1
|
Bhavsar PS, Solanki MB, Shimada Y, Kamble SB, Patole SP, Kolekar GB, Gore AH. Microplastic contamination in Indian rice: A comprehensive characterization and health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136208. [PMID: 39522154 DOI: 10.1016/j.jhazmat.2024.136208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
In this study, we investigate, for the first time, the abundance, distribution, chemical composition, and exposure of microplastics (MPs) in Indian rice and their impact on human health. The physical and chemical characteristics of MPs were measured using a stereomicroscope, μ-Fourier transform infrared spectroscopy, and μ-Raman spectroscopy. MPs were identified in all samples, with an average abundance of 30.3 ± 8.61 particles/100 g. The abundance of MPs was higher in RS-4 and lower in RS-3. Notably, the size of MPs found is between <0.05 to 1.00 mm. The results showed that four types of MPs were identified: polyethylene and polyethylene terephthalate were dominant, followed by polypropylene and polyamide. MPs were ubiquitous in all rice sample, indicating ingestion as a potential pathway for the entry of plastics into the human body. According to the pollution load index values, which ranged from 1.00 to 1.528, the contamination of MPs in the rice samples was minimal. The highest estimated daily intake values of MPs from rice consumption by Indian males, females, and children were 1.292, 1.527, and 1.313 particles kg-1 day-1, respectively. Our study sheds light on MP exposure and provides fundamental data for evaluating the potential health risks associated with MPs.
Collapse
Affiliation(s)
- Pinal S Bhavsar
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Bardoli, Tarsadi, 394350 Surat, Gujarat, India
| | - Mandeep B Solanki
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Bardoli, Tarsadi, 394350 Surat, Gujarat, India
| | - Yasuhito Shimada
- Mie University Zebrafish Research Center, Tsu, Mie 514-8507, Japan; Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Sumit B Kamble
- Department of Salt and Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badekha Marg, Waghavadi Road, Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shashikant P Patole
- Department of Physics, Khalifa University of Science and Technology, AbuDhabi, 127788, United Arab Emirates
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur, 416004, Maharashtra, India
| | - Anil H Gore
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Bardoli, Tarsadi, 394350 Surat, Gujarat, India.
| |
Collapse
|
2
|
Sun H, Su X, Mao J, Liu Y, Li G, Du Q. Microplastics in maternal blood, fetal appendages, and umbilical vein blood. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117300. [PMID: 39509785 DOI: 10.1016/j.ecoenv.2024.117300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Microplastics (MPs) have been detected in placenta and amniotic fluid, but there is no research on whether MPs exist in the other two fetal appendages: fetal membrane and umbilical cord. Additionally, the existence of MPs in umbilical vein blood remains unexplored. Furthermore, it is unclear whether MPs in maternal blood are associated with those in umbilical vein blood and fetal appendages. In this study, we selected 12 full-term pregnant people who delivered by cesarean section, and finally detected 16 kinds of MPs from maternal blood, fetal appendages, and umbilical vein blood by laser direct infrared (LDIR). Polyamide accounted for the highest proportion in the six kinds of samples, followed by Polyurethane. The total MPs median abundance in six kinds of samples were umbilical cord, maternal blood, fetal membrane, amniotic fluid, placenta and umbilical vein blood from high to low, and the specific values were 10.397 particles/g, 8.176 particles/g, 6.561 particles/g, 4.795 particles/g, 4.675 particles/g, and 2.726 particles/g respectively. Moreover, more than 90 % of MPs measured between 20 and 100 μm in diameter. We also found that MPs abundance in amniotic fluid increased with the increase of maternal age (R=0.64, p=0.025) and body mass index before pregnancy (r = 0.59, p= 0.049). However, no statistically significant association was found between lifestyle factors and MPs abundance. Future studies should aim to expand the sample size for further investigation.
Collapse
Affiliation(s)
- Hanxiang Sun
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Onclogy, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiujuan Su
- Clinical Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Onclogy, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Mao
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Onclogy, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yang Liu
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Onclogy, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guohua Li
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Onclogy, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qiaoling Du
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Onclogy, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Wang L, Gao J, Wu WM, Luo J, Bank MS, Koelmans AA, Boland JJ, Hou D. Rapid Generation of Microplastics and Plastic-Derived Dissolved Organic Matter from Food Packaging Films under Simulated Aging Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20147-20159. [PMID: 39467053 DOI: 10.1021/acs.est.4c05504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In this study, we show that low-density polyethylene films, a prevalent choice for food packaging in everyday life, generated high numbers of microplastics (MPs) and hundreds to thousands of plastic-derived dissolved organic matter (DOM) substances under simulated food preparation and storage conditions. Specifically, the plastic film generated 66-2034 MPs/cm2 (size range 10-5000 μm) under simulated aging conditions involving microwave irradiation, heating, steaming, UV irradiation, refrigeration, freezing, and freeze-thaw cycling alongside contact with water, which were 15-453 times that of the control (plastic film immersed in water without aging). We also noticed a substantial release of plastic-derived DOM. Using ultrahigh-resolution mass spectrometry, we identified 321-1414 analytes with molecular weights ranging from 200 to 800 Da, representing plastic-derived DOM containing C, H, and O. The DOM substances included both degradation products of polyethylene (including oxidized forms of oligomers) and toxic plastic additives. Interestingly, although no apparent oxidation was observed for the plastic film under aging conditions, plastic-derived DOM was more oxidized (average O/C increased by 27-46%) following aging with a higher state of carbon saturation and higher polarity. These findings highlight the future need to assess risks associated with MP and DOM release from plastic wraps.
Collapse
Affiliation(s)
- Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jing Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020, United States
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
| | | | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| | - John J Boland
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Ma M, Han R, Han R, Xu D, Li F. Binding between Cu 2+/Zn 2+ and aged polyethylene and polyethylene terephthalate microplastics in swine wastewaters: Adsorption behavior, and mechanism insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124685. [PMID: 39111531 DOI: 10.1016/j.envpol.2024.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Microplastics (MPs) have aroused growing environmental concerns due to their biotoxicity and vital roles in accelerating the spread of toxic elements. Illuminating the interactions between MPs and heavy metals (HMs) is crucial for understanding the transport and fate of HM-loaded MPs in specific environmentally relevant scenarios. Herein, the adsorption of copper (Cu2+) and zinc (Zn2+) ions over polyethylene (PE) and polyethylene terephthalate (PET) particulates before and after heat persulfate oxidation (HPO) treatment was comprehensively evaluated in simulated and real swine wastewaters. The effects of intrinsic properties (i.e., degree of weathering, size, type) of MPs and environmental factors (i.e., pH, ionic strength, and co-occurring species) on adsorption were investigated thoroughly. It was observed that HPO treatment expedites the fragmentation of pristine MPs, and renders MPs with a variety of oxygen-rich functional groups, which are likely to act as new active sites for binding both HMs. The adsorption of both HMs is pH- and ionic strength-dependent at a pH of 4-6. Co-occurring species such as humic acid (HA) and tetracycline (TC) appear to enhance the affinity of both aged MPs for Cu2+ and Zn2+ ions via bridging complexation. However, co-occurring nutrient species (e.g., phosphate and ammonia) demonstrate different impacts on the adsorption, improving uptake of Cu2+ by precipitation while lowering affinity for Zn2+ owing to the formation of soluble zinc-ammonia complex. Spectroscopic analysis indicates that the dominant adsorption mechanism mainly involves electrostatic interactions and surface complexation. These findings provided fundamental insights into the interactions between aged MPs and HMs in swine wastewaters and might be extended to other nutrient-rich wastewaters.
Collapse
Affiliation(s)
- Mengyu Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Ruxin Han
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Ruoqi Han
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Defu Xu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Feihu Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China; NUIST Reading Academy, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China.
| |
Collapse
|
5
|
Pei L, Sheng L, Ye Y, Sun J, Wang JS, Sun X. Microplastics from face masks: Unraveling combined toxicity with environmental hazards and their impacts on food safety. Compr Rev Food Sci Food Saf 2024; 23:e70042. [PMID: 39523687 DOI: 10.1111/1541-4337.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) refer to tiny plastic particles, typically smaller than 5 mm in size. Due to increased mask usage during COVID-19, improper disposal has led to masks entering the environment and releasing MPs into the surroundings. MPs can absorb environmental hazards and transfer them to humans and animals via the food chain, yet their impacts on food safety and human health are largely neglected. This review summarizes the release process of MPs from face masks, influencing factors, and impacts on food safety. Highlights are given to the prevalence of MPs and their combined toxicities with other environmental hazards. Control strategies are also explored. The release of MPs from face masks is affected by environmental factors like pH, UV light, temperature, ionic strength, and weathering. Due to the chemical active surface and large surface area, MPs can act as vectors for heavy metals, toxins, pesticides, antibiotics and antibiotic resistance genes, and foodborne pathogens through different mechanisms, such as electrostatic interaction, precipitation, and bioaccumulation. After being adsorbed by MPs, the toxicity of these environmental hazards, such as oxidative stress, cell apoptosis, and disruption of metabolic energy levels, can be magnified. However, there is a lack of comprehensive research on both the combined toxicities of MPs and environmental hazards, as well as their corresponding control strategies. Future research should prioritize understanding the interaction of MPs with other hazards in the food chain, their combined toxicity, and integrating MPs detection and degradation methods with other hazards.
Collapse
Affiliation(s)
- Luyu Pei
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| |
Collapse
|
6
|
Albaseer SS, Al-Hazmi HE, Kurniawan TA, Xu X, Abdulrahman SAM, Ezzati P, Habibzadeh S, Hollert H, Rabiee N, Lima EC, Badawi M, Saeb MR. Microplastics in water resources: Global pollution circle, possible technological solutions, legislations, and future horizon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173963. [PMID: 38901599 DOI: 10.1016/j.scitotenv.2024.173963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Beneath the surface of our ecosystems, microplastics (MPs) silently loom as a significant threat. These minuscule pollutants, invisible to the naked eye, wreak havoc on living organisms and disrupt the delicate balance of our environment. As we delve into a trove of data and reports, a troubling narrative unfolds: MPs pose a grave risk to both health and food chains with their diverse compositions and chemical characteristics. Nevertheless, the peril extends further. MPs infiltrate the environment and intertwine with other pollutants. Worldwide, microplastic levels fluctuate dramatically, ranging from 0.001 to 140 particles.m-3 in water and 0.2 to 8766 particles.g-1 in sediment, painting a stark picture of pervasive pollution. Coastal and marine ecosystems bear the brunt, with each organism laden with thousands of microplastic particles. MPs possess a remarkable ability to absorb a plethora of contaminants, and their environmental behavior is influenced by factors such as molecular weight and pH. Reported adsorption capacities of MPs vary greatly, spanning from 0.001 to 12,700 μg·g-1. These distressing figures serve as a clarion call, demanding immediate action and heightened environmental consciousness. Legislation, innovation, and sustainable practices stand as indispensable defenses against this encroaching menace. Grasping the intricate interplay between microplastics and pollutants is paramount, guiding us toward effective mitigation strategies and preserving our health ecosystems.
Collapse
Affiliation(s)
- Saeed S Albaseer
- Institute of Ecology, Evolution and Diversity, Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland.
| | | | - Xianbao Xu
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Sameer A M Abdulrahman
- Department of Chemistry, Faculty of Education and Sciences-Rada'a, Albaydha University, Albaydha, Yemen
| | - Peyman Ezzati
- ERA Co., Ltd, Science and Technology Center, P.O. Box: 318020, Taizhou, Zhejiang, China
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Henner Hollert
- Institute of Ecology, Evolution and Diversity, Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Eder C Lima
- Institute of Chemistry - Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Michael Badawi
- Université de Lorraine, CNRS, Laboratoire Lorrain de Chimie Moléculaire, F-57000 Metz, France
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
7
|
Schukow CP, Macknis JK. The Surgical Pathologist's (Potential) Role in Placental Microplastic Detection. Arch Pathol Lab Med 2024; 148:1080-1081. [PMID: 39004423 DOI: 10.5858/arpa.2024-0172-ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/16/2024]
Affiliation(s)
- Casey P Schukow
- From the Department of Pathology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan
| | - Jacqueline K Macknis
- From the Department of Pathology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan
| |
Collapse
|
8
|
Cheng W, Chen H, Zhou Y, You Y, Lei D, Li Y, Feng Y, Wang Y. Aged fragmented-polypropylene microplastics induced ageing statues-dependent bioenergetic imbalance and reductive stress: In vivo and liver organoids-based in vitro study. ENVIRONMENT INTERNATIONAL 2024; 191:108949. [PMID: 39213921 DOI: 10.1016/j.envint.2024.108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Ageing is a nature process of microplastics that occurrs daily, and human beings are inevitably exposed to aged microplastics. However, a systematic understanding of ageing status and its toxic effect is currently still lacking. In this study, plastic cup lids-originated polypropylene (PP) microplastics were UV-photoaged until the carbonyl index (CI), a canonical indicator for plastic ageing, achieved 0.08, 0.17, 0.22 and 0.28. The adverse hepatic effect of these aged PPs (aPPs) was evaluated in Balb/c mice (75 ng/mL water, about 200 particles/day) and human-originated liver organoids (LOs, 50 particles/mL, ranged from 5.94 to 13.15 ng/mL) at low-dose equivalent to human exposure level. Low-dose of aged PP could induce hepatic reductive stress both in vitro and in vivo, by elevating the NADH/NAD+ratio in a CI-dependent manner, together with hepatoxicity (indicated by increased AST secretion and cytotoxicity), and disrupted the genes encoding the nutrients transporters and NADH subunits accompanied by the restricted ATP supply, declined mitochondrial membrane potential and mitochondrial complexI/IV activities, without significant increase in MDA levels in the liver. These changes in the liver disrupted systematic metabolism, representing a circulatory panel of increases in the lactate, triglyceride, Fgf21 levels, and decreases in the pyruvate level, linked the reductive stress to the declined body weight gain but elevated hepatic NADH contents following aPPs exposure. Additionally, assessing by the LOs, it was found that digestion drastically accelerated the ageing of aPPs and worsen the energy supply upon mitochondria, representing a "scattergun effect" induced by the formation of micro- and nano-plastics mixture toward NADH/NAD+imbalance.
Collapse
Affiliation(s)
- Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hange Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yue Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yifei You
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dong Lei
- Department of Plastic and Reconstructive Surgery, Department of Cardiology, Shanghai Key Lab of Tissue Engineering, Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Wang
- Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, School of Public Health, Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Kadac-Czapska K, Bochentyn B, Maślarz A, Mahlik S, Grembecka M. Methodology Approach for Microplastics Isolation from Samples Containing Sucrose. Molecules 2024; 29:3996. [PMID: 39274843 PMCID: PMC11396657 DOI: 10.3390/molecules29173996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The growing production and use of plastics significantly contribute to microplastics (MPs) contamination in the environment. Humans are exposed to MPs primarily through the gastrointestinal route, as these particles are present in beverages and food, e.g., sugar. Effective isolation and identification of MPs from food is essential for their elimination. This study aimed to evaluate factors influencing the isolation of MPs from sucrose solutions to determine optimal conditions for the process. Polyethylene particles were used to test separation methods involving chemical digestion with acids and filtration through membrane filters made of nylon, mixed cellulose ester, and cellulose acetate with pore sizes of 0.8 and 10 µm. The effects of temperature and acid type and its concentration on plastic particles were examined using scanning electron microscopy and µ-Raman spectroscopy. The results indicate that increased temperature reduces solution viscosity and sucrose adherence to MPs' particles, while higher acid concentrations accelerate sucrose hydrolysis. The optimal conditions for MPs' isolation were found to be 5% HCl at 70 °C for 5 min, followed by filtration using an efficient membrane system. These conditions ensure a high recovery and fast filtration without altering MPs' surface properties, providing a reliable basis for further analysis of MPs in food.
Collapse
Affiliation(s)
- Kornelia Kadac-Czapska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Beata Bochentyn
- Advanced Materials Center, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Aleksandra Maślarz
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Sebastian Mahlik
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| |
Collapse
|
10
|
Xu H, Hu Z, Sun Y, Xu J, Huang L, Yao W, Yu Z, Xie Y. Microplastics supply contaminants in food chain: non-negligible threat to health safety. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:276. [PMID: 38958774 DOI: 10.1007/s10653-024-02076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
The occurrence of microplastics (MPs) and organic pollutants (OPs) residues is commonly observed in diverse environmental settings, where their interactions can potentially alter the behavior, availability, and toxicity of OPs, thereby posing risks to ecosystems. Herein, we particularly emphasize the potential for bioaccumulation and the biomagnification effect of MPs in the presence of OPs within the food chain. Despite the ongoing influx of novel information, there exists a dearth of data concerning the destiny and consequences of MPs in the context of food pollution. Further endeavors are imperative to unravel the destiny and repercussions of MPs/OPs within food ecosystems and processing procedures, aiming to gain a deeper understanding of the joint effect on human health and food quality. Nevertheless, the adsorption and desorption behavior of coexisting pollutants can be significantly influenced by MPs forming biofilms within real-world environments, including temperature, pH, and food constituents. A considerable portion of MPs tend to accumulate in the epidermis of vegetables and fruits, thus necessitating further research to comprehend the potential ramifications of MPs on the infiltration behavior of OPs on agricultural product surfaces.
Collapse
Affiliation(s)
- Hongwen Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Zhenyang Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yingying Sun
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen, 518000, China
| | - Jiang Xu
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen, 518000, China
| | - Lijun Huang
- Wuxi Food Safety Inspection and Test Center, 35-210 Changjiang South Road, Wuxi, 214142, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
11
|
Teshager AA, Atlabachew M, Alene AN. Development of biodegradable film from cactus ( Opuntia Ficus Indica) mucilage loaded with acid-leached kaolin as filler. Heliyon 2024; 10:e31267. [PMID: 38845886 PMCID: PMC11153097 DOI: 10.1016/j.heliyon.2024.e31267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Nowadays, substituting petroleum-based plastics with biodegradable polymers made from polysaccharides loaded with various reinforcing materials has recently gained attention due to the impact of conventional plastics wastes. In this study, polysaccharidic mucilage from Ethiopian cactus (Opuntia Ficus Indica) was derived using microwave-assisted extraction technique to develop biodegradable polymers that were inexpensive, readily available, simple to make, and ecofriendly. The effect of microwave power 300-800 W, solid-liquid (cactus-sodium hydroxide solution) ratio 1:5-1:25, sodium hydroxide concentration 0.1-0.8 mol/L, and extraction time 2-10 min on mucilage extraction were studied and the maximum yield of mucilage was attained at optimized parameters of 506 W, 1:20, 0.606 mol/L, and 9.5 min, respectively. Biodegradable polymers made with mucilage alone have poor mechanical characteristics and are thermally unstable. Thus, to overcome the stated problems, glycerol as a plasticizer and acid-leached kaolin crosslinked with urea as a reinforcing material were used. Moreover, the effect of acid-leached kaolin and glycerol on the physico-chemical properties of the films was studied, and a maximum tensile strength of 6.74 MPa with 18.45 % elongation at break, thermally improved biodegradability of 26 %, were attained at 10 % acid-leached kaolin and 20 % glycerol crosslinking with 2 % urea. But the maximum degradability of 53.5 % was attained at 30 % glycerol content. The control and reinforced biodegradable films were characterized using TGA, FTIR, SEM, and XRD to determine the thermal, functional group, morphology, and crystallinity of the bioplastics, respectively. These biodegradable plastics may be used for packaging application.
Collapse
Affiliation(s)
- Alebel Abebaw Teshager
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
| | - Minaleshewa Atlabachew
- Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Adugna Nigatu Alene
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
| |
Collapse
|
12
|
Kadac-Czapska K, Ośko J, Knez E, Grembecka M. Microplastics and Oxidative Stress-Current Problems and Prospects. Antioxidants (Basel) 2024; 13:579. [PMID: 38790684 PMCID: PMC11117644 DOI: 10.3390/antiox13050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Microplastics (MPs) are plastic particles between 0.1 and 5000 µm in size that have attracted considerable attention from the scientific community and the general public, as they threaten the environment. Microplastics contribute to various harmful effects, including lipid peroxidation, DNA damage, activation of mitogen-activated protein kinase pathways, cell membrane breakages, mitochondrial dysfunction, lysosomal defects, inflammation, and apoptosis. They affect cells, tissues, organs, and overall health, potentially contributing to conditions like cancer and cardiovascular disease. They pose a significant danger due to their widespread occurrence in food. In recent years, information has emerged indicating that MPs can cause oxidative stress (OS), a known factor in accelerating the aging of organisms. This comprehensive evaluation exposed notable variability in the reported connection between MPs and OS. This work aims to provide a critical review of whether the harmfulness of plastic particles that constitute environmental contaminants may result from OS through a comprehensive analysis of recent research and existing scientific literature, as well as an assessment of the characteristics of MPs causing OS. Additionally, the article covers the analytical methodology used in this field. The conclusions of this review point to the necessity for further research into the effects of MPs on OS.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (K.K.-C.); (J.O.); (E.K.)
| |
Collapse
|
13
|
Mikac L, Csáki A, Zentai B, Rigó I, Veres M, Tolić A, Gotić M, Ivanda M. UV Irradiation of Polyethylene Terephthalate and Polypropylene and Detection of Formed Microplastic Particles Down to 1 μm. Chempluschem 2024; 89:e202300497. [PMID: 37882964 DOI: 10.1002/cplu.202300497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 10/27/2023]
Abstract
The degradation of plastics upon UVC irradiation in aqueous solution and the formation of microplastic (MP) particles were investigated. Polypropylene (PP) and recycled and virgin polyethylene terephthalate (PET) were irradiated with a UV lamp emitting light at 254 nm. Irradiation was performed for 15 and 30 min, respectively, at an intensity of about 0.3 W cm-2 . The formation of MP was studied by Raman spectroscopy. The results showed that MP particles were formed after irradiation and that their number was significantly higher in the recycled PET than in the virgin material. The number of PP MP formed was lower compared to PET and was not significantly different after 15 and 30 min. In addition, ethanol was used as an alternative solvent to investigate how its chemical properties and interactions with UVC irradiation affect the degradation of PET and PP plastics. The use of ethanol and recycled PET resulted in a lower number of MP particles at both irradiation times. When ethanol was used after 30 min of irradiation, significantly more PP MP formed. The different chemical structures of PET and PP combined with the different solvent properties of water and ethanol contribute to the differences in their susceptibility to UVC degradation.
Collapse
Affiliation(s)
- Lara Mikac
- Molecular Physics and New Materials Synthesis Laboratory, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Department of Applied and Nonlinear Optics, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Attila Csáki
- Department of Applied and Nonlinear Optics, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Benedek Zentai
- Department of Applied and Nonlinear Optics, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - István Rigó
- Department of Applied and Nonlinear Optics, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Miklós Veres
- Department of Applied and Nonlinear Optics, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Ana Tolić
- Molecular Physics and New Materials Synthesis Laboratory, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Marijan Gotić
- Molecular Physics and New Materials Synthesis Laboratory, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Mile Ivanda
- Molecular Physics and New Materials Synthesis Laboratory, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| |
Collapse
|
14
|
Shelver WL, McGarvey AM, Billey LO, Banerjee A. Fate and disposition of [ 14C]-polystyrene microplastic after oral administration to laying hens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168512. [PMID: 37977393 DOI: 10.1016/j.scitotenv.2023.168512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Micro/nanoplastics (MP) are emerging environmental contaminants of great concern because of their ubiquitous distribution in air, soil, water, and food. Reports have described MP in the excreta of food animals, but their absorption, distribution, and elimination in terrestrial animals used for human consumption is essentially unexplored. To determine the absorption and distribution of [14C]-polystyrene (PS) MP, laying hens (n = 15) were bolus dosed with 10 μCi/hen (11.1 ± 0.8 mg/kg) and the extent of radioactivity in blood and tissues was determined in birds harvested on withdrawal days (WD) 1, 2, 3, 4, and 7 (3 hens per WD). Radiocarbon was also determined in egg fractions and excreta collected throughout the study. Blood, eggs, and tissues contained a total of <1 % of the administered dose, demonstrating that polystyrene microparticles were poorly absorbed. Recovery of radioactivity in excreta within the first withdrawal day was nearly quantitative (96.8 ± 14.5 %, n = 15), suggesting exposure of poultry to dietary PS-MP would not likely represent subsequent food safety risks and that most PS-MP present in poultry diets would return to the environment.
Collapse
Affiliation(s)
- Weilin L Shelver
- USDA Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, ND 58102, United States of America.
| | - Amy M McGarvey
- USDA Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, ND 58102, United States of America
| | - Lloyd O Billey
- USDA Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, ND 58102, United States of America
| | - Amrita Banerjee
- USDA Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, ND 58102, United States of America
| |
Collapse
|
15
|
Vélez-Terreros PY, Romero-Estévez D, Yánez-Jácome GS. Microplastics in Ecuador: A review of environmental and health-risk assessment challenges. Heliyon 2024; 10:e23232. [PMID: 38163182 PMCID: PMC10754870 DOI: 10.1016/j.heliyon.2023.e23232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/26/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Pollution from plastic debris and microplastics (MPs) is a worldwide issue. Classified as emerging contaminants, MPs have become widespread and have been found not only in terrestrial and aquatic ecosystems but also within the food chain, which affects both the environment and human health. Since the outbreak of COVID-19, the consumption of single-use plastics has drastically increased, intensifying mismanaged plastic waste in countries such as Ecuador. Therefore, the aim of this review is to 1) summarize the state of MP-related knowledge, focusing on studies conducted with environmental matrices, biota, and food, and 2) analyze the efforts by different national authorities and entities in Ecuador to control MP contamination. Results showed a limited number of studies have been done in Ecuador, which have mainly focused on the surface water of coastal areas, followed by studies on sediment and food. MPs were identified in all samples, indicating the lack of wastewater management policies, deficient management of solid wastes, and the contribution of anthropogenic activities such as artisanal fishing and aquaculture to water ecosystem pollution, which affects food webs. Moreover, studies have shown that food contamination can occur through atmospheric deposition of MPs; however, ingredients and inputs from food production, processing, and packaging, as well as food containers, contribute to MP occurrence in food. Further research is needed to develop more sensitive, precise, and reliable detection methods and assess MPs' impact on terrestrial and aquatic ecosystems, biota, and human health. In Ecuador specifically, implementing wastewater treatment plants in major cities, continuously monitoring MP coastal contamination, and establishing environmental and food safety regulations are crucial. Additionally, national authorities need to develop programs to raise public awareness of plastic use and its environmental effects, as well as MP exposure's effects on human health.
Collapse
Affiliation(s)
- Pamela Y. Vélez-Terreros
- Centro de Estudios Aplicados en Química, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito, Pichincha, 170525, Ecuador
| | | | | |
Collapse
|
16
|
Han M, Zhu T, Liang J, Wang H, Zhu C, Lee Binti Abdullah A, Rubinstein J, Worthington R, George A, Li Y, Qin W, Jiang Q. Nano-plastics and gastric health: Decoding the cytotoxic mechanisms of polystyrene nano-plastics size. ENVIRONMENT INTERNATIONAL 2024; 183:108380. [PMID: 38141489 DOI: 10.1016/j.envint.2023.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 12/25/2023]
Abstract
Gastrointestinal diseases exert a profound impact on global health, leading to millions of healthcare interventions and a significant number of fatalities annually. This, coupled with escalating healthcare expenditures, underscores the need for identifying and addressing potential exacerbating factors. One emerging concern is the pervasive presence of microplastics and nano-plastics in the environment, largely attributed to the indiscriminate usage of disposable plastic items. These nano-plastics, having infiltrated our food chain, pose a potential threat to gastrointestinal health. To understand this better, we co-cultured human gastric fibroblasts (HGF) with polystyrene nano-plastics (PS-NPs) of diverse sizes (80, 500, 650 nm) and meticulously investigated their cellular responses over a 24-hour period. Our findings revealed PS particles were ingested by the cells, with a notable increase in ingestion as the particle size decreased. The cellular death induced by these PS particles, encompassing both apoptosis and necrosis, showcased a clear dependence on both the particle size and its concentration. Notably, the larger PS particles manifested more potent cytotoxic effects. Further analysis indicated a concerning reduction in cellular membrane potential, alongside a marked increase in ROS levels upon PS particles exposure. This suggests a significant disruption of mitochondrial function and heightened oxidative stress. The larger PS particles were especially detrimental in causing mitochondrial dysfunction. In-depth exploration into the PS particles impact on genes linked with the permeability transition pore (PTP) elucidated that these PS particles instigated an internal calcium rush. This surge led to a compromise in the mitochondrial membrane potential, which in tandem with raised ROS levels, further catalyzed DNA damage and initiated cell death pathways. In essence, this study unveils the intricate mechanisms underpinning cell death caused by PS particles in gastric epithelial cells and highlighting the implications of PS particles on gastrointestinal health. The revelations from this research bear significant potential to shape future healthcare strategies and inform pertinent environmental policies.
Collapse
Affiliation(s)
- Mingming Han
- Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Tian Zhu
- Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia.
| | - Ji Liang
- Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia.
| | - Hong Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Chenxi Zhu
- Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia.
| | | | - James Rubinstein
- Harvard University, College of Arts and Sciences, Cambridge, MA 02138, USA.
| | - Richard Worthington
- Stanford University, School of Humanities and Sciences, Stanford, CA 94305, USA.
| | - Andrew George
- University of Oxford, Department' of Biology, 11a Mansfield Road, OX12JD, UK.
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| | - Wei Qin
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China.
| |
Collapse
|
17
|
Zhang P, Wang J, Huang L, He M, Yang H, Song G, Zhao J, Li X. Microplastic transport during desertification in drylands: Abundance and characterization of soil microplastics in the Amu Darya-Aral Sea basin, Central Asia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119353. [PMID: 37866184 DOI: 10.1016/j.jenvman.2023.119353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Desertification and microplastic pollution are major environmental issues that impact the function of the ecosystem and human well-being of drylands. Land desertification may influence soil microplastics' abundance, transport, and distribution, but their distribution in the dryland deserts of Central Asia's Amu Darya-Aral Sea basin is unknown. Here, we investigated the abundance and distribution of microplastics in dryland desert soils from the Amu Darya River to the Aral Sea basin in Central Asia at a spatial scale of 1000 km and soil depths ranging from 0 to 50 cm. Microplastics were found in soils from all sample locations, with abundances ranging from 182 to 17841 items kg-1 and a median of 3369. Twenty-four polymers were identified, with polyurethane (PU, 37.3%), silicone resin (SR, 17.0%), and chlorinated polyethylene (CPE, 9.8%) accounting for 64.1% of all polymer types. The abundance of microplastics was significantly higher in deep (20-50 cm) soils than in surface (0-5, 5-20 cm) soils. The main morphological characteristics of the observed microplastics were small size (20-50 μm) and irregular particles with no round edges (mean eccentricity 0.65). The abundance was significantly and positively related to soil EC and TP. According to the findings, desertification processes increase the abundance of microplastic particles in soils and promote migration to deeper soil layers. Human activities, mainly grazing, may be the region's primary cause of desertification and microplastic pollution. Our findings provide new information on the diffusion of microplastics in drylands during desertification; these findings are critical for understanding and promoting dryland plastic pollution prevention and control.
Collapse
Affiliation(s)
- Peng Zhang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Jin Wang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lei Huang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Mingzhu He
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Haotian Yang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Guang Song
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jiecai Zhao
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xinrong Li
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
18
|
Simionov IA, Călmuc M, Iticescu C, Călmuc V, Georgescu PL, Faggio C, Petrea ŞM. Human health risk assessment of potentially toxic elements and microplastics accumulation in products from the Danube River Basin fish market. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104307. [PMID: 37914033 DOI: 10.1016/j.etap.2023.104307] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/03/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
The present study aimed to quantify the concentration levels of potentially toxic elements (PTEs) such as aluminum, arsenic, cadmium, chromium, copper, nickel, lead, zinc, and mercury, as well as microplastics occurrence in various tissues of fish and seafood species, commercialized in the Lower Danube River Basin. A health risk assessment analysis was performed based on the PTEs concentration levels in the muscle tissue. Estimated daily intake (EDI), target hazard quotient (THQ), hazard index (HI), and target cancer risk (TR) of PTEs were calculated. It was observed that the species within the seafood category registered the highest levels of PTEs. For instance, in the muscle tissue of bivalve Mytilus galloprovincialis (from the Black Sea), the highest value was observed in the case of Zn (37.693 mg/kg), and the presence of polystyrene polymer was identified. The values associated with EDI, THQ, HI, and TR of PTE exposure were significantly lower than 1.
Collapse
Affiliation(s)
- Ira-Adeline Simionov
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania; Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, "Dunarea de Jos" University Galati, 800008 Galati, Romania
| | - Mădălina Călmuc
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania
| | - Cătălina Iticescu
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania; Department of Chemistry, Physics and Environment, "Dunarea de Jos" University Galati, 800008 Galati, Romania.
| | - Valentina Călmuc
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania
| | - Puiu-Lucian Georgescu
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania; Department of Chemistry, Physics and Environment, "Dunarea de Jos" University Galati, 800008 Galati, Romania
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Ştefan-Mihai Petrea
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania; Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, "Dunarea de Jos" University Galati, 800008 Galati, Romania
| |
Collapse
|
19
|
Briassoulis G, Briassoulis P, Ilia S, Miliaraki M, Briassouli E. The Anti-Oxidative, Anti-Inflammatory, Anti-Apoptotic, and Anti-Necroptotic Role of Zinc in COVID-19 and Sepsis. Antioxidants (Basel) 2023; 12:1942. [PMID: 38001795 PMCID: PMC10669546 DOI: 10.3390/antiox12111942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Zinc is a structural component of proteins, functions as a catalytic co-factor in DNA synthesis and transcription of hundreds of enzymes, and has a regulatory role in protein-DNA interactions of zinc-finger proteins. For many years, zinc has been acknowledged for its anti-oxidative and anti-inflammatory functions. Furthermore, zinc is a potent inhibitor of caspases-3, -7, and -8, modulating the caspase-controlled apoptosis and necroptosis. In recent years, the immunomodulatory role of zinc in sepsis and COVID-19 has been investigated. Both sepsis and COVID-19 are related to various regulated cell death (RCD) pathways, including apoptosis and necroptosis. Lack of zinc may have a negative effect on many immune functions, such as oxidative burst, cytokine production, chemotaxis, degranulation, phagocytosis, and RCD. While plasma zinc concentrations decline swiftly during both sepsis and COVID-19, this reduction is primarily attributed to a redistribution process associated with the inflammatory response. In this response, hepatic metallothionein production increases in reaction to cytokine release, which is linked to inflammation, and this protein effectively captures and stores zinc in the liver. Multiple regulatory mechanisms come into play, influencing the uptake of zinc, the binding of zinc to blood albumin and red blood cells, as well as the buffering and modulation of cytosolic zinc levels. Decreased zinc levels are associated with increasing severity of organ dysfunction, prolonged hospital stay and increased mortality in septic and COVID-19 patients. Results of recent studies focusing on these topics are summarized and discussed in this narrative review. Existing evidence currently does not support pharmacological zinc supplementation in patients with sepsis or COVID-19. Complementation and repletion should follow current guidelines for micronutrients in critically ill patients. Further research investigating the pharmacological mechanism of zinc in programmed cell death caused by invasive infections and its therapeutic potential in sepsis and COVID-19 could be worthwhile.
Collapse
Affiliation(s)
- George Briassoulis
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Panagiotis Briassoulis
- Second Department of Anesthesiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Stavroula Ilia
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Marianna Miliaraki
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Efrossini Briassouli
- Infectious Diseases Department “MAKKA”, First Department of Paediatrics, “Aghia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
20
|
Ahmad M, Lubis NMA, Usama M, Ahmad J, Al-Wabel MI, Al-Swadi HA, Rafique MI, Al-Farraj ASF. Scavenging microplastics and heavy metals from water using jujube waste-derived biochar in fixed-bed column trials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122319. [PMID: 37544401 DOI: 10.1016/j.envpol.2023.122319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/06/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Extensive production and utilization of plastic products have resulted in the generation of microplastics (MPs), subsequently polluting the environment. The efficiency of biochars (BCs) derived from jujube (Ziziphus jujube L.) biomass (300 °C and 700 °C) for nylon (NYL) and polyethylene (PE) removal from contaminated water was explored in fixed-bed column trials. The optimum pH for the removal of both MPs was found 7. Both of the produced biochars demonstrated >99% removal of the MPs, while the sand filter exhibited a maximum of 78% removal of MPs. BC produced at 700 °C (BC700) showed 33-fold higher MPs retention, while BC produced at 300 °C (BC300) exhibited 20-fold higher retention, as compared to sand filters, indicating the higher efficiency of BC produced at higher pyrolysis temperature. Entrapment into the pores, entanglement with flaky structures of the BCs, and electrostatics interactions were the major mechanism for MPs retention in BCs. The efficiency of MPs-amended BCs was further explored for the removal of Pb(II) and Cd(II) in fixed-bed column trials. BC700 amended with PE and NYL exhibited the highest 50% breakthrough time (2114.23 and 2024.61 min, respectively, for Pb(II) removal and 2107.92 and 1965.19 min, respectively, for Cd(II) removal), as compared to sand filters (38.07 and 60.49 min for Pb(II) and Cd(II) removal, respectively). Thomas model predicted highest adsorption capacity was exhibited by BC700 amended with PE (584.34 and 552.80 mg g-1, for Pb(II) and Cd(II) removal, respectively), followed by BC700 amended with NYL (557.65 and 210.59 mg g-1 for Pb(II) and Cd(II) removal, respectively). Therefore, jujube waste-derived BCs could be used as efficient adsorbents to remove PE and NYL from contaminated water, while MPs-loaded BCs can further be utilized for higher adsorption of Pb(II) and Cd(II) from contaminated aqueous media. These findings suggest that BC could be used as an efficient adsorbent to remove the co-existing MPs-metals ions from the environment on a sustainable basis.
Collapse
Affiliation(s)
- Munir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Nahrir M A Lubis
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Muhammad Usama
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Jahangir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammad I Al-Wabel
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Hamed A Al-Swadi
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Muhammad Imran Rafique
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Abdullah S F Al-Farraj
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Kadac-Czapska K, Trzebiatowska PJ, Knez E, Zaleska-Medynska A, Grembecka M. Microplastics in food - a critical approach to definition, sample preparation, and characterisation. Food Chem 2023; 418:135985. [PMID: 36989641 DOI: 10.1016/j.foodchem.2023.135985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
The ubiquity of microplastics (MPs) is a more and more frequently brought up topic. The fact that such particles are present in food raises particular concern. Information regarding the described contamination is incoherent and difficult to interpret. Problems appear already at the level of the definition of MPs. This paper will discuss ways of explaining the concept of MPs and methods used for its analysis. Isolation of characterised particles is usually performed using filtration, etching and/or density separation. Spectroscopic techniques are commonly applied for analysis, whereas visual evaluation of the particles is possible thanks to microscopic analysis. Basic information about the sample can be obtained by the combination of Fourier Transform Infrared spectroscopy or Raman spectroscopy and microscopy or using the thermal method combined with spectroscopy or chromatography. The unification of the research methodology will allow a credible assessment of the influence of this pollution coming from food on health.
Collapse
|
22
|
Shahsavaripour M, Abbasi S, Mirzaee M, Amiri H. Human occupational exposure to microplastics: A cross-sectional study in a plastic products manufacturing plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163576. [PMID: 37086995 DOI: 10.1016/j.scitotenv.2023.163576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Microplastics are ubiquitous in the natural environment, and their potential impact on health is a key issue of concern. Investigating exposure routes in humans and other living organisms is among the major challenges of microplastics. This study aims to examine the exposure level of plastic factory staff to microplastic particles before and after work shifts through body receptors (hand and facial skin, saliva and hair) in Sirjan, southeast of Iran. Moreover, the effect of face masks, gloves, cosmetics (e.g: face powder cream, lipstick and eye makeup products) and appearance on the exposure level is investigated. In total, 19 individuals are selected during six working days. Then, the collected samples are transferred to the laboratory for filtration, extraction, identification and counting of microplastic particles. Moreover, 4802 microplastic particles (100-5000 μm in size) in strand, polyhedral and spherical shapes and color spectra of white/transparent, black, blue/green, red and purple are observed. The nature of most of the observed samples is fiber with a size ≥1000 μm. Analyzing the selected samples using micro-Raman spectroscopy indicate polyester and nylon are the main identified fibers. Hair and saliva samples have the highest and lowest number of microplastics, respectively. Using gloves and sunscreen among all the participants, wearing a scarf and hair size among women and having a beard and mustache among men could have an effective role in the exposure level to microplastics. Results of this study could reveal the exposure route to microplastic particles in the human body and highlight the importance of providing higher protection to reduce exposure.
Collapse
Affiliation(s)
- Maryam Shahsavaripour
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Sajjad Abbasi
- Department of Earth Sciences, School of Science, Shiraz University, Shiraz 71454, Iran; Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz 714545, Iran
| | - Moghaddameh Mirzaee
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran; Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Amiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
23
|
Crosta A, Parolini M, De Felice B. Microplastics Contamination in Nonalcoholic Beverages from the Italian Market. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4122. [PMID: 36901131 PMCID: PMC10002432 DOI: 10.3390/ijerph20054122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
A growing number of studies have confirmed that microplastics (MPs) contamination represents a worrisome issue of global concern. MPs have been detected in the atmosphere, in aquatic and terrestrial ecosystems, as well as in the biota. Moreover, MPs have been recently detected in some food products and in drinking water. However, only limited information is currently available for beverages, although they are largely consumed by humans and might contribute to the ingestion of MPs. Thus, estimating the contamination in beverages represents a crucial step in assessing human MP ingestion. The aim of the present study was to explore the presence of MPs in nonalcoholic beverages, namely soft drinks and cold tea, of different brands purchased in supermarkets and to estimate the contribution of beverage consumption to MP ingestion by humans. The results of the present study confirmed the presence of MPs, mainly fibers, in most of the analyzed beverages, with a mean (± SEM) number of 9.19 ± 1.84 MPs/L. In detail, the number of MPs detected in soft drinks and cold tea was 9.94 ± 0.33 MPs/L and 7.11 ± 2.62 MPs/L, respectively. Our findings confirmed that beverage consumption can be considered one of the main pathways for MP ingestion by humans.
Collapse
|
24
|
Antohi VM, Ionescu RV, Zlati ML, Iticescu C, Georgescu PL, Calmuc M. Regional Regression Correlation Model of Microplastic Water Pollution Control Using Circular Economy Tools. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4014. [PMID: 36901030 PMCID: PMC10002311 DOI: 10.3390/ijerph20054014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/12/2023]
Abstract
Water pollution caused by microplastics represents an important challenge for the environment and people's health. The weak international regulations and standards in this domain support increased water pollution with microplastics. The literature is unsuccessful in establishing a common approach regarding this subject. The main objective of this research is to develop a new approach to necessary policies and ways of action to decrease water pollution caused by microplastics. In this context, we quantified the impact of European water pollution caused by microplastics in the circular economy. The main research methods used in the paper are meta-analysis, statistical analysis and an econometric approach. A new econometric model is developed in order to assist the decision makers in increasing efficiency of public policies regarding water pollution elimination. The main result of this study relies on combining, in an integrated way, the Organisation for Economic Co-operation and Development's (OECD) data on microplastic water pollution and identifying relevant policies to combat this type of pollution.
Collapse
Affiliation(s)
- Valentin Marian Antohi
- Department of Business Administration, Dunarea de Jos University of Galati, 800001 Galati, Romania
- Department of Finance, Accounting and Economic Theory, Transylvania University of Brasov, 500036 Brasov, Romania
| | - Romeo Victor Ionescu
- Department of Administrative Sciences and Regional Studies, Dunarea de Jos University of Galati, 800201 Galati, Romania
| | - Monica Laura Zlati
- Department of Business Administration, Dunarea de Jos University of Galati, 800001 Galati, Romania
| | - Catalina Iticescu
- Department of Chemistry, Physics and Environment, REXDAN Research Infrastructure, Dunarea de Jos University of Galati, 800008 Galati, Romania
| | - Puiu Lucian Georgescu
- Department of Chemistry, Physics and Environment, REXDAN Research Infrastructure, Dunarea de Jos University of Galati, 800008 Galati, Romania
| | - Madalina Calmuc
- REXDAN Research Infrastructure, Dunarea de Jos University of Galati, 800008 Galati, Romania
| |
Collapse
|
25
|
Kadac-Czapska K, Knez E, Gierszewska M, Olewnik-Kruszkowska E, Grembecka M. Microplastics Derived from Food Packaging Waste-Their Origin and Health Risks. MATERIALS (BASEL, SWITZERLAND) 2023; 16:674. [PMID: 36676406 PMCID: PMC9866676 DOI: 10.3390/ma16020674] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plastics are commonly used for packaging in the food industry. The most popular thermoplastic materials that have found such applications are polyethylene (PE), polypropylene (PP), poly(ethylene terephthalate) (PET), and polystyrene (PS). Unfortunately, most plastic packaging is disposable. As a consequence, significant amounts of waste are generated, entering the environment, and undergoing degradation processes. They can occur under the influence of mechanical forces, temperature, light, chemical, and biological factors. These factors can present synergistic or antagonistic effects. As a result of their action, microplastics are formed, which can undergo further fragmentation and decomposition into small-molecule compounds. During the degradation process, various additives used at the plastics' processing stage can also be released. Both microplastics and additives can negatively affect human and animal health. Determination of the negative consequences of microplastics on the environment and health is not possible without knowing the course of degradation processes of packaging waste and their products. In this article, we present the sources of microplastics, the causes and places of their formation, the transport of such particles, the degradation of plastics most often used in the production of packaging for food storage, the factors affecting the said process, and its effects.
Collapse
Affiliation(s)
- Kornelia Kadac-Czapska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Eliza Knez
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Magdalena Gierszewska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| |
Collapse
|
26
|
Knez E, Kadac-Czapska K, Dmochowska-Ślęzak K, Grembecka M. Root Vegetables-Composition, Health Effects, and Contaminants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15531. [PMID: 36497603 PMCID: PMC9735862 DOI: 10.3390/ijerph192315531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Root vegetables are known all over the world, but they are being less and less consumed by individuals. The main purpose of this article was to summarize the benefits, health effects, and threats associated with the consumption of carrot, celery, parsley, beetroot, radish, turnip, and horseradish. They are characterized by high nutritional value due to their richness in dietary fiber, vitamins, and minerals. One of their most important features is their high content of bioactive compounds, such as polyphenols, phenols, flavonoids, and vitamin C. These compounds are responsible for antioxidant potential. Comparison of their antioxidant effects is difficult due to the lack of standardization among methods used for their assessment. Therefore, there is a need for a reference method that would allow for correct interpretation. Moreover, root vegetables are characterized by several health-promoting effects, including the regulation of metabolic parameters (glucose level, lipid profile, and blood pressure), antioxidant potential, prebiotic function, and anti-cancer properties. However, due to the type of cultivation, root vegetables are vulnerable to contaminants from the soil, such as toxic metals (lead and cadmium), pesticides, pharmaceutical residues, microplastics, and nitrates. Regardless, the low levels of toxic substances present in root vegetables do not pose health risks to the average consumer.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Grembecka
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Av. 107, 80-416 Gdańsk, Poland
| |
Collapse
|