1
|
Devi S, Kapila R, Kapila S. Interbreed variation of dairy cow milk in terms of specific proteome and lipidome for establishing criteria of milk selection. Nutr Health 2025:2601060241307063. [PMID: 39828954 DOI: 10.1177/02601060241307063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
BACKGROUND Ruminant milk is a very complex table food and naturally encrypted with different components possessing various health-promoting characteristics. AIM In the present study, we focused on breed-wise compositional difference in milk including various components and release of fatty acids and peptides during digestion. METHODS First, milk samples were analysed using lactoscan LW milk analyser, MALDI-TOF and gas chromatography. In addition, in vitro simulated gastrointestinal digestion of milk was performed to determine the fatty acid and peptide concentration. RESULTS Percentage fat was significantly less in Karan Fries (KF) and Holstein Friesian (HF) milk compared to Sahiwal (SW), Tharparkar (TP), Gir (GIR) and Karan Swiss (KS). The mean conductivity displayed the healthy status in SW, TP, GIR, KF and HF milk. The protein was significantly higher in KF milk compared to SW, TP, GIR and HF milk. KS milk possessed the highest number of peptides followed by HF, SW, TP, GIR and KF milk. The fatty acid compositional difference was primarily observed in saturated fatty acids including the C4:0, C21:0 and also w6 linoleic acid. On the basis of peptide number of MALDI-TOF, milk from SW and KS was selected for digestion in in vitro to check the availability of fatty acids and peptides in the intestine. There was more release of fatty acids in SW milk and more peptide from KS milk in intestinal conditions. Therefore, the difference in composition exists based on protein and fat components in indigenous and crossbred cows' milk. CONCLUSIONS The breed-wise difference in composition of milk is important to study as it not only reflected the nutritional value and various biological activities, but also emphasis on specific proteomic and lipidomic of milk that eventually can be used as criteria for selection of milk.
Collapse
Affiliation(s)
- Savita Devi
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
- Multidisciplinary Research Unit, Kalpana Chawla Govt. Medical College, Karnal, Haryana, India
| | - Rajeev Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Suman Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
2
|
Zhao M, Chen Z, Ye D, Yu R, Yang Q. Comprehensive lipidomic profiling of human milk from lactating women across varying lactation stages and gestational ages. Food Chem 2025; 463:141242. [PMID: 39278081 DOI: 10.1016/j.foodchem.2024.141242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
An untargeted lipidomic analysis was conducted to investigate the lipid composition of human milk across different lactation stages and gestational ages systematically. A total of 25 lipid subclasses and 934 lipid species as well as 90 free fatty acids were identified. Dynamic changes of the lipids throughout lactation and gestational phases were highlighted. In general, lactation stages introduced more variations in the lipid composition of human milk than gestational ages. Most lipids decreased as the milk progressed from the colostral stage to the mature stage, with some reaching a peak at the transitional stage. Significant variations in lipid composition across gestational ages were predominantly evident during early lactation period. In mature milks, most of the lipids exhibited no discernible statistical differences among gestational ages. This elucidation offers valuable insights and guidance for tailoring precise nutritional strategies for infants with diverse health needs.
Collapse
Affiliation(s)
- Min Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhenying Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Danni Ye
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, China.
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Alfutaimani AS, Alharbi NK, S. Alahmari A, A. Alqabbani A, Aldayel AM. Exploring the landscape of Lipid Nanoparticles (LNPs): A comprehensive review of LNPs types and biological sources of lipids. Int J Pharm X 2024; 8:100305. [PMID: 39669003 PMCID: PMC11635012 DOI: 10.1016/j.ijpx.2024.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Lipid nanoparticles (LNPs) have emerged as promising carriers for delivering therapeutic agents, including mRNA-based immunotherapies, in various biomedical applications. The use of LNPs allows for efficient delivery of drugs, resulting in enhanced targeted delivery to specific tissues or cells. These LNPs can be categorized into several types, including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-polymer hybrid nanoparticles. The preparation of LNPs involves the manipulation of their structural, dimensional, compositional, and physical characteristics via the use of different methods in the industry. Lipids used to construct LNPs can also be derived from various biological sources, such as natural lipids extracted from plants, animals, or microorganisms. This review dives into the different types of LNPs and their preparation methods. More importantly, it discusses all possible biological sources that are known to supply lipids for the creation of LNPs. Natural lipid reservoirs have surfaced as promising sources for generating LNPs. The use of LNPs in drug delivery is expected to increase significantly in the coming years. Herein, we suggest some environmentally friendly and biocompatible sources that can produce lipids for future LNPs production.
Collapse
Affiliation(s)
- Alanood S. Alfutaimani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University (PNU), P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Nouf K. Alharbi
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
| | - Amirah S. Alahmari
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University (PNU), P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Almaha A. Alqabbani
- The Ear, Nose, and Throat (ENT) Department at King Salman Hospital, Riyadh 12769, Saudi Arabia
| | - Abdulaziz M. Aldayel
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Riyadh 11426, Saudi Arabia
| |
Collapse
|
4
|
Jayamanna Mohottige MW, Gardner CE, Nye-Wood MG, Farquharson KA, Juhász A, Belov K, Hogg CJ, Peel E, Colgrave ML. Bioactive components in the marsupial pouch and milk. Nutr Res Rev 2024:1-12. [PMID: 39551618 DOI: 10.1017/s0954422424000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Marsupials give birth to immunologically naïve young after a relatively short gestation period compared with eutherians. Consequently, the joey relies significantly on maternal protection, which is the focus of the present review. The milk and the pouch environment are essential contributors to maternal protection for the healthy development of joeys. In this review, we discuss bioactive components found in the marsupial pouch and milk that form cornerstones of maternal protection. These bioactive components include immune cells, immunoglobulins, the S100 family of calcium-binding proteins, lysozymes, whey proteins, antimicrobial peptides and other immune proteins. Furthermore, we investigated the possibility of the presence of plurifunctional components in milk and pouches that are potentially bioactive. These compounds include caseins, vitamins and minerals, oligosaccharides, lipids and microRNAs. Where applicable, this review addresses variability in bioactive components during different phases of lactation, designed to fulfil the immunological needs of the growing pouch young. Yet, there are numerous additional research opportunities to pursue, including uncovering novel bioactive components and investigating their modes of action, dynamics, stability and ability to penetrate the gut epithelium to facilitate systemic effects.
Collapse
Affiliation(s)
- Manujaya W Jayamanna Mohottige
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Chloe E Gardner
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | | | - Katherine A Farquharson
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Angéla Juhász
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Katherine Belov
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Carolyn J Hogg
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Emma Peel
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Michelle L Colgrave
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Solarczyk P, Slósarz J, Gołębiewski M, Natalello A, Musati M, Luciano G, Priolo A, Puppel K. The Influence of Crossbreeding on the Composition of Protein and Fat Fractions in Milk: A Comparison Between Purebred Polish Holstein Friesian and Polish Holstein Friesian × Swedish Red Cows. Nutrients 2024; 16:3634. [PMID: 39519466 PMCID: PMC11547650 DOI: 10.3390/nu16213634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES In this study, the differences in protein and fat bioactive components between the milk from purebred Polish Holstein Friesian (PHF) cows and PHF cows crossbred with Swedish Red (SRB) were investigated. The objective was to assess the impact of genetic variation on the nutritional quality of their milk. METHODS This study was conducted at the Warsaw University of Life Sciences' (WULS) experimental dairy farm in Warsaw, Poland, and involved 60 primiparous cows divided into two groups: 30 PHF×SRB crossbred cows and 30 purebred PHF cows. All cows were housed in a free-stall system with an average lactation yield exceeding 10,000 kg/lactation. The milk composition analyses included total protein, casein, whey protein, fatty acid profiles, and vitamin content. RESULTS Milk from the PHF×SRB hybrids showed a significantly greater total protein content (3.53%) compared to that from the purebred PHF cows (3.28%). The casein content was higher in the hybrids' milk (2.90%) than the purebreds' milk (2.78%), while the whey protein levels were lower in the purebred milk (0.50%) than in the hybrid milk (0.63%). The hybrids exhibited higher concentrations of certain saturated fatty acids in their milk, while the purebreds' milk contained greater amounts of beneficial unsaturated fatty acids and fat-soluble vitamins-E, D, and K. CONCLUSIONS These results indicate that genetic selection through crossbreeding can enhance the nutritional quality of milk. The differences observed in protein, fatty-acid, and vitamin content underscore the role of the genotype in milk composition, suggesting that breeding strategies can optimize dairy products' health benefits.
Collapse
Affiliation(s)
- Paweł Solarczyk
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Jan Slósarz
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Marcin Gołębiewski
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Antonio Natalello
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Martino Musati
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Giuseppe Luciano
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Alessandro Priolo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Kamila Puppel
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
6
|
Yuzbashian E, Berg E, de Campos Zani SC, Chan CB. Cow's Milk Bioactive Molecules in the Regulation of Glucose Homeostasis in Human and Animal Studies. Foods 2024; 13:2837. [PMID: 39272602 PMCID: PMC11395457 DOI: 10.3390/foods13172837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity disrupts glucose metabolism, leading to insulin resistance (IR) and cardiometabolic diseases. Consumption of cow's milk and other dairy products may influence glucose metabolism. Within the complex matrix of cow's milk, various carbohydrates, lipids, and peptides act as bioactive molecules to alter human metabolism. Here, we summarize data from human studies and rodent experiments illustrating how these bioactive molecules regulate insulin and glucose homeostasis, supplemented with in vitro studies of the mechanisms behind their effects. Bioactive carbohydrates, including lactose, galactose, and oligosaccharides, generally reduce hyperglycemia, possibly by preventing gut microbiota dysbiosis. Milk-derived lipids of the milk fat globular membrane improve activation of insulin signaling pathways in animal trials but seem to have little impact on glycemia in human studies. However, other lipids produced by ruminants, including polar lipids, odd-chain, trans-, and branched-chain fatty acids, produce neutral or contradictory effects on glucose metabolism. Bioactive peptides derived from whey and casein may exert their effects both directly through their insulinotropic effects or renin-angiotensin-aldosterone system inhibition and indirectly by the regulation of incretin hormones. Overall, the results bolster many observational studies in humans and suggest that cow's milk intake reduces the risk of, and can perhaps be used in treating, metabolic disorders. However, the mechanisms of action for most bioactive compounds in milk are still largely undiscovered.
Collapse
Affiliation(s)
- Emad Yuzbashian
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Emily Berg
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Catherine B Chan
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
7
|
Zhao C, Ma Y, Hou D, Wang L, Hong T, Tang Z, Huang K, Gou D. Experimental Investigation on Electrical Conductivity Variation of Carnosine and Zinc Chloride Aqueous Solutions under Microwave Irradiation. J Phys Chem B 2024; 128:8494-8503. [PMID: 39178416 DOI: 10.1021/acs.jpcb.4c02791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
The mechanism of biological effects of environmental electromagnetic radiation is still not completely clear. The chelation of biological small molecule peptides with metal ions plays a very important role in human metabolism. In this paper, a special experimental system was designed to measure the conductivity of carnosine and zinc chloride mixed aqueous solutions under different concentration ratios, microwave powers, and temperatures. The experimental results show that, first, different concentration ratios can alter the conductivity change rate of the mixed aqueous solution. The conductivity of the solution always increases under microwave irradiation at a concentration ratio of 1:1. However, the conductivity is reduced by -0.04% with a 1:5 concentration ratio and 6 W microwave power at 10 °C. Second, temperature can alter the conductivity change rate of the aqueous mixture. The higher the temperature, the smaller the conductivity change rate. Third, different microwave powers can alter the conductivity change rate of the mixed aqueous solution. In general, the conductivity change rate increases with an increase in microwave power. Experimentally observed reduction of the conductivity change rate in carnosine and zinc chloride aqueous solution under low microwave power and low temperature indicates that microwaves do affect the chelation of carnosine with zinc chloride. This work provides a new perspective for the mechanism of explanation of microwave biological effects.
Collapse
Affiliation(s)
- Chenxi Zhao
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Yun Ma
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Desheng Hou
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Lin Wang
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Tao Hong
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Zhengming Tang
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Kama Huang
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Dezhi Gou
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| |
Collapse
|
8
|
He J, Wang D, Guo K, Ji R. Camel milk polar lipids ameliorate dextran sulfate sodium-induced colitis in mice by modulating the gut microbiota. J Dairy Sci 2024; 107:6413-6424. [PMID: 38369112 DOI: 10.3168/jds.2023-23930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Milk contains abundant polar lipids, which are vital constituents of biological membranes. These polar lipids are present in the human diet as phospholipids and sphingolipids. Nevertheless, the limited focus has been on the attributes and role of camel milk polar lipids (MPL). In this study, camel MPL were isolated, and the composition of their lipidome was determined using ultra-high-performance liquid chromatography-tandem MS. This study characterized a total of 333 polar lipids, which encompassed glycerophospholipids and sphingolipids. Camel milk is rich in polar lipids, mainly phosphatidylethanolamine, sphingomyelin, and phosphatidylcholine. The results indicated that MPL intervention relieved the clinical symptoms and colon tissue damage in mice with dextran sulfate sodium-induced colitis, along with suppressing the expression of proinflammatory cytokines. Moreover, the administration of MPL partially alleviated mouse gut microbiota dysbiosis by increasing the abundance of probiotics (such as Lachnospiraceae_NK4A136_group and Muribaculaceae) and decreasing the number of harmful bacteria (such as Bacteroides and Parabacteroides). This study was conducted to investigate the potent protective effects of MPL in camel milk treatments on a mouse model of colitis and provided new ideas for the application of camel milk.
Collapse
Affiliation(s)
- Jing He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China; China-Mongolia Joint Laboratory of Biopolymer Application "One Belt One Road," Hohhot 010018, China
| | - DanLin Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Kunjie Guo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Rimutu Ji
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China; China-Mongolia Joint Laboratory of Biopolymer Application "One Belt One Road," Hohhot 010018, China.
| |
Collapse
|
9
|
Paleologo M, Castellini G, Bosio AC, Fontana M, Graffigna G. Exploring Social Media to Understand Perceptions of Milk Quality among Farmers, Processors, and Citizen-Consumers. Foods 2024; 13:2526. [PMID: 39200453 PMCID: PMC11353462 DOI: 10.3390/foods13162526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Milk consumption is crucial for a balanced diet, yet recent trends indicate a decline, especially in Italy. A significant factor in this decline is the altered perception of milk quality among consumers, which has created a communication gap between them and other stakeholders. This study aimed to explore the discourse on social media and sentiment towards the concept of milk quality among consumers, farmers, and processors. The research adopted social media analysis to examine online-community messages. A sample of 19,906 Italian comments and posts mentioning keywords "milk", "quality", "cow", and "vaccine" was collected and categorized using term-frequency analysis, correspondence analysis, and sentiment analysis. Results highlighted gaps in perceptions of milk quality: farmers focused on economic issues, consumers on animal welfare and health, and processors on lactose content. For farmers, almost all comments were negative, while for processors, nearly all comments were positive. Consumers presented a more mixed picture. This work contributes to the literature by expanding research on milk quality, using social media as a source of information. The findings suggest that enhancing communication and understanding among these groups could lead to more effective strategies for addressing consumer concerns, potentially reversing the decline in milk consumption.
Collapse
Affiliation(s)
- Michele Paleologo
- EngageMinds HUB—Consumer, Food & Health Engagement Research Center, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (M.P.); (A.C.B.); (G.G.)
- Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli, 1, 20123 Milan, Italy
| | - Greta Castellini
- EngageMinds HUB—Consumer, Food & Health Engagement Research Center, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (M.P.); (A.C.B.); (G.G.)
- Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli, 1, 20123 Milan, Italy
| | - Albino Claudio Bosio
- EngageMinds HUB—Consumer, Food & Health Engagement Research Center, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (M.P.); (A.C.B.); (G.G.)
- IRCAF (Invernizzi Reference Center on Agri-Food), Campus Santa Monica, Via Bissolati, 74, 26100 Cremona, Italy
| | - Michele Fontana
- Department of Informatics, System and Communication (DISCo), University of Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126 Milan, Italy;
| | - Guendalina Graffigna
- EngageMinds HUB—Consumer, Food & Health Engagement Research Center, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (M.P.); (A.C.B.); (G.G.)
- Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli, 1, 20123 Milan, Italy
- IRCAF (Invernizzi Reference Center on Agri-Food), Campus Santa Monica, Via Bissolati, 74, 26100 Cremona, Italy
| |
Collapse
|
10
|
Tan J, Yang B, Qiu L, He R, Wu Z, Ye M, Zan L, Yang W. Bta-miR-200a Regulates Milk Fat Biosynthesis by Targeting IRS2 to Inhibit the PI3K/Akt Signal Pathway in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16449-16460. [PMID: 38996051 DOI: 10.1021/acs.jafc.4c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Milk fat synthesis has garnered significant attention due to its influence on the quality of milk. Recently, an increasing amount of proofs have elucidated that microRNAs (miRNAs) are important post-transcriptional factor involved in regulating gene expression and play a significant role in milk fat synthesis. MiR-200a was differentially expressed in the mammary gland tissue of dairy cows during different lactation periods, which indicated that miR-200a was a candidate miRNA involved in regulating milk fat synthesis. In our research, we investigated the potential function of miR-200a in regulating milk fat biosynthesis in bovine mammary epithelial cells (BMECs). We discovered that miR-200a inhibited cellular triacylglycerol (TAG) synthesis and suppressed lipid droplet formation; at the same time, miR-200a overexpression suppressed the mRNA and protein expression of milk fat metabolism-related genes, such as fatty acid synthase (FASN), peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), CCAAT enhancer binding protein alpha (CEBPα), etc. However, knocking down miR-200a displayed the opposite results. We uncovered that insulin receptor substrate 2 (IRS2) was a candidate target gene of miR-200a through the bioinformatics online program TargetScan. Subsequently, it was confirmed that miR-200a directly targeted the 3'-untranslated region (3'-UTR) of IRS2 via real-time fluorescence quantitative PCR (RT-qPCR), western blot analysis, and dual-luciferase reporter gene assay. Additionally, IRS2 knockdown in BMECs has similar effects to miR-200a overexpression. Our research set up the mechanism by which miR-200a interacted with IRS2 and discovered that miR-200a targeted IRS2 and modulated the activity of the PI3K/Akt signaling pathway, thereby taking part in regulating milk fat synthesis in BMECs. Our research results provided valuable information on the molecular mechanisms for enhancing milk quality from the view of miRNA-mRNA regulatory networks.
Collapse
Affiliation(s)
- Jianbing Tan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Benshun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liang Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ruiying He
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhangqing Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Miaomiao Ye
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
11
|
Comerford K, Lawson Y, Young M, Knight M, McKinney K, Mpasi P, Mitchell E. The role of dairy food intake for improving health among black Americans across the life continuum: A summary of the evidence. J Natl Med Assoc 2024; 116:292-315. [PMID: 38378307 DOI: 10.1016/j.jnma.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/22/2024]
Abstract
Decades of health data show major health disparities occurring at every life stage between Black and White Americans. These disparities include greater mortality rates among Black mothers and their offspring, higher levels of malnutrition and obesity among Black children and adolescents, and a higher burden of chronic disease and lower life expectancy for Black adults. Although nutrition is only one of many factors that influence human health and well-being across the life continuum, a growing body of research continues to demonstrate that consuming a healthy dietary pattern is one of the most dominant factors associated with increased longevity, improved mental health, improved immunity, and decreased risk for obesity and chronic disease. Unfortunately, large percentages of Black Americans tend to consume inadequate amounts of several essential nutrients such as vitamin A, vitamin D, calcium, and magnesium; and simultaneously consume excessive amounts of fast foods and sugar-sweetened beverages to a greater degree than other racial/ethnic groups. Therefore, strategies that can help improve dietary patterns for Black Americans could make up a major public health opportunity for reducing nutrition-related diseases and health disparities across the life course. A key intervention strategy to improve diet quality among Black Americans is to focus on increasing the intake of nutrient-rich dairy foods, which are significantly underconsumed by most Black Americans. Compared to other food group, dairy foods are some of the most accessible and affordable sources of essential nutrients like vitamin A, D, and B12, calcium, magnesium, potassium, selenium, and zinc in the food supply, as well as being some of the primary sources of several health-promoting bioactive compounds, including polar lipids, bioactive proteins and peptides, oligosaccharides, and live and active cultures in fermented products. Given the complex relationships that many Black Americans have with dairy foods, due to issues with lactose intolerance, and/or negative perceptions about the health effects of dairy foods, there is still a need to examine the role that dairy foods play in the health and well-being of Black Americans of all ages and life stages. Therefore, the National Medical Association and its partners have produced multiple reports on the value of including adequate dairy in the diet of Black Americans. This present summary paper and its associated series of evidence reviews provide an examination of an immense amount of research focused on dairy intake and health outcomes, with an emphasis on evidence-based strategies for improving the health of Black Americans. Overall, the findings and conclusions from this body of research continue to indicate that higher dairy intake is associated with reduced risk for many of the most commonly occurring deficiencies and diseases impacting each life stage, and that Black Americans would receive significantly greater health benefits by increasing their daily dairy intake levels to meet the national recommendations than they would from continuing to fall short of these recommendations. However, these recommendations must be considered with appropriate context and nuance as the intake of different dairy products can have different impacts on health outcomes. For instance, vitamin D fortified dairy products and fermented dairy products like yogurt - which are low in lactose and rich in live and active cultures - tend to show the greatest benefits for improved health. Importantly, there are significant limitations to these research findings for Black Americans, especially as they relate to reproductive and child health, since most of the research on dairy intake and health has failed to include adequate representation of Black populations or to sufficiently address the role of dairy intake during the most vulnerable life stages, such as pregancy, lactation, fetal development, early childhood, and older age. This population and these life stages require considerably more research and policy attention if health equity is ever to be achieved for Black Americans. Sharing and applying the learnings from this summary paper and its associated series of evidence reviews will help inform and empower nutrition and health practitioners to provide more evidence-based dietary recommendations for improving the health and well-being of Black Americans across the life course.
Collapse
Affiliation(s)
- Kevin Comerford
- OMNI Nutrition Science, California Dairy Research Foundation, Davis, CA, United States.
| | - Yolanda Lawson
- Associate Attending, Baylor University Medical Center, Dallas, TX, United States
| | - Michal Young
- Emeritus, Department of Pediatrics and Child Health, Howard University College of Medicine, Washington D.C., United States
| | - Michael Knight
- The George Washington University School of Medicine and Health Sciences, Washington D.C., United States
| | - Kevin McKinney
- Department of Internal Medicine, Division of Endocrinology, University of Texas Medical Branch, Galveston, TX, United States
| | - Priscilla Mpasi
- ChristianaCare Health System, Assistant Clinical Director Complex Care and Community Medicine, Wilmington, DE, United States
| | - Edith Mitchell
- Sidney Kimmel Cancer at Jefferson, Philadelphia, PA, United States
| |
Collapse
|
12
|
Li Y, Cui Z, Shi L, Shan J, Zhang W, Wang Y, Ji Y, Zhang D, Wang J. Perovskite Nanocrystals: Superior Luminogens for Food Quality Detection Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4493-4517. [PMID: 38382051 DOI: 10.1021/acs.jafc.3c06660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
With the global limited food resources receiving grievous damage from frequent climate changes and ascending global food demand resulting from increasing population growth, perovskite nanocrystals with distinctive photoelectric properties have emerged as attractive and prospective luminogens for the exploitation of rapid, easy operation, low cost, highly accurate, excellently sensitive, and good selective biosensors to detect foodborne hazards in food practices. Perovskite nanocrystals have demonstrated supreme advantages in luminescent biosensing for food products due to their high photoluminescence (PL) quantum yield, narrow full width at half-maximum PL, tunable PL in the entire visible spectrum, easy preparation, and various modification strategies compared with conventional semiconductors. Herein, we have carried out a comprehensive discussion concerning perovskite nanocrystals as luminogens in the application of high-performance biosensing of foodborne hazards for food products, including a brief introduction of perovskite nanocrystals, perovskite nanocrystal-based biosensors, and their application in different categories of food products. Finally, the challenges and opportunities faced by perovskite nanocrystals as superior luminogens were proposed to promote their practicality in the future food supply.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhaowen Cui
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jinrui Shan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
13
|
Shao X, Cao L, Lu L. Ultrasensitive detection of glucose oxidase and alkaline phosphatase in milk based on valence regulated upconversion nanoprobes. Food Chem 2024; 432:137212. [PMID: 37634343 DOI: 10.1016/j.foodchem.2023.137212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Fresh milk should undergo sterilization before consumption to eliminate bacteria that can cause foodborne illnesses. Additional antimicrobial measures are beneficial to extend its shelf life. The nanoprobe developed herein can not only inspect the activity of alkaline phosphatase (ALP) for evaluating the degree of pasteurization, but also detect the activity of glucose oxidase (GOD), which is added as a chemical preservative. The facile preparation of the nanoprobe involved introducing gallic acid-Fe complex (GA-Fe) into lanthanide doped upconversion nanomaterials (UCNPs). Based on the alteration of iron's valence state in the complex through a straightforward redox reaction, both enzyme activities could be determined through colorimetric and luminometric dual-signal readouts. With detection limits of 1.669 × 10-5 for GOD and 9.81 × 10-6 U/mL for ALP respectively, this nanoprobe shows merits of easy operation and high sensitivity. Successful application in milk samples demonstrates its potential as an innovative and cost-effective approach to food safety inspection.
Collapse
Affiliation(s)
- Xinyu Shao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Lulu Cao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Lixia Lu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
14
|
Cholakova D, Denkov N. Polymorphic phase transitions in triglycerides and their mixtures studied by SAXS/WAXS techniques: In bulk and in emulsions. Adv Colloid Interface Sci 2024; 323:103071. [PMID: 38157769 DOI: 10.1016/j.cis.2023.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Triacylglycerols (TAGs) exhibit a monotropic polymorphism, forming three main polymorphic forms upon crystallization: α, β' and β. The distinct physicochemical properties of these polymorphs, such as melting temperature, subcell lattice structure, mass density, etc., significantly impact the appearance, texture, and long-term stability of a wide range products in the food and cosmetics industries. Additionally, TAGs are also of special interest in the field of controlled drug delivery and sustained release in pharmaceuticals, being a key material in the preparation of solid lipid nanoparticles. The present article outlines our current understanding of TAG phase behavior in both bulk and emulsified systems. While our primary focus are investigations involving monoacid TAGs and their mixtures, we also include illustrative examples with natural TAG oils, highlighting the knowledge transfer from simple to intricate systems. Special attention is given to recent discoveries via X-ray scattering techniques. The main factors influencing TAG polymorphism are discussed, revealing that a higher occurrence of structural defects in the TAG structure always accelerates the rate of the α → β polymorphic transformation. Diverse approaches can be employed based on the specific system: incorporating foreign molecules or solid particles into bulk TAGs, reducing drop size in dispersed systems, or using surfactants that remain fluid during TAG particle crystallization, ensuring the necessary molecular mobility for the polymorphic transformation. Furthermore, we showcase the role of TAG polymorphism on a recently discovered phenomenon: the creation of nanoparticles as small as 20 nm from initial coarse emulsions without any mechanical energy input. This analysis underscores how the broader understanding of the TAG polymorphism can be effectively applied to comprehend and control previously unexplored processes of notable practical importance.
Collapse
Affiliation(s)
- Diana Cholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria.
| | - Nikolai Denkov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| |
Collapse
|
15
|
Wang X, Liu Y, Rong J, Yuan J, Zhong P, Fan J, Huang L, Wang Q, Wang Z. Comparative Analysis of Human Milk Glycosphingolipids from Different Secretor Mothers Using HILIC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18578-18586. [PMID: 37966061 DOI: 10.1021/acs.jafc.3c05097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Glycosphingolipids participate in brain development, intestinal tract maturation, and defense against gut pathogens. Here, we performed a qualitative and quantitative comparison of milk glycosphingolipids from secretors and nonsecretors. Hydrophilic interaction chromatography-electrospray ionization-tandem mass spectrometry was employed, along with an internal standard, to resolve the complications presented by the fact that glycosphingolipids are structurally diverse, varying in glycan composition and ceramide. In total, 101 glycosphingolipids were detected, of which 76 were reported for the first time, including fucose-modified neutral glycosphingolipids. Seventy-eight glycosphingolipids differed significantly between secretor and nonsecretor milk (p < 0.05), resulting in higher levels of certain neutral species (p < 0.001) but lower levels of fucose-modified monosialylated and disialylated species in secretor mothers (p < 0.01). In both milk types, the most abundant glycosphingolipids were of the monosialylated type, followed by disialylated, neutral, and trisialylated ones. Notably, fucose-modified monosialylated glycosphingolipids accounted for the highest proportion.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yipei Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jinqiao Rong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jinhang Yuan
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Peiyun Zhong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jiangbo Fan
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qingling Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
16
|
Si B, Liu K, Huang G, Chen M, Yang J, Wu X, Li N, Tang W, Zhao S, Zheng N, Zhang Y, Wang J. Relationship between rumen bacterial community and milk fat in dairy cows. Front Microbiol 2023; 14:1247348. [PMID: 37886063 PMCID: PMC10598608 DOI: 10.3389/fmicb.2023.1247348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Milk fat is the most variable nutrient in milk, and recent studies have shown that rumen bacteria are closely related to milk fat. However, there is limited research on the relationship between rumen bacteria and milk fatty. Fatty acids (FAs) are an important component of milk fat and are associated with various potential benefits and risks to human health. Methods In this experiment, forty-five healthy Holstein dairy cows with alike physiological and productive conditions were selected from medium-sized dairy farms and raised under the same feeding and management conditions. The experimental period was two weeks. During the experiment, raw milk and rumen fluid were collected, and milk components were determined. In this study, 8 high milk fat percentage (HF) dairy cows and 8 low milk fat percentage (LF) dairy cows were selected for analysis. Results Results showed that the milk fat percentage in HF group was significantly greater than that of the dairy cows in the LF group. 16S rRNA gene sequencing showed that the rumen bacterial abundance of HF dairy cows was significantly higher than that in LF dairy cows; at the genus level, the bacterial abundances of Prevotellaceae_UCG-001, Candidatus_Saccharimonas, Prevotellaceae_UCG-003, Ruminococcus_1, Lachnospiraceae_XPB1014_group, Lachnospiraceae_AC2044_group, probable_genus_10 and U29-B03 in HF group were significantly higher than those in the LF group. Spearman rank correlation analysis indicated that milk fat percentage was positively related to Prevotellaceae_UCG-001, Candidatus_Saccharimonas, Prevotellaceae_UCG-003, Ruminococcus_1, Lachnospiraceae_XPB1014_group, Lachnospiraceae_AC2044_group, probable_genus_10 and U29-B03. Furthermore, Prevotellaceae_UCG-001 was positively related to C14:0 iso, C15:0 iso, C18:0, Ruminococcus_1 with C18:1 t9, Lachnospiraceae_AC2044_group with C18:1 t9 and C18:1 t11, U29-B03 with C15:0 iso. Discussion To sum up, rumen bacteria in dairy cows are related to the variation of milk fat, and some rumen bacteria have potential effects on the deposition of certain fatty acids in raw milk.
Collapse
Affiliation(s)
- Boxue Si
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kaizhen Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guoxin Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiqing Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiyong Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xufang Wu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenhao Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Wittwer AE, Lee SG, Ranadheera CS. Potential associations between organic dairy products, gut microbiome, and gut health: A review. Food Res Int 2023; 172:113195. [PMID: 37689944 DOI: 10.1016/j.foodres.2023.113195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Organic products have received longstanding, widespread attention for their nutritional and ecological benefits, as they are said to have certain positive health attributes and contain fewer harmful compounds than conventional (or non-organic) products. We reviewed the recent literature to examine potential associations between nutrient composition, gut microbiota, and gut health effects in recent comparative studies of organic and conventional dairy products. Trends of increased ratios of omega-3 to omega-6 polyunsaturated fatty acids and unsaturated to saturated fat, increased fat-soluble vitamin content, and decreased levels of certain pernicious contaminants in organic milk were observed across the studies reviewed. Studies of the metabolism of these nutrients in both in vitro and in vivo settings, and their or their metabolites' interaction with the intestinal epithelium show that nutrients enriched in organic dairy products may support host nutrient uptake and mediate gut inflammation. Research on the effects of single food products or classes of food products on gut health is rare. The extent of these benefits is highly likely to be mediated by both the magnitude of the difference in nutrient types and quantities, and by dietary intake levels of dairy products. Intervention studies directly examining the different effects of organic and conventional dairy products on gut health in humans are needed to further elucidate this relationship.
Collapse
Affiliation(s)
- Anna Elizabeth Wittwer
- School of Agriculture, Food & Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Simon Gardner Lee
- School of Agriculture, Food & Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Chaminda Senaka Ranadheera
- School of Agriculture, Food & Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
18
|
Thorsteinsson M, Weisbjerg MR, Lund P, Bruhn A, Hellwing ALF, Nielsen MO. Effects of dietary inclusion of 3 Nordic brown macroalgae on enteric methane emission and productivity of dairy cows. J Dairy Sci 2023; 106:6921-6937. [PMID: 37641361 DOI: 10.3168/jds.2023-23437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 08/31/2023]
Abstract
Macroalgae are receiving increased attention as antimethanogenic feed additives for cattle, but most in vivo studies are limited to investigating effects of the red macroalgae Asparagopsis spp. Hence, this study aimed to investigate the CH4 mitigating potential of 3 brown macroalgae from the Northern Hemisphere when fed to dairy cows, and to study the effects on feed intake, milk production, feed digestibility, and animal health indicators. The experiment was conducted as a 4 × 4 Latin square design using 4 lactating rumen, duodenal, and ileal cannulated Danish Holstein dairy cows. The cows were fed a total mixed ration (TMR) without any macroalgae or the same TMR diluted with, on a dry matter basis, either 4% ensiled Saccharina latissima, 4% Ascophyllum nodosum (NOD), or 2% Sargassum muticum (MUT). Each period consisted of 14 d of adaptation, 3 d of digesta and blood sampling, and 4 d of gas exchange measurements using respiration chambers. Milk yield and dry matter intake (DMI) were recorded daily. Blood was sampled on d 13 and 16 and analyzed for health status indicators. None of the 3 species affected the CH4 emission. Moreover, milk yield and DMI were also unaffected. Total-tract digestibility of crude protein was significantly lower for NOD compared with other diets, and additionally, the NOD diet also tended to reduce total-tract digestibility of neutral detergent fiber compared with MUT. Blood biomarkers did not indicate negative effects of the dietary inclusion of macroalgae on cow health. In conclusion, none of the 3 brown macroalgae reduced CH4 emission and did not affect DMI and milk production of dairy cows, whereas negative effects on the digestibility of nutrients were observed when A. nodosum was added. None of the diets would be allowed to be fed in commercial dairy herds due to high contents of iodine, cadmium, and arsenic.
Collapse
Affiliation(s)
- M Thorsteinsson
- Department of Animal and Veterinary Sciences, AU-Viborg, Research Centre Foulum, Aarhus University, DK-8830 Tjele, Denmark; iCLIMATE-Interdisciplinary Centre for Climate Change, Aarhus University, DK-8830 Tjele, Denmark; CBIO-Centre for Circular Bioeconomy, Aarhus University, DK-8830 Tjele, Denmark.
| | - M R Weisbjerg
- Department of Animal and Veterinary Sciences, AU-Viborg, Research Centre Foulum, Aarhus University, DK-8830 Tjele, Denmark; iCLIMATE-Interdisciplinary Centre for Climate Change, Aarhus University, DK-8830 Tjele, Denmark; CBIO-Centre for Circular Bioeconomy, Aarhus University, DK-8830 Tjele, Denmark
| | - P Lund
- Department of Animal and Veterinary Sciences, AU-Viborg, Research Centre Foulum, Aarhus University, DK-8830 Tjele, Denmark; iCLIMATE-Interdisciplinary Centre for Climate Change, Aarhus University, DK-8830 Tjele, Denmark; CBIO-Centre for Circular Bioeconomy, Aarhus University, DK-8830 Tjele, Denmark
| | - A Bruhn
- CBIO-Centre for Circular Bioeconomy, Aarhus University, DK-8830 Tjele, Denmark; Department of Ecoscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - A L F Hellwing
- Department of Animal and Veterinary Sciences, AU-Viborg, Research Centre Foulum, Aarhus University, DK-8830 Tjele, Denmark
| | - M O Nielsen
- Department of Animal and Veterinary Sciences, AU-Viborg, Research Centre Foulum, Aarhus University, DK-8830 Tjele, Denmark; iCLIMATE-Interdisciplinary Centre for Climate Change, Aarhus University, DK-8830 Tjele, Denmark
| |
Collapse
|
19
|
Grille L, Escobar D, Méndez MN, Adrien MDL, Olazabal L, Rodríguez V, Pelaggio R, Chilibroste P, Meikle A, Damián JP. Different Conditions during Confinement in Pasture-Based Systems and Feeding Systems Affect the Fatty Acid Profile in the Milk and Cheese of Holstein Dairy Cows. Animals (Basel) 2023; 13:ani13081426. [PMID: 37106989 PMCID: PMC10135254 DOI: 10.3390/ani13081426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
The diet of dairy cows influences the fatty acid (FA) profiles of their milk and cheese, but how these are affected by different conditions during confinement in a mixed system (MS:grazing + total mixed ration:TMR) is not known. The aim of this study was to compare the FAs of the milk and cheese from MS in a compost-bedded pack barns (CB-GRZ) versus an outdoor soil-bedded pen (OD-GRZ) during confinement, and with a confinement system (100%TMR) in a compost-bedded pack barns (CB-TMR). Individual milk samples (n = 12 cows/group), cheese, and pooled milk (MilkP) samples were collected. The saturated FA percentages in the milk and the omega 6/omega 3 ratio in the MilkP and cheese were greater for the CB-TMR (p < 0.0001), while the unsaturated and monounsaturated FA percentages in the milk were lower for the CB-TMR than the MS (p < 0.001). The milk n-3, C18:3, and conjugated linoleic acid percentages were lower for the CB-TMR than the MS (p < 0.001). The milk n-3 and C18:3 were higher for the CB-GRZ than the OD-GRZ (p < 0.01), but no differences were observed between the MS in the MilkP and cheese. In conclusion, CB-GRZ cows during confinement produced better quality milk compared to OD-GRZ cows. However, the FA profiles of the milk, MilkP, and cheese were affected to a greater extent by the feeding management than by the conditions during confinement.
Collapse
Affiliation(s)
- Lucía Grille
- Departamento de Ciencias Veterinarias y Agrarias, Facultad de Veterinaria, Cenur Litoral Norte Universidad de la República, Paysandú 60000, Uruguay
| | | | - Maria Noel Méndez
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Paysandú 60000, Uruguay
| | - María de Lourdes Adrien
- Departamento de Ciencias Veterinarias y Agrarias, Facultad de Veterinaria, Cenur Litoral Norte Universidad de la República, Paysandú 60000, Uruguay
| | - Laura Olazabal
- Departamento de Desarrollo de Métodos Analíticos, Laboratorio Tecnológico del Uruguay (LATU), Montevideo 11500, Uruguay
| | - Víctor Rodríguez
- Departamento de Ciencias Veterinarias y Agrarias, Facultad de Veterinaria, Cenur Litoral Norte Universidad de la República, Paysandú 60000, Uruguay
| | | | - Pablo Chilibroste
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Paysandú 60000, Uruguay
| | - Ana Meikle
- Laboratorio de Endocrinología y Metabolismo Animal, Facultad de Veterinaria, Universidad de la República, Montevideo 13000, Uruguay
| | - Juan Pablo Damián
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo 13000, Uruguay
| |
Collapse
|
20
|
Tsuzuki S. A point of view on human fat olfaction - do fatty derivatives serve as cues for awareness of dietary fats? Biomed Res 2023; 44:127-146. [PMID: 37544735 DOI: 10.2220/biomedres.44.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Fat (triglycerides) consumption is critical for the survival of animals, including humans. Being able to smell fat can be advantageous in judging food value. However, fat has poor volatility; thus, olfaction of fat seems impossible. What about fatty acids that comprise fat? Humans smell and discriminate medium-chain fatty acids. However, no conclusive evidence has been provided for the olfactory sense of long-chain fatty acids, including essential acids such as linoleic acid (LA). Instead, humans likely perceive the presence of essential fatty acids through the olfaction of volatile compounds generated by their oxidative breakdown (e.g., hexanal and γ-decalactone). For some people, such scents are pleasing, especially when they come from fruit. Nonetheless, it remains unclear whether the olfaction of these volatiles leads to the recognition of fat per se. Nowadays, people often smell LA-borne aldehydes such as E,E-2,4-decadienal that occur appreciably, for example, from edible oils during deep frying, and are pronely captivated by their characteristic "fatty" note, which can be considered a "pseudo-perception" of fat. However, our preference for such LA-borne aldehyde odors may be a potential cause behind the modern overdose of n-6 fatty acids. This review aims to provide a view of whether and, if any, how we olfactorily perceive dietary fats and raises future purposes related to human fat olfaction, such as investigating sub-olfactory systems for detecting long-chain fatty acids.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
21
|
Ali A, Mir MUR, Ganie SA, Mushtaq S, Bukhari SI, Alshehri S, Rashid SM, Mir TM, Rehman MU. Milk-Compositional Study of Metabolites and Pathogens in the Milk of Bovine Animals Affected with Subclinical Mastitis. Molecules 2022; 27:molecules27238631. [PMID: 36500724 PMCID: PMC9738622 DOI: 10.3390/molecules27238631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/02/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Bovine milk is an important food component in the human diet due to its nutrient-rich metabolites. However, bovine subclinical mastitis alters the composition and quality of milk. In present study, California mastitis testing, somatic cell count, pH, and electrical conductivity were used as confirmatory tests to detect subclinical mastitis. The primary goal was to study metabolome and identify major pathogens in cows with subclinical mastitis. In this study, 29 metabolites were detected in milk using gas chromatography−mass spectrometry. Volatile acidic compounds, such as hexanoic acid, hexadecanoic acid, lauric acid, octanoic acid, n-decanoic acid, tricosanoic acid, tetradecanoic acid, and hypogeic acid were found in milk samples, and these impart good flavor to the milk. Metaboanalyst tool was used for metabolic pathway analysis and principal component estimation. In this study, EC and pH values in milk were significantly increased (p < 0.0001), whereas fat (p < 0.04) and protein (p < 0.0002) significantly decreased in animals with subclinical mastitis in comparison to healthy animals. Staphylococcus aureus was the predominant pathogen found (n = 54), followed by Escherichia coli (n = 30). Furthermore, antibiotic sensitivity revealed that Staphylococcus aureus was more sensitive to gentamicin (79.6%), whereas Escherichia coli showed more sensitivity to doxycycline hydrochloride (80%).
Collapse
Affiliation(s)
- Aarif Ali
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir (SKUAST-K), Shuhama Campus (Alusteng), Ganderbal 190006, Jammu and Kashmir, India
| | - Manzoor Ur Rahman Mir
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir (SKUAST-K), Shuhama Campus (Alusteng), Ganderbal 190006, Jammu and Kashmir, India
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Saima Mushtaq
- Veterinary Microbiology Department, Indian Veterinary Research Institute (IVRI), Bareilly 243122, Uttar Pradesh, India
| | - Sarah I Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir (SKUAST-K), Shuhama Campus (Alusteng), Ganderbal 190006, Jammu and Kashmir, India
| | - Tahir Maqbool Mir
- National Centre for Natural Products Research, University of Mississippi, Oxford, MS 38677, USA
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Marquès M, Correig E, Capdevila E, Gargallo E, González N, Nadal M, Domingo JL. Essential and Non-essential Trace Elements in Milks and Plant-Based Drinks. Biol Trace Elem Res 2022; 200:4524-4533. [PMID: 34792758 PMCID: PMC9439980 DOI: 10.1007/s12011-021-03021-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Although milk and plant-based drinks are widely consumed foodstuffs with high nutritional value, their consumption may also mean intake of non-essential/toxic elements becoming a risk for human health. This study was aimed at determining the concentrations of essential (Ca, Co, K, Mg, Mn, Na, Ni and P) and non-essential/toxic (Hg, Pb, U and V) elements in milks (cow and goat), plant-based drinks (soy, almond, rice and oat) and infant formulas from organic and conventional production systems. Lactose-free, fresh and ultra-high-temperature (UHT) milks were also included. Chemical analyses were performed by means of inductively coupled plasma-mass spectrometry (ICP-MS). The content of the elements hereby assessed did not depend on the production system and the presence of lactose. However, significant differences were found in the concentrations of multiple elements when comparing sterilization methods, source (animal vs. plant-based) and animal species. Non-essential elements were not detected in milks and plant-based drinks, excepting Pb, which was detected in three samples. While the consumption of goat milk is recommended, considering the global intake of essential elements and the absence of non-essential elements, further studies should be conducted to confirm the absence of non-target toxic elements at very low trace levels. On the other hand, the best plant-based drinks are those made up with almonds (intake of Ca) and soy (K and Mg). The current results should be useful to help the population to balance the benefits and risks from milks and plant-based drinks consumption, as well as to adapt their dietary habits.
Collapse
Affiliation(s)
- Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - Eudald Correig
- Department of Biostatistics, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Esther Capdevila
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Eva Gargallo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
23
|
Comparison of the Effects of High Hydrostatic Pressure and Pasteurization on Quality of Milk during Storage. Foods 2022; 11:foods11182837. [PMID: 36140965 PMCID: PMC9498420 DOI: 10.3390/foods11182837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
High hydrostatic pressure (HHP, 600 MPa/15 min), pasteurization (72 °C/15 s) and pasteurization-HHP (72 °C/15 s + 600 MPa/15 min) processing of milk were comparatively evaluated by examining their effects on microorganisms and quality during 30 days of storage at 4 °C. The counts of total aerobic bacteria in HHP-treated milk were less than 2.22 lgCFU/mL during storage, while they exceeded 5.00 lgCFU/mL in other treated milk. Although HHP changed the color, it had more advantages in maintaining the nutrient (fat, calcium and β-lactoglobulin) properties of milk during storage. Moreover, the viscosity and particle size of HHP-treated milk were more similar to the untreated milk during storage. However, consumer habits towards heat-treated milk have led to poor acceptance of HHP-treated milk, resulting in a low sensory score. In sum, compared with pasteurization- and pasteurization-HHP-treated milk, HHP-treated milk showed longer shelf life and better nutritional quality, but lower sensory acceptance.
Collapse
|
24
|
Venkat M, Chia LW, Lambers TT. Milk polar lipids composition and functionality: a systematic review. Crit Rev Food Sci Nutr 2022; 64:31-75. [PMID: 35997253 DOI: 10.1080/10408398.2022.2104211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polar lipids including glycerophospholipids and sphingophospholipids are important nutrients and milk is a major source, particularly for infants. This systematic review describes the human and bovine milk polar lipid composition, structural organization, sources for formulation, and physiological functionality. A total of 2840 records were retrieved through Scopus, 378 were included. Bovine milk is a good source of polar lipids, where yield and composition are highly dependent on the choice of dairy streams and processing. In milk, polar lipids are organized in the milk fat globule membrane as a tri-layer encapsulating triglyceride. The overall polar lipid concentration in human milk is dependent on many factors including lactational stage and maternal diet. Here, reasonable ranges were determined where possible. Similar for bovine milk, where differences in milk lipid concentration proved the largest factor determining variation. The role of milk polar lipids in human health has been demonstrated in several areas and critical review indicated that brain, immune and effects on lipid metabolism are best substantiated areas. Moreover, insights related to the milk fat globule membrane structure-function relation as well as superior activity of milk derived polar lipid compared to plant-derived sources are emerging areas of interest regarding future research and food innovations.
Collapse
Affiliation(s)
- Meyya Venkat
- FrieslandCampina Development Centre AMEA, Singapore
| | - Loo Wee Chia
- FrieslandCampina Development Centre AMEA, Singapore
- FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
25
|
Bousset‐Alféres CM, Chávez‐Servín JL, Vázquez‐Landaverde PA, Betancourt‐López CA, Caamaño MDC, Ferriz‐Martínez RA, Chávez‐Alabat EF, Lovatón‐Cabrera MG, de la Torre‐Carbot K. Content of industrially produced trans fatty acids in breast milk: An observational study. Food Sci Nutr 2022; 10:2568-2581. [PMID: 35959266 PMCID: PMC9361450 DOI: 10.1002/fsn3.2862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Breast milk may contain industrially produced trans fatty acids (TFAs), which can affect the content of essential fatty acids (EFAs). This could have significant implications for the child's development. The fatty acids present in breast milk can be modified by adjusting the mother's diet. The objective of this study was to determine the content of industrially produced TFAs present in colostrum, transitional milk, and mature milk produced by mothers between 18 and 45 years of age in the state of Querétaro, Mexico, based on a longitudinal observational study. The TFA content in the breast milk of 33 lactating women was analyzed using gas chromatography. The mothers' consumption of TFAs was also estimated by analyzing a log prepared through 24-hr dietary recall (24HR) obtained in each period. The TFA content in the mothers' diet was similar across the colostrum, transitional milk, and mature milk phases: 1.64 ± 1.25 g, 1.39 ± 1.01, and 1.66 ± 1.13 g, respectively. The total TFA content was 1.529% ± 1.648% for colostrum; 0.748% ± 1.033% for transitional milk and 0.945% ± 1.368% for mature milk. Elaidic acid was the TFA in the highest concentration in all three types of milk. No correlation was found between the content of industrially produced TFAs in breast milk and the anthropometric measurements of the mother or between the estimated consumption of TFAs and the content of TFAs in breast milk. Elaidic acid and total content of TFAs were negatively correlated (p < .05) with the content of docosahexaenoic acid (DHA) (0.394 ± 0.247) (R = -0.382) in colostrum. The concentration of TFAs was found to correlate with the composition of EFAs in milk.
Collapse
|
26
|
Haddad L, Francis J, Rizk T, Akoka S, Remaud GS, Bejjani J. Cheese characterization and authentication through lipid biomarkers obtained by high-resolution 1H NMR profiling. Food Chem 2022; 383:132434. [PMID: 35183958 DOI: 10.1016/j.foodchem.2022.132434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
Food quality and safety are at the heart of consumers' concerns across the world. Dairy products, because of their large consumption, are fertile ground for fraudulent acts. This fact justifies the development of effective, accessible, and rapid analytical methods for their authentication. A high-resolution spectral treatment method previously developed by our team was applied to 1H NMR spectra of cheese triacylglycerols. 178 Peaks were thus quantitated and successfully used in the construction of multivariate models for the quantitation of individual fatty acids and for the classification of cheese samples according to the producing species, to their origin and variety. Besides, several peaks related to the amount and position of anteisopentadecanoic, butyric, α-linolenic, myristoleic, rumenic, and vaccenic acids were, among others, specific biomarkers of cheese groups. For the first time in 1H NMR, we were able to identify and to quantitate signals related to minor fatty acids within cheese triacylglycerols.
Collapse
Affiliation(s)
- Lenny Haddad
- Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, P.O. Box 17-5208 Mar Mikhael, Beirut 1104 2020, Lebanon; Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Joseph Francis
- Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, P.O. Box 17-5208 Mar Mikhael, Beirut 1104 2020, Lebanon
| | - Toufic Rizk
- Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, P.O. Box 17-5208 Mar Mikhael, Beirut 1104 2020, Lebanon
| | - Serge Akoka
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Gérald S Remaud
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Joseph Bejjani
- Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, P.O. Box 17-5208 Mar Mikhael, Beirut 1104 2020, Lebanon.
| |
Collapse
|
27
|
Simon Sarkadi L, Zhang M, Muránszky G, Vass RA, Matsyura O, Benes E, Vari SG. Fatty Acid Composition of Milk from Mothers with Normal Weight, Obesity, or Gestational Diabetes. Life (Basel) 2022; 12:life12071093. [PMID: 35888181 PMCID: PMC9323340 DOI: 10.3390/life12071093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 05/31/2023] Open
Abstract
Gestation and the neonatal period are crucial periods in infant development. Many components of breast milk, including fatty acids, play an important role in strengthening the immune system. The aim of our research was to evaluate the fatty acid profiles of milk from 69 mothers, including subjects having a normal weight, obesity, or gestational diabetes. For the analyses, we used gas chromatography (GC) with flame ionization detection (FID) and GC coupled with mass spectrometry (GC/MS). The main fatty acids found in breast milk were palmitic acid (C16:0; 26-28%), linoleic acid (C18:2; 23-28%), and α-linolenic acid linoleic acid (C18:3; 15-17%), followed by myristic acid (C14:0; 5-8%), lauric acid (C12:0; 4-6%) and stearic acid (C18:0; 4-5%). The average breakdown of fatty acids was 50% saturated, 44% polyunsaturated, and 6% monounsaturated. Breast milk samples were classified using principal component analysis and linear discriminant analysis. Results showed that milk from the two major groups of obese and normal body mass index (BMI) could be distinguished with an accuracy of 89.66%. Breast milk samples of Hungarian and Ukrainian mothers showed significant differences based on the fatty acid composition, which variations are attributable to the mothers' dietary habits.
Collapse
Affiliation(s)
- Livia Simon Sarkadi
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (G.M.)
| | - Miaomiao Zhang
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (G.M.)
| | - Géza Muránszky
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (G.M.)
| | - Réka Anna Vass
- Department of Obstetrics and Gynecology, University of Pécs Medical School, 7624 Pecs, Hungary;
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pecs, Hungary
| | - Oksana Matsyura
- Department of Pediatrics No. 2, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Eszter Benes
- Department of Food and Analytical Chemistry, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| |
Collapse
|
28
|
Alfaris NA, Alothman ZA, Aldayel TS, Wabaidur SM, Altamimi JZ. Evaluation and Comparison of the Nutritional and Mineral Content of Milk Formula in the Saudi Arabia Market. Front Nutr 2022; 9:851229. [PMID: 35757243 PMCID: PMC9218625 DOI: 10.3389/fnut.2022.851229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background/Aim As recommended by WHO, breastfeeding is the best choice and safe for infants. The formula for infants plays an imperative role in the infant's diet and remains an excellent alternative for breast milk. The milk formula for most infants has been increasingly changed with various compositions to create a similar breast milk production. This study aims to analyze and determine the chemical composition of a few milk formulas available in the Saudi Arabian market. Materials and Methods Thirty-five milk formula samples for infants of different age categories were collected from Riyadh City and analyzed for protein, fat, carbohydrates, lactose, total solids, total non-fat solids, calcium, iron, and zinc. Among batches collected, there were 15 branded products suitable for those of age 0-6 months, five for those of age 0-12 months, four for those of age 1-3 years, and 11 for those of age 6-12 months. Results For infants, the milk formula sample parameters investigated varied significantly (p ≤ 0.05). A significantly high protein value was 22.72% for a brand for infants with an age of 0-6 months, and the lowest was 11.31% for a brand for those of age 0-12 months. Fat content was high in a brand (26.92%) for infants of age 0-6 months and low in a brand (17.31%) for those aged 6-12 months. The high value of carbohydrates was found in a brand (60.64%) for those of age 0-6 months and a low one (44.97%) in a brand for those of age 0-12 months. The total energy, lactose, total solids, total non-fat solids, and minerals (calcium, iron, zinc) were significantly (p ≤ 0.05) varied between milk formulas at the same age. Conclusion There were significant variations between milk formulas of the same ages. According to age groups, some nutrients were not identical to the reference values for children's food.
Collapse
Affiliation(s)
- Nora A Alfaris
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Zeid A Alothman
- Department of Chemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Tahany S Aldayel
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saikh M Wabaidur
- Department of Chemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jozaa Z Altamimi
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Changes in the Fatty Acid Composition of Milk of Lipizzaner Mares during the Lactation Period. Metabolites 2022; 12:metabo12060506. [PMID: 35736439 PMCID: PMC9229762 DOI: 10.3390/metabo12060506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 02/05/2023] Open
Abstract
The composition and properties of the milk fat of mares’ milk is interesting from a nutritional standpoint. The aim of this study was to determine the nutritional value of Lipizzaner mare’s milk for possible human consumption and identity the influence of the parity and stage of lactation on its fatty acid (FA) composition. This study was conducted on 17 Lipizzaner mares from a state stud farm in the Slavonian region (eastern Croatia). Mares were hand-milked twice during lactation in the fourth and sixth months. Significantly higher contents of MUFAs (monounsaturated fatty acids) and PUFAs (polyunsaturated fatty acids) and lower ratios of n-6/n-3 were found in the fourth month of lactation. This parity significantly affected the PUFA/SFA ratio (polyunsaturated fatty acids/saturated fatty acids), with lower values found in older mares. The fatty acid composition of mare’s milk that is especially high in UFAs (unsaturated fatty acids) is considered to be beneficial for consumers.
Collapse
|
30
|
Covaciu F, Feher I, Molnar C, Floare-Avram V, Dehelean A. Characterization of the Fatty Acid and Elemental Composition of Human Milk with Chemometric Processing to Determine the Nutritional Value. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2081857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- F.D. Covaciu
- Department of Mass Spectrometry, Chromatography and Applied Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - I. Feher
- Department of Mass Spectrometry, Chromatography and Applied Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - C. Molnar
- Department of Mass Spectrometry, Chromatography and Applied Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - V. Floare-Avram
- Department of Mass Spectrometry, Chromatography and Applied Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - A. Dehelean
- Department of Mass Spectrometry, Chromatography and Applied Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| |
Collapse
|
31
|
CircEZH2 Regulates Milk Fat Metabolism through miR-378b Sponge Activity. Animals (Basel) 2022; 12:ani12060718. [PMID: 35327115 PMCID: PMC8944462 DOI: 10.3390/ani12060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Heat stress has seriously threatened the performance and health of dairy cows and has become one of the most important factors restricting the development of the dairy industry. In our previous study, we found that heat stress markedly altered the expression patterns of circRNAs in dairy cow’s mammary gland tissue, and heat-induced circRNAs participated in the regulation of milk fat metabolism through competing endogenous RNA (ceRNA) networks. Therefore, we evaluated the roles of heat-induced circEZH2 in the regulation of milk fat metabolism in this study. In more detail, we found that circEZH2 affects the proliferation, apoptosis, and lipid metabolism of mammary gland epithelial cells, and successfully verified the targeting relationship of circEZH2-bta-miR378b-LPL and circEZH2-bta-miR378b-CD36. This experiment expands the basic data on the role of circRNA in milk fat regulation, and provides a theoretical basis for alleviating heat stress in dairy cows. Abstract In this study, we evaluated the roles of heat-induced circEZH2 in the regulation of milk fat metabolism. CircEZH2 overexpression increased HC11 cell proliferation and decreased apoptosis. These changes were accompanied by increased expression of proliferation marker proteins (PCNA, Cyclin D, and Cyclin E) and the anti-apoptotic protein Bcl2, while expression of the pro-apoptotic proteins Bax and cleaved-caspase was reduced. SiRNA-mediated silencing of EZH2 in HC11 cells had the opposite effects. CircEZH2 overexpression promoted the uptake of a fluorescent fatty acid (Bodipy) as well as expression of the fatty acid transport-related protein CD36, lipolysis-related protein LPL, and unsaturated fatty acid metabolism-related proteins FADS1 and SCD1. Dual luciferase reporter assays verified the targeting relationship of the two ceRNA networks, circEZH2-miR378b-LPL and circEZH2-miR378b-CD36. This information provides further clarification of the role of circRNAs in milk fat regulation in addition to a theoretical basis for alleviating the effects of heat stress on milk production by dairy cows.
Collapse
|
32
|
Determination of Mono-Oil Proportion in Blended Edible Vegetable Oil (BEVO) with Identical Fatty Acid Profile: a Case Study on Coconut-Palm Kernel Oil Discrimination. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02193-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
|
34
|
BARAĆ M, VUČIĆ T, ŠPIROVIĆ-TRIFUNOVIĆ B, BARAĆ N, SMILJANIĆ M. Protein and fatty acid profiles of Kajmak ripened at two different temperatures. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.63322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Tang Y, Ali MM, Sun X, Debrah AA, Wang M, Hou H, Guo Q, Du Z. Development of a high-throughput method for the comprehensive lipid analysis in milk using ultra-high performance supercritical fluid chromatography combined with quadrupole time-of-flight mass spectrometry. J Chromatogr A 2021; 1658:462606. [PMID: 34656840 DOI: 10.1016/j.chroma.2021.462606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Milk lipids are one of the most complex materials in nature and are associated with many physiological functions, hence it is important to comprehensively characterize lipids profiles to evaluate the nutritional value of milk. A quick method was developed by ultra-high performance supercritical fluid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UHPSFC-ESI-QTOF-MS) to analyze the non-polar and polar lipids profiles of cow, goat, buffalo, human milk, and infant formulas in 7 min. All chromatographic conditions were carefully optimized and their effect on the chromatographic behavior of lipid classes and species was discussed. Under optimized conditions, 12 lipid classes (triacylglycerols, diacylglycerols, monoglyceride, fatty acids, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidylglycerol, sphingomyelin, lyso-phosphatidylcholine, and lyso-phosphatidylethanolamine) were separated and each class was further separated in single analysis to facilitate the identification. 250 lipid species in real samples were characterized and quantified. This result demonstrates the applicability of the UHPSFC-ESI-QTOF-MS method in the high-throughput and comprehensive lipid analysis of milk, and will hopefully help to provide nutritionists with the lipid distribution in different types of milk, as well as help in the design of more suitable infant formula for babies.
Collapse
Affiliation(s)
- Yan Tang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Mujahid Ali
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuechun Sun
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Augustine Atta Debrah
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengyu Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haiyue Hou
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiaozhen Guo
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention & Control, Beijing 100013, China
| | - Zhenxia Du
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
36
|
Abstract
The main objective of this review is to summarize the compositional characteristics and the health and functional properties of Mediterranean buffalo milk and whey derived from mozzarella cheese production. Several studies have investigated the composition of buffalo milk and in particular its fat, protein, and carbohydrates contents. These characteristics may change depending on the breed, feeding regime, and rearing system of the animals involved in the study, and also with the seasons. In particular, buffalo milk showed a higher nutritional value and higher levels of proteins, vitamins, and minerals when compared to milks produced by other animal species. Additionally, buffalo milk contains beneficial compounds such as gangliosides that can provide antioxidant protection and neuronal protection, and can improve bone, heart, and gastrointestinal health in humans.
Collapse
|
37
|
Zhang X, Wei W, Tao G, Jin Q, Wang X. Identification and Quantification of Triacylglycerols Using Ultraperformance Supercritical Fluid Chromatography and Quadrupole Time-of-Flight Mass Spectrometry: Comparison of Human Milk, Infant Formula, Other Mammalian Milk, and Plant Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8991-9003. [PMID: 33755452 DOI: 10.1021/acs.jafc.0c07312] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Triacylglycerol (TAG) components in human milk during different lactation periods, infant formulas with different fat sources, other mammalian milk (cow, goat, donkey, and yak milk), and plant oil (sunflower, rapeseed, corn, soybean, palm, palm kernel, and coconut oil) were analyzed and compared using ultraperformance supercritical fluid chromatography and quadrupole time-of-flight mass spectrometry (UPSFC-Q-TOF-MS). We identified 191 TAGs (86, 102, 101, and 54 TAGs in human milk, infant formula, mammalian milk, and plant oil, respectively). TAGs esterified with palmitic acid (16:0) were major TAG structures in human milk (59.08% of total TAGs) and contained 30 TAG types. The sn-O/P/O regioisomer constituted more than 80% of the O/P/O content of human milk, whereas the sn-O/O/P levels were higher in other samples. The carbon number (CN) 52 content was higher than the CN 54 content in human milk, with the opposite observed in infant formula. TAGs with CN < 40 content were abundant in cow, goat, and yak milk; donkey milk was rich in CN 52 content. TAGs composed of medium-chain fatty acids (MCFAs) and long-chain fatty acids (LCFAs) were rich in human milk, while TAGs with three MCFAs were rich in infant formula. The TAG characteristics of infant formula were directly related to its fat resource. TAGs with fewer double bonds were abundant in the plant oil formula; however, highly unsaturated TAGs were prominent in the cow and goat milk formulas, similar to plant oil and mammalian milk. Significant differences in the TAG distribution were observed among the different species.
Collapse
Affiliation(s)
- Xinghe Zhang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Wei
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guanjun Tao
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
38
|
Serna-Hernandez SO, Escobedo-Avellaneda Z, García-García R, Rostro-Alanis MDJ, Welti-Chanes J. High Hydrostatic Pressure Induced Changes in the Physicochemical and Functional Properties of Milk and Dairy Products: A Review. Foods 2021; 10:1867. [PMID: 34441644 PMCID: PMC8391368 DOI: 10.3390/foods10081867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
High-pressure processing (HPP) is a nonthermal technology used for food preservation capable of generating pasteurized milk products. There is much information regarding the inactivation of microorganisms in milk by HPP, and it has been suggested that 600 MPa for 5 min is adequate to reduce the number of log cycles by 5-7, resulting in safe products comparable to traditionally pasteurized ones. However, there are many implications regarding physicochemical and functional properties. This review explores the potential of HPP to preserve milk, focusing on the changes in milk components such as lipids, casein, whey proteins, and minerals, and the impact on their functional and physicochemical properties, including pH, color, turbidity, emulsion stability, rheological behavior, and sensory properties. Additionally, the effects of these changes on the elaboration of dairy products such as cheese, cream, and buttermilk are explored.
Collapse
Affiliation(s)
| | | | | | | | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Eugenio Garza Sada 2501, Monterrey 64700, NL, Mexico; (S.O.S.-H.); (Z.E.-A.); (R.G.-G.); (M.d.J.R.-A.)
| |
Collapse
|
39
|
Ong SL, Blenkiron C, Haines S, Acevedo-Fani A, Leite JAS, Zempleni J, Anderson RC, McCann MJ. Ruminant Milk-Derived Extracellular Vesicles: A Nutritional and Therapeutic Opportunity? Nutrients 2021; 13:2505. [PMID: 34444665 PMCID: PMC8398904 DOI: 10.3390/nu13082505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Milk has been shown to contain a specific fraction of extracellular particles that are reported to resist digestion and are purposefully packaged with lipids, proteins, and nucleic acids to exert specific biological effects. These findings suggest that these particles may have a role in the quality of infant nutrition, particularly in the early phase of life when many of the foundations of an infant's potential for health and overall wellness are established. However, much of the current research focuses on human or cow milk only, and there is a knowledge gap in how milk from other species, which may be more commonly consumed in different regions, could also have these reported biological effects. Our review provides a summary of the studies into the extracellular particle fraction of milk from a wider range of ruminants and pseudo-ruminants, focusing on how this fraction is isolated and characterised, the stability and uptake of the fraction, and the reported biological effects of these fractions in a range of model systems. As the individual composition of milk from different species is known to differ, we propose that the extracellular particle fraction of milk from non-traditional and minority species may also have important and distinct biological properties that warrant further study.
Collapse
Affiliation(s)
- Siew Ling Ong
- Smart Foods Innovation Centre of Excellence, Te Ohu Rangahau Kai, AgResearch Ltd., Massey University Campus, Palmerston North 4410, New Zealand;
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1051, New Zealand;
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1051, New Zealand
| | - Stephen Haines
- Beyond Food Innovation Centre of Excellence, AgResearch Ltd., Lincoln 7674, New Zealand;
| | - Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.A.-F.); (J.A.S.L.)
| | - Juliana A. S. Leite
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.A.-F.); (J.A.S.L.)
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Rachel C. Anderson
- Smart Foods Innovation Centre of Excellence, Te Ohu Rangahau Kai, AgResearch Ltd., Massey University Campus, Palmerston North 4410, New Zealand;
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.A.-F.); (J.A.S.L.)
| | - Mark J. McCann
- Smart Foods Innovation Centre of Excellence, Te Ohu Rangahau Kai, AgResearch Ltd., Massey University Campus, Palmerston North 4410, New Zealand;
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.A.-F.); (J.A.S.L.)
| |
Collapse
|
40
|
Moneeb AHM, Hammam ARA, Ahmed AKA, Ahmed ME, Alsaleem KA. Effect of fat extraction methods on the fatty acids composition of bovine milk using gas chromatography. Food Sci Nutr 2021; 9:2936-2942. [PMID: 34136161 PMCID: PMC8194748 DOI: 10.1002/fsn3.2252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/05/2021] [Indexed: 11/22/2022] Open
Abstract
Milk fat is a complex natural fat and contains around 400 fatty acids. The objectives of this study were to extract fat from bovine milk using two different methods, including Bligh and Dyer and Mojonnier, and to determine the fatty acid content in the extracted fats using gas chromatography (GC). No differences (p > .05) were detected in the fat content and fatty acids content as a percentage of total fat (FA%TF) extracted using both methods. No differences (p > .05) were detected in some saturated fatty acids (SFAs) and unsaturated fatty acids (USFAs) extracted from both methods, such as C11:0 (undecylic acid), C16:0 (palmitic acid), C18:0 (stearic acid), C14:1 (myristoleic acid), and C16:1 (palmitoleic acid). However, the majority of SFAs were different (p < .05) in Mojonnier method as compared to Bligh and Dyer method and vice versa for USFAs. The short (6.54% vs. 5.95%) and medium (21.86% vs. 20.73%) chains FAs determined by GC were high in Mojonnier fat as compared to Bligh and Dyer fat, while the long-chain FAs were higher in the last (66.61%) relative to Mojonnier fat (65.51%). This study found that Mojonneir method has resulted in fewer errors. In contrast, the Bligh and Dyer extraction method has more experimental error, which led to decreasing the total fat, as well as was not able to detect C9:0.
Collapse
Affiliation(s)
- Asmaa H. M. Moneeb
- Department of Dairy ScienceFaculty of AgricultureAssiut UniversityAssiutEgypt
| | - Ahmed R. A. Hammam
- Department of Dairy ScienceFaculty of AgricultureAssiut UniversityAssiutEgypt
- Dairy and Food Science DepartmentSouth Dakota State UniversityBrookingsSDUSA
| | - Abdelfatah K. A. Ahmed
- Department of Food Science and TechnologyFaculty of AgricultureAssiut UniversityAssiutEgypt
| | - Mahmoud E. Ahmed
- Department of Dairy ScienceFaculty of AgricultureAssiut UniversityAssiutEgypt
| | - Khalid A. Alsaleem
- Dairy and Food Science DepartmentSouth Dakota State UniversityBrookingsSDUSA
- Department of Food Science and Human NutritionCollege of Agriculture and Veterinary MedicineQassim UniversityBuraydahSaudi Arabia
| |
Collapse
|
41
|
Leroux C, Chervet ML, German JB. Perspective: Milk microRNAs as Important Players in Infant Physiology and Development. Adv Nutr 2021; 12:1625-1635. [PMID: 34022770 PMCID: PMC8483967 DOI: 10.1093/advances/nmab059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Evolutionary selective pressure on lactation has resulted in milk that provides far more than simply essential nutrients, delivering a complex repertoire of agents from hormones to intact cells. Human infants are born with low barrier integrity of their gut, which means that many of the complex biopolymer components of milk enter and circulate in lymph and blood, reaching organs throughout the body. Due to this state of gut maturation, all components of milk are potentially part of the crosstalk between mother and infants. This article highlights the functions of milk's complex biopolymers, more specifically the potential role of microRNAs (miRNAs) contained in extracellular vesicles in human milk. miRNAs are key effectors in the regulation of many biological processes during early-age development, and consequently milk-sourced miRNAs must be considered to provide unique biological assets to the infant during breastfeeding. This article interprets the evidence of the potential action of human milk miRNAs on infant development, taking into account their abundance in milk based on the literature and current knowledge. Human milk miRNAs appear to influence lipid and glucose metabolism, gut maturation, neurogenesis, and immunity. We also show growing evidence that human milk miRNAs are epigenetic modulators that play a pivotal role in the regulation of tissue-specific gene expression throughout life. Furthermore, this article addresses the ongoing debate regarding the potential influence of human milk miRNAs on viral infection as a new research area. This article highlights that these bioactive molecules are now being incorporated into our overall understanding of nutrient needs for healthy infant development, preparing each individual infant to succeed as a healthy and protected adult throughout its life. In essence, miRNAs are a new language in the Rosetta stone of health that is mammalian lactation.
Collapse
Affiliation(s)
| | - Mathilde Lea Chervet
- Foods for Health Institute, Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - J Bruce German
- Foods for Health Institute, Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
42
|
Milk Fat Globule Membrane Proteome and Micronutrients in the Milk Lipid Fraction: Insights into Milk Bioactive Compounds. DAIRY 2021. [DOI: 10.3390/dairy2020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Milk lipids are composed of milk fat globules (MFGs) surrounded by the milk fat globule membrane (MFGM). MFGM protects MFGs from coalescence and enzymatic degradation. The milk lipid fraction is a “natural solvent” for macronutrients such as phospholipids, proteins and cholesterol, and micronutrients such as minerals and vitamins. The research focused largely on the polar lipids of MFGM, given their wide bioactive properties. In this review we discussed (i) the composition of MFGM proteome and its variations among species and phases of lactation and (ii) the micronutrient content of human and cow’s milk lipid fraction. The major MFGM proteins are shared among species, but the molecular function and protein expression of MFGM proteins vary among species and phases of lactation. The main minerals in the milk lipid fraction are iron, zinc, copper and calcium, whereas the major vitamins are vitamin A, β-carotene, riboflavin and α-tocopherol. The update and the combination of this knowledge could lead to the exploitation of the MFGM proteome and the milk lipid fraction at nutritional, biological or technological levels. An example is the design of innovative and value-added products, such as MFGM-supplemented infant formulas.
Collapse
|
43
|
Muncan J, Kovacs Z, Pollner B, Ikuta K, Ohtani Y, Terada F, Tsenkova R. Near infrared aquaphotomics study on common dietary fatty acids in cow's liquid, thawed milk. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Lipid Composition, Digestion, and Absorption Differences among Neonatal Feeding Strategies: Potential Implications for Intestinal Inflammation in Preterm Infants. Nutrients 2021; 13:nu13020550. [PMID: 33567518 PMCID: PMC7914900 DOI: 10.3390/nu13020550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a significant cause of morbidity and mortality in the neonatal population. Formula feeding is among the many risk factors for developing the condition, a practice often required in the cohort most often afflicted with NEC, preterm infants. While the virtues of many bioactive components of breast milk have been extolled, the ability to digest and assimilate the nutritional components of breast milk is often overlooked. The structure of formula differs from that of breast milk, both in lipid composition and chemical configuration. In addition, formula lacks a critical digestive enzyme produced by the mammary gland, bile salt-stimulated lipase (BSSL). The gastrointestinal system of premature infants is often incapable of secreting sufficient pancreatic enzymes for fat digestion, and pasteurization of donor milk (DM) has been shown to inactivate BSSL, among other important compounds. Incompletely digested lipids may oxidize and accumulate in the distal gut. These lipid fragments are thought to induce intestinal inflammation in the neonate, potentially hastening the development of diseases such as NEC. In this review, differences in breast milk, pasteurized DM, and formula lipids are highlighted, with a focus on the ability of those lipids to be digested and subsequently absorbed by neonates, especially those born prematurely and at risk for NEC.
Collapse
|
45
|
Free Saturated Oxo Fatty Acids (SOFAs) and Ricinoleic Acid in Milk Determined by a Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS) Method. Metabolites 2021; 11:metabo11010046. [PMID: 33440625 PMCID: PMC7828063 DOI: 10.3390/metabo11010046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/20/2020] [Accepted: 01/05/2021] [Indexed: 11/17/2022] Open
Abstract
Oxidized saturated fatty acids, containing a hydroxyl or an oxo functionality, have attracted little attention so far. Recent studies have shown that saturated hydroxy fatty acids, which exhibit cancer cell growth inhibition and may suppress β-cell apoptosis, are present in milk. Herein, we present the application of a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method for the detection and quantification of various saturated oxo fatty acids (SOFAs) previously unrecognized in milk. This robust and rapid analytical method, which involves simple sample preparation and a single 10-min run, revealed the presence of families of oxostearic acids (OSAs) and oxopalmitic acids (OPAs) in milk. 8OSA, 9OSA, 7OSA, 10OSA and 10OPA were found to be the most abundant SOFAs in both cow and goat milk. Higher contents of SOFAs were found in cow milk in comparison to goat milk. Together with SOFAs, ricinoleic acid, which is isobaric to OSA, was detected and quantified in all milk samples, following a “suspect” HRMS analysis approach. This unique natural fatty acid, which is the main component (>90%) of castor oil triglycerides, was estimated at mean content values of 534.3 ± 6.0 μg/mL and 460 ± 8.1 μg/mL in cow and goat milk samples, respectively.
Collapse
|
46
|
Birkinshaw A, Schwarm A, Marquardt S, Kreuzer M, Terranova M. Rapid responses in bovine milk fatty acid composition and phenol content to various tanniferous forages. JOURNAL OF ANIMAL AND FEED SCIENCES 2020. [DOI: 10.22358/jafs/131171/2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Roy D, Ye A, Moughan PJ, Singh H. Composition, Structure, and Digestive Dynamics of Milk From Different Species-A Review. Front Nutr 2020; 7:577759. [PMID: 33123547 PMCID: PMC7573072 DOI: 10.3389/fnut.2020.577759] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/02/2020] [Indexed: 11/29/2022] Open
Abstract
Background: The traditional dairy-cattle-based industry is becoming increasingly diversified with milk and milk products from non-cattle dairy species. The interest in non-cattle milks has increased because there have been several anecdotal reports about the nutritional benefits of these milks and reports both of individuals tolerating and digesting some non-cattle milks better than cattle milk and of certain characteristics that non-cattle milks are thought to share in common with human milk. Thus, non-cattle milks are considered to have potential applications in infant, children, and elderly nutrition for the development of specialized products with better nutritional profiles. However, there is very little scientific information and understanding about the digestion behavior of non-cattle milks. Scope and Approach: The general properties of some non-cattle milks, in comparison with human and cattle milks, particularly focusing on their protein profile, fat composition, hypoallergenic potential, and digestibility, are reviewed. The coagulation behaviors of different milks in the stomach and their impact on the rates of protein and fat digestion are reviewed in detail. Key findings and Conclusions: Milk from different species vary in composition, structure, and physicochemical properties. This may be a key factor in their different digestion behaviors. The curds formed in the stomach during the gastric digestion of some non-cattle milks are considered to be relatively softer than those formed from cattle milk, which is thought to contribute to the degree to which non-cattle milks can be easily digested or tolerated. The rates of protein and fat delivery to the small intestine are likely to be a function of the macro- and micro-structure of the curd formed in the stomach, which in turn is affected by factors such as casein composition, fat globule and casein micelle size distribution, and protein-to-fat ratio. However, as no information on the coagulation behavior of non-cattle milks in the human stomach is available, in-depth scientific studies are needed in order to understand the impact of compositional and structural differences on the digestive dynamics of milk from different species.
Collapse
Affiliation(s)
| | | | | | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
48
|
Cutignano A, Siano F, Romano R, Aiello A, Pizzolongo F, Berni Canani R, Paparo L, Nocerino R, Di Scala C, Addeo F, Picariello G. Short-term effects of dietary bovine milk on fatty acid composition of human milk: A preliminary multi-analytical study. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1154:122189. [PMID: 32861173 DOI: 10.1016/j.jchromb.2020.122189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
The fatty acid (FA) composition of human milk (HM) from N = 9 Italian healthy donors following a free diet exhibited FA-dependent ranges of variability, as assessed by GC-FID. The possible short-term changes in the FA profile were monitored in the milk of lactating mothers (three) collected at five time points over a 6 h period, following an oral load (200 mL) of bovine milk. An array of techniques was exploited, including UHPLC-ESI-MS/MS of intact lipids and MALDI-TOF MS before and after chemical hydrogenation or bromination, in addition to MALDI-TOF MS analysis of FA after saponification, to monitor short-chain and odd-chain FA in HM as markers of bovine milk fat. A single administration of bovine milk did not appreciably modify the lipid pattern, suggesting that the maternal diet could induce not detectable short-term changes on the lipid composition of HM. Diet-induced increase of butyric acid was also excluded by 13C NMR. The functions that HM FA exert in infant physiology appear finely regulated through maternal metabolism.
Collapse
Affiliation(s)
- Adele Cutignano
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche (CNR), Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy
| | - Francesco Siano
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100 Avellino, Italy
| | - Raffaele Romano
- Dipartimento di Agraria, Università di Napoli "Federico II", Parco Gussone, 80055 Portici (Napoli), Italy
| | - Alessandra Aiello
- Dipartimento di Agraria, Università di Napoli "Federico II", Parco Gussone, 80055 Portici (Napoli), Italy
| | - Fabiana Pizzolongo
- Dipartimento di Agraria, Università di Napoli "Federico II", Parco Gussone, 80055 Portici (Napoli), Italy
| | - Roberto Berni Canani
- Dipartimento di Science Mediche Traslazionali e Laboratorio Europeo per lo Studio delle Malattie Indotte da Alimenti, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy; ImmunoNutritionLab at CEINGE Biotechinogie Avanzate, Università degli Studi di Napoli Federico II, Via Comunale Margherita, 484-538, 80131 Napoli, Italy; Task Force di Ateneo per gli Studi sul Microbioma, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | - Lorella Paparo
- Dipartimento di Science Mediche Traslazionali e Laboratorio Europeo per lo Studio delle Malattie Indotte da Alimenti, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy; ImmunoNutritionLab at CEINGE Biotechinogie Avanzate, Università degli Studi di Napoli Federico II, Via Comunale Margherita, 484-538, 80131 Napoli, Italy; Task Force di Ateneo per gli Studi sul Microbioma, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | - Rita Nocerino
- Dipartimento di Science Mediche Traslazionali e Laboratorio Europeo per lo Studio delle Malattie Indotte da Alimenti, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy; ImmunoNutritionLab at CEINGE Biotechinogie Avanzate, Università degli Studi di Napoli Federico II, Via Comunale Margherita, 484-538, 80131 Napoli, Italy; Task Force di Ateneo per gli Studi sul Microbioma, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | - Carmen Di Scala
- Dipartimento di Science Mediche Traslazionali e Laboratorio Europeo per lo Studio delle Malattie Indotte da Alimenti, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy; ImmunoNutritionLab at CEINGE Biotechinogie Avanzate, Università degli Studi di Napoli Federico II, Via Comunale Margherita, 484-538, 80131 Napoli, Italy; Task Force di Ateneo per gli Studi sul Microbioma, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | - Francesco Addeo
- Dipartimento di Agraria, Università di Napoli "Federico II", Parco Gussone, 80055 Portici (Napoli), Italy
| | - Gianluca Picariello
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100 Avellino, Italy.
| |
Collapse
|
49
|
Manoni M, Di Lorenzo C, Ottoboni M, Tretola M, Pinotti L. Comparative Proteomics of Milk Fat Globule Membrane (MFGM) Proteome across Species and Lactation Stages and the Potentials of MFGM Fractions in Infant Formula Preparation. Foods 2020; 9:E1251. [PMID: 32906730 PMCID: PMC7555516 DOI: 10.3390/foods9091251] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
Milk is a lipid-in-water emulsion with a primary role in the nutrition of newborns. Milk fat globules (MFGs) are a mixture of proteins and lipids with nutraceutical properties related to the milk fat globule membrane (MFGM), which protects them, thus preventing their coalescence. Human and bovine MFGM proteomes have been extensively characterized in terms of their formation, maturation, and composition. Here, we review the most recent comparative proteomic analyses of MFGM proteome, above all from humans and bovines, but also from other species. The major MFGM proteins are found in all the MFGM proteomes of the different species, although there are variations in protein expression levels and molecular functions across species and lactation stages. Given the similarities between the human and bovine MFGM and the bioactive properties of MFGM components, several attempts have been made to supplement infant formulas (IFs), mainly with polar lipid fractions of bovine MFGM and to a lesser extent with protein fractions. The aim is thus to narrow the gap between human breast milk and cow-based IFs. Despite the few attempts made to date, supplementation with MFGM proteins seems promising as MFGM lipid supplementation. A deeper understanding of MFGM proteomes should lead to better results.
Collapse
Affiliation(s)
- Michele Manoni
- Department of Health, Animal Science and Food Safety, VESPA, University of Milan, 20134 Milan, Italy; (M.M.); (M.O.)
| | - Chiara Di Lorenzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy;
| | - Matteo Ottoboni
- Department of Health, Animal Science and Food Safety, VESPA, University of Milan, 20134 Milan, Italy; (M.M.); (M.O.)
| | - Marco Tretola
- Agroscope, Institute for Livestock Sciences, 1725 Posieux, Switzerland;
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, VESPA, University of Milan, 20134 Milan, Italy; (M.M.); (M.O.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| |
Collapse
|
50
|
Sun J, Wang W, Zhang D. Associations of different types of dairy intakes with depressive symptoms in adults. J Affect Disord 2020; 274:326-333. [PMID: 32469823 DOI: 10.1016/j.jad.2020.05.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/06/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Current evidence on the associations between different types of milk products and depressive symptoms is few and controversial, and there has been no study focusing on different types of milk (whole-fat, low-fat, and skim). This study aimed to appraise their associations. METHODS This cross-sectional study included adults (N=21,924) from the National Health and Nutrition Examination Survey 2007-2016. Patient Health Questionnaire was used to evaluate depressive symptoms. Logistic regression model was implemented to assess the association of dairy consumption with depressive symptoms. RESULTS After multivariate adjustment, compared to non-consumers, the odds ratios (95% confidence intervals) of depressive symptoms for intake < 175.38 g/d and 175.38 to < 321.56 g/d of skim milk were 0.48 (0.27-0.85) and 0.46 (0.29-0.75), and 0.70 (0.55-0.88) for intake < 81.00 g/d of milk desserts, while 1.61 (1.05-2.46), 1.70 (1.15-2.50) and 1.55 (1.11-2.16) for intake < 129.63 g/d, 129.63 to < 289.75 g/d and ≥ 289.75 g/d of whole milk, respectively. These associations remained significant in stratified analyses by gender and age. Additionally, yogurt was negatively associated with depressive symptoms in both females and the age group (≥ 60 years). Low-fat milk was inversely associated with depressive symptoms for both males and the age group (≥ 60 years). Moderate creams intake was negatively associated with depressive symptoms in males. LIMITATIONS It was difficult to infer causality for a cross-sectional study. CONCLUSIONS Intakes of skim milk and moderate milk desserts were negatively associated with depressive symptoms, while whole milk was positively associated with depressive symptoms among adults.
Collapse
Affiliation(s)
- Jing Sun
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, Qingdao, Shandong Province, People's Republic of China.
| |
Collapse
|