXPERT OPINION This article brings a new approach to exploring the use of multifunctional systems based on nano-in-microparticles for different applications, in addition, it also emphasizes the use of biomaterials in these systems and their limitations. There is currently no study in the literature that explores this approach, making a review article necessary to address this association of strategies for application in pharmaceutical technology.
Collapse
Affiliation(s)
- Suzana Gonçalves Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Aline Martins Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Amanda Letícia Polli Silvestre
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Alberto Gomes Tavares
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
18
|
Řepka D, Kurillová A, Murtaja Y, Lapčík L. Application of Physical-Chemical Approaches for Encapsulation of Active Substances in Pharmaceutical and Food Industries. Foods 2023; 12:foods12112189. [PMID: 37297434 DOI: 10.3390/foods12112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Encapsulation is a valuable method used to protect active substances and enhance their physico-chemical properties. It can also be used as protection from unpleasant scents and flavors or adverse environmental conditions. METHODS In this comprehensive review, we highlight the methods commonly utilized in the food and pharmaceutical industries, along with recent applications of these methods. RESULTS Through an analysis of numerous articles published in the last decade, we summarize the key methods and physico-chemical properties that are frequently considered with encapsulation techniques. CONCLUSION Encapsulation has demonstrated effectiveness and versatility in multiple industries, such as food, nutraceutical, and pharmaceuticals. Moreover, the selection of appropriate encapsulation methods is critical for the effective encapsulation of specific active compounds. Therefore, constant efforts are being made to develop novel encapsulation methods and coating materials for better encapsulation efficiency and to improve properties for specific use.
Collapse
Affiliation(s)
- David Řepka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Antónia Kurillová
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Yousef Murtaja
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lubomír Lapčík
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin, Czech Republic
| |
Collapse
|
19
|
Karakaş CY, Yildirim RM, Karadag A. Encapsulation of Lactobacillus plantarum ELB90 by electrospraying in a double emulsion (W1/O/W2) loaded alginate beads to improve the gastrointestinal survival and thermal stability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3427-3436. [PMID: 36764922 DOI: 10.1002/jsfa.12494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In the present study, the Lactobacillus plantarum ELB90 was encapsulated in double emulsion (W1/O/W2) loaded alginate beads (emulbeads) by electrospraying and compared with emulsion-free control beads. The viability of encapsulated and free cells was assessed by exposing them to thermal processing (65 °C for 30 min and 72 °C for 3 min) and simulated gastrointestinal conditions. The beads were characterized by optical, scanning electron, fluorescence, and confocal laser scanning microscopy, as well as Fourier transform infrared and gel strength analysis. RESULTS After the intestinal stage of digestion, the survival rate of free bacteria was 38% [3.70 log colony-forming units (CFU) g-1 ], only increased to 43% and 53% for bare and chitosan-coated control beads, and it elevated the survival rate to 75% and 84% (8.70 log CFU g-1 ) for bare and chitosan-coated emulbeads, respectively. The presence of inulin increased gastrointestinal viability only in uncoated emulbeads. The bacteria loaded in emulbeads retained greater viability (5.90-6.90 log CFU g-1 ) against thermal treatment, compared to control beads (2.07-4.10 log CFU g-1 ) and free bacteria (2.57-3.11 log CFU mL-1 ). Encapsulation of L. plantarum ELB90 only in emulsion-free beads may not be appropriate for providing thermal stability. Inulin addition and chitosan-coating of the beads increased the size, and emulbeads presented smoother surfaces compared to emulsion-free beads. CONCLUSION The contribution of a double emulsion into the gel matrix of electrosprayed alginate beads exhibited enhanced protection for probiotic bacteria that could be useful for the development of functional foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Canan Yağmur Karakaş
- Food Engineering Department, Chemical, and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Rusen Metin Yildirim
- Food Engineering Department, Chemical, and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Ayse Karadag
- Food Engineering Department, Chemical, and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
20
|
Bennacef C, Desobry S, Probst L, Desobry-Banon S. Alginate Based Core-Shell Capsules Production through Coextrusion Methods: Recent Applications. Foods 2023; 12:foods12091788. [PMID: 37174326 PMCID: PMC10177967 DOI: 10.3390/foods12091788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Encapsulation is used in various industries to protect active molecules and control the release of the encapsulated materials. One of the structures that can be obtained using coextrusion encapsulation methods is the core-shell capsule. This review focuses on coextrusion encapsulation applications for the preservation of oils and essential oils, probiotics, and other bioactives. This technology isolates actives from the external environment, enhances their stability, and allows their controlled release. Coextrusion offers a valuable means of preserving active molecules by reducing oxidation processes, limiting the evaporation of volatile compounds, isolating some nutrients or drugs with undesired taste, or stabilizing probiotics to increase their shelf life. Being environmentally friendly, coextrusion offers significant application opportunities for the pharmaceutical, food, and agriculture sectors.
Collapse
Affiliation(s)
- Chanez Bennacef
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandoeuvre-lès-Nancy Cedex, France
- Cookal SAS Company, 19 Avenue de la Meurthe, 54320 Maxéville, France
| | - Stéphane Desobry
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandoeuvre-lès-Nancy Cedex, France
| | - Laurent Probst
- Cookal SAS Company, 19 Avenue de la Meurthe, 54320 Maxéville, France
| | - Sylvie Desobry-Banon
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
21
|
Bennacef C, Desobry-Banon S, Probst L, Desobry S. Alginate Core-Shell Capsules Production through Coextrusion Methods: Principles and Technologies. Mar Drugs 2023; 21:md21040235. [PMID: 37103374 PMCID: PMC10143073 DOI: 10.3390/md21040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
This paper provides an overview of coextrusion methods for encapsulation. Encapsulation involves the coating or entrapment of a core material such as food ingredients, enzymes, cells, or bioactives. Encapsulation can help compounds add to other matrices, stabilize compounds during storage, or enable controlled delivery. This review explores the principal l coextrusion methods available that can be used to produce core-shell capsules through the use of coaxial nozzles. Four methods for encapsulation by coextrusion are examined in detail, including dripping, jet cutting, centrifugal, and electrohydrodynamic systems. The targeted capsule size determines the appropriate parameters for each method. Coextrusion technology is a promising encapsulation technique able to generate core-shell capsules in a controlled manner, which can be applied to cosmetic, food, pharmaceutical, agriculture, and textile industries. Coextrusion is an excellent way to preserve active molecules and present a significant economic interest.
Collapse
Affiliation(s)
- Chanez Bennacef
- Laboratoire D'ingenierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France
- Cookal SAS Company, 19 Avenue de la Meurthe, 54320 Nancy, France
| | - Sylvie Desobry-Banon
- Laboratoire D'ingenierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France
| | - Laurent Probst
- Cookal SAS Company, 19 Avenue de la Meurthe, 54320 Nancy, France
| | - Stéphane Desobry
- Laboratoire D'ingenierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
22
|
Tan M, Zhang X, Sun S, Cui G. Nanostructured steady-state nanocarriers for nutrients preservation and delivery. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:31-93. [PMID: 37722776 DOI: 10.1016/bs.afnr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food bioactives possess specific physiological benefits of preventing certain diet-related chronic diseases or maintain human health. However, the limitations of the bioactives are their poor stability, lower water solubility and unacceptable bioaccessibility. Structure damage or degradation is often found for the bioactives under certain environmental conditions like high temperature, strong light, extreme pH or high oxygen concentration during food processing, packaging, storage and absorption. Nanostructured steady-state nanocarriers have shown great potential in overcoming the drawbacks for food bioactives. Various delivery systems including solid form delivery system, liquid form delivery system and encapsulation technology have been developed. The embedded food nutrients can largely decrease the loss and degradation during food processing, packaging and storage. The design and application of stimulus and targeted delivery systems can improve the stability, bioavailability and efficacy of the food bioactives upon oral consumption due to enzymatic degradation in the gastrointestinal tract. The food nutrients encapsulated in the smart delivery system can be well protected against degradation during oral administration, thus improving the bioavailability and releazing controlled or targeted release for food nutrients. The encapsulated food bioactives show great potential in nutrition therapy for sub-health status and disease. Much effort is required to design and prepare more biocompatible nanostructured steady-state nanocarriers using food-grade protein or polysaccharides as wall materials, which can be used in food industry and maintain the human health.
Collapse
Affiliation(s)
- Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China.
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Shan Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| |
Collapse
|
23
|
Effect of sustained-release tea tree essential oil solid preservative on fresh-cut pineapple storage quality in modified atmospheres packaging. Food Chem 2023; 417:135898. [PMID: 36934707 DOI: 10.1016/j.foodchem.2023.135898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/12/2023] [Accepted: 03/05/2023] [Indexed: 03/15/2023]
Abstract
The quality and safety of fresh-cut pineapple deteriorate during handling and storage due to physicochemical and microbial changes, so its preservation has attracted extensive attention. This study prepared sustained-release tea tree essential oil (TTO) solid preservative (SP) with an encapsulation efficiency of 71.45% and applied it on fresh-cut pineapple in modified atmospheres packaging (MAP). Results showed that TTO adsorbed on nano silicon dioxide (SiO2) was embedded in the starch-carboxymethyl cellulose network structure by extrusion. The hydrogen bond and hydrophobic interaction resulted in compact structure and good sustained-release performance of SP. The SP improved sensory quality and reduced nutrient loss and microbial spoilage of fresh-cut pineapple, which extended its shelf-life to four days. In addition, antioxidant capacity was enhanced with increasing antioxidant enzyme activity, antioxidant content, and 2,2-diphenyl-1-picrylhydrazine scavenging capacity and decreasing MDA accumulation. Therefore, sustained-release TTO solid preservative has potential for the preservation of fresh-cut pineapple.
Collapse
|
24
|
Villate A, San Nicolas M, Olivares M, Aizpurua-Olaizola O, Usobiaga A. Chitosan-Coated Alginate Microcapsules of a Full-Spectrum Cannabis Extract: Characterization, Long-Term Stability and In Vitro Bioaccessibility. Pharmaceutics 2023; 15:859. [PMID: 36986720 PMCID: PMC10058102 DOI: 10.3390/pharmaceutics15030859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Cannabinoids present in Cannabis sativa are increasingly used in medicine due to their therapeutic potential. Moreover, the synergistic interaction between different cannabinoids and other plant constituents has led to the development of full-spectrum formulations for therapeutic treatments. In this work, the microencapsulation of a full-spectrum extract via vibration microencapsulation nozzle technique using chitosan-coated alginate is proposed to obtain an edible pharmaceutical-grade product. The suitability of microcapsules was assessed by their physicochemical characterization, long-term stability in three different storage conditions and in vitro gastrointestinal release. The synthetized microcapsules contained mainly ∆9-tetrahydrocannabinol (THC)-type and cannabinol (CBN)-type cannabinoids and had a mean size of 460 ± 260 µm and a mean sphericity of 0.5 ± 0.3. The stability assays revealed that capsules should be stored only at 4 °C in darkness to maintain their cannabinoid profile. In addition, based on the in vitro experiments, a fast intestinal release of cannabinoids ensures a medium-high bioaccessibility (57-77%) of therapeutically relevant compounds. The full characterization of microcapsules indicates that they could be used for the design of further full-spectrum cannabis oral formulations.
Collapse
Affiliation(s)
- Aitor Villate
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
| | - Markel San Nicolas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
- Sovereign Fields S.L., Larramendi Kalea 3, 20006 Donostia, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
| | | | - Aresatz Usobiaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain
| |
Collapse
|
25
|
Lin T, Qin T, Jiang S, Zhang C, Wang L. Anti-inflammatory and anti-biotic drug metronidazole loaded ZIF-90 nanoparticles as a pH responsive drug delivery system for improved pediatric sepsis management. Microb Pathog 2023; 176:105941. [PMID: 36509311 DOI: 10.1016/j.micpath.2022.105941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Sepsis is a life-threatening disease caused by the dis-functioning of the immune response to pathogenic infections. Despite, the discovery of modern therapeutics and treatments of sepsis are lacking due to the resistance of pathogens. Metronidazole is an antibiotic commonly used to treat bacterial infections, but usage is limited and challenging by a short half-life period. In this research work, fabricate a pH-responsive drug delivery system for controlled release of metronidazole targeted molecules. We exemplified that, the encapsulation of hydrophilic metronidazole drug within a hydrophobic ZIF-90 framework can be enhanced the pH-responsive drug release under acidic conditions. The ZIF-90 frameworks only decompose in under acidic solutions, they are highly stable in physiological conditions. The pH-responsive protonation mechanism of ZIF-90 frameworks promotes the quick release of metronidazole within cells. The antimicrobial proficiency of zinc and metronidazole will expose a synergistic effect in ROS-mediated bacterial inhibition and auto-immunity boosting of normal cells. In vitro, antibacterial activity results revealed that the MI@ZIF-90 nano drug delivery system effectively eradicated human infectious pathogens at the lowest concentrations. In anti-fungal activity, studies show excellent growth inhibition against human pathogenic fungi Aspergillus fumigatus and Candida albicans. Finally, the PBMC cytocompatibility study concludes, that the fabricated MI@ZIF-90 drug delivery system is non-toxic to biomedical applications. The overall research findings highlight the design of a smart drug delivery system for sepsis treatment. In future it will be an efficient, low-cost, and biocompatible pharmaceutics for pediatric sepsis management processes.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Neonatology, Wenling First People's Hospital, Wenling, Zhejiang Province, 317500, China.
| | - Tao Qin
- Department of Neonatology, Wenling First People's Hospital, Wenling, Zhejiang Province, 317500, China
| | - Shanshan Jiang
- Department of Neonatology, Wenling First People's Hospital, Wenling, Zhejiang Province, 317500, China
| | - Chunfeng Zhang
- Department of Neonatology, Wenling First People's Hospital, Wenling, Zhejiang Province, 317500, China
| | - Ling Wang
- Department of Neonatology, Wenling First People's Hospital, Wenling, Zhejiang Province, 317500, China.
| |
Collapse
|
26
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Kennedy JF. Encapsulating biocontrol bacteria with starch as a safe and edible biopolymer to alleviate plant diseases: A review. Carbohydr Polym 2023; 302:120384. [PMID: 36604062 DOI: 10.1016/j.carbpol.2022.120384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Healthy foods with few artificial additives are in high demand among consumers. Preserving conventional pesticides, frequently used as chemicals to control phytopathogens, is challenging. Therefore, we proposed an innovative approach to protect agricultural products in this review. Biocontrol bacteria are safe alternatives with low stability and low efficiency in the free-form formulation. The encapsulation technique for covering active compounds (e.g., antimicrobials) represents a more efficient protection technology because encapsulation causes the controlled release of bioactive materials and reduces the application doses. Of the biopolymers able to form a capsule, starch exhibits several advantages, such as its ready availability, cost-effectively, edible, colorless, and tasteless. Nevertheless, the poor mechanical properties of starch can be improved with other edible biopolymers. In addition, applying formulations incorporated with more than one antimicrobial material offers synergistic effects. This review presented the starch-based capsules used to enclose antimicrobial agents as effective tools against phytopathogens.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, 7618411764 Kerman, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
27
|
Molina AK, Corrêa RCG, Prieto MA, Pereira C, Barros L. Bioactive Natural Pigments' Extraction, Isolation, and Stability in Food Applications. Molecules 2023; 28:1200. [PMID: 36770869 PMCID: PMC9920834 DOI: 10.3390/molecules28031200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Color in food has multiple effects on consumers, since this parameter is related to the quality of a product, its freshness, and even its nutrient content. Each food has a characteristic color; however, this can be affected by the technological treatments that are applied during its manufacturing process, as well as its storage. Therefore, the development of new food products should take into account consumer preferences, the physical properties of a product, food safety standards, the economy, and applications of technology. With all of this, the use of food additives, such as dyes, is increasingly important due to the interest in the natural coloring of foods, strict regulatory pressure, problems with the toxicity of synthetic food colors, and the need for globally approved colors, in addition to current food market trends that focus on the consumption of healthy, organic, and natural products. It is for this reason that there is a growing demand for natural pigments that drives the food industry to seek or improve extraction techniques, as well as to study different stability processes, considering their interactions with the food matrix, in order to meet the needs and expectations of consumers.
Collapse
Affiliation(s)
- Adriana K. Molina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Nutrição e Bromatologia, Faculdade de Ciência e Tecnologia de Alimentos, Universidade de Vigo, 36310 Vigo, Spain
| | - Rúbia C. G. Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Programa de Pós-Graduação em Tecnologias Limpas, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Universidade Cesumar—UNICESUMAR, Maringá 87050-390, Brazil
| | - Miguel A. Prieto
- Grupo de Nutrição e Bromatologia, Faculdade de Ciência e Tecnologia de Alimentos, Universidade de Vigo, 36310 Vigo, Spain
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
28
|
English M, Okagu OD, Stephens K, Goertzen A, Udenigwe CC. Flavour encapsulation: A comparative analysis of relevant techniques, physiochemical characterisation, stability, and food applications. Front Nutr 2023; 10:1019211. [PMID: 36937359 PMCID: PMC10017510 DOI: 10.3389/fnut.2023.1019211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Flavour is an important component that impacts the quality and acceptability of new functional foods. However, most flavour substances are low molecular mass volatile compounds, and direct handling and control during processing and storage are made difficult due to susceptibility to evaporation, and poor stability in the presence of air, light, moisture and heat. Encapsulation in the form of micro and nano technology has been used to address this challenge, thereby promoting easier handling during processing and storage. Improved stability is achieved by trapping the active or core flavour substances in matrices that are referred to as wall or carrier materials. The latter serve as physical barriers that protect the flavour substances, and the interactions between carrier materials and flavour substances has been the focus of many studies. Moreover, recent evidence also suggests that enhanced bioavailability of flavour substances and their targeted delivery can be achieved by nanoencapsulation compared to microencapsulation due to smaller particle or droplet sizes. The objective of this paper is to review several relevant aspects of physical-mechanical and physicochemical techniques employed to stabilize flavour substances by encapsulation. A comparative analysis of the physiochemical characterization of encapsulates (particle size, surface morphology and rheology) and the main factors that impact the stability of encapsulated flavour substances will also be presented. Food applications as well as opportunities for future research are also highlighted.
Collapse
Affiliation(s)
- Marcia English
- Human Nutrition, Saint Francis Xavier University, Antigonish, NS, Canada
- *Correspondence: Marcia English,
| | - Ogadimma Desmond Okagu
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Kristen Stephens
- Human Nutrition, Saint Francis Xavier University, Antigonish, NS, Canada
| | - Alex Goertzen
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chibuike C. Udenigwe
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Chibuike C. Udenigwe,
| |
Collapse
|
29
|
Encapsulation of ascorbyl palmitate in corn starch matrix by extrusion cooking: Release behavior and antioxidant activity. Food Chem 2023; 399:133981. [DOI: 10.1016/j.foodchem.2022.133981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
|
30
|
Tolve R, Bianchi F, Lomuscio E, Sportiello L, Simonato B. Current Advantages in the Application of Microencapsulation in Functional Bread Development. Foods 2022; 12:foods12010096. [PMID: 36613312 PMCID: PMC9818201 DOI: 10.3390/foods12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Bread is one of the most widely embraced food products and is highly accepted by consumers. Despite being rich in complex carbohydrates (i.e., starch), bread is generally poor in other micro- and macronutrients. Rising consumer demand for healthier food has resulted in the growth of studies focused on bread fortification with bioactive ingredients (i.e., vitamins, prebiotics, and vegetable extracts). However, the baking process leads to the reduction (or even lessening) of the added substance. In addition, the direct inclusion of bioactive compounds and additives in bread has other limitations, such as adverse effects on sensory characteristics and undesirable interaction with other food ingredients. Encapsulation allows for overcoming these drawbacks and at the same time improves the overall quality and shelf-life of bread by controlling the release, protection, and uniform distribution of these compounds. In the last ten years, several studies have shown that including micro/nano-encapsulated bioactive substances instead of free compounds allows for the enrichment or fortification of bread, which can be achieved without negatively impacting its physicochemical and textural properties. This review aims to identify and highlight useful applications in the production of new functional bread through encapsulation technology, summarizing the heath benefit and the effect of microcapsule inclusion in dough and bread from a technological and sensory point of view.
Collapse
Affiliation(s)
- Roberta Tolve
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Federico Bianchi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Elisabetta Lomuscio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Lucia Sportiello
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Barbara Simonato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
31
|
Valorisation of Micro/Nanoencapsulated Bioactive Compounds from Plant Sources for Food Applications Towards Sustainability. Foods 2022; 12:foods12010032. [PMID: 36613248 PMCID: PMC9818261 DOI: 10.3390/foods12010032] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The micro- and nanoencapsulation of bioactive compounds has resulted in a large improvement in the food, nutraceutical, pharmaceutical, and agriculture industries. These technologies serve, on one side, to protect, among others, vitamins, minerals, essential fatty acids, polyphenols, flavours, antimicrobials, colorants, and antioxidants, and, on the other hand, to control the release and assure the delivery of the bioactive compounds, targeting them to specific cells, tissues, or organs in the human body by improving their absorption/penetration through the gastrointestinal tract. The food industry has been applying nanotechnology in several ways to improve food texture, flavour, taste, nutrient bioavailability, and shelf life using nanostructures. The use of micro- and nanocapsules in food is an actual trend used mainly in the cereal, bakery, dairy, and beverage industries, as well as packaging and coating. The elaboration of bio capsules with high-value compounds from agro-industrial by-products is sustainable for the natural ecosystem and economically interesting from a circular economy perspective. This critical review presents the principal methodologies for performing micro- and nanoencapsulation, classifies them (top-down and/or bottom-up), and discusses the differences and advantages among them; the principal types of encapsulation systems; the natural plant sources, including agro-industrial by-products, of bioactive compounds with interest for the food industry to be encapsulated; the bioavailability of encapsulates; and the main techniques used to analyse micro- and nanocapsules. Research work on the use of encapsulated bioactive compounds, such as lycopene, hydroxytyrosol, and resveratrol, from agro-industrial by-products must be further reinforced, and it plays an important role, as it presents a high potential for the use of their antioxidant and/or antimicrobial activities in food applications and, therefore, in the food industry. The incorporation of these bioactive compounds in food is a challenge and must be evaluated, not only for their nutritional aspect, but also for the chemical safety of the ingredients. The potential use of these products is an available economical alternative towards a circular economy and, as a consequence, sustainability.
Collapse
|
32
|
Marji SM, Bayan MF, Jaradat A. Facile Fabrication of Methyl Gallate Encapsulated Folate ZIF-L Nanoframeworks as a pH Responsive Drug Delivery System for Anti-Biofilm and Anticancer Therapy. Biomimetics (Basel) 2022; 7:biomimetics7040242. [PMID: 36546942 PMCID: PMC9775553 DOI: 10.3390/biomimetics7040242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Zeolitic imidazole frameworks are emerging materials and have been considered an efficient platform for biomedical applications. The present study highlights the simple fabrication of methyl gallate encapsulated folate-ZIF-L nanoframeworks (MG@Folate ZIF-L) by a simple synthesis. The nanoframeworks were characterized by different sophisticated instruments. In addition, the drug-releasing mechanism was evidenced by in vitro releasing kinetics at various pH conditions. The anti-biofilm potential confirmed by the biofilm architectural deformations against human infectious pathogens MRSA and N7 clinical strains. Furthermore, anticancer efficacy assessed against A549 lung cancer cells. The result reveals that the MG@Folate ZIF-L exposed a superior cytotoxic effect due to the pH-responsive and receptor-based drug-releasing mechanism. Based on the unique physicochemical and biological characteristics of nanoframeworks, it has overcome the problems of undesired side effects and uncontrolled drug release of existing drug delivery systems. Finally, the in vitro toxicity effect of MG@Folate ZIF-L was tested against the Artemia salina (A. salina) model organism, and the results show enhanced biocompatibility. Overall, the study suggested that the novel MG@Folate ZIF-L nanoframeworks is a suitable material for biomedical applications. It will be very helpful to the future design for targeted drug delivery systems.
Collapse
Affiliation(s)
- Saeed M. Marji
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
- Correspondence: (S.M.M.); (M.F.B.)
| | - Mohammad F. Bayan
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
- Correspondence: (S.M.M.); (M.F.B.)
| | - Abdolelah Jaradat
- Faculty of Pharmacy, Isra University, P.O. Box 33, Amman 11622, Jordan
| |
Collapse
|
33
|
Controlled Release of Vitamin U from Microencapsulated Brassica oleracea L. var. capitata Extract for Peptic Ulcer Treatment. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Tyutkov N, Zhernyakova A, Birchenko A, Eminova E, Nadtochii L, Baranenko D. Probiotics viability in frozen food products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Soroush F, Varma RS. Nano/microencapsulation of plant biocontrol agents by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. Int J Biol Macromol 2022; 222:1589-1604. [DOI: 10.1016/j.ijbiomac.2022.09.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
36
|
Klettenhammer S, Ferrentino G, Imperiale S, Segato J, Morozova K, Scampicchio M. Oxidative stability by isothermal calorimetry of solid lipid microparticles produced by particles from gas saturated solutions technique. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Abstract
Extrusion is a versatile process capable of producing a variety of new and novel foods and ingredients, thus increasing manufacturing opportunities. Further, it could provide nutritious, safe, sustainable, and affordable foods, especially directed at individualized consumer needs. In addition to past research efforts, more investigations should be conducted in order to refine, redesign, or develop new extrusion processing technologies. The present review highlights the current advances made in new and novel food product development by considering the extrusion process, the influencing parameters, and product characteristics and properties; the most promising extrusion processes that can be used in novel food product and ingredient development, such as extrusion cooking, hot-melt extrusion, reactive extrusion, and extrusion-based 3D printing; the possibilities of using various raw materials in relation to process and product development; and the needs for product development modeling along with extrusion process design and modeling. In correlation with extruded product development, topics that merit further investigation may include structure formation, plant and animal biopolymers functionalization, biopolymer reactions, process simulation, modeling and control, engineering and mechanical aspects of extruders, analysis of pre-processing treatments, as well as prototyping, risk analysis, safety, sensory and consumer acceptance.
Collapse
Affiliation(s)
- Andriana E Lazou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, School of Food Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
38
|
Machado AR, Silva PMP, Vicente AA, Souza-Soares LA, Pinheiro AC, Cerqueira MA. Alginate Particles for Encapsulation of Phenolic Extract from Spirulina sp. LEB-18: Physicochemical Characterization and Assessment of In Vitro Gastrointestinal Behavior. Polymers (Basel) 2022; 14:4759. [PMID: 36365752 PMCID: PMC9654036 DOI: 10.3390/polym14214759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2023] Open
Abstract
Encapsulation can be used as a strategy to protect and control the release of bioactive extracts. In this work, an extract from Spirulina sp. LEB-18, rich in phenolic compounds, was encapsulated in biopolymeric particles (i.e., composed of alginate) and characterized concerning their thermal behavior using differential scanning calorimetry (DSC), size, morphology, swelling index (S), and encapsulation efficiency (EE%); the release profile of the phenolic compounds at different pHs and the particle behavior under in vitro gastrointestinal digestion were also evaluated. It was shown that it is possible to encapsulate the phenolic extract from Spirulina sp. LEB-18 in alginate particles with high encapsulation efficiency (88.97%). It was also observed that the particles are amorphous and that the encapsulated phenolic compounds were released at a pH 7.2 but not at pH 1.5, which means that the alginate particles are able to protect the phenolic compounds from the harsh stomach conditions but lose their integrity under intestinal pH conditions. Regarding bioaccessibility, it was observed that the encapsulated phenolic compounds showed higher bioaccessibility compared to phenolic compounds in free form. This work increases the knowledge about the behavior of alginate particles encapsulating phenolic compounds during in vitro gastrointestinal digestion. It also provides essential information for designing biopolymeric particle formulations encapsulating phenolic compounds for application in pharmaceutical and food products.
Collapse
Affiliation(s)
- Adriana R. Machado
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Associate Laboratory (LABBELS), Braga/Guimarães, Portugal
| | - Pedro M. P. Silva
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Associate Laboratory (LABBELS), Braga/Guimarães, Portugal
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - António A. Vicente
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Associate Laboratory (LABBELS), Braga/Guimarães, Portugal
| | - Leonor A. Souza-Soares
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Ana C. Pinheiro
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Associate Laboratory (LABBELS), Braga/Guimarães, Portugal
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
39
|
Rout S, Tambe S, Deshmukh RK, Mali S, Cruz J, Srivastav PP, Amin PD, Gaikwad KK, Andrade EHDA, Oliveira MSD. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Gaurav A, Panigrahi SS, Pradhan RC, Mishra S. Co-rotating extrusion cooking impact on product characteristics using hulled kodo millet and hybrid maize flour. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4165-4175. [PMID: 36193480 PMCID: PMC9525465 DOI: 10.1007/s13197-022-05467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/24/2021] [Accepted: 04/09/2022] [Indexed: 06/16/2023]
Abstract
Vitamin A deficiency (VAD) is adamant in developing countries especially affecting pregnant women and children. Popular maize hybrid (CO6) contains higher β-carotene concentration (923 µg/100 g), is considered one of the prominent and cheapest sources of provitamin A for humans, to alleviate VAD. The present research explored an adequate combination of hulled Kodo millet, a valuable food source for diabetics with limiting carotenoid content (0.17 µg/100 g) and biofortified hybrid maize genotypes (CO6) in ratio 70:30. Studies on process loss of total carotenoids (273.17-388.65 µg/100 g) without affecting the expansion index (2.06-4.46), piece density (254.06-585.62 kgm-3), browning index (47.25-88.38%), and hardness (13.21-67.59 N) characteristics under the influence of feed moisture 12.5-17.5%, wet basis, die temperature 150-180 °C and screw speed 420-470 rpm was evaluated in a co-rotating twin-screw extruder, following a five-level three-factor central composite rotatable design. The investigated physical and total carotenoid contents alteration upon extrusion cooking will add a scientific knowledge base to produce healthier breakfast cereals with acceptable technological and nutritional characteristics.
Collapse
Affiliation(s)
- Abhishek Gaurav
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha India
| | - Shubham Subrot Panigrahi
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, Lethbridge, AB T1K 1L6 Canada
| | - Rama Chandra Pradhan
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha India
| | - Sabyasachi Mishra
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha India
| |
Collapse
|
41
|
Afzaal M, Saeed F, Ateeq H, Shah YA, Hussain M, Javed A, Ikram A, Raza MA, Nayik GA, Alfarraj S, Ansari MJ, Karabagias IK. Effect of Cellulose–Chitosan Hybrid-Based Encapsulation on the Viability and Stability of Probiotics under Simulated Gastric Transit and in Kefir. Biomimetics (Basel) 2022; 7:biomimetics7030109. [PMID: 35997429 PMCID: PMC9397047 DOI: 10.3390/biomimetics7030109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Encapsulation comprises a promising potential for the targeted delivery of entrapped sensitive agents into the food system. A unique combination of cellulose/chitosan (Cl-Ch)-based hybrid wall material was employed to encapsulate L. plantarum by emulsion technique. The developed beads were further subjected to morphological and in vitro studies. The viability of free and encapsulated probiotics was also evaluated in kefir during storage. The developed beads presented porous spherical structures with a rough surface. A 1.58 ± 0.02 log CFU/mL, 1.26 ± 0.01 log CFU/mL, and 1.82 ± 0.01 log CFU/mL reduction were noticed for Cl-Ch hybrid cells under simulated gastro-intestinal and thermal conditions, respectively. The encapsulated cells were found to be acidic and thermally resistant compared to the free cells. Similarly, encapsulated probiotics showed better viability in kefir at the end of the storage period compared to free cells. In short, the newly developed Cl-Ch hybrid-based encapsulation has a promising potential for the targeted delivery of probiotics, as career agents, in gastric transit, and in foods.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Huda Ateeq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Yasir Abbas Shah
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ahsan Javed
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Ali Ikram
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Government Degree College Shopian, J&K 192303, India
- Correspondence: (G.A.N.); (I.K.K.)
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University, Bareilly 244001, India
| | - Ioannis K. Karabagias
- Department of Food Science & Technology, School of Agricultural Sciences, University of Patras, G. Seferi 2, 30100 Agrinio, Greece
- Correspondence: (G.A.N.); (I.K.K.)
| |
Collapse
|
42
|
Ligarda-Samanez CA, Moscoso-Moscoso E, Choque-Quispe D, Palomino-Rincón H, Martínez-Huamán EL, Huamán-Carrión ML, Peralta-Guevara DE, Aroni-Huamán J, Arévalo-Quijano JC, Palomino-Rincón W, la Cruz GD, Ramos-Pacheco BS, Muñoz-Saenz JC, Muñoz-Melgarejo M. Microencapsulation of Erythrocytes Extracted from Cavia porcellus Blood in Matrices of Tara Gum and Native Potato Starch. Foods 2022; 11:2107. [PMID: 35885349 PMCID: PMC9316173 DOI: 10.3390/foods11142107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
Ferropenic anemy is the leading iron deficiency disease in the world. The aim was to encapsulate erythrocytes extracted from the blood of Cavia porcellus, in matrices of tara gum and native potato starch. For microencapsulation, solutions were prepared with 20% erythrocytes; and encapsulants at 5, 10, and 20%. The mixtures were spray-dried at 120 and 140 °C. The iron content in the erythrocytes was 3.30 mg/g and between 2.32 and 2.05 mg/g for the encapsulates (p < 0.05). The yield of the treatments varied between 47.84 and 58.73%. The moisture, water activity, and bulk density were influenced by the temperature and proportion of encapsulants. The total organic carbon in the atomized samples was around 14%. The particles had diverse reddish tonalities, which were heterogeneous in their form and size; openings on their surface were also observed by SEM. The particle size was at the nanometer level, and the zeta potential (ζ) indicated a tendency to agglomerate and precipitation the solutions. The presence of iron was observed on the surface of the atomized by SEM-EDX, and FTIR confirmed the encapsulation due to the presence of the chemical groups OH, C-O, C-H, and N-H in the atomized. On the other hand, high percentages of iron release in vitro were obtained between 88.45 and 94.71%. The treatment with the lowest proportion of encapsulants performed at 140 °C obtained the best results and could potentially be used to fortify different functional foods.
Collapse
Affiliation(s)
- Carlos A. Ligarda-Samanez
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (E.M.-M.); (M.L.H.-C.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (H.P.-R.); (J.A.-H.); (B.S.R.-P.)
| | - Elibet Moscoso-Moscoso
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (E.M.-M.); (M.L.H.-C.)
| | - David Choque-Quispe
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (H.P.-R.); (J.A.-H.); (B.S.R.-P.)
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Henry Palomino-Rincón
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (H.P.-R.); (J.A.-H.); (B.S.R.-P.)
| | - Edgar L. Martínez-Huamán
- Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (E.L.M.-H.); (J.C.A.-Q.)
| | - Mary L. Huamán-Carrión
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (E.M.-M.); (M.L.H.-C.)
| | - Diego E. Peralta-Guevara
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Jimmy Aroni-Huamán
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (H.P.-R.); (J.A.-H.); (B.S.R.-P.)
| | - José C. Arévalo-Quijano
- Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (E.L.M.-H.); (J.C.A.-Q.)
| | - Wilbert Palomino-Rincón
- Agricultural and Livestock Engineering, Universidad Nacional San Antonio Abad, Cusco 08000, Peru;
| | - Germán De la Cruz
- Agricultural Science Facultad, Universidad Nacional San Cristobal de Huamanga, Ayacucho 05000, Peru;
| | - Betsy S. Ramos-Pacheco
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (H.P.-R.); (J.A.-H.); (B.S.R.-P.)
| | - Jenny C. Muñoz-Saenz
- Department of Human Medicine, Universidad Peruana los Andes, Huancayo 12006, Peru; (J.C.M.-S.); (M.M.-M.)
| | - Mauricio Muñoz-Melgarejo
- Department of Human Medicine, Universidad Peruana los Andes, Huancayo 12006, Peru; (J.C.M.-S.); (M.M.-M.)
| |
Collapse
|
43
|
Microalgal carotenoids: A promising alternative to synthetic dyes. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Raj GVSB, Dash KK. Microencapsulation of Dragon Fruit Peel Extract by Freeze-Drying Using Hydrocolloids: Optimization by Hybrid Artificial Neural Network and Genetic Algorithm. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
High moisture extrusion cooking on soy proteins: Importance influence of gums on promoting the fiber formation. Food Res Int 2022; 156:111189. [DOI: 10.1016/j.foodres.2022.111189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022]
|
46
|
Premjit Y, Pandey S, Mitra J. Recent Trends in Folic Acid (Vitamin B9) Encapsulation, Controlled Release, and Mathematical Modelling. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2077361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yashaswini Premjit
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sachchidanand Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jayeeta Mitra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
47
|
Zhang D, Ivane NM, Haruna SA, Zekrumah M, Elysé FKR, Tahir HE, Wang G, Wang C, Zou X. Recent trends in the micro-encapsulation of plant-derived compounds and their specific application in meat as antioxidants and antimicrobials. Meat Sci 2022; 191:108842. [DOI: 10.1016/j.meatsci.2022.108842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
|
48
|
Weisany W, Yousefi S, Tahir NAR, Golestanehzadeh N, McClements DJ, Adhikari B, Ghasemlou M. Targeted delivery and controlled released of essential oils using nanoencapsulation: A review. Adv Colloid Interface Sci 2022; 303:102655. [PMID: 35364434 DOI: 10.1016/j.cis.2022.102655] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
Essential oils (EOs) contain a complex mixture of volatile and non-volatile molecules with diverse biological activities, including flavoring, antioxidant, antimicrobial, and nutraceutical properties. As a result, EOs have numerous potential applications in the agriculture, food, and pharmaceutical industries. However, their hydrophobicity, chemical instability, and volatility pose a challenge for many of their applications. These challenges can often be overcome by encapsulation EOs in colloidal delivery systems. Over the last decade or so, nanoencapsulation and microencapsulation technologies have been widely explored for their potential to improve the handling, dispersibility, and stability of hydrophobic substances, as well as to control their release profiles (e.g., targeted, triggered, sustained, or burst release). These technologies include emulsification, coacervation, precipitation, spray-drying, spray-cooling, freeze-drying, fluidized bed coating, and extrusion. This article reviews some of the most important developments in EOs encapsulation, the physicochemical mechanisms underlying the behavior of encapsulated EOs, current challenges, and potential applications in the food and biomedical sciences. This review has found that nanoencapsulation has countless of potential advantages for the utilization of EOs in the food industry and can improve their water-dispersibility, food matrix compatibility, chemical stability, volatility, and bioactivity.
Collapse
|
49
|
Kandasamy S, Naveen R. A review on the encapsulation of bioactive components using spray‐drying and freeze‐drying techniques. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sengodan Kandasamy
- Department of Food Technology, Kongu Engineering College Erode Tamil Nadu India
| | - Rajshri Naveen
- Department of Food Technology, Kongu Engineering College Erode Tamil Nadu India
| |
Collapse
|
50
|
Aslam S, Akhtar A, Nirmal N, Khalid N, Maqsood S. Recent Developments in Starch-Based Delivery Systems of Bioactive Compounds: Formulations and Applications. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09311-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|