1
|
Lee H, Lim W, Kweon J, Park J, Kim J, Bazer FW, Song G, Ham J. Resmethrin induces implantation failure by disrupting calcium homeostasis and forcing mitochondrial defects in porcine trophectoderm and uterine luminal epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176441. [PMID: 39307359 DOI: 10.1016/j.scitotenv.2024.176441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Resmethrin, a type I pyrethroid insecticide, is frequently used globally in residential and farmland areas to control pests. Owing to the repeated administration of resmethrin, and particularly because of its lipophilic nature, residues have been detected in various environments, crops, and livestock. Previous studies have shown the adverse effects of resmethrin, including neurotoxicity and hepatotoxicity. However, the toxic effects of resmethrin on the female reproductive system have rarely been investigated. In the present study, we used two cell types, porcine trophectoderm (pTr) and porcine uterine luminal epithelial (pLE) cells, to examine the toxic effects of resmethrin on implantation and its mechanisms. Our study showed that resmethrin exposure induced apoptosis and inhibited cell cycle progression, thereby reducing the viability of both cell types. In addition, calcium homeostasis was disrupted following resmethrin treatment, and disrupted calcium homeostasis impaired the mitochondrial membrane potential and mitochondrial respiration. In addition to mitochondrial dysfunction, GRP75 and ER stress-related proteins were upregulated. Furthermore, the AKT and MAPK cascades were altered, and reactive oxygen species production and inflammation occurred after resmethrin treatment. Ultimately, through various mechanisms, resmethrin decreased the migratory abilities, and it could diminish the crosstalk between the two cell lines and lower the probability of successful implantation. Overall, we demonstrated that resmethrin interfered with the implantation process by triggering various toxic mechanisms. This study presents, for the first time, evidence regarding the mechanisms through which resmethrin exerts toxic effects on the female reproductive system, thereby raising awareness regarding the potential implications of its widespread use.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junhun Kweon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jinyoung Kim
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Jiyeon Ham
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
2
|
Chen S, Xiao X, Song X, Luo T, Li J, Gui T, Li Y. Association of maternal pyrethroid pesticides exposure during the whole pregnancy with neonate lipid metabolism: A prospective birth cohort, Yunnan, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136603. [PMID: 39637820 DOI: 10.1016/j.jhazmat.2024.136603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Dyslipidemias may emerge during the fetal period. However, the association between prenatal pyrethroid pesticides (PYRs) exposure and neonatal lipid metabolism remains uncertain. To explore the association of prenatal PYRs exposure and neonates' lipid metabolism, pregnant women were recruited in rural Yunnan, China, and their urine samples in the first, second, and third trimester and their neonates' cord blood samples were collected to obtain urinary PYRs metabolites (3PBA, 4F3PBA, and DBCA), cord blood TC, TG, HDL-C, LDL-C, and Non-HDL-C, AIP, CRI-I, CRI-II, AC, and LCI. We found the total PYRs detection during pregnancy was 99.6 %. High-level DBCA in the first and third trimester and high-level 3PBA in the second trimester increased risks of high AIP. High-level ∑PYRs in the third trimester enhanced risks of high levels of TG, LDL-C, Non-HDL-C, AIP, and LCI. Repeated high-level 3PBA in two trimesters and above elevated risks of high levels of TG, LDL-C, CRI-I, AIP, AC, and LCI. Repeated high-level DBCA group in two trimesters and above increased the risk of high AIP. Repeated high ∑PYRs in three trimesters intensified risks of high levels of TC, LDL-C, Non-HDL-C, and AIP. Thus, our study suggests high PYRs exposure during the whole pregnancy may increase the risk of neonate abnormal lipid metabolism. The third trimester is the most sensitive window of high prenatal PYRs exposure. The adverse effects on neonate lipid metabolism increased as the increasing of trimesters repeated high-level PYRs exposure during pregnancy. Different kinds of PYRs exposure may induce different cord blood abnormal lipids.
Collapse
Affiliation(s)
- Shuqi Chen
- School of Public Health, Kunming Medical University, Kunming, China
| | - Xia Xiao
- School of Public Health, Kunming Medical University, Kunming, China.
| | - Xiaoxiao Song
- School of Public Health, Kunming Medical University, Kunming, China
| | - Tong Luo
- School of Public Health, Kunming Medical University, Kunming, China
| | - Jirong Li
- School of Public Health, Kunming Medical University, Kunming, China
| | - Tengwei Gui
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yan Li
- School of Public Health, Kunming Medical University, Kunming, China.
| |
Collapse
|
3
|
Sharma P, Sethi RS. In Vivo Exposure of Deltamethrin Dysregulates the NFAT Signalling Pathway and Induces Lung Damage. J Toxicol 2024; 2024:5261994. [PMID: 39239465 PMCID: PMC11377118 DOI: 10.1155/2024/5261994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/23/2024] [Accepted: 08/10/2024] [Indexed: 09/07/2024] Open
Abstract
Deltamethrin is an insecticide used to control harmful agricultural insects that otherwise damage crops and to control vector-borne diseases. Long-term exposure to deltamethrin results in the inflammation of the lungs. The present study elucidates the molecular mechanism underlying the deltamethrin-induced lung damage. The lung samples were extracted from the Swiss albino mice following the treatment of low (2.5 mg/kg) and high (5 mg/kg) doses of deltamethrin. The mRNA expression of TCR, IL-4, and IL-13 showed upregulation, while the expression of NFAT and FOS was downregulated following a low dose of deltamethrin. Moreover, the expression of TCR was downregulated with the exposure of a high dose of deltamethrin. Furthermore, the immunohistochemistry data confirmed the pattern of protein expression for TCR, FOS, IL-4, and IL-13 following a low dose of deltamethrin exposure. However, no change was seen in the TCR, NFAT, FOS, JUN, IL-4, and IL-13 immunopositive cells of the high-dose treatment group. Also, ELISA results showed increased expression of IL-13 in the BAL fluid of animals exposed to low doses of deltamethrin. Overall, the present study showed that deltamethrin exposure induces lung damage and immune dysregulation via dysregulating the NFAT signalling pathway.
Collapse
Affiliation(s)
- Prakriti Sharma
- Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - R S Sethi
- Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
4
|
Zhao M, Wei D, Wang L, Xu Q, Wang J, Shi J, Ma C, Geng J, Huo W, Jing T, Wang C, Mao Z. The Interaction of Inflammation and Exposure to Pyrethroids is Associated with Impaired Fasting Glucose and Type 2 Diabetes. EXPOSURE AND HEALTH 2024; 16:959-971. [DOI: 10.1007/s12403-023-00602-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2024]
|
5
|
Laborde-Castérot H, Vodovar D, Ortiz De Zevallos A, Caré W, Nisse P, Bargel S, Rambourg MO, Langrand J. Trends in poisoning associated with the use of insecticides for bed bug infestations: a 20-year retrospective study in France. Sci Rep 2024; 14:16868. [PMID: 39043814 PMCID: PMC11266503 DOI: 10.1038/s41598-024-67727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Bed bugs are pervasive global pests that have reemerged in the last 20 years as a significant public health concern, especially in densely populated urban areas. Beyond financial losses, expenses, inconvenience, and psychological distress, bed bug infestations often necessitate chemical management, posing poisoning risks to those with an infestation. The French Poison Control Centers recorded 1056 cases of exposure to bed bug insecticide products between 1999 and 2021. This study followed cases over 2007-2021, with a notable surge in reports of adverse reactions from 2016 onwards. Data revealed an increased recurrent misuse of insecticides, including substances banned or not approved for this use. Our findings underscore the growing public reliance on chemical insecticides for home bed bug management. With this is the concern of increased poisoning risks, and potential long-term health consequences from non-professional efforts by the public to manage bed bugs in their homes. This escalating trend emphasizes the need for safer and more sustainable pest management strategies in urban environments.
Collapse
Affiliation(s)
- Hervé Laborde-Castérot
- AP-HP Nord, Hôpital Fernand Widal, Centre Antipoison de Paris, 75010, Paris, France.
- INSERM UMR 1153, CRESS HERA Team, Faculté de Pharmacie, Université Paris Cité, 75006, Paris, France.
| | - Dominique Vodovar
- AP-HP Nord, Hôpital Fernand Widal, Centre Antipoison de Paris, 75010, Paris, France
- INSERM UMR-S 1144, Mécanismes de Toxicité et Optimisation Thérapeutique des Psychotropes, Faculté de Pharmacie, Université Paris Cité, 75006, Paris, France
| | | | - Weniko Caré
- AP-HP Nord, Hôpital Fernand Widal, Centre Antipoison de Paris, 75010, Paris, France
- Service de Médecine Interne, Hôpital d'instruction des Armées Bégin, 91460, Saint-Mandé, France
| | | | | | - Marie-Odile Rambourg
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), 94700, Maisons-Alfort, France
| | - Jérôme Langrand
- AP-HP Nord, Hôpital Fernand Widal, Centre Antipoison de Paris, 75010, Paris, France
- INSERM UMR-S 1144, Mécanismes de Toxicité et Optimisation Thérapeutique des Psychotropes, Faculté de Pharmacie, Université Paris Cité, 75006, Paris, France
| |
Collapse
|
6
|
Park J, An G, Lee H, Park S, Ham J, Bazer FW, Song G, Lim W. Beta-cyfluthrin impairs implantation process by inducing mitochondrial defects and changes in reactive oxygen species-mediated signaling pathways in porcine trophectoderm and uterine luminal epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173097. [PMID: 38729356 DOI: 10.1016/j.scitotenv.2024.173097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Pyrethroid insecticides, such as beta-cyfluthrin, are used extensively globally, including in households and agriculture, and have been detected in the milk and urine of humans and cattle. Beta-cyfluthrin exhibits toxic effects, including neurotoxicity and male reproductive toxicity; however, few studies have investigated female reproductive toxicity despite its wide environmental distribution. The present study investigates effects of beta-cyfluthrin on implantation in porcine cells (pTr from the trophectoderm and pLE from the endometrial luminal epithelium). To identify the various physiological changes induced by beta-cyfluthrin, such as apoptosis and lipid peroxidation, flow cytometry analysis and immunofluorescence were performed with various reagents. In addition, the expression of genes and proteins associated with intracellular changes was confirmed using qRT-PCR and western blotting. Beta-cyfluthrin induced cell-cycle arrest and altered intracellular calcium flux. It also disrupted the mitochondrial function and promoted reactive oxygen species (ROS) production, leading to lipid peroxidation. Moreover, ROS induced by beta-cyfluthrin altered mitogen-activated protein kinase (MAPK) pathways and decreased cell migration capability. The expression levels of genes that are significant during early pregnancy were altered by beta-cyfluthrin in both cell lines. The changes resulted in apoptosis and diminished cell proliferation of pTr and pLE. Collectively, the results imply that beta-cyfluthrin disrupts the implantation process by affecting the physiology of the trophectoderm and endometrial luminal epithelial cells. The present study is the first to reveal the cellular mechanisms of beta-cyfluthrin on the female reproductive system and highlights the need for further in-depth research into its hazards.
Collapse
Affiliation(s)
- Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Department of Biological Sciences, Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si, Gyeongnam 52725, Republic of Korea
| | - Jiyeon Ham
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
7
|
Wang X, Huang H, Zhong S, Shentu X, Ye Z, Yu X. Carboxymethyl chitosan-modified UiO-66 for the rapid detection of fenpropathrin in grains. Int J Biol Macromol 2024; 265:131032. [PMID: 38521295 DOI: 10.1016/j.ijbiomac.2024.131032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Fenpropathrin residues in grain are potentially harmful to humans. Therefore, a fluorimetric lateral flow immunoassay using a zirconium-based organic skeleton (UiO-66) as a signal marker was developed for detecting fenpropathrin. Herein, carboxymethyl chitosan (CMCS) was used to modify UiO-66 and improve its water solubility to facilitate stable binding with sodium fluorescein (NaFL). This resulted in formation of a new fluorescent probe that is more suitable for lateral flow immunoassay (LFIA). The materials were characterized via electron microscopy, Fourier-transform infrared spectroscopy, and powder X-ray diffraction. CMCS and NaFL were successfully bound to UiO-66. Under optimized conditions, the constructed NaFL/UiO-66@CMCS-LFIA exhibited a good linear relationship within the range of 0.98-62.5 μg/L, with a detection limit of 3.91 μg/L. This probe was fourfold more sensitive than traditional colloidal gold nanoparticle-based LFIA. Finally, NaFL/UiO-66@CMCS-LFIA was successfully applied to detect fenpropathrin in wheat and maize samples. The detection limit was 1.56 μg/kg and recoveries ranged from 96.58 % to 118.56 %. This study provides a sensitive, stable, and convenient method for the rapid detection of pesticide residues.
Collapse
Affiliation(s)
- Xiaoyao Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Haizhi Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Siyao Zhong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| |
Collapse
|
8
|
Küçükler S, Çelik O, Özdemir S, Aydın Ş, Çomaklı S, Dalkılınç E. Effects of rutin against deltamethrin-induced testicular toxicity in rats: Biochemical, molecular, and pathological studies. Food Chem Toxicol 2024; 186:114562. [PMID: 38432437 DOI: 10.1016/j.fct.2024.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Orhan Çelik
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Şeyma Aydın
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Elif Dalkılınç
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
9
|
Swathy K, Vivekanandhan P, Yuvaraj A, Sarayut P, Kim JS, Krutmuang P. Biodegradation of pesticide in agricultural soil employing entomopathogenic fungi: Current state of the art and future perspectives. Heliyon 2024; 10:e23406. [PMID: 38187317 PMCID: PMC10770572 DOI: 10.1016/j.heliyon.2023.e23406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Pesticides play a pivotal role in agriculture for the effective production of various crops. The indiscriminate use of pesticides results in the significant bioaccumulation of pesticide residues in vegetables. This situation is beyond the control of consumers and poses a serious health issue for human beings. Occupational exposure to pesticides may occur for farmers, agricultural workers, and industrial producers of pesticides. This occupational exposure primarily causes food and water contamination that gets into humans and environmental pollution. Depending on the toxicity of pesticides, the causes and effects differ in the environment and in human health. The number of criteria used and the method of implementation employed to assess the effect of pesticides on humans and the environment have been increasing, as they may provide characterization of pesticides that are already on the market as well as those that are on the way. The biological control of pests has been increasing nowadays to combat all these effects caused by synthetic pesticides. Myco-biocontrol has received great attention in research because it has no negative impact on humans, the environment, or non-target species. Entomopathogenic fungi are microbes that have the ability to kill insect pests. Fungi also make enzymes like the lytic enzymes, esterase, oxidoreductase, and cytochrome P450, which react with chemical residues in the field and break them down into nontoxic substances. In this review, the authors looked at how entomopathogenic fungi break down insecticides in the environment and how their enzymes break down insecticides on farms.
Collapse
Affiliation(s)
- Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Perumal Vivekanandhan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of General Pathology at Saveetha Dental College and Hospitals in the Saveetha Institute of Medical & Technical Sciences at Saveetha University in Chennai, Tamil Nadu, 600077, India
| | | | - Pittarate Sarayut
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jae Su Kim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
10
|
El Mabrouk N, Iulini M, Maddalon A, Galbiati V, Harizi H, Mastouri M, Corsini E. In Vitro Effects of Cypermethrin and Glyphosate on LPS-Induced Immune Cell Activation. Life (Basel) 2023; 14:62. [PMID: 38255676 PMCID: PMC10820252 DOI: 10.3390/life14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
(1) Background: The insecticide cypermethrin (Cypm) and the herbicide glyphosate (Glyp) are among the most widely used pesticides. While the two pesticides have been considered to have low toxicity in mammals, some indication of potential immunotoxicity has emerged. The aim of this work was to investigate in vitro the effects of Cypm and Glyp on bacteria lipopolysaccharide (LPS)-induced immune cell activation and of Cypm on 2-mercaptobenzothiazole (MBT)-induced maturation of dendritic cells (DCs). (2) Methods: The release of the inflammatory cytokines TNF-α and IL-8, the expression of the surface markers CD54 and CD86 in human primary peripheral blood mononuclear cells (PBMC), and THP-1 cells were investigated together with CD83, HLA-DR, IL-6, and IL-18 in DCs. (3) Results: While no significant modulation on LPS-induced immune cell activation was observed following Glyp exposure, with only a trend toward an increase at the highest concentration tested, Cypm reduced the responses to LPS and to MBT, supporting a direct immunosuppressive effect. Overall, the present study contributes to our understanding of pesticide-induced immunotoxicity, and the results obtained support evidence showing the immunosuppressive effects of Cypm.
Collapse
Affiliation(s)
- Narjesse El Mabrouk
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, Monastir University, Avenue Avicienne, Monastir 5019, Tunisia; (N.E.M.); (H.H.); (M.M.)
| | - Martina Iulini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.I.); (A.M.); (E.C.)
| | - Ambra Maddalon
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.I.); (A.M.); (E.C.)
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.I.); (A.M.); (E.C.)
| | - Hedi Harizi
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, Monastir University, Avenue Avicienne, Monastir 5019, Tunisia; (N.E.M.); (H.H.); (M.M.)
| | - Maha Mastouri
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, Monastir University, Avenue Avicienne, Monastir 5019, Tunisia; (N.E.M.); (H.H.); (M.M.)
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.I.); (A.M.); (E.C.)
| |
Collapse
|
11
|
Wolfe J, Marsit C. Pyrethroid pesticide exposure and placental effects. Mol Cell Endocrinol 2023; 578:112070. [PMID: 37722502 PMCID: PMC10591723 DOI: 10.1016/j.mce.2023.112070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Human exposures to pyrethroid pesticides have increased in recent years following the bans and sanctions placed on other families of pesticides. Although pyrethroids are currently widely used across the United States and throughout the world, and their overt neurological toxicity classified, the extent of their toxicity through low dose and chronic exposures on humans is less well characterized, particularly when it comes to prenatal exposures, their impacts on neurodevelopment, and any role for the placenta in those effects. In this review, we assess the state of research on pyrethroid pesticide exposure and placental effects. These studies presented hormone disrupting, genotoxic, neurodevelopmental and neurobehavioral effects, among others, following prenatal pyrethroid exposures, and highlights a need for future research to assess gaps relating to effects in the human placenta and mechanisms of toxicity as well as shortcomings in the reproducibility and standardization of the methodologies presented.
Collapse
Affiliation(s)
- Joshua Wolfe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Kumar A, Jasrotia S, Dutta J, Kyzas GZ. Pyrethroids toxicity in vertebrates and invertebrates and amelioration by bioactive compounds: A review. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105615. [PMID: 37945252 DOI: 10.1016/j.pestbp.2023.105615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 11/12/2023]
Abstract
Generations of different synthetic pesticides have been launched over time to maintain balance between production and consumption of the agricultural yield, control various disease programmes, store grains, etc. Pyrethroids, which are supposed to be non-toxic, have been excessively implemented and have contaminated soil and water bodies. Thus, pyrethroids cause severe and dreadful pernicious effects on various life forms residing in soil, air, and water. Various obnoxious effects of pyrethroids have been analyzed in the vertebrate and invertebrate systems of the animal kingdom. Pyrethroids, namely, Cypermethrin, Deltamethrin, Beta-cyfluthrin, Esfenvalerate, Fenvalerate, and Bifenthrin, have set out various types of degenerative and toxic impacts that include oxidative stress, hepatotoxicity, immunotoxicity involving thymic and splenic toxicity, neurotoxicity, nephrotoxicity, foetal toxicity, alterations in serum calcium and phosphate levels, cerebral and bone marrow degeneration, degeneration of the reproductive system, histological alteration, and DNA damage. Bioactive compounds like Diosmin, Curcumin, Rutin, Spirulina platensis, sesame oil, Naringin, Allicin, Piperine, alpha-lipoic acid, alpha-tocopherol, Cyperus rotundus L. tuber extract, herbal syrup from chicory and artichoke leaves, green tea extract, Quercetin, Trans-ferulic acid, Ascorbic acid, Propolis, ethanolic extract of grape pomace, and Melatonin have been reported to sublime the toxic effects of these pesticides. The expanding harmfulness of pesticides is a real and demanding issue that needs to be overcome, and bioactive compounds have been shown to reduce the toxicity in vivo as well as in vitro.
Collapse
Affiliation(s)
- Anupam Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India.
| | - Shailja Jasrotia
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Joydeep Dutta
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala GR-654 04, Greece
| |
Collapse
|
13
|
Xi C, Shi X, Wang Y, He J, Jiang S, Niu B, Chen Y, Zhao F, Cao Z. Influence of bifenthrin exposure at different gestational stages on the neural development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115365. [PMID: 37597292 DOI: 10.1016/j.ecoenv.2023.115365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Perinatal exposure to bifenthrin (BF) alters neurodevelopment. However, the most susceptible time period to BF exposure and the possible mechanisms are not clear. In the current study, pregnant female mice were treated with BF (0.5 mg/kg/d) at three different stages [gestational day (GD) 0-5, 6-15 and 16-birth (B)] and neurologic deficits were evaluated in offspring mice. BF exposure at GD 16-B significantly altered the locomotor activity and caused learning and memory impairments in 6-week-old offspring. Gestational BF exposure also caused neuronal loss in the region of cornu ammonis of hippocampi of 6-week-old offspring. Interestingly, neurobehavioral impairments and neuronal loss were not observed in offspring at 10-week-old. BF exposure at GD 16-B also decreased protein levels of VGluT1, NR1 and NR2A while increased the protein levels of NR2B and VGAT1, as well as the gene levels of Il-1β, Il-6 and Tnf-α in hippocampi of 6-week-old offspring. Collectively, these data demonstrate that gestational exposure to a low dose BF causes neurodevelopmental deficits that remit with the age and the late-stage of pregnancy is the most susceptible time window to BF exposure. Imbalance in excitatory/inhibitory neuronal transmission, altered expression levels of NMDA receptors and increased neural inflammation may be associated with BF prenatal exposure-triggered neurobehavioral impairments.
Collapse
Affiliation(s)
- Chuchu Xi
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Xiaoqian Shi
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Yujing Wang
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Jing He
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Shan Jiang
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Bo Niu
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Ying Chen
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Fang Zhao
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China.
| | - Zhengyu Cao
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China.
| |
Collapse
|
14
|
Liu Y, Tang S, Wang X, Wang X, Tang X, Wu Q, Huang Z, Ding J. A novel thermostable and salt-tolerant carboxylesterase involved in the initial aerobic degradation pathway for pyrethroids in Glycomyces salinus. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131128. [PMID: 36893599 DOI: 10.1016/j.jhazmat.2023.131128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The long-term and excessive use of pyrethroid pesticides poses substantial health risks and ecosystem concerns. Several bacteria and fungi have been reported that could degrade pyrethroids. The ester-bond hydrolysis using hydrolases is the initial regulatory metabolic reaction of pyrethroids. However, the thoroughly biochemical characterization of hydrolases involved in this process is limited. Here, a novel carboxylesterase, designated as EstGS1 that could hydrolyze pyrethroid pesticides was characterized. EstGS1 showed low sequence identity (<27.03%) compared to other reported pyrethroid hydrolases and belonged to the hydroxynitrile lyase family that preferred short short-chain acyl esters (C2 to C8). EstGS1 displayed the maximal activity of 213.38 U/mg at 60 °C and pH 8.5 using pNPC2 as substrate, with Km and Vmax were 2.21 ± 0.72 mM and 212.90 ± 41.78 µM/min, respectively. EstGS1 is a halotolerant esterase and remains stable in 5.1 M NaCl. Based on molecular docking and mutational analysis, the catalytic triad of S74-D181-H212 and three other substrate-binding residues I108, S159, and G75 are critical for the enzymatic activity of EstGS1. Additionally, 61 and 40 mg/L of deltamethrin and λ-cyhalothrin were hydrolyzed by 20 U of EstGS1 in 4 h. This work presents the first report on a pyrethroid pesticide hydrolase characterized from a halophilic actinobacteria.
Collapse
Affiliation(s)
- Yan Liu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Shukun Tang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xu Wang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Xiaoliang Wang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China; Key Laboratory of Yunnan Province for Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming 650500, China
| | - Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China; Key Laboratory of Yunnan Province for Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
15
|
Arif A, Quds R, Salam S, Mahmood R. Esculin protects human blood cells from bioallethrin-induced toxicity: An ex vivo study. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105375. [PMID: 36963944 DOI: 10.1016/j.pestbp.2023.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Bioallethrin, a household insecticide, is a member of the pyrethroid family and is known for its adverse effects on human health. Human exposure to pyrethroids is unavoidable due to their widespread use in controlling several fatal vector-borne diseases, mostly in developing nations. Bioallethrin is known to induce oxidative stress in target cells, including erythrocytes. Here we have studied the protective effect of dietary antioxidant esculin on bioallethrin-induced damage in isolated human erythrocytes. The cells were incubated with 200 μM bioallethrin, without or with different concentrations of esculin (200, 400 and 600 μM), and the results compared to the untreated control samples. Bioallethrin-treated erythrocytes showed a significant increase in oxidative stress markers, like protein and lipid oxidation, accompanied by decrease in free amino groups and ratio of reduced to oxidized glutathione. There was enhanced generation of reactive oxygen and nitrogen species with changes in plasma membrane integrity. Bioallethrin oxidized hemoglobin to methemoglobin, which cannot transport oxygen. It altered the activities of antioxidant enzymes and lowered the electron donating and free radical quenching ability of erythrocytes. The cell morphology and redox system of erythrocyte membrane were also altered by bioallethrin. Treatment with esculin, prior to incubation with bioallethrin, led to significant restoration in all these parameters in an esculin concentration-dependent manner. Thus esculin attenuated the biolletherin-induced oxidative damage to erythrocytes. Esculin can, therefore, be an effective chemoprotectant against xenobiotic-induced toxicity in human erythrocytes.
Collapse
Affiliation(s)
- Amin Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Ruhul Quds
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Samreen Salam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
16
|
Curtis MA, Dhamsania RK, Branco RC, Guo JD, Creeden J, Neifer KL, Black CA, Winokur EJ, Andari E, Dias BG, Liu RC, Gourley SL, Miller GW, Burkett JP. Developmental pyrethroid exposure causes a neurodevelopmental disorder phenotype in mice. PNAS NEXUS 2023; 2:pgad085. [PMID: 37113978 PMCID: PMC10129348 DOI: 10.1093/pnasnexus/pgad085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/06/2023] [Indexed: 04/29/2023]
Abstract
Neurodevelopmental disorders (NDDs) are a widespread and growing public health challenge, affecting as many as 17% of children in the United States. Recent epidemiological studies have implicated ambient exposure to pyrethroid pesticides during pregnancy in the risk for NDDs in the unborn child. Using a litter-based, independent discovery-replication cohort design, we exposed mouse dams orally during pregnancy and lactation to the Environmental Protection Agency's reference pyrethroid, deltamethrin, at 3 mg/kg, a concentration well below the benchmark dose used for regulatory guidance. The resulting offspring were tested using behavioral and molecular methods targeting behavioral phenotypes relevant to autism and NDD, as well as changes to the striatal dopamine system. Low-dose developmental exposure to the pyrethroid deltamethrin (DPE) decreased pup vocalizations, increased repetitive behaviors, and impaired both fear conditioning and operant conditioning. Compared with control mice, DPE mice had greater total striatal dopamine, dopamine metabolites, and stimulated dopamine release, but no difference in vesicular dopamine capacity or protein markers of dopamine vesicles. Dopamine transporter protein levels were increased in DPE mice, but not temporal dopamine reuptake. Striatal medium spiny neurons showed changes in electrophysiological properties consistent with a compensatory decrease in neuronal excitability. Combined with previous findings, these results implicate DPE as a direct cause of an NDD-relevant behavioral phenotype and striatal dopamine dysfunction in mice and implicate the cytosolic compartment as the location of excess striatal dopamine.
Collapse
Affiliation(s)
- Melissa A Curtis
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, USA
| | - Rohan K Dhamsania
- College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Rachel C Branco
- Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ji-Dong Guo
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Justin Creeden
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Kari L Neifer
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, USA
| | - Carlie A Black
- Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Schiemer School of Psychology and Biblical Counseling, Truett McConnell University, Cleveland, GA 30528, USA
| | - Emily J Winokur
- College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Elissar Andari
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Brian G Dias
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
- Division of Endocrinology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, CA 90027, USA
| | - Robert C Liu
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA
| | - Shannon L Gourley
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Gary W Miller
- Department of Environmental Health, Emory Rollins School of Public Health, Atlanta, GA 30322, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
17
|
Apel P, Lamkarkach F, Lange R, Sissoko F, David M, Rousselle C, Schoeters G, Kolossa-Gehring M. Human biomonitoring guidance values (HBM-GVs) for priority substances under the HBM4EU initiative - New values derivation for deltamethrin and cyfluthrin and overall results. Int J Hyg Environ Health 2023; 248:114097. [PMID: 36577283 DOI: 10.1016/j.ijheh.2022.114097] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022]
Abstract
The European Initiative HBM4EU aimed to further establish human biomonitoring across Europe as an important tool for determining population exposure to chemicals and as part of health-related risk assessments, thus making it applicable for policy advice. Not only should analytical methods and survey design be harmonized and quality assured, but also the evaluation of human biomonitoring data. For the health-related interpretation of the data within HBM4EU, a strategy for deriving health-based human biomonitoring guidance values (HBM-GVs) for both the general population and workers was agreed on. On this basis, HBM-GVs for exposure biomarkers of 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), phthalates (diethyl hexyl phthalate (DEHP), di-n-butyl phthalate (DnBP), diisobutyl phthalate (DiBP), butyl benzyl phthalate (BBzP), and bis-(2-propylheptyl) phthalate (DPHP)), bisphenols A and S, pyrethroids (deltamethrin and cyfluthrin), solvents (1-methyl-2-pyrrolidone (NMP), 1-ethylpyrrolidin-2-one (NEP), N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAC)), the heavy metal cadmium and the mycotoxin deoxynivalenol (DON) were developed and assigned a level of confidence. The approach to HBM-GV derivations, results, and limitations in data interpretation with special focus on the pyrethroids are presented in this paper.
Collapse
Affiliation(s)
- P Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany.
| | - F Lamkarkach
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| | - R Lange
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - F Sissoko
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| | - M David
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - C Rousselle
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| | - G Schoeters
- VITO Health, Flemish Institute for Technological Research, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - M Kolossa-Gehring
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| |
Collapse
|
18
|
Borowik A, Wyszkowska J, Zaborowska M, Kucharski J. The Impact of Permethrin and Cypermethrin on Plants, Soil Enzyme Activity, and Microbial Communities. Int J Mol Sci 2023; 24:ijms24032892. [PMID: 36769219 PMCID: PMC9917378 DOI: 10.3390/ijms24032892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Pyrethroids are insecticides most commonly used for insect control to boost agricultural production. The aim of the present research was to determine the effect of permethrin and cypermethrin on cultured and non-cultivated bacteria and fungi and on the activity of soil enzymes, as well as to determine the usefulness of Zea mays in mitigating the adverse effects of the tested pyrethroids on the soil microbiome. The analyses were carried out in the samples of both soil not sown with any plant and soil sown with Zea mays. Permethrin and cypermethrin were found to stimulate the multiplication of cultured organotrophic bacteria (on average by 38.3%) and actinomycetes (on average by 80.2%), and to inhibit fungi growth (on average by 31.7%) and the enzymatic activity of the soil, reducing the soil biochemical fertility index (BA) by 27.7%. They also modified the number of operational taxonomic units (OTUs) of the Actinobacteria and Proteobacteria phyla and the Ascomycota and Basidiomycota phyla. The pressure of permethrin and cypermethrin was tolerated well by the bacteria Sphingomonas (clone 3214512, 1052559, 237613, 1048605) and Bacillus (clone New.ReferenceOTU111, 593219, 578257), and by the fungi Penicillium (SH1533734.08FU, SH1692798.08FU) and Trichocladium (SH1615601.08FU). Both insecticides disturbed the growth and yielding of Zea mays, as a result of which its yield and leaf greenness index decreased. The cultivation of Zea mays had a positive effect on both soil enzymes and soil microorganisms and mitigated the anomalies caused by the tested insecticides in the microbiome and activity of soil enzymes. Permethrin decreased the yield of its aerial parts by 37.9% and its roots by 33.9%, whereas respective decreases caused by cypermethrin reached 16.8% and 4.3%.
Collapse
|
19
|
Sheikh IA, Beg MA, Hamoda TAAM, Mandourah HMS, Memili E. Androgen receptor signaling and pyrethroids: Potential male infertility consequences. Front Cell Dev Biol 2023; 11:1173575. [PMID: 37187621 PMCID: PMC10175798 DOI: 10.3389/fcell.2023.1173575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Infertility is a global health concern inflicting a considerable burden on the global economy and a severe socio-psychological impact. Approximately 15% of couples suffer from infertility globally, with a male factor contribution of approximately 50%. However, male infertility remains largely unexplored, as the burden of infertility is mostly assigned to female people. Endocrine-disrupting chemicals (EDCs) have been proposed as one of the factors causing male infertility. Pyrethroids represent an important class of EDCs, and numerous studies have associated pyrethroid exposure with impaired male reproductive function and development. Therefore, the present study investigated the potentially toxic effects of two common pyrethroids, cypermethrin and deltamethrin, on androgen receptor (AR) signaling. The structural binding characterization of cypermethrin and deltamethrin against the AR ligand-binding pocket was performed using Schrodinger's induced fit docking (IFD) approach. Various parameters were estimated, such as binding interactions, binding energy, docking score, and IFD score. Furthermore, the AR native ligand, testosterone, was subjected to similar experiments against the AR ligand-binding pocket. The results revealed commonality in the amino acid-binding interactions and overlap in other structural parameters between the AR native ligand, testosterone, and the ligands, cypermethrin and deltamethrin. The estimated binding energy values of cypermethrin and deltamethrin were very high and close to those calculated for AR native ligand, testosterone. Taken together, the results of this study suggested potential disruption of AR signaling by cypermethrin and deltamethrin, which may result in androgen dysfunction and subsequent male infertility.
Collapse
Affiliation(s)
- Ishfaq Ahmad Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Ishfaq Ahmad Sheikh,
| | - Mohd Amin Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | - Erdogan Memili
- College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, United States
| |
Collapse
|
20
|
Wang R, Zhang S, Xiao K, Cai M, Liu H. Occurrence, sources, and risk assessment of pyrethroid insecticides in surface water and tap water from Taihu Lake, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116565. [PMID: 36279776 DOI: 10.1016/j.jenvman.2022.116565] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Pyrethroid insecticides are one of the most widely used insecticides globally, posing a severe threat to human health and the environment. In this study, we applied high-throughput organic analysis testing combined with high-volume solid-phase extraction (Hi-throat/Hi-volume SPE) to elucidate the occurrence of 11 pyrethroid insecticides in lake water (n = 37), tributary river water (n = 15), and tap water (n = 6) in the Taihu Lake Basin. Permethrin was found to be the major contributing pyrethroid insecticide (detection rate = 100%). The concentrations of pyrethroid insecticides from different lake regions were revealed in the following descending order: southern > eastern > western > northern. The principal component analysis and multiple linear regression demonstrated that landscape maintenance, agricultural cultivation, and livestock breeding were the main sources of pyrethroid insecticides in the Taihu Lake surface water. Moreover, runoff input plays an important role in their accumulation, while the surrounding rivers contribute 2292 kg of pyrethroid insecticides to Taihu Lake annually. The risk assessment analysis demonstrated that pyrethroid insecticides pose a high risk to both the ecological environment and the surrounding human populations, thereby necessitating effective countermeasures. Furthermore, the pyrethroid insecticides in the Yangtze River Delta region have to be controlled. Overall, this is the first study focused on China that revealed the residue levels in water sources and tap water.
Collapse
Affiliation(s)
- Rui Wang
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China; Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Kaiyan Xiao
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China; School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, 1000 Xuelong Road, Shanghai, 201209, China.
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
21
|
Alcala CS, Lichtveld MY, Wickliffe JK, Zijlmans W, Shankar A, Rokicki E, Covert H, Abdoel Wahid FZ, Hindori-Mohangoo AD, van Sauers-Muller A, van Dijk C, Roosblad J, Codrington J, Wilson MJ. Characterization of Urinary Pesticide Metabolite Concentrations of Pregnant Women in Suriname. TOXICS 2022; 10:toxics10110679. [PMID: 36355970 PMCID: PMC9695383 DOI: 10.3390/toxics10110679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/07/2023]
Abstract
Prenatal exposure to pesticides and the association with adverse health outcomes have been examined in several studies. However, the characterization of pesticide exposure among Surinamese women during pregnancy has not been assessed. As part of the Caribbean Consortium of Research in Environmental and Occupational Health research program, 214 urine samples were collected from pregnant women living in three regions in Suriname with different agricultural practices: capital Paramaribo, the rice producing district Nickerie, and the tropical rainforest, the Interior. We used isotope dilution tandem mass spectrometry to quantify urinary concentrations of biomarkers of three pesticide classes, including phenoxy acid herbicides and organophosphate and pyrethroid insecticides, all of which are commonly used in agricultural and residential settings in Suriname. We observed that participants residing in Nickerie had the highest urinary metabolite concentrations of 2,4-dichlorophenoxyacetic acid and pyrethroids compared to those from Paramaribo or the Interior. Paramaribo had the highest concentrations of organophosphate metabolites, specifically dialkyl phosphate metabolites. Para-nitrophenol was detected in samples from Paramaribo and the Interior. Samples from Nickerie had higher median urinary pesticide concentrations of 2,4-dichlorophenoxyacetic acid (1.06 μg/L), and the following metabolites, 3,5,6-trichloro-2-pyridinol (1.26 μg/L), 2-isopropyl-4-methyl-6-hydroxypyrimidine (0.60 μg/L), and 3-phenoxybenzoic acid (1.34 μg/L), possibly due to residential use and heavy rice production.
Collapse
Affiliation(s)
- Cecilia S. Alcala
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maureen Y. Lichtveld
- Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Jeffrey K. Wickliffe
- Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Wilco Zijlmans
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - Arti Shankar
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Ellen Rokicki
- Department of Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Hannah Covert
- Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Firoz Z. Abdoel Wahid
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
- Scientific Research Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Ashna D. Hindori-Mohangoo
- Department of Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
- Foundation for Perinatal Interventions and Research in Suriname (Perisur), Paramaribo, Suriname
| | - Alies van Sauers-Muller
- Pesticide Division, Ministry of Agriculture, Animal Husbandry, and Fisheries of Suriname, Paramaribo, Suriname
| | - Carmen van Dijk
- Pesticide Division, Ministry of Agriculture, Animal Husbandry, and Fisheries of Suriname, Paramaribo, Suriname
| | - Jimmy Roosblad
- Clinical Chemical Laboratory, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - John Codrington
- Clinical Chemical Laboratory, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Mark J. Wilson
- Department of Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
22
|
Pitzer EM, Sugimoto C, Regan SL, Gudelsky GA, Williams MT, Vorhees CV. Developmental deltamethrin: Sex-specific hippocampal effects in Sprague Dawley rats. Curr Res Toxicol 2022; 3:100093. [PMID: 36393872 PMCID: PMC9661443 DOI: 10.1016/j.crtox.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Pyrethroid pesticides are widely used and can cause long-term effects after early exposure. Epidemiological and animal studies reveal associations between pyrethroid exposure and altered cognition following prenatal and/or neonatal exposure. However, little is known about the cellular effects of such exposure. Sprague Dawley rats were gavaged with 0 or 1.0 mg/kg deltamethrin (DLM), a Type II pyrethroid, in corn oil (dose volume 5 mL/kg) once per day from postnatal day (P) 3-20 and assessed shortly after dosing ended or as adults. No effects of DLM exposure were found on striatal dopaminergic markers, nor on AMPA receptor subunits or on NMDA-NR1. However, DLM increased NMDA-NR2A and decreased NMDA-NR2B levels in the hippocampus, in males but not females. Additionally, adult hippocampal CA1 long-term potentiation was increased in DLM-treated males but not females. Potassium stimulated extracellular glutamate release in the hippocampus was not affected using in vivo microdialysis. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) showed increased apoptotic cells in the dentate gyrus of male rats, in the absence of changes in cleaved caspase-3 at P21. Proinflammatory cytokines interferon gamma trended up in striatum, interleukin-1β trended down in nucleus accumbens, IL-13 trended up in hippocampus, and keratinocyte chemoattractant/human growth-regulated oncogene (KC/GRO or CXCL1) was significantly increased in the hippocampus in male DLM-treated rats on P20. The data point to the developing hippocampus as a susceptible region to DLM-induced adverse effects.
Collapse
Affiliation(s)
- Emily M. Pitzer
- Dept. of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chiho Sugimoto
- Dept. of Physiology, Michigan State University, 766 Service Rd. 5401 Interdisciplinary Science and Technology Building, East Lansing, MI 48824, USA
| | - Samantha L. Regan
- Dept. of Human Genetics, University of Michigan Medical Center, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI 48109-5618, USA
| | - Gary A. Gudelsky
- College of Pharmacy, Div. of Pharmaceutical Sciences, 3212 Medical Sciences Building, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Michael T. Williams
- Dept. of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Charles V. Vorhees
- Dept. of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
23
|
Rousseau M, Rouzeau C, Bainvel J, Pelé F. Domestic Exposure to Chemicals in Household Products, Building Materials, Decoration, and Pesticides: Guidelines for Interventions During the Perinatal Period from the French National College of Midwives. J Midwifery Womens Health 2022; 67 Suppl 1:S113-S134. [PMID: 36480667 DOI: 10.1111/jmwh.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION We are exposed to numerous pollutants inside our homes. The perinatal period represents a particular window of vulnerability during which these exposures can have negative health effects over a more or less long term. The objective of this article is to formulate guidelines for health care professionals and intended for parents to reduce exposure to chemical pollutants at home, based on the scientific literature and already existing guidelines. METHODS We have followed the methodological procedures set forth by the French authority for health (HAS) to establish guidelines to limit exposure to pollutants in homes. This narrative review of the scientific literature was conducted with two principal objectives: (1) to identify priority substances emitted within homes and that have a reprotoxic potential and (2) to identify measures to limit exposure to these residential pollutants. The guidelines were developed from the data in the literature and from advice already made available by diverse institutions about environmental health during the perinatal period. RESULTS Domestic pollutants are numerous and come from both common (that is, shared, eg, painting, cleaning, and maintenance work) and specific (use of household pesticides) sources. Numerous pollutants are suspected or known to produce developmental toxicity, that is, to be toxic to children during developmental stages. Removing some products from the home, protecting the vulnerable (ie, pregnant women and young children) from exposure, and airing the home are among the preventive measures proposed to limit exposure to these chemical substances. CONCLUSION Health care professionals can provide advice to parents during the perinatal period to diminish exposure to household pollutants. The lack of interventional studies nonetheless limits the level of evidence for most of these recommendations.
Collapse
Affiliation(s)
- Mélie Rousseau
- Association pour la Prévention de la Pollution Atmosphérique (APPA), Loos, France
| | - Camille Rouzeau
- Département de médecine générale, Université de Rennes 1, Rennes, France
| | - Justine Bainvel
- Département de médecine générale, Université de Rennes 1, Rennes, France
| | - Fabienne Pelé
- Département de médecine générale, Université de Rennes 1, Rennes, France.,Université de Rennes, CHU Rennes, Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), Rennes, F-35000, France
| |
Collapse
|
24
|
Arif A, Hashmi MA, Salam S, Younus H, Mahmood R. Interaction of the insecticide bioallethrin with human hemoglobin: biophysical, in silico and enzymatic studies. J Biomol Struct Dyn 2022:1-12. [PMID: 35950518 DOI: 10.1080/07391102.2022.2109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Bioallethrin is an insecticide that is widely used in households resulting in human exposure. Bioallethrin is cytotoxic to human erythrocytes. Here we have studied the interaction of bioallethrin with human hemoglobin (Hb) using in silico and biophysical approaches. Incubation of Hb (5 μM) with bioallethrin (1-50 µM) led to increase in absorbance at 280 nm while the Soret band at 406 nm was slightly reduced. The intrinsic fluorescence of Hb was enhanced with the appearance of a new peak around 305 nm. Synchronous fluorescence showed that the binding of bioallethrin to Hb mainly affects the tyrosine microenvironment. The structural changes in Hb were confirmed with a significant shift in CD spectra and about 25% loss of α-helix. Molecular docking and visualisation through Discovery studio confirmed the formation of Hb-bioallethrin complex with a binding energy of -7.3 kcal/mol. Molecular simulation showed the stability and energy dynamics of the binding reaction between bioallethrin and Hb. The structural changes induced by bioallethrin led to inhibition of the esterase activity of Hb. In conclusion, this study shows that bioallethrin forms a stable complex with human Hb which may lead to loss of Hb function in the body.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amin Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Md Amiruddin Hashmi
- Department of Biotechnology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Samreen Salam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hina Younus
- Department of Biotechnology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
25
|
Tarazona JV, Cattaneo I, Niemann L, Pedraza-Diaz S, González-Caballero MC, de Alba-Gonzalez M, Cañas A, Dominguez-Morueco N, Esteban-López M, Castaño A, Borges T, Katsonouri A, Makris KC, Ottenbros I, Mol H, De Decker A, Morrens B, Berman T, Barnett-Itzhaki Z, Probst-Hensch N, Fuhrimann S, Tratnik JS, Horvat M, Rambaud L, Riou M, Schoeters G, Govarts E, Kolossa-Gehring M, Weber T, Apel P, Namorado S, Santonen T. A Tiered Approach for Assessing Individual and Combined Risk of Pyrethroids Using Human Biomonitoring Data. TOXICS 2022; 10:451. [PMID: 36006130 PMCID: PMC9416723 DOI: 10.3390/toxics10080451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022]
Abstract
Pyrethroids are a major insecticide class, suitable for biomonitoring in humans. Due to similarities in structure and metabolic pathways, urinary metabolites are common to various active substances. A tiered approach is proposed for risk assessment. Tier I was a conservative screening for overall pyrethroid exposure, based on phenoxybenzoic acid metabolites. Subsequently, probabilistic approaches and more specific metabolites were used for refining the risk estimates. Exposure was based on 95th percentiles from HBM4EU aligned studies (2014-2021) covering children in Belgium, Cyprus, France, Israel, Slovenia, and The Netherlands and adults in France, Germany, Israel, and Switzerland. In all children populations, the 95th percentiles for 3-phenoxybenzoic acid (3-PBA) exceeded the screening value. The probabilistic refinement quantified the risk level of the most exposed population (Belgium) at 2% or between 1-0.1% depending on the assumptions. In the substance specific assessments, the 95th percentiles of urinary concentrations in the aligned studies were well below the respective human biomonitoring guidance values (HBM-GVs). Both information sets were combined for refining the combined risk. Overall, the HBM data suggest a low health concern, at population level, related to pyrethroid exposure for the populations covered by the studies, even though a potential risk for highly exposed children cannot be completely excluded. The proposed tiered approach, including a screening step and several refinement options, seems to be a promising tool of scientific and regulatory value in future.
Collapse
Affiliation(s)
- Jose V. Tarazona
- European Food Safety Authority (EFSA), 43126 Parma, Italy
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Irene Cattaneo
- European Food Safety Authority (EFSA), 43126 Parma, Italy
| | - Lars Niemann
- Department of Safety of Pesticides, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Susana Pedraza-Diaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | | | | | - Ana Cañas
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | | | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Teresa Borges
- General-Directorate of Health, Ministry of Health, 1049-005 Lisbon, Portugal
| | | | - Konstantinos C. Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Ilse Ottenbros
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 Bilthoven, The Netherlands
| | - Hans Mol
- Wageningen Food Safety Research (WFSR), 6700 Wageningen, The Netherlands
| | | | - Bert Morrens
- Department of Sociology, University of Antwerp, 2020 Antwerpen, Belgium
| | | | - Zohar Barnett-Itzhaki
- Ruppin Research Group in Environmental and Social Sustainability, Ruppin Academic Center, Emek Hefer 4025000, Israel
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Samuel Fuhrimann
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Janja Snoj Tratnik
- Jozef Stefan Institute, Department of Environmental Sciences, 1000 Jubljana, Slovenia
| | - Milena Horvat
- Jozef Stefan Institute, Department of Environmental Sciences, 1000 Jubljana, Slovenia
| | - Loic Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, 12 rue du Val d’Osne, Saint-Maurice, CEDEX, 94415 Paris, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, 12 rue du Val d’Osne, Saint-Maurice, CEDEX, 94415 Paris, France
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2020 Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2020 Mol, Belgium
| | | | - Till Weber
- German Environment Agency (UBA), 14195 Berlin, Germany
| | - Petra Apel
- German Environment Agency (UBA), 14195 Berlin, Germany
| | - Sonia Namorado
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Työterveyslaitos, P.O. Box 40, 00032 Helsinki, Finland
| |
Collapse
|
26
|
Chen S, Xiao X, Qi Z, Chen L, Chen Y, Xu L, Zhang L, Song X, Li Y. Effects of prenatal and infant daily exposure to pyrethroid pesticides on the language development of 2-year-old toddlers: a prospective cohort study in rural Yunnan, China. Neurotoxicology 2022; 92:180-190. [DOI: 10.1016/j.neuro.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
27
|
Liang H, Wu X, Yao H, Weng X, Liu S, Chen J, Li Y, Wu Y, Wen L, Chen Q, Jing C. Association of urinary metabolites of non-persistent pesticides with serum sex hormones among the US females: NHANES 2013-2014. CHEMOSPHERE 2022; 300:134577. [PMID: 35421444 DOI: 10.1016/j.chemosphere.2022.134577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Evidence indicated the possibility of non-persistent pesticides disrupting the homeostasis of sex hormones. However, few studies have focused on this relationship in females. We aimed to explore the relationship between non-persistent pesticide exposure and sex hormones among the US females from the National Health and Nutrition Examination Survey 2013-2014. METHODS A total of 790 females, including girls (6-11 years), female adolescents (12-19 years), and adult females (>19 years), were enrolled in this study. Age stratified associations of individual non-persistent pesticide metabolites and their mixtures with sex hormones were analyzed by weighted multiple linear regression and Bayesian kernel machine regression (BKMR) using spot urinary non-persistent pesticide measurement, including 2,4-dichlorophenoxyacetic acid (2,4-D), 3,5,6-trichloropyridinol (TCPY), para-nitrophenol (PNP) and 3-phenoxybenzoic acid (3-PBA), and three serum sex hormones [total testosterone (TT), estradiol (E2) and sex hormone binding globulin (SHBG)]. RESULTS In girls, weighted multivariate linear regression indicated that both 2,4-D and PNP were negatively associated with TT, and TCPY was inversely associated with SHBG. In female adolescents, TCPY was negatively associated with TT and E2, and 3-PBA was negatively associated with SHBG; positive associations were detected both in 2,4-D with SHBG, and in PNP with TT. In adult females, a higher concentration of 3-PBA was associated with higher levels of TT. The BKMR model showed that in female adolescents, the concentrations of pesticide metabolite mixtures at or above the 55th percentile were negatively related to the levels of E2 compared with their mixtures at 50th percentile, and an inverse U-shaped exposure-response function between PNP and E2 was found. CONCLUSIONS Associations between the four non-persistent pesticide metabolites and serum sex hormones were identified in the US females from NHANES 2013-2014 and these associations were age dependent, especially in adolescents. Large-scale cohort studies are needed to confirm these findings and elucidate the potential biological mechanisms.
Collapse
Affiliation(s)
- Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xiaomei Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Huojie Yao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xueqiong Weng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Shan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Jingmin Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yexin Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Qian Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
28
|
Xu H, Bo Y. Associations between pyrethroid exposure and serum sex steroid hormones in adults: Findings from a nationally representative sample. CHEMOSPHERE 2022; 300:134591. [PMID: 35427660 DOI: 10.1016/j.chemosphere.2022.134591] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Pyrethroids have been considered as potential endocrine-disrupting chemicals and have been shown to be associated with endocrine-related health outcomes. However, limited studies directly explored the link between pyrethroid exposure and sex hormones in the general population. OBJECTIVES To explore the associations between exposure to pyrethroids and serum sex steroid hormones in adults. METHODS We evaluated the cross-sectional associations in 1235 adults aged ≥20 years who had been assigned to the National Health and Nutrition Examination Survey (NHANES) 2013-2014. The urinary concentration of 3-phenoxybenzoic acid (3-PBA) was applied as a biomarker of human pyrethroid exposure levels. Information on sex steroid hormones, including total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) in serum were measured. Free androgen index (FAI) and the ratio of TT to E2 (TT/E2) were also calculated. The percent changes with 95% confidence intervals (CIs) for a doubling of 3-PBA concentrations in the serum sex hormone levels were estimated using generalized linear regression models. RESULTS The overall median concentrations of creatinine-adjusted 3-PBA were 0.58 μg/g creatinine, and 90.0% of adults had a detectable level of 3-PBA. In females, every two-fold increase in 3-PBA was associated with 4.34% (95% CI: 1.58%, 7.18%) higher levels of TT and 4.05% (95% CI: 7.03%, 1.16%) higher levels of SHBG, respectively. In males, a doubling in 3-PBA was associated with 3.02% (95% CI: 1.21%, 4.86%) increase in SHBG but 1.85% (-3.59%, -0.07%) decrease in FAI, respectively. In addition, significant non-linear associations of 3-PBA with SHBG in both males and females and TT in females were observed. CONCLUSIONS Environmental pyrethroid exposure was associated with altered sex hormones in adults. This study provides important epidemiological evidence for the association of pyrethroids with endocrine disruption.
Collapse
Affiliation(s)
- Huadong Xu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China.
| | - Yacong Bo
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450000, China
| |
Collapse
|
29
|
Hu P, Zhang Y, Vinturache A, Tian Y, Hu Y, Gao Y, Ding G. Prenatal pyrethroid exposure and lung function among school-aged children. Int J Hyg Environ Health 2022; 245:114027. [PMID: 36067539 DOI: 10.1016/j.ijheh.2022.114027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Previous epidemiological evidence mainly focused on the adverse effects of prenatal exposure to pyrethroid insecticides (PYRs) on respiratory health during childhood. It remains unclear whether the PYR exposures can also impact on children's lung function. OBJECTIVES To explore the potential effects of prenatal PYR exposures on lung function in a population of Chinese children. METHODS This study included 233 mother-child dyads from the Laizhou Wan Birth Cohort (LWBC), Shandong province, northern China, between September 2010 and December 2013. Three metabolites of PYRs [3-phenoxybenzoic acid (3-PBA), and cis- and trans-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis-DCCA and trans-DCCA)] were measured using gas chromatography-mass spectrometry (GC-MS) in maternal urine samples collected at recruitment. Lung function was assessed with spirometry in children aged 6-8 years. Multivariable linear regression and generalized linear models (GLMs) assessed the associations of prenatal PYR exposures with lung function in children. RESULTS Among the PYR metabolites, 3-PBA (81.5%) were most frequently detected, followed by trans-DCCA (55.4%) and cis-DCCA (21.9%). The 3-PBA concentration was associated with a 1% decrease in FEV1/FVC in the highest quartiles of exposure compared to the lowest quartile, with a potential dose response association (p-trend = 0.085). Our findings provide a suggestive effect modification by sex, with girls being more susceptible than the boys (p-trend = 0.011). However, there were no associations between the trans-DCCA concentration and lung function parameters. CONCLUSION Prenatal 3-PBA concentrations were associated with a modest decrease in FEV1/FVC among school-aged children, and the association was slightly more pronounced for the girls than for the boys.
Collapse
Affiliation(s)
- Peipei Hu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Angela Vinturache
- Department of Obstetrics & Gynecology, University of Alberta, Alberta, Canada; Department of Neuroscience, University of Lethbridge, Alberta, Canada.
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yi Hu
- Center for Medical Bioinformatics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guodong Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
Li L, Liu S, Yin Y, Zheng G, Zhao C, Ma L, Shan Q, Dai X, Wei L, Lin J, Xie W. The toxicokinetics and risk assessment of pyrethroids pesticide in tilapia (Oreochromis mossambicus) upon short-term water exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113751. [PMID: 35691199 DOI: 10.1016/j.ecoenv.2022.113751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Pyrethroids pesticides (PPs) are the widely adopted synthetic pesticides for agriculture and fishery. The frequent use of these pesticides leads to the accumulation of residues in the freshwater environments in China, subsequently affecting aquatic organisms and ecosystems. However, there are few reports on the toxicological and risk assessment of aquaculture aquatic products. In this study, the uptake, depuration kinetics and potential risk to human health and ecology of fenpropathrin, cypermethrin, fenvalerate, and deltamethrin were assessed using tilapia. The results indicated that four PPs were readily accumulated by tilapia. The bioconcentration factors (BCF) of the PPs in plasma and muscle were between 71.3 and 2112.1 L/kg and 23.9-295.3 L/kg, respectively. The half-lives (t1/2) of muscle and plasma were 2.90-9.20 d and 2.57-8.15 d. The risks of PPs residues in the muscle of tilapia and exposed water were evaluated by hazard quotient (HQ) and risk quotient (RQ). Although PPs residues in tilapia had a low dietary risk to human health, the residues in the exposed water had a high ecological risk to fish, daphnia, and green algae. Therefore, assessing the PPs content in freshwater aquaculture and monitoring their dosages and frequencies are highly necessitated to avoid their adverse effect on the aquaculture environment.
Collapse
Affiliation(s)
- Lichun Li
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Shugui Liu
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Yi Yin
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China.
| | - Guangming Zheng
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Cheng Zhao
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Lisha Ma
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Qi Shan
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Xiaoxin Dai
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Linting Wei
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Jiawei Lin
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Wenping Xie
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| |
Collapse
|
31
|
Elser BA, Simonsen D, Lehmler HJ, Stevens HE. Maternal and fetal tissue distribution of α-cypermethrin and permethrin in pregnant CD-1 mice. ENVIRONMENTAL ADVANCES 2022; 8:100239. [PMID: 36059860 PMCID: PMC9435064 DOI: 10.1016/j.envadv.2022.100239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Pyrethroid insecticides are widely used throughout agriculture and household products. Recent studies suggest that prenatal exposure to these insecticides may adversely affect fetal development; however, little is known about the distribution of these chemicals in pregnant animals. The present study aimed to address this gap in knowledge by investigating the distribution of two commonly used pyrethroid insecticides, permethrin and α-cypermethrin, in maternal and fetal tissues of pregnant CD-1 mice. Dams were dosed from gestational days 6 to 16 via oral gavage with permethrin (1.5, 15, and 50 mg/kg), α-cypermethrin (0.3, 3, and 10 mg/kg), or corn oil vehicle. Pyrethroid levels were determined in gestational day 16 tissues collected 90 min after the final dose was administered. Across maternal tissues, levels of both pyrethroids were the highest in maternal ovaries, followed by liver and brain, respectively. In addition, levels of both pyrethroids in maternal tissues and placenta were significantly higher than those in the fetal body and amniotic fluid, suggesting that these compounds may exhibit low transfer across the mouse placenta. While additional toxicokinetic studies are needed to verify the time course of pyrethroids in the fetal compartment, these findings support investigation into indirect modes of action relevant to the effects of pyrethroids on mammalian fetal development.
Collapse
Affiliation(s)
- Benjamin A. Elser
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, 1330 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA
| | - Derek Simonsen
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA 52242, USA
| | - Hans-Joachim Lehmler
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA 52242, USA
| | - Hanna E. Stevens
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, 1330 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA
- Corresponding author at: Department of Psychiatry, Carver College of Medicine, The University of Iowa, 1330 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA. (H.E. Stevens)
| |
Collapse
|
32
|
Shrestha S, Parks CG, Umbach DM, Hofmann JN, Beane Freeman LE, Blair A, Sandler DP. Use of permethrin and other pyrethroids and mortality in the Agricultural Health Study. Occup Environ Med 2022; 79:664-672. [PMID: 35688626 PMCID: PMC10368161 DOI: 10.1136/oemed-2021-108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/26/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Pyrethroid insecticides have been linked with multiple health outcomes. One study reported an association with increased all-cause and cardiovascular mortality. Given the widespread use of pyrethroids, these findings warrant confirmation. We explored associations of permethrin/pyrethroid use with overall and cause-specific mortality among 50 665 licensed pesticide applicators in the Agricultural Health Study. METHODS At enrolment (1993-1997), participants self-reported information on permethrin/pyrethroid use. Information on causes of death came from linkage with death registries through 2016. We used Cox proportional hazards models to estimate HRs and 95% CIs with adjustment for potential confounders. RESULTS Over an average 21 years of follow-up, 19.6% (9,955) of the cohort died. We found no clear evidence that ever-use of permethrin/pyrethroid was associated with elevated overall mortality or with mortality from most causes examined. There was suggestive evidence, based on a small number of deaths among those exposed, for elevated pyrethroid-associated mortality from some neurological, respiratory and genitourinary diseases in the overall sample and from lung cancer among never-smokers. CONCLUSION Although based on mortality, which is also affected by survival, rather than incidence, these findings are biologically plausible, and future investigations in other populations may be warranted.
Collapse
Affiliation(s)
- Srishti Shrestha
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland, USA
| | - Aaron Blair
- Formerly of Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
33
|
Bossou YM, Côté J, Mahrouche L, Mantha M, El Majidi N, Furtos A, Bouchard M. Excretion time courses of lambda-cyhalothrin metabolites in the urine of strawberry farmworkers and effect of coexposure with captan. Arch Toxicol 2022; 96:2465-2486. [PMID: 35567602 DOI: 10.1007/s00204-022-03310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
There are limited literature data on the impact of coexposure on the toxicokinetics of pesticides in agricultural workers. Using the largely employed pyrethroid lambda-cyhalothrin (LCT) and fungicide captan as sentinel pesticides, we compared individual temporal profiles of biomarkers of exposure to LCT in strawberry field workers following an application episode of LCT alone or in coexposure with captan. Participants provided all urine voided over a 3-day period after an application of a pesticide formulation containing LCT alone (E1) or LCT mixed with captan (E2), and in some cases following re-entry in treated field (E3). Pyrethroid metabolites were measured in all urine samples, in particular 3-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethyl-cyclopropanecarboxylic acid (CFMP), 3-phenoxybenzoic acid (3-PBA), and 4-hydroxy-3-phenoxybenzoic acid (4-OH3PBA). There were no obvious differences in individual concentration-time profiles and cumulative excretion of metabolites (CFMP, 3-PBA, 4-OH3BPA) after exposure to LCT alone or in combination with captan. For most workers and exposure scenarios, CFMP was the main metabolite excreted, but time courses of CFMP in urine did not always follow that of 3-PBA and 4-OH3BPA. Given that the latter metabolites are common to other pyrethroids, this suggests that some workers were coexposed to pyrethroids other than LCT. For several workers and exposure scenarios E1 and E2, values of CFMP increased in the hours following spraying. However, for many pesticide operators, other peaks of CFMP were observed at later times, indicating that tasks other than spraying of LCT-containing formulations contributed to this increased exposure. These tasks were mainly handling/cleaning of equipment used for spraying (tractor or sprayer) or work/inspection in LCT-treated field according to questionnaire responses. Overall, this study provided novel excretion time course data for LCT metabolites valuable for interpretation of biomonitoring data in workers, but also showed that coexposure was not a major determinant of variability in exposure biomarker levels. Our analysis also pointed out the importance of measuring specific metabolites.
Collapse
Affiliation(s)
- Yélian Marc Bossou
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, Main Station, P.O. Box 6128, Montreal, QC, U436H3C 3J7, Canada
| | - Jonathan Côté
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, Main Station, P.O. Box 6128, Montreal, QC, U436H3C 3J7, Canada
| | - Louiza Mahrouche
- Department of Chemistry, University of Montreal, MIL Building, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Marc Mantha
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, Main Station, P.O. Box 6128, Montreal, QC, U436H3C 3J7, Canada
| | - Naïma El Majidi
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, Main Station, P.O. Box 6128, Montreal, QC, U436H3C 3J7, Canada
| | - Alexandra Furtos
- Department of Chemistry, University of Montreal, MIL Building, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, Main Station, P.O. Box 6128, Montreal, QC, U436H3C 3J7, Canada.
| |
Collapse
|
34
|
Elser BA, Hing B, Stevens HE. A narrative review of converging evidence addressing developmental toxicity of pyrethroid insecticides. Crit Rev Toxicol 2022; 52:371-388. [PMID: 36345971 PMCID: PMC9930199 DOI: 10.1080/10408444.2022.2122769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/11/2022]
Abstract
Pyrethroid insecticides are broadly used in agriculture and household products throughout the world. Exposure to this class of insecticides is widespread, and while generally believed to be safe for use, there is increasing concern regarding their effects on neurodevelopment. Due to the critical roles that molecular targets of pyrethroids play in the regulation of neurodevelopment, particular focus has been placed on evaluating the effects of in utero and childhood pyrethroid exposure on child cognition and behavior. As such, this narrative review synthesizes an assessment of converging study types; we review reports of neonatal pyrethroid levels together with current epidemiological literature that convergently address the risk for developmental toxicity linked to exposure to pyrethroid insecticides. We first address studies that assess the degree of direct fetal exposure to pyrethroids in utero through measurements in cord blood, meconium, and amniotic fluid. We then focus on the links between prenatal exposure to these insecticides and child neurodevelopment, fetal growth, and other adverse birth outcomes. Furthermore, we assess the effects of postnatal exposure on child neurodevelopment through a review of the data on pediatric exposures and child cognitive and behavioral outcomes. Study quality was evaluated individually, and the weight of evidence was assessed broadly to characterize these effects. Overall, while definitive conclusions cannot be reached from the currently available literature, the available data suggest that the potential links between pyrethroid exposure and child neurodevelopmental effects deserve further investigation.
Collapse
Affiliation(s)
- Benjamin A Elser
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Benjamin Hing
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Hanna E Stevens
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
35
|
Qi Z, Song X, Xiao X, Loo KK, Wang MC, Xu Q, Wu J, Chen S, Chen Y, Xu L, Li Y. Effects of prenatal exposure to pyrethroid pesticides on neurodevelopment of 1-year- old children: A birth cohort study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113384. [PMID: 35286956 DOI: 10.1016/j.ecoenv.2022.113384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Pregnant women have been ubiquitously exposed to pyrethroid pesticides. Previous studies, mainly based on third trimester measurements of maternal urinary pyrethroid metabolites, have reported inconsistent findings in the effects of prenatal pyrethroid exposure on children's neurodevelopmental outcomes. The purpose of this study was to clarify if pyrethroid exposure during the entire three trimesters of pregnancy may be associated with deleterious effects on infant neurodevelopmental status, particularly at a high dosage of exposure. We measured maternal urinary concentrations of pyrethroid metabolites in all trimesters of pregnancy and assessed children's neurodevelopment at one year of age using the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III). Multiple linear regression models were used to estimate the effects of metabolites (3-PBA, 4 F-3-PBA, cis-DBCA) in each trimester on BSID-III composite scores. Logistic regression analyses were applied to predict developmental delay vs non-delayed status (cut-off composite score of below 80 for developmental delay) based on the maternal levels of pyrethroid metabolites. In the first, second and third trimesters of pregnancy, the detection rates of pyrethroid metabolites were 94.7%, 90.7%, and 89.0%; the 50th percentiles of exposure level were 0.24 μg/g, 0.24 μg/g and 0.21 μg/g for 3-PBA, 0.14 μg/g, 0.17 μg/g and 0.15 μg/g for 4 F-3PBA, 0.21 μg/g, 0.25 μg/g and 0.19 μg/g for cis-DBCA respectively. In the second trimester, 3-PBA was inversely associated with Cognition and Language scores [β = -3.34 (95% CI = -6.11, -0.57) and β = -2.90 (95% CI = -5.20, -0.61), respectively], and significantly increased the risk of Cognition and Language developmental delay [OR= 1.64 (95% CI = 1.03, 2.62) and OR = 1.52 (95% CI = 1.06, 2.19), respectively]; cis-DBCA was inversely associated with Adaptive Behavior scores [β = -0.73 (95% CI = -1.27, -0.19)], and significantly increased the risk of Adaptive Behavior developmental delay [OR= 1.11 (95% CI = 1.02, 1.21)]. When the maternal levels of pyrethroid metabolites were stratified into the regression models according to the 90th percentile of exposure, in the first trimester, Cognition and Motor scores were inversely associated with higher cis-DBCA [β = -7.19 (95% CI = -12.97, -1.41) and β = -8.20 (95% CI = -13.35, -3.05), respectively], Language scores were inversely associated with higher 3-PBA [β = -6.01 (95% CI = -10.96, -1.06)]; in the second trimester, Cognition scores were inversely associated with higher cis-DBCA [β = -6.64 (95% CI = -12.51, -0.76)], Language scores were inversely associated with higher 3-PBA [β = -5.17 (95% CI = -10.07, -0.27)] and cis-DBCA [β = -5.40 (95% CI = -10.28, -0.52)]. We concluded that pyrethroid exposure in the first and second trimesters was associated with poorer infants neurodevelopmental outcomes at one year of age, and these effects were particularly pronounced at high levels of pyrethroid exposure.
Collapse
Affiliation(s)
- Zhiye Qi
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China; Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoxiao Song
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Xia Xiao
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Kek Khee Loo
- Developmental-Behavioral Pediatrics, Department of Pediatrics, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA, United States
| | - May C Wang
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, United States
| | - Qinghua Xu
- Yunnan Institute of Pediatric Research, Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jie Wu
- Department of Pediatrics, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shuqi Chen
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Ying Chen
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Lingling Xu
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yan Li
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
36
|
Burns CJ, LaKind JS. Elements to increase translation in pyrethroid epidemiology research: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152568. [PMID: 34954171 DOI: 10.1016/j.scitotenv.2021.152568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Pyrethroid insecticides have been the subject of numerous epidemiology studies in the past two decades. We examined the pyrethroids epidemiology literature published between 2016 and 2021. Our objective with this exercise was to inform interested readers regarding information on methodological elements that strengthen a study's use for translation (i.e., use in risk assessment) and to describe aspects of future research methods that could improve utility for decision-making. We focused on the following elements: (i) study design that provided evidence that pyrethroid exposure preceded the outcome, (ii) evidence that the method used for exposure characterization was reliable and sufficiently accurate for the intended purpose, and (iii) use of a robust approach for outcome ascertainment. For each of the 74 studies identified via the literature search, we categorized the methodological elements as Acceptable or Supplemental. A study with three Acceptable elements was considered Relevant for risk assessment purposes. Based on our evaluative approach, 18 (24%) of the 74 publications were considered to be Relevant. These publications were categorized as Acceptable for all three elements assessed: confirmed exposure (N = 24), confirmed outcome (N = 64), exposure preceded the outcome (N = 44). Three of these studies were birth cohorts. There were 15 Relevant publications of adults which included 10 Agricultural Health Study cohort publications of self-reported permethrin. Overall, the majority of the reviewed studies used methods that did not permit a determination that pyrethroid exposure preceded the outcome, and/or did not utilize robust methods for exposure assessment and outcome ascertainment. There is an opportunity for investigators and research sponsors to build on the studies reviewed here and to incorporate more translational approaches to studying exposure/outcome associations related to pesticides and other chemicals.
Collapse
Affiliation(s)
- Carol J Burns
- Burns Epidemiology Consulting, LLC, Sanford, MI 48657, USA.
| | - Judy S LaKind
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Catonsville, MD 21228, USA
| |
Collapse
|
37
|
Hernandez HM, Martinez FA, Vitek CJ. Insecticide Resistance in Aedes aegypti Varies Seasonally and Geographically in Texas/Mexico Border Cities. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2022; 38:59-69. [PMID: 35276730 DOI: 10.2987/21-21-7034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Insecticide use is the primary method of attempting to reduce or control the spread of mosquito-borne diseases. Insecticide resistance is a major concern as resistance will limit the efficacy of vector-control efforts. The lower Rio Grande Valley region of South Texas has had autochthonous transmission of multiple mosquito-borne diseases including those caused by dengue virus, chikungunya virus, and Zika virus. However, the current status of mosquito resistance to commonly used pesticides in this region is unknown. In this study, we collected field samples from multiple municipalities in South Texas and assessed resistance using the Centers for Disease Control and Prevention bottle bioassay. All populations exhibited characteristics of resistance, and permethrin was the most effective insecticide with an average mortality rate of 44.78%. Deltamethrin and sumethrin had significantly lower mortality rates of 20.31% and 32.16%, respectively, although neither of these insecticides are commonly used for vector-control activities in this region. Depending on which insecticide was used, there was little significance between each of the 7 cities. Seasonal variation in resistance was observed among the collection sites. Both deltamethrin and sumethrin exhibited an increase in susceptibility over the course of 10 months, while permethrin exhibited a decrease in susceptibility. These data highlight the need for further studies to determine if variations in resistance observed are repeated. The data and future findings may be useful in determining the most effective strategies for pesticide use and rotation.
Collapse
Affiliation(s)
- Heather M Hernandez
- University of Texas Rio Grande Valley, Center for Vector-Borne Diseases, 1201 W University Drive, Edinburg, Texas 78539
| | - Flor A Martinez
- University of Texas Rio Grande Valley, Center for Vector-Borne Diseases, 1201 W University Drive, Edinburg, Texas 78539
| | - Christopher J Vitek
- University of Texas Rio Grande Valley, Center for Vector-Borne Diseases, 1201 W University Drive, Edinburg, Texas 78539
| |
Collapse
|
38
|
The Effect of Subacute Poisoning with Deltamethrin on the Levels of Interleukin 1ß and Tumour Necrosis Factor Α in the Livers and Kidneys of Mice. POLISH HYPERBARIC RESEARCH 2022. [DOI: 10.2478/phr-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Deltamethrin is a type II pyrethroid. Deltamethrin’s action is characterised by nephrotoxicity, hepatotoxicity and immunotoxicity.
The aim of the study was to evaluate the effect of poisoning with deltamethrin on the levels of interleukin1ß and TNFα in the livers and kidneys of mice.
A total of 24 female mice were divided into 3 groups of 8:
- controls,
- receiving deltamethrin i.p. at the dose of 41.5 mg/kg for 28 days
- receiving deltamethrin i.p. at the dose of 8.3 mg/kg for 28 days.
On day 29 the animals were euthanised, livers and kidneys were obtained, homogenised and centrifuged. The supernatant was used for measuring IL-1ß and TNFα concentration with ELISA tests. The results were analysed with Statsoft Statistica.
The interleukin 1ß concentrations were significantly higher in the kidneys (18.30±16.85) of mice exposed to the higher dose of deltamethrin than in the controls (8.15±4.66) (p<0.05). In the livers of mice receiving 41.5mg/kg deltamethrin it was 203±71.63 vs 46.77±34.79 (p<0.05). In the livers of animals receiving the lower dose it was higher than in the control group (96.51±24.73) (p<0.05). The TNF α was elevated in the kidneys of mice exposed to the higher dose of deltamethrin (6.56±3.26 vs 2.89±1.57)(p<0.05).
Conclusion: Deltamethrin produces a significant increase of interleukin 1ß in the livers and kidneys of mice and so the cytokine seems to be a good marker of hepatotoxicity and nephrotoxicity in the course of subacute poisoning.
Collapse
|
39
|
Günal AÇ, Tunca SK, Arslan P, Gül G, Dinçel AS. How does sublethal permethrin effect non-target aquatic organisms? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52405-52417. [PMID: 34009577 DOI: 10.1007/s11356-021-14475-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Permethrin is belonged to pyrethroids that are one of the substances developed as an alternative to pesticides. Permethrin, which is used especially in agriculture, can bioaccumulate in the water and sediment when mixed into aquatic ecosystems. For this reason, it is necessary to investigate the effect of this substance on aquatic organisms other than the target organism. The aim of this study was the determination of acute and sublethal effects as antioxidant enzyme levels on different organs and hemolymph biochemistry of the non-target aquatic organism, narrow-clawed crayfish (Astacus leptodactylus), after exposure to permethrin, one of the synthetic pyrethroid pesticides, contaminating aquatic ecosystems due to its increase usage. The invertebrate model organism, the narrow-clawed crayfish, was selected for its bioindicator role in food webs as planktivorous grazers epibenthic scavengers and good alternative models in ecotoxicology studies with the importance in conservation of freshwater ecosystems. The 96-h LC50 value of permethrin to experimental species was estimated as 0.903 μg/L (95% CI = 0.5042-2.2734 μg/L) with probit analysis method. The sublethal concentration of the permethrin was determined by 1/10 of 96-h LC50 values as 0.09 μg/L. There were two control (negative and acetone) groups in the experiment. The sampling of hemolymph and the tissues (gills, hepatopancreas, and muscle) were done 48 h and 96 h after exposure of the permethrin. The total hemocyte counts significantly increased in the 96-h exposed group of permethrin (p<0.05). Among the hemolymph biochemical parameters, the hemolymph potassium and chloride values increased statistically (p<0.05). Malondialdehyde levels (MDA) of gills and muscle were significantly increased, whereas the MDA level of the hepatopancreas was significantly decreased at the end of the experiment (p<0.05). Hyperplasia in the lamella was recorded in gills, while the degenerations of the hepatopancreas tissues were observed. According to obtained results, permethrin was extremely toxic as acutely to narrow-clawed crayfish and also effected at sublethal concentrations.
Collapse
Affiliation(s)
- Aysel Çağlan Günal
- Graduate School of Natural and Applied Sciences, Environmental Sciences Department, Gazi University, Ankara, Turkey
| | - Seçil Kayiran Tunca
- Graduate School of Natural and Applied Sciences, Environmental Sciences Department, Gazi University, Ankara, Turkey
| | - Pınar Arslan
- Biology Department, Faculty of Science, Çankırı Karatekin University, 18200, Çankırı, Turkey.
| | - Göktuğ Gül
- Health Services Vocational School, Environmental Health and Environmental Sciences Program, Gazi University, Ankara, Turkey
| | | |
Collapse
|
40
|
Oliveira JMD, Lima GDDA, Destro ALF, Condessa S, Zuanon JAS, Freitas MB, Oliveira LLD. Short-term intake of deltamethrin-contaminated fruit, even at low concentrations, induces testicular damage in fruit-eating bats (Artibeus lituratus). CHEMOSPHERE 2021; 278:130423. [PMID: 33819891 DOI: 10.1016/j.chemosphere.2021.130423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/21/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Deltamethrin (DTM) is a pyrethroid insecticide widely used for agricultural purposes. Exposure to DTM has proven to be harmful to humans, but whether low, environmental concentrations of this pesticide also poses a threat to wild mammals is still unknown. In Neotropical areas, bats play important roles in contributing to forest regeneration. We investigated the effects of DTM exposure on the reproductive function of male Neotropical fruit-eating bats (Artibeus lituratus), known for contributing to reforestation through seed dispersal in Neotropical Forests. Bats were assigned to 3 groups: control (fed with papaya); DTM2 (fed with papaya treated with DTM at 0.02 mg/kg) and DTM4 (fed with papaya treated with DTM at 0.04 mg/kg) for seven days. Bats from DTM2 and DTM4 groups showed increased testicular levels of nitric oxide and superoxide dismutase and catalase activities. The germinal epithelium from DTM4 bats showed non-viable cells and cell desquamation, indicating microscopic lesions and Leydig cells atrophy. Our results demonstrate the onset of cell degeneration that may affect the reproductive function in DTM exposed bats.
Collapse
Affiliation(s)
- Jerusa Maria de Oliveira
- Departament of General Biology, Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Graziela Domingues de Almeida Lima
- Departament of General Biology, Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Ana Luiza Fonseca Destro
- Departament of Animal Biology - Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Suellen Condessa
- Departament of Animal Biology - Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Jener Alexandre Sampaio Zuanon
- Departament of Animal Biology - Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Mariella Bontempo Freitas
- Departament of Animal Biology - Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Leandro Licursi de Oliveira
- Departament of General Biology, Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil.
| |
Collapse
|
41
|
Hong D, Min JY, Min KB. Association between pyrethroids and prostate endpoints; stratified according to renal function. ENVIRONMENT INTERNATIONAL 2021; 153:106489. [PMID: 33819721 DOI: 10.1016/j.envint.2021.106489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/28/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pyrethroids, one of the most commonly used pesticide classes, are considered to be selectively toxic toward insects rather than toward humans. However, there are accumulating data about pyrethroids toxicity in humans, especially sex organs. Thus, we investigated whether pyrethroids affected reproductive organs, especially the prostate gland. METHODS With 1305 subjects who participated in the National Health and Nutrition Examination Survey, several measurements were performed: 3-phenoxybenzoic acid (3-PBA), a common metabolite of pyrethroids; prostate-specific antigen (PSA); and other covariates. Both logistic and linear regression analyses were performed after stratifying according to kidney function, which was evaluated based on the estimated glomerular filtration rate (eGFR). RESULTS By logistic regression, the ORs (95% CIs) of the highest quantile to the reference group for higher total PSA were 2.039 (1.018 - 4.084) in the total study population and 2.219 (1.083-4.548) in the high eGFR group. The ORs (95% CIs) of the highest quantile to the reference group for a lower PSA ratio were 1.979 (1.057 - 3.707) in the total study population and 2.101 (1.086 - 4.064) in the high eGFR group. By linear regression, a marginally significant positive correlation between urinary 3-PBA and total PSA (β ± Standard Error = 0.049 ± 0.026, p = 0.0712) and a significant positive correlation between urinary 3-PBA and PSA ratio (β ± Standard Error = 0.018 ± 0.007, p = 0.0191) among the low eGFR group were observed. CONCLUSION This study showed that exposure to pyrethroids was associated with either increased levels of total PSA or alterations in the PSA ratio.
Collapse
Affiliation(s)
- Dongui Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Jin-Young Min
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Kyoung-Bok Min
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Health Policy and Management, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Rodzaj W, Wileńska M, Klimowska A, Dziewirska E, Jurewicz J, Walczak-Jędrzejowska R, Słowikowska-Hilczer J, Hanke W, Wielgomas B. Concentrations of urinary biomarkers and predictors of exposure to pyrethroid insecticides in young, Polish, urban-dwelling men. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145666. [PMID: 33596511 DOI: 10.1016/j.scitotenv.2021.145666] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/09/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Pyrethroid insecticides are a class of pesticides with multiple agricultural and residential applications. However, widespread use of these chemicals may pose a threat to human health. Biomarkers of pyrethroid exposure are frequently detected in populations around the world, but some groups may be underrepresented. Moreover, there is an ongoing debate on factors contributing to pyrethroid burden in humans. To address these problems, we measured urinary biomarkers of pyrethroid exposure in urine samples from 306 young men living in urban area of Łódź, Poland, and gathered questionnaire data to identify predictors of exposure. Limit of detection (LOD) of gas chromatography-mass spectrometry (GC-MS) method was 0.1 ng/mL for all quantified pyrethroid metabolites, namely cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DCCA), trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (trans-DCCA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DBCA), and 3-phenoxybenzoic acid (3-PBA). Detection rate ranged from 32% (cis-DBCA) to 76% (trans-DCCA). Concentrations of urinary biomarkers in studied sample were in lower range of these observed in similar studies, with unadjusted geometric means (GMs) of most prevalent biomarkers, trans-DCCA and 3-PBA, equal to 0.268 and 0.228 ng/mL, respectively. As for questionnaire data, the statistical analysis revealed that non-dietary factors, especially dog ownership and pesticide use on household pets, contribute significantly to urinary trans-DCCA and 3-PBA concentrations (p ≤ 0.009). Moreover, a few dietary sources of exposure were identified, such as seeds and nuts consumption for 3-PBA (p < 0.001) and vegetable juice intake for trans-DCCA (p = 0.015). Multivariate analyses further highlighted the importance of non-dietary factors in pyrethroid exposure. Compared to other works, our results confirm widespread exposure to pyrethroids observed in other studies and stress the role of residential pyrethroid use in pyrethroid burden in humans.
Collapse
Affiliation(s)
- Wojciech Rodzaj
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera Street, 80-416 Gdańsk, Poland
| | - Malwina Wileńska
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera Street, 80-416 Gdańsk, Poland
| | - Anna Klimowska
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera Street, 80-416 Gdańsk, Poland
| | - Emila Dziewirska
- Departament of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy Street, 91-348 Łódź, Poland
| | - Joanna Jurewicz
- Departament of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy Street, 91-348 Łódź, Poland
| | - Renata Walczak-Jędrzejowska
- Department of Andrology and Reproductive Endocrinology, Medical University of Łódź, 251 Pomorska Street, 92-213 Łódź, Poland
| | - Jolanta Słowikowska-Hilczer
- Department of Andrology and Reproductive Endocrinology, Medical University of Łódź, 251 Pomorska Street, 92-213 Łódź, Poland
| | - Wojciech Hanke
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, 8 Teresy Street, 91-348 Łódź, Poland
| | - Bartosz Wielgomas
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera Street, 80-416 Gdańsk, Poland.
| |
Collapse
|
43
|
Hernández‐Jerez A, Adriaanse P, Aldrich A, Berny P, Coja T, Duquesne S, Focks A, Marinovich M, Millet M, Pelkonen O, Pieper S, Tiktak A, Topping C, Widenfalk A, Wilks M, Wolterink G, Crofton K, Hougaard Bennekou S, Paparella M, Tzoulaki I. Development of Integrated Approaches to Testing and Assessment (IATA) case studies on developmental neurotoxicity (DNT) risk assessment. EFSA J 2021. [DOI: 10.2903/j.efsa.2021.6599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
44
|
Adel B, Jafari M, Hasanzadeh M. Utilization of rGO-PEI-supported AgNPs for sensitive recognition of deltamethrin in human plasma samples: A new platform for the biomedical analysis of pesticides in human biofluids. J Mol Recognit 2021; 34:e2900. [PMID: 33949010 DOI: 10.1002/jmr.2900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 11/12/2022]
Abstract
In this study, the rGO-PEI-AgNPs sensor was designed as a new effective platform to sensitive monitoring of deltamethrin in human plasma samples. For this purpose, reduced graphene oxide (rGO)-supported polyethylenimine (PEI) was used as a suitable substrate for dispersion of silver nanoparticles (AgNPs) as amplification and catalytic element. Therefore, a novel interface (rGO-PEI-AgNPs) was prepared by the fully electrochemical method on the surface of glassy carbon electrodes. The engineered nano-sensor showed a wide dynamic range of 10 nM to 1 mM and low limit of quantification (LLOQ) as 10 nM in human plasma sample, which revealed excellent analytical performance for the recognition of deltamethrin with high sensitivity and reproducibility through differential pulse voltammetry and square wave voltammetry techniques. The results confirm that rGO-PEI-AgNPs as a novel biocompatible interface can provide appropriate, reliable, affordable, rapid, and user-friendly diagnostic tools in the detection of deltamethrin in human real samples.
Collapse
Affiliation(s)
- Bashir Adel
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Associations between pesticide mixtures applied near home during pregnancy and early childhood with adolescent behavioral and emotional problems in the CHAMACOS study. Environ Epidemiol 2021; 5:e150. [PMID: 34131613 PMCID: PMC8196094 DOI: 10.1097/ee9.0000000000000150] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/15/2021] [Indexed: 11/26/2022] Open
Abstract
Supplemental Digital Content is available in the text. Studies suggest that exposure to pesticides during pregnancy and early childhood is associated with adverse child neurodevelopment. Research to date has focused primarily on exposure to single pesticides or pesticide classes in isolation; there are little data on the effect of exposure to pesticide mixtures on child and adolescent neurodevelopment.
Collapse
|
46
|
Werthmann DW, Rabito FA, Stout DM, Tulve NS, Adamkiewicz G, Calafat AM, Ospina M, Chew GL. Pyrethroid exposure among children residing in green versus non-green multi-family, low-income housing. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:549-559. [PMID: 33677471 PMCID: PMC8140995 DOI: 10.1038/s41370-021-00312-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND There is growing concern about children's chronic low-level pesticide exposure and its impact on health. Green building practices (e.g., reducing leakage of the thermal and pressure barrier that surrounds the structure, integrated pest management, improved ventilation) have the potential to reduce pesticide exposure. However, the potential impact of living in green housing on children's pesticide exposure is unknown. OBJECTIVE To address this question, a longitudinal study of pyrethroid metabolites (3-phenoxybenzoic acid [3-PBA], 4-fluoro-3-phenoxybenzoic acid [4-F-3-PBA], trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid [trans-DCCA]) in first morning void urine, collected from 68 children from New Orleans, Louisiana residing in green and non-green housing was conducted. METHODS Children were followed for 1 year with three repeated measures of pesticide exposure. Generalized estimating equations examined associations between housing type (green vs. non-green) and urinary pyrethroid metabolite concentrations adjusting for demographic and household factors over the year. RESULTS Ninety-five percent of samples had detectable concentrations of 3-PBA (limit of detection [LOD]: 0.1 μg/L); 8% of 4-F-3-PBA (LOD: 0.1 μg/L), and 12% of trans-DCCA (LOD: 0.6 μg/L). In adjusted models, green housing was not associated with statistically significant differences in children's 3-PBA urinary concentrations compared to non-green housing.
Collapse
Affiliation(s)
- Derek W Werthmann
- Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| | - Felicia A Rabito
- Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Daniel M Stout
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nicolle S Tulve
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Gary Adamkiewicz
- Harvard University, T.H. Chan School of Public Health, Boston, MA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ginger L Chew
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
47
|
Pitzer EM, Williams MT, Vorhees CV. Effects of pyrethroids on brain development and behavior: Deltamethrin. Neurotoxicol Teratol 2021; 87:106983. [PMID: 33848594 PMCID: PMC8440325 DOI: 10.1016/j.ntt.2021.106983] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/09/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Deltamethrin (DLM) is a Type II pyrethroid pesticide widely used in agriculture, homes, public spaces, and medicine. Epidemiological studies report that increased pyrethroid exposure during development is associated with neurobehavioral disorders. This raises concern about the safety of these chemicals for children. Few animal studies have explored the long-term effects of developmental exposure to DLM on the brain. Here we review the CNS effects of pyrethroids, with emphasis on DLM. Current data on behavioral and cognitive effects after developmental exposure are emphasized. Although, the acute mechanisms of action of DLM are known, how these translate to long-term effects is only beginning to be understood. But existing data clearly show there are lasting effects on locomotor activity, acoustic startle, learning and memory, apoptosis, and dopamine in mice and rats after early exposure. The most consistent neurochemical findings are reductions in the dopamine transporter and the dopamine D1 receptor. The data show that DLM is developmentally neurotoxic but more research on its mechanisms of long-term effects is needed.
Collapse
Affiliation(s)
- Emily M Pitzer
- Dept. of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America; Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27709, United States of America.
| | - Michael T Williams
- Dept. of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America.
| | - Charles V Vorhees
- Dept. of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America.
| |
Collapse
|
48
|
Bioallethrin enhances generation of ROS, damages DNA, impairs the redox system and causes mitochondrial dysfunction in human lymphocytes. Sci Rep 2021; 11:8300. [PMID: 33859309 PMCID: PMC8050322 DOI: 10.1038/s41598-021-87799-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/05/2021] [Indexed: 02/02/2023] Open
Abstract
Bioallethrin is a synthetic pesticide that is widely used to control insect pests. The wide use of bioallethrin has resulted in inevitable human exposure. In this study we report the effect of different concentrations of bioallethrin (10 to 200 µM, 2 h at 37 °C) on human lymphocytes under in vitro conditions. Bioallethrin treatment resulted in loss of cell viability (> 30% at 200 µM bioallethrin). Oxidative stress markers like lipid peroxidation and protein oxidation were significantly increased accompanied by lower ratio of reduced to oxidized glutathione. Enhanced ROS generation was observed through fluorescence spectroscopy and microscopy. Bioallethrin-induced oxidative stress also compromised the antioxidant defence as it reduced antioxidant capacity of cells and inhibited major antioxidant enzymes. Biomolecular modifications and systemic toxicity by bioallethrin resulted in plasma membrane damage with mitochondrial depolarization. Comet assay showed nuclear DNA fragmentation and strand scission with significant increase in tail length and olive tail moment. Apoptosis and necrosis of cells was confirmed through acridine orange/ethidium bromide dual staining and visualization under fluorescence microscope. Thus, bioallethrin causes oxidative damage and compromises the antioxidant system leading to DNA damage, cellular and organelle toxicity, resulting in apoptosis and necrosis of human lymphocytes.
Collapse
|
49
|
Green MP, Harvey AJ, Finger BJ, Tarulli GA. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period. ENVIRONMENTAL RESEARCH 2021; 194:110694. [PMID: 33385395 DOI: 10.1016/j.envres.2020.110694] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 05/08/2023]
Abstract
It is becoming increasingly difficult to avoid exposure to man-made endocrine disrupting chemicals (EDCs) and environmental toxicants. This escalating yet constant exposure is postulated to partially explain the concurrent decline in human fertility that has occurred over the last 50 years. Controversy however remains as to whether associations exist, with conflicting findings commonly reported for all major EDC classes. The primary aim of this extensive work was to identify and review strong peer-reviewed evidence regarding the effects of environmentally-relevant EDC concentrations on adult male and female fertility during the critical periconception period on reproductive hormone concentrations, gamete and embryo characteristics, as well as the time to pregnancy in the general population. Secondly, to ascertain whether individuals or couples diagnosed as sub-fertile exhibit higher EDC or toxicant concentrations. Lastly, to highlight where little or no data exists that prevents strong associations being identified. From the greater than 1480 known EDCs, substantial evidence supports a negative association between exposure to phthalates, PCBs, PBDEs, pyrethroids, organochloride pesticides and male fertility and fecundity. Only moderate evidence exists for a negative association between BPA, PCBs, organochloride pesticides and female fertility and fecundity. Overall fewer studies were reported in women than men, with knowledge gaps generally evident for both sexes for all the major EDC classes, as well as a paucity of female fertility studies following exposure to parabens, triclosans, dioxins, PFAS, organophosphates and pyrethroids. Generally, sub-fertile individuals or couples exhibit higher EDC concentrations, endorsing a positive association between EDC exposure and sub-fertility. This review also discusses confounding and limiting factors that hamper our understanding of EDC exposures on fertility and fecundity. Finally, it highlights future research areas, as well as government, industry and social awareness strategies required to mitigate the negative effects of EDC and environmental toxicant exposure on human fertility and fecundity.
Collapse
Affiliation(s)
- Mark P Green
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Bethany J Finger
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard A Tarulli
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
50
|
Structural Aspects of Potential Endocrine-Disrupting Activity of Stereoisomers for a Common Pesticide Permethrin against Androgen Receptor. BIOLOGY 2021; 10:biology10020143. [PMID: 33670303 PMCID: PMC7918290 DOI: 10.3390/biology10020143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary Human exposure to synthetic or naturally occurring endocrine-disrupting compounds (EDCs) contaminating the environment is associated with disruption in endocrine signaling and homeostatic imbalance of hormones. Pyrethroids constitute an important class of extensively used insecticides reported to have endocrine-disrupting activity. Permethrin is one of the most commonly used pyrethroids and exists in isomeric forms. The aim of this study was to investigate and compare the potential endocrine-disrupting activity of permethrin isomers against the androgen receptor (AR). Structural binding studies showed that all permethrin isomer compounds have the potential to compete with native ligand binding in the AR ligand binding pocket. In conclusion, the results of this study suggest that human exposure to commercially produced isomeric forms of permethrin could potentially interfere with the AR function, which may lead to male reproductive dysfunction. Abstract Endocrine-disrupting chemicals (EDCs) are a serious global public health and environmental concern. Pyrethroids are insecticide chemicals that are extensively used for crop protection and household purposes but have been identified as EDCs. On account of their ubiquitous environmental presence, human exposure occurs via food, dermal, or inhalation routes and is associated with health problems, including reproductive dysfunction. Permethrin is the most commonly used pyrethroid, and with two chiral centers in its structure, it has four stereoisomeric forms (two enantiomer pairs), i.e., permethrin (1R,3R)-cis, permethrin (1R,3S)-trans, permethrin (1S,3S)-cis, and permethrin (1S,3R)-trans. The current study was performed for predicting the potential endocrine-disrupting activity of the aforementioned four stereoisomers of permethrin against the androgen receptor (AR). The structural binding characterization and binding energy estimations in the AR binding pocket were done using induced fit docking. The structural binding data indicated that all stereoisomers were placed stably in the AR binding pocket and that the estimated binding energy values were comparable to the AR native ligand, except for permethrin (1S,3S)-cis. Furthermore, the commonality in the amino acid interactions to that of the AR native ligand and the binding energy values suggested the potential AR-disrupting activity of all the stereoisomers; however, stereoselective differences were not observed. Taken together, the results suggest that human exposure to permethrin, either as a racemate mixture or in individual stereoisomer form, could potentially interfere with AR function, which may lead to male reproductive dysfunction.
Collapse
|