1
|
Niri P, Saha A, Polopalli S, Kumar M, Das S, Chattopadhyay P. Role of biomarkers and molecular signaling pathways in acute lung injury. Fundam Clin Pharmacol 2024; 38:640-657. [PMID: 38279523 DOI: 10.1111/fcp.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is caused by bacterial, fungal, and viral infections. When pathogens invade the lungs, the immune system responds by producing cytokines, chemokines, and interferons to promote the infiltration of phagocytic cells, which are essential for pathogen clearance. Their excess production causes an overactive immune response and a pathological hyper-inflammatory state, which leads to ALI. Until now, there is no particular pharmaceutical treatment available for ALI despite known inflammatory mediators like neutrophil extracellular traps (NETs) and reactive oxygen species (ROS). OBJECTIVES Therefore, the primary objective of this review is to provide the clear overview on the mechanisms controlling NETs, ROS formation, and other relevant processes during the pathogenesis of ALI. In addition, we have discussed the significance of epithelial and endothelial damage indicators and several molecular signaling pathways associated with ALI. METHODS The literature review was done from Web of Science, Scopus, PubMed, and Google Scholar for ALI, NETs, ROS, inflammation, biomarkers, Toll- and nucleotide-binding oligomerization domain (NOD)-like receptors, alveolar damage, pro-inflammatory cytokines, and epithelial/endothelial damage alone or in combination. RESULTS This review summarized the main clinical signs of ALI, including the regulation and distinct function of epithelial and endothelial biomarkers, NETs, ROS, and pattern recognition receptors (PRRs). CONCLUSION However, no particular drugs including vaccine for ALI has been established. Furthermore, there is a lack of validated diagnostic tools and a poor predictive rationality of current therapeutic biomarkers. Hence, extensive and precise research is required to speed up the process of drug testing and development by the application of artificial intelligence technologies, structure-based drug design, in-silico approaches, and drug repurposing.
Collapse
Affiliation(s)
- Pakter Niri
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Subramanyam Polopalli
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Mohit Kumar
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
| |
Collapse
|
2
|
Su Y, Lucas R, Fulton DJ, Verin AD. Mechanisms of pulmonary endothelial barrier dysfunction in acute lung injury and acute respiratory distress syndrome. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:80-87. [PMID: 39006829 PMCID: PMC11242916 DOI: 10.1016/j.pccm.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Endothelial cells (ECs) form a semi-permeable barrier between the interior space of blood vessels and the underlying tissues. Pulmonary endothelial barrier integrity is maintained through coordinated cellular processes involving receptors, signaling molecules, junctional complexes, and protein-regulated cytoskeletal reorganization. In acute lung injury (ALI) or its more severe form acute respiratory distress syndrome (ARDS), the loss of endothelial barrier integrity secondary to endothelial dysfunction caused by severe pulmonary inflammation and/or infection leads to pulmonary edema and hypoxemia. Pro-inflammatory agonists such as histamine, thrombin, bradykinin, interleukin 1β, tumor necrosis factor α, vascular endothelial growth factor, angiopoietin-2, and platelet-activating factor, as well as bacterial toxins and reactive oxygen species, cause dynamic changes in cytoskeletal structure, adherens junction disorganization, and detachment of vascular endothelial cadherin (VE-cadherin) from the actin cytoskeleton, leading to an increase in endothelial permeability. Endothelial interactions with leukocytes, platelets, and coagulation enhance the inflammatory response. Moreover, inflammatory infiltration and the associated generation of pro-inflammatory cytokines during infection cause EC death, resulting in further compromise of the structural integrity of lung endothelial barrier. Despite the use of potent antibiotics and aggressive intensive care support, the mortality of ALI is still high, because the mechanisms of pulmonary EC barrier disruption are not fully understood. In this review, we summarized recent advances in the studies of endothelial cytoskeletal reorganization, inter-endothelial junctions, endothelial inflammation, EC death, and endothelial repair in ALI and ARDS, intending to shed some light on the potential diagnostic and therapeutic targets in the clinical management of the disease.
Collapse
Affiliation(s)
- Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Rudolf Lucas
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J.R. Fulton
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Wang N, Sun G, Zhang Q, Gao Q, Wang B, Guo L, Cheng G, Hu Y, Huang J, Ren R, Wang C, Chen C. Broussonin E against acute respiratory distress syndrome: the potential roles of anti-inflammatory. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3195-3209. [PMID: 37906275 DOI: 10.1007/s00210-023-02801-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
We applied network pharmacology and molecular docking analyses to study the efficacy of Broussonin E (BRE) in acute respiratory distress syndrome (ARDS) treatment and to determine the core components, potential targets, and mechanism of action of BRE. The SwissTargetprediction and SEA databases were used to predict BRE targets, and the GeneCards and OMIM databases were used to predict ARDS-related genes. The drug targets and disease targets were mapped to obtain an intersecting drug target gene network, which was then uploaded into the String database for protein-protein interaction network analysis. The intersecting gene was also uploaded into the DAVID database for gene ontology enrichment analysis and Kyoto encyclopedia of genes and genomes pathway analysis. Molecular docking analysis was performed to verify the interaction of BRE with the key targets. Finally, to validate the experiment in vivo, we established an oleic acid-induced ARDS rat model and evaluated the protective effect of BRE on ARDS by histological evaluation and enzyme-linked immunosorbent assay. Overall, 79 targets of BRE and 3974 targets of ARDS were predicted, and 79 targets were obtained after intersection. Key genes such as HSP90AA1, JUN, ESR1, MTOR, and PIK3CA play important roles in the nucleus and cytoplasm by regulating the tumor necrosis factor, nuclear factor-κB, and PI3K-Akt signaling pathways. Molecular docking results showed that small molecules of BRE could freely bind to the active site of the target proteins. In vivo experiments showed that BRE could reduce ARDS-related histopathological changes, release of inflammatory factors, and infiltration of macrophages and oxidative stress reaction. BRE exerts its therapeutic effect on ARDS through target and multiple pathways. This study also predicted the potential mechanism of BRE on ARDS, which provides the theoretical basis for in-depth and comprehensive studies of BRE treatment on ARDS.
Collapse
Affiliation(s)
- Ning Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Guangcheng Sun
- Department of Cardiology, Anhui Chest Hospital, Hefei, Anhui, China
| | - Qiaoyun Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Qian Gao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Bingjie Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Lingling Guo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Gao Cheng
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Yuexia Hu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Jian Huang
- Department of Thoracic Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, No.17, Lujiang Road, Luyang District, Hefei, 230001, Anhui, China.
| | - Ruguo Ren
- Department of Cardiovascular Hospital, Xi'an No.1 Hospital and The First Affiliated Hospital of Northwest University, Beilin District, No.30, South Street powder Lane, Xi'an, 710002, Shaanxi, China.
| | - Chunhui Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China.
| | - Chen Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China.
| |
Collapse
|
4
|
Radi MH, El-Shiekh RA, Hegab AM, Henry SR, Avula B, Katragunta K, Khan IA, El-Halawany AM, Abdel-Sattar E. LC-QToF chemical profiling of Euphorbia grantii Oliv. and its potential to inhibit LPS-induced lung inflammation in rats via the NF-κB, CY450P2E1, and P38 MAPK14 pathways. Inflammopharmacology 2024; 32:461-494. [PMID: 37572137 PMCID: PMC10907465 DOI: 10.1007/s10787-023-01298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that causes high morbidity and mortality worldwide. The aerial parts of Euphorbia grantii Oliv. were extracted with methanol to give a total methanolic extract (TME), which was further fractionated into dichloromethane (DCMF) and the remaining mother liquor (MLF) fractions. Biological guided anti-inflammatory assays in vitro revealed that the DCMF showed the highest activity (IC50 6.9 ± 0.2 μg/mL and 0.29 ± 0.01 μg/mL) compared to. celecoxib (IC50 of 88.0 ± 1 μg/mL and 0.30 ± 0.01 μg/mL) on COX-1 and COX-2, respectively. Additionally, anti-LOX activity was IC50 = 24.0 ± 2.5 μg/mL vs. zileuton with IC50 of 40.0 ± 0.5 μg/mL. LC-DAD-QToF analysis of TME and the active DCMF resulted in the tentative identification and characterization of 56 phytochemical compounds, where the diterpenes were the dominated metabolites. An LPS-induced inflammatory model of ALI (10 mg/kg i.p) was used to assess the anti-inflammatory potential of DCMF in vivo at dose of 200 mg/kg and 300 mg/kg compared to dexamethasone (5 mg/kg i.p). Our treatments significantly reduced the pro-inflammatory cytokines (TNF-α, IL-1, IL-6, and MPO), increased the activity of antioxidant enzymes (SOD, CAT, and GSH), decreased the activity of oxidative stress enzyme (MDA), and reduced the expression of inflammatory genes (p38.MAPK14 and CY450P2E1). The western blotting of NF-κB p65 in lung tissues was inhibited after orally administration of the DCMF. Histopathological study of the lung tissues, scoring, and immunohistochemistry of transforming growth factor-beta 1 (TGF-β1) were also assessed. In both dose regimens, DCMF of E. grantii prevented further lung damage and reduced the side effects of LPS on acute lung tissue injury.
Collapse
Affiliation(s)
- Mai Hussin Radi
- Herbal Department, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amany Mohammed Hegab
- Developmental Pharmacology Department, Egyptian Drug Authority (EDA), Giza, Egypt
| | | | - Bharathi Avula
- School of Pharmacy, National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
| | - Kumar Katragunta
- School of Pharmacy, National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
| | - Ikhlas A Khan
- School of Pharmacy, National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Ali M El-Halawany
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
5
|
Lu C, Zhang S, Lei SS, Wang D, Peng B, Shi R, Chong CM, Zhong Z, Wang Y. A comprehensive review of the classical prescription Yiguan Jian: Phytochemistry, quality control, clinical applications, pharmacology, and safety profile. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117230. [PMID: 37778517 DOI: 10.1016/j.jep.2023.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/10/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yiguan Jian (YGJ) is a classical prescription, which employs 6 kinds of medicinal herbs including Rehmanniae Radix, Lycii Fructus, Angelicae sinensis Radix, Glehniae Radix, Ophiopogonis Radix, and Toosendan Fructus. YGJ decoction is originally prescribed in Qing Dynasty (1636 CE ∼ 1912 CE) in China, and is commonly used to treat liver diseases. There remain abundant literature investigating YGJ decoction from multiple aspects, but few reviews summarized the research and gave a precise definition, which impedes further applications and commercialization of YGJ decoction. AIM OF THE REVIEW The aim of this review is to provide comprehensive descriptions of YGJ decoction, tackling with issues in the research and development of YGJ decoction. MATERIALS AND METHODS The literature and clinical reports were obtained from the databases including Web of Science, Science Direct, PubMed, Google Scholar, China National Knowledge Infrastructure, China Science Periodical Database, China Science and Technology Journal Database, and SinoMed since 2000. The phytochemical characteristics, quality control, pharmaceutical forms, clinical position, pharmacological effects, and toxic events of YGJ decoction were included for analysis. RESULT This review firstly summarized the progress of the chemical existences of YGJ decoction and discussed the advanced methods in monitoring quality of YGJ decoction and its herbal ingredients, particularly in the form of granules. Whilst this review aims to identify the pharmacological actions and clinical impacts of YGJ decoction, the medicinal materials that could provide these benefits were observed in the remaining herbs to exert the anti-fibrotic effects, anti-inflammatory activities, anti-cancer, and anti-diabetic effects, and to universally treat liver and gastric diseases. This review provided supplementary descriptions on the safety issues, especially in Glehniae Radix and Toosendan Fructus, to define the alterations between hepatoprotective activities and unclear toxics in YGJ decoction application. CONCLUSIONS Our comprehensively organized review discussed the chemical characteristics and the research in altering or identifying these essences. The effects of YGJ decoction on the non-clinical and clinical tests exert the good management of sophisticated diseases. In this review, current issues are discussed to inform and inspire subsequent research of YGJ decoction and other classical prescriptions.
Collapse
Affiliation(s)
- Changcheng Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Siyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Si San Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Danni Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Bo Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Ruipeng Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
6
|
Xiong P, Zheng YY, Ouyang JM. Carboxylated Pocoa polysaccharides inhibited oxidative damage and inflammation of HK-2 cells induced by calcium oxalate nanoparticles. Biomed Pharmacother 2023; 169:115865. [PMID: 37972469 DOI: 10.1016/j.biopha.2023.115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
The inhibitory effects of Chinese medicine Pocoa (PCPs) with different carboxyl group (-COOH) contents on oxidative damage and inflammatory response of renal epithelial cells and the influence of -COOH content in polysaccharides were investigated. HK-2 cell damage model was established by nanocalcium oxalate crystals (nanoCOM), and then PCPs with -COOH contents of 2.56% (PCP0), 7.48% (PCP1), 12.07% (PCP2), and 17.18% (PCP3) were used to protect the cells. PCPs could inhibit the damage of nanoCOM to HK-2 cells, increase cell viability, restore cytoskeleton and morphology, and improve lysosomal integrity. PCPs can reduce the oxidative stress response of nanoCOM to cells, inhibit the opening of mPTP and cell necrotic apoptosis, reduce the level of Ca2+ ions in cells, the production of ATP and MDA, and increase SOD expression. PCPs can also reduce the cellular inflammatory response caused by oxidative damage, and reduce the expression of nitric oxide (NO), inflammatory factors TNF-α, IL-6, IL-1β and MCP-1, as well as the content of inflammasome NLRP3. After protection, PCPs can inhibit the endocytosis of nanoCOM crystals by cells. With the increase in -COOH content in PCPs, its ability to inhibit nanoCOM cell damage, reduce oxidative stress, reduce inflammatory response, and inhibit crystal endocytosis increases, that is, PCP3 with the highest -COOH content, shows the best biological activity. Inhibiting cell damage and inflammation and reducing a large amount of endocytosis of crystals by cells are beneficial to inhibit the formation of kidney stones.
Collapse
Affiliation(s)
- Peng Xiong
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China
| | - Yu-Yun Zheng
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China.
| |
Collapse
|
7
|
Song L, Shi X, Kovacs L, Han W, John J, Barman SA, Dong Z, Lucas R, Fulton DJR, Verin AD, Su Y. Calpain Promotes LPS-induced Lung Endothelial Barrier Dysfunction via Cleavage of Talin. Am J Respir Cell Mol Biol 2023; 69:678-688. [PMID: 37639326 PMCID: PMC10704117 DOI: 10.1165/rcmb.2023-0009oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Acute lung injury (ALI) is characterized by lung vascular endothelial cell (EC) barrier compromise resulting in increased endothelial permeability and pulmonary edema. The infection of gram-negative bacteria that produce toxins like LPS is one of the major causes of ALI. LPS activates Toll-like receptor 4, leading to cytoskeleton reorganization, resulting in lung endothelial barrier disruption and pulmonary edema in ALI. However, the signaling pathways that lead to the cytoskeleton reorganization and lung microvascular EC barrier disruption remain largely unexplored. Here we show that LPS induces calpain activation and talin cleavage into head and rod domains and that inhibition of calpain attenuates talin cleavage, RhoA activation, and pulmonary EC barrier disruption in LPS-treated human lung microvascular ECs in vitro and lung EC barrier disruption and pulmonary edema induced by LPS in ALI in vivo. Moreover, overexpression of calpain causes talin cleavage and RhoA activation, myosin light chain (MLC) phosphorylation, and increases in actin stress fiber formation. Furthermore, knockdown of talin attenuates LPS-induced RhoA activation and MLC phosphorylation and increased stress fiber formation and mitigates LPS-induced lung microvascular endothelial barrier disruption. Additionally, overexpression of talin head and rod domains increases RhoA activation, MLC phosphorylation, and stress fiber formation and enhances lung endothelial barrier disruption. Finally, overexpression of cleavage-resistant talin mutant reduces LPS-induced increases in MLC phosphorylation in human lung microvascular ECs and attenuates LPS-induced lung microvascular endothelial barrier disruption. These results provide the first evidence that calpain mediates LPS-induced lung microvascular endothelial barrier disruption in ALI via cleavage of talin.
Collapse
Affiliation(s)
| | | | - Laszlo Kovacs
- Department of Pharmacology & Toxicology
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; and
| | | | - Joseph John
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | | | - Zheng Dong
- Department of Cellular Biology and Anatomy, and
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Rudolf Lucas
- Department of Pharmacology & Toxicology
- Department of Medicine
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; and
| | - David J. R. Fulton
- Department of Pharmacology & Toxicology
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; and
| | - Alexander D. Verin
- Department of Medicine
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; and
| | - Yunchao Su
- Department of Pharmacology & Toxicology
- Department of Medicine
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; and
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
8
|
Ghasemzadeh Rahbardar M, Razavi BM, Naraki K, Hosseinzadeh H. Therapeutic effects of minocycline on oleic acid-induced acute respiratory distress syndrome (ARDS) in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3233-3242. [PMID: 37247013 PMCID: PMC10226015 DOI: 10.1007/s00210-023-02532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a serious intensive care condition. Despite advances in treatment over the previous few decades, ARDS patients still have high fatality rates. Thus, more research is needed to improve the outcomes for people with ARDS. Minocycline is an antibiotic with antioxidant, anti-inflammatory, and anti-apoptotic effects. In the current investigation, the therapeutic effects of minocycline on oleic acid-induced ARDS were evaluated. Male rats were classified into 6 groups, 1. control (normal saline), 2. oleic acid (100 µL, i.v.), 3-5. oleic acid + minocycline (50, 100, 200 mg/kg, i.p.), and 6. minocycline (200 mg/kg, i.p.) alone. Twenty-four hours after the oleic acid injection, the lung tissue is isolated, weighed, and the middle part of the right lung is immediately placed in the freezer, while the middle part of the left lung is placed in formalin and sent to the laboratory for pathology testing. Then, the amounts of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), cytokines (interleukin-1 beta (IL-1β), tumor necrosis factor-α (TNF-α)), B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X (Bax), and cleaved caspase-3 were determined in lung tissue. Administration of oleic acid increased emphysema, inflammation, vascular congestion, hemorrhage, MDA amount, Bax/Bcl-2 ratio, cleaved caspase-3, IL-1β, TNF-α levels, and decreased GSH, SOD, and CAT levels in comparison with the control group. The administration of minocycline could significantly reduce pathological and biochemical alterations induced by oleic acid. Minocycline has a therapeutic effect on oleic acid-induced ARDS through antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Kolomaznik M, Hanusrichterova J, Mikolka P, Kosutova P, Vatecha M, Zila I, Mokra D, Calkovska A. Efficiency of exogenous surfactant combined with intravenous N-acetylcysteine in two-hit rodent model of ARDS. Respir Physiol Neurobiol 2023; 316:104138. [PMID: 37579929 DOI: 10.1016/j.resp.2023.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Accumulation of reactive oxygen species during hyperoxia together with secondary bacteria-induced inflammation leads to lung damage in ventilated critically ill patients. Antioxidant N-acetylcysteine (NAC) in combination with surfactant may improve lung function. We compared the efficacy of NAC combined with surfactant in the double-hit model of lung injury. Bacterial lipopolysaccharide (LPS) instilled intratracheally and hyperoxia were used to induce lung injury in Wistar rats. Animals were mechanically ventilated and treated intravenously with NAC alone or in combination with intratracheal surfactant (poractant alfa; PSUR+NAC). Control received saline. Lung functions, inflammatory markers, oxidative damage, total white blood cell (WBC) count and lung oedema were evaluated during 4 hrs. Administration of NAC increased total antioxidant capacity (TAC) and decreased IL-6. This effect was potentiated by the combined administration of surfactant and NAC. In addition, PSUR+NAC reduced the levels of TNFα, IL-1ß, and TAC compared to NAC only and improved lung injury score. The combination of exogenous surfactant with NAC suppresses lung inflammation and oxidative stress in the experimental double-hit model of lung injury.
Collapse
Affiliation(s)
- Maros Kolomaznik
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala hora 4C, 036 01 Martin, Slovakia
| | - Juliana Hanusrichterova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala hora 4C, 036 01 Martin, Slovakia
| | - Pavol Mikolka
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala hora 4C, 036 01 Martin, Slovakia
| | - Petra Kosutova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala hora 4C, 036 01 Martin, Slovakia
| | - Martin Vatecha
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala hora 4C, 036 01 Martin, Slovakia
| | - Ivan Zila
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala hora 4C, 036 01 Martin, Slovakia
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala hora 4C, 036 01 Martin, Slovakia
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala hora 4C, 036 01 Martin, Slovakia.
| |
Collapse
|
10
|
Qi SM, Zhang JT, Zhu HY, Wang Z, Li W. Review on potential effects of traditional Chinese medicine on glaucoma. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116063. [PMID: 36567037 DOI: 10.1016/j.jep.2022.116063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Glaucoma is the second most common blindness in the world, which seriously affects the life quality of patients. Traditional Chinese Medicines (TCM), are important plant materials, widely used for ocular disease all over the world. With the help of modern ophthalmic detection technology, TCM has gradually become an important content in the field of ophthalmology, characterized by more targets and lower toxicity. AIM OF THIS REVIEW This review presents an overview of the pathogenesis of glaucoma in both modern and traditional medicines, and summarizes the therapeutic effect of TCM on glaucoma including their formula, crude drugs and active components, and also the application of acupuncture. METHODS A collection and collation of relevant scientific articles from different scientific databases was performed regarding TCM and its application on glaucoma. The therapeutic effects of TCM were summarized and analyzed according to the existing experimental and clinical researches, while the GSE26299 database were employed to screen bioinformatics analysis of glaucoma based on the GEO database chip. RESULTS There were many positive signs showing that TCM could increase the survival rate of retinal ganglion cells, which may be related to its regulation of microcirculation, oxidative stress, and the immune system. Hence, TCM plays an active role in treating glaucoma. In addition, the bioinformatics analysis predicted that the pathogenesis of glaucoma might be related to p53, MAPK, NF-κB signal, as well as other pathways by KEGG analysis, and the results from bioinformatics analysis predicted that PIK3R6, FGF1, and TYRP1 etc. CONCLUSION: TCM exerts definite effects on preventing and treating ocular disease. It could alleviate and treat glaucoma in various ways. The differentiation syndrome should thus be taken as the basis to propose appropriate treatment options of TCM making their application on glaucoma more popular.
Collapse
Affiliation(s)
- Si-Min Qi
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| | - Jing-Tian Zhang
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, 130118, China.
| | - Hong-Yan Zhu
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
11
|
Li R, Qu S, Qin M, Huang L, Huang Y, Du Y, Yu Z, Fan F, Sun J, Li Q, So KF. Immunomodulatory and antiviral effects of Lycium barbarum glycopeptide on influenza a virus infection. Microb Pathog 2023; 176:106030. [PMID: 36773941 DOI: 10.1016/j.micpath.2023.106030] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Influenza is caused by a respiratory virus and has a major global impact on human health. Influenza A viruses in particular are highly pathogenic to humans and have caused multiple pandemics. An important consequence of infection is viral pneumonia, and with serious complications of excessive inflammation and tissue damage. Therefore, simultaneously reducing direct damage caused by virus infection and relieving indirect damage caused by excessive inflammation would be an effective treatment strategy. Lycium barbarum glycopeptide (LbGp) is a mixture of five highly branched polysaccharide-protein conjuncts (LbGp1-5) isolated from Lycium barbarum fruit. LbGp has pro-immune activity that is 1-2 orders of magnitude stronger than that of other plant polysaccharides. However, there are few reports on the immunomodulatory and antiviral activities of LbGp. In this study, we evaluated the antiviral and immunomodulatory effects of LbGp in vivo and in vitro and investigated its therapeutic effect on H1N1-induced viral pneumonia and mechanisms of action. In vitro, cytokine secretion, NF-κB p65 nuclear translocation, and CD86 mRNA expression in LPS-stimulated RAW264.7 cells were constrained by LbGp treatment. In A549 cells, LbGp can inhibit H1N1 infection by blocking virus attachment and entry action. In vivo experiments confirmed that administration of LbGp can effectively increase the survival rate, body weight and decrease the lung index of mice infected with H1N1. Compared to the model group, pulmonary histopathologic symptoms in lung sections of mice treated with LbGp were obviously alleviated. Further investigation revealed that the mechanism of LbGp in the treatment of H1N1-induced viral pneumonia includes reducing the viral load in lung, regulating the phenotype of pulmonary macrophages, and inhibiting excessive inflammation. In conclusion, LbGp exhibits potential curative effects against H1N1-induced viral pneumonia in mice, and these effects are associated with its good immuno-regulatory and antiviral activities.
Collapse
Affiliation(s)
- Runwei Li
- College of Life Science and Technology, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.4 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Shuang Qu
- College of Life Science and Technology, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meng Qin
- College of Life Science and Technology, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Yichun Huang
- College of Life Science and Technology, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yi Du
- Center of Clinical Evaluation and Analysis, Pharmacy Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | - Zhexiong Yu
- Ningxia Tianren Goji Biotechnology, Ningxia, 755100, China
| | - Fu Fan
- Ningxia Tianren Goji Biotechnology, Ningxia, 755100, China
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.4 Yinghua East Road, Chaoyang District, Beijing, 100029, China.
| | - Qiushuang Li
- Center of Clinical Evaluation and Analysis, Pharmacy Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China.
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
12
|
Yao TT, Zhang Y, He RL, Lv X, He YJ, Li MY, Han YY, Long LZ, Jiang GL, Cheng XY, Hu GY, Li QB, Tao LJ, Meng J. Mefunidone ameliorates lipopolysaccharide-induced acute lung injury through inhibiting MAPK signaling pathway and enhancing Nrf2 pathway. Int Immunopharmacol 2022; 113:109263. [PMID: 36334370 DOI: 10.1016/j.intimp.2022.109263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE Acute lung injury (ALI) is a life-threatening disease which has high mortality and lacks effective pharmacological treatments. Excessive inflammation and oxidative stress are the key pathogenesis of ALI. Mefunidone (MFD), a novel small molecule compound, displayed anti-inflammation and anti-oxidative stress effects on streptozocin (STZ) and db/db mice in our previous studies. In this study, we aimed to investigate the effects of MFD on lipopolysaccharide (LPS)-induced ALI and explore the potential molecular mechanisms. METHODS We investigated the effects of MFD on LPS-induced ALI mouse model and LPS-stimulated immortalized mouse bone marrow-derived macrophages (iBMDMs). RESULTS MFD could alleviate pulmonary structure disorder and attenuate pulmonary neutrophils infiltration induced by LPS. MFD could also decreased proinflammatory cytokines release and reduce reactive oxygen species (ROS) generation stimulated by LPS. Further, MFD could significantly reduce LPS-induced phosphorylation levels of mitogen-activated protein kinase (MAPK), increase expression of nuclear factor-erythroid 2 related factor 2 (Nrf2) and restore the expressions of antioxidant enzymes. CONCLUSION Our results firstly supported that MFD effectively protected LPS-induced ALI against inflammation and oxidative stress through inhibiting MAPK signaling pathway and activating Nrf2 pathway.
Collapse
Affiliation(s)
- Ting-Ting Yao
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong-Ling He
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Lv
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Jun He
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Meng-Yu Li
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuan-Yuan Han
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Zhi Long
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Liang Jiang
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Yun Cheng
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Gao-Yun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Qian-Bin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Li-Jian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China; National International Collaborative Research Center for Medical Metabolomics, Changsha, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China; National International Collaborative Research Center for Medical Metabolomics, Changsha, China.
| |
Collapse
|
13
|
El-Moslemany RM, El-Kamel AH, Allam EA, Khalifa HM, Hussein A, Ashour AA. Tanshinone IIA loaded bioactive nanoemulsion for alleviation of lipopolysaccharide induced acute lung injury via inhibition of endothelial glycocalyx shedding. Biomed Pharmacother 2022; 155:113666. [PMID: 36099790 PMCID: PMC9466291 DOI: 10.1016/j.biopha.2022.113666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Acute lung injury (ALI) and its more serious form; acute respiratory distress syndrome are major causes of COVID-19 related mortality. Finding new therapeutic targets for ALI is thus of great interest. This work aimed to prepare a biocompatible nanoformulation for effective pulmonary delivery of the herbal drug; tanshinone-IIA (TSIIA) for ALI management. A nanoemulsion (NE) formulation based on bioactive natural ingredients; rhamnolipid biosurfactant and tea-tree oil, was developed using a simple ultrasonication technique, optimized by varying oil concentration and surfactant:oil ratio. The selected TSIIA-NE formulation showed 105.7 nm diameter and a PDI ∼ 0.3. EE exceeded 98 % with biphasic sustained drug release and good stability over 3-months. In-vivo efficacy was evaluated in lipopolysaccharide (LPS)-induced ALI model. TSIIA-NE (30 µg/kg) was administered once intratracheally 2 h after LPS instillation. Evaluation was performed 7days post-treatment. Pulmonary function assessment, inflammatory, oxidative stress and glycocalyx shedding markers analysis in addition to histopathological examination of lung tissue were performed. When compared to untreated rats, in-vivo efficacy study demonstrated 1.4 and 1.9-fold increases in tidal volume and minute respiratory volume, respectively, with 32 % drop in wet/dry lung weight ratio and improved levels of arterial blood gases. Lung histopathology and biochemical analysis of different biomarkers in tissue homogenate and bronchoalveolar lavage fluid indicated that treatment may ameliorate LPS-induced ALI symptoms thorough anti-oxidative, anti-inflammatory effects and inhibition of glycocalyx degradation. TSIIA-NE efficacy was superior to free medication and blank-NE. The enhanced efficacy of TSIIA bioactive nanoemulsion significantly suggests the pharmacotherapeutic potential of bioactive TSIIA-NE as a promising nanoplatform for ALI.
Collapse
Affiliation(s)
- Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Eman A Allam
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Hoda M Khalifa
- Department of Histology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | - Asmaa A Ashour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
14
|
Cao C, Wang Z, Gong G, Huang W, Huang L, Song S, Zhu B. Effects of Lycium barbarum Polysaccharides on Immunity and Metabolic Syndrome Associated with the Modulation of Gut Microbiota: A Review. Foods 2022; 11:3177. [PMID: 37430929 PMCID: PMC9602392 DOI: 10.3390/foods11203177] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Lycium barbarum polysaccharides (LBPs) have attracted increasing attention due to their multiple pharmacological activities and physiological functions. Recently, both in vitro and in vivo studies have demonstrated that the biological effects of dietary LBPs are related to the regulation of gut microbiota. Supplementation with LBPs could modulate the composition of microbial communities, and simultaneously influence the levels of active metabolites, thus exerting their beneficial effects on host health. Interestingly, LBPs with diverse chemical structures may enrich or reduce certain specific intestinal microbes. The present review summarizes the extraction, purification, and structural types of LBPs and the regulation effects of LBPs on the gut microbiome and their derived metabolites. Furthermore, the health promoting effects of LBPs on host bidirectional immunity (e.g., immune enhancement and immune inflammation suppression) and metabolic syndrome (e.g., obesity, type 2 diabetes, and nonalcoholic fatty liver disease) by targeting gut microbiota are also discussed based on their structural types. The contents presented in this review might help to better understand the health benefits of LBPs targeting gut microbiota and provide a scientific basis to further clarify the structure-function relationship of LBPs.
Collapse
Affiliation(s)
- Cui Cao
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Wenqi Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Shuang Song
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
15
|
Abou Baker DH. Can natural products modulate cytokine storm in SARS-CoV2 patients? BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00749. [PMID: 35702395 PMCID: PMC9181898 DOI: 10.1016/j.btre.2022.e00749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 01/08/2023]
Abstract
Currently, the number of cases and deaths of SARS-CoV2, especially among the chronic disease groups, due to aggressive SARS-CoV2 infection is increasing day by day. Various infections, particularly viral ones, cause a cytokine storm resulting in shortness of breath, bleeding, hypotension, and ultimately multi-organ failure due to over-expression of certain cytokines and necrosis factors. The most prominent clinical feature of SARS-CoV2 is the presence of elevated proinflammatory cytokines in the serum of patients with SARS-CoV2. Severe cases exhibit higher levels of cytokines, leading to a "cytokine storm" that further increases disease severity and causes acute respiratory distress syndrome, multiple organ failure, and death. Therefore, targeted cytokine production could be a potential therapeutic option for patients severely infected with SARS-CoV2. Given the current scenario, great scientific progress has been made in understanding the disease and its forms of treatment. Because of natural ingredients properties, they have the potential to be used as potential agents with the ability to modulate immune responses. Moreover, they can be used safely because they have no toxic effects, are biodegradable and biocompatible. However, these natural substances can continue to be used in the development of new therapies and vaccines. Finally, the aim and approach of this review article is to highlight current research on the possible use of natural products with promising potential as immune response activators. Moreover, consider the expected use of natural products when developing potential therapies and vaccines.
Collapse
Affiliation(s)
- Doha H. Abou Baker
- Medicinal and Aromatic Plants Department, National Research Centre, Pharmaceutical and Drug Industries Institute, Dokki, Giza, PO 12622, Egypt
| |
Collapse
|
16
|
Du SH, Shi J, Yu TY, Hu XX, He SM, Cao YY, Xie ZL, Liu SS, Li YT, Li N, Yu JB. Nicotinamide mononucleotide ameliorates acute lung injury by inducing mitonuclear protein imbalance and activating the UPR mt. Exp Biol Med (Maywood) 2022; 247:1264-1276. [PMID: 35538652 PMCID: PMC9379602 DOI: 10.1177/15353702221094235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mitochondria need to interact with the nucleus under homeostasis and stress to maintain cellular demands and nuclear transcriptional programs. Disrupted mitonuclear interaction is involved in many disease processes. However, the role of mitonuclear signaling regulators in endotoxin-induced acute lung injury (ALI) remains unknown. Nicotinamide adenine dinucleotide (NAD+) is closely related to mitonuclear interaction with its central role in mitochondrial metabolism. In the current study, C57BL/6J mice were administrated with lipopolysaccharide 15 mg/kg to induce endotoxin-induced ALI and investigated whether the NAD+ precursor nicotinamide mononucleotide (NMN) could preserve mitonuclear interaction and alleviate ALI. After pretreatment with NMN for 7 days, NAD+ levels in the mitochondrial, nucleus, and total intracellular were significantly increased in endotoxemia mice. Moreover, supplementation of NMN alleviated lung pathologic injury, reduced ROS levels, increased MnSOD activities, mitigated mitochondrial dysfunction, ameliorated the defects in the nucleus morphology, and these cytoprotective effects were accompanied by preserving mitonuclear interaction (including mitonuclear protein imbalance and the mitochondrial unfolded protein response, UPRmt). Furthermore, NAD+-mediated mitonuclear protein imbalance and UPRmt are probably regulated by deacetylase Sirtuin1 (SIRT1). Taken together, our results indicated that NMN pretreatment ameliorated ALI by inducing mitonuclear protein imbalance and activating the UPRmt in an SIRT1-dependent manner.
Collapse
Affiliation(s)
- Shi-Han Du
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Tian-Yu Yu
- Tianjin Medical University, Tianjin 300070, China
| | - Xin-Xin Hu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Si-Meng He
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, NanKai University, Tianjin 300071, China
| | - Ying-Ya Cao
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Zi-Lei Xie
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Sha-Sha Liu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Yu-Ting Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Na Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Jian-Bo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China,Jian-Bo Yu.
| |
Collapse
|
17
|
Zhang L, Li B, Zhang D, Wang Z, Zhao Y, Yu Q. Uridine alleviates LPS-induced ARDS and improves insulin sensitivity by decreasing oxidative stress and inflammatory processes. Physiol Int 2022; 109:215-229. [PMID: 35895566 DOI: 10.1556/2060.2022.00169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/26/2021] [Accepted: 02/24/2022] [Indexed: 11/19/2022]
Abstract
Acute respiratory distress syndrome (ARDS) refers to the injury of alveolar epithelial cells and capillary endothelial cells due to various injury factors. Research on the pathogenesis of ARDS has made great progress, but the exact pathogenesis of ARDS has not been fully elucidated. Up to now, the prevention and treatment of ARDS is still an important scientific problem that needs to be solved urgently. In this work, we analyzed the effect of uridine on ARDS. An ARDS model was successfully constructed by lipopolysaccharide (LPS) stimulation. Western-blotting, IFA, ELISA, RT-PCT and CLSM were conducted to investigate the effect of uridine on ARDS and insulin resistance, and the results showed that lung histopathological alterations were significantly attenuated by uridine treatment. Further work showed that the levels of proinflammatory cytokines were significantly down-regulated in the lung tissue after treatment with uridine. Additionally, the numbers of total cells and neutrophils in the bronchoalveolar lavage fluid (BALF) were also decreased in the uridine-treated ARDS mice. We further explored the potential mechanism by which uridine could treat ARDS, and the results indicated that NF-κB signaling was down-regulated by uridine treatment. Next, we studied insulin sensitivity in the ARDS mice, and found that insulin signaling was significantly down-regulated, and uridine could enhance insulin sensitivity in the ARDS mice model. Furthermore, we found that the levels of inflammation and oxidative stress were decreased by uridine treatment, which may be the potential mechanism by which uridine could improve insulin sensitivity. Taken together, the current work provides evidence that uridine can serve as a potential drug to treat ARDS and insulin resistance.
Collapse
Affiliation(s)
- Lei Zhang
- 1 Department of Critical Care Medicine, The First Hospital of Lanzhou University, The First School of Clinical Medicine of Lanzhou University, Lanzhou City 730000, Gansu, China
| | - Bin Li
- 1 Department of Critical Care Medicine, The First Hospital of Lanzhou University, The First School of Clinical Medicine of Lanzhou University, Lanzhou City 730000, Gansu, China
| | - Degang Zhang
- 2 Department of Respiratory Medicine, Lanzhou University Second Hospital, Lanzhou City 730000, China
| | - Zhuo Wang
- 3 Department of Pathology, Gansu Provincial Hospital, Lanzhou City 730050, Gansu, China
| | - Ye Zhao
- 1 Department of Critical Care Medicine, The First Hospital of Lanzhou University, The First School of Clinical Medicine of Lanzhou University, Lanzhou City 730000, Gansu, China
| | - Qin Yu
- 1 Department of Critical Care Medicine, The First Hospital of Lanzhou University, The First School of Clinical Medicine of Lanzhou University, Lanzhou City 730000, Gansu, China
| |
Collapse
|
18
|
Polysaccharides from Medicine and Food Homology Materials: A Review on Their Extraction, Purification, Structure, and Biological Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103215. [PMID: 35630690 PMCID: PMC9147777 DOI: 10.3390/molecules27103215] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 01/16/2023]
Abstract
Medicine and food homology (MFH) materials are rich in polysaccharides, proteins, fats, vitamins, and other components. Hence, they have good medical and nutritional values. Polysaccharides are identified as one of the pivotal bioactive constituents of MFH materials. Accumulating evidence has revealed that MFH polysaccharides (MFHPs) have a variety of biological activities, such as antioxidant, immunomodulatory, anti-tumor, hepatoprotective, anti-aging, anti-inflammatory, and radioprotective activities. Consequently, the research progress and future prospects of MFHPs must be systematically reviewed to promote their better understanding. This paper reviewed the extraction and purification methods, structure, biological activities, and potential molecular mechanisms of MFHPs. This review may provide some valuable insights for further research regarding MFHPs.
Collapse
|
19
|
Qin D, Deng Y, Wang L, Yin H. Therapeutic Effects of Topical Application of Lycium barbarum Polysaccharide in a Murine Model of Dry Eye. Front Med (Lausanne) 2022; 9:827594. [PMID: 35360713 PMCID: PMC8961801 DOI: 10.3389/fmed.2022.827594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeTo evaluate the safety and efficacy of Lycium barbarum polysaccharide (LBP) eye drops in a murine model of dry eye disease (DED).MethodsSix- to eight-week-old female C57BL/6 mice were subjected to a combination of desiccating stress (DS) and topical benzalkonium chloride (BAC) to induce DED. Five microliters of LBP eye drops (0.625, 2.5, or 12.5 mg/ml) or PBS was applied topically 3 times per day for 10 days to subsequently test their efficacy. Tear secretion, tear breakup time (TBUT), corneal irregularity, and corneal fluorescein staining scores were measured on days 3 and 10 after treatment. The expression of tumor necrosis factor-alpha (TNF-α) in the cornea was assessed by quantitative (q) RT–PCR on days 10. The ocular irritation of LBP eye drops of corresponding concentrations was evaluated on 10- to 12-week-old female Sprague–Dawley rats.ResultsCompared with PBS-treated groups, mice treated with 0.625, 2.5, and 12.5 mg/ml LBP showed a significant improvement in the clinical signs of DED in a dose-dependent manner, including corneal epithelial integrity, corneal regularity, and tear production, as well as significant inhibition of inflammatory cell infiltration and TNF-α expression levels in the cornea. All corresponding concentrations of LBP eye drops revealed no obvious ocular irritation.ConclusionTopical application of LBP could ameliorate dry eye in a murine model of DED without obvious ocular irritation.
Collapse
|
20
|
Zhu S, Li X, Dang B, Wu F, Wang C, Lin C. Lycium Barbarum polysaccharide protects HaCaT cells from PM2.5-induced apoptosis via inhibiting oxidative stress, ER stress and autophagy. Redox Rep 2022; 27:32-44. [PMID: 35130817 PMCID: PMC8843200 DOI: 10.1080/13510002.2022.2036507] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Objectives: Lycium barbarum polysaccharide (LBP) is a natural polysaccharide extracted from Lycium barbarum that has anti-inflammatory, anti-apoptotic and anti-aging effects, and plays a role in the prevention and treatment of various diseases. In this study, we investigated the therapeutic effect of LBP on particulate matter 2.5 (PM2.5)-induced skin damage. Methods: Cell viability was analyzed by MTT and LDH assays. Apoptosis was analyzed by Annexin V-FITC/PI staining. Oxidative stress/damage were assessed by intracellular ROS levels, MDA content and SOD activity. The intracellular protein expression was analyzed by Western blot. Mitochondrial damage was assayed by mitochondrial membrane potential with JC-1 probe. LC3-GFP adenovirus was transfected into HaCaT cells to analyze intracellular autophagosome levels. Results: In PM2.5-treated HaCaT cells, LBP pretreatment reduced PM2.5-induced cytotoxicity, ameliorated cell morphology and reduced cell apoptosis. LBP also inhibited the expression levels of GRP78 and CHOP, reduced the conversion of LC3I to LC3II, inhibited Bax protein and activated Bcl-2 protein. Furthermore, LBP inhibited PM2.5-induced mitochondrial autophagy (mitophagy) and mitochondrial damage. PM2.5-induced autophagy was regulated by endoplasmic reticulum (ER) stress. Conclusion: LBP protects skin cells from PM2.5-induced cytotoxicity by regulating the oxidative stress-ER stress-autophagy-apoptosis signaling axis, revealing that LBP has a great potential for the skin protection.
Collapse
Affiliation(s)
- Sen Zhu
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Xuan Li
- Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Fen Wu
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Chunming Wang
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Changjun Lin
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
21
|
Zhong JX, Jin SS, Wu KS, Yu GC, Tu LL, Liu L. Effect of nano-selenium loaded with lycium barbarum polysaccharide on the proliferation of lens epithelial cells after UVB damage in vitro. Int J Ophthalmol 2022; 15:9-14. [PMID: 35047350 DOI: 10.18240/ijo.2022.01.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/18/2021] [Indexed: 01/02/2023] Open
Abstract
AIM To investigate the effect of nano-selenium loaded with different concentrations of lycium barbarum polysaccharide (LBP-SeNPs) on the proliferation of human lens epithelial cells (HLECs) from UV irradiation. METHODS LBP-SeNPs were prepared and their particle size was detected. HLECs (SRA01/04) were irradiated with UVB for different time (0, 10, 20, 30, 40, 50, 60min) to construct a damaged model, the survival rate of cells was determined by methylthiazol tetrazolium (MTT) assay. The 4',6-Diamidine-2'-phenylindole dihydrochloride (DAPI) staining was used to observe the status of cell nucleus and drug entering cytoplasm through cell membrane in SRA01/04 cells after adding LBP-SENPS loaded with coumarin fluorescence agent 24h under fluorescence microscope. SRA01/04 normal and UVB-damaged cells were treated with different amounts of LBP-SeNPs at different concentrations, cells proliferation were observed. RESULTS The particle size of LBP-SeNPs was stable in the range of 150-200 nm. The survival rate changes with time after UVB irradiation were statistically significant. The 10min of UVB exposure as the time was chosen to construct the cell damage model. With DAPI staining, LBP-SeNPs were observed to enter the cytoplasm through the cell membrane under fluorescence inverted microscope. Cytotoxicity of SRA01/04 at different concentrations of LBP-SeNPs were measured. Cell survival rate was statistically different compared with the control group. The higher the loading concentration of LBP in nano-Se drugs was, the higher the cell proliferation rate was (P<0.05). The lower the concentration of LBP-SeNPs, the higher the cell proliferation rate, showing a negative growth trend (P<0.05). The group with the highest average cell proliferation rate was 0.5 µmol/L 2.0 mg/mL LBP-SeNPs (128.80%). When the 2.0 mg/mL LBP-SeNPs group was selected for cell photography, the cell density was higher at 0.5 µmol/L. With the increase of concentration, SRA01/04 cells appeared more cytoplasm dehydration, cell shrinkage and apoptotic bodies, and cell density decreased. CONCLUSION LBP-SeNPs has moderate particle size and good stability. LBP-SeNPs can protect HLECs (SRA01/04) from UVB-induced damage, and the cell proliferation rate is further increased with increasing the amount of loaded LBP and decreasing nano-selenium concentration.
Collapse
Affiliation(s)
- Jing-Xiang Zhong
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Shan-Shan Jin
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Kang-Sheng Wu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Guo-Cheng Yu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Lei-Lei Tu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Lian Liu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
22
|
Qi Y, Duan G, Fan G, Peng N. Effect of Lycium barbarum polysaccharides on cell signal transduction pathways. Biomed Pharmacother 2022; 147:112620. [PMID: 35032768 DOI: 10.1016/j.biopha.2022.112620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
Lycium barbarum polysaccharide (LBP), is a major active ingredient Lycium barbarum (LB), which exhibits several beneficial effects through NF-κB, PI3K-Akt-mTOR, p38-MAPK, Wnt-β-catenin, PI3K-Akt-GSK-3β, and MyD88 signal pathway, including anti-oxidation, and anti-aging, hypolipidemic and hypoglycemic, radiation, anti-tumor, and neuroprotection. Today, many researching papers are published on the LBP in physiology and pathology; however, the review of the LBP taking part in the signal transduction pathway in physiology and pathology is rear searched. Therefore, this research topic is a collection of reviews and original research articles that focus on the methods of the LBP extraction and its effects on the signal transduction pathway. The aim of this study is to provide theoretical evidence for in-depth analysis of the mechanisms of LBP in clinical clinical research studies.
Collapse
Affiliation(s)
- Youchao Qi
- Qinghai University, Xining 810016, China; College of Agriculture and Animal husbandry, Qinghai University, Xining 810016, China; Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, China
| | - Guozhen Duan
- Qinghai University, Xining 810016, China; Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China; Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, China.
| | - Guanghui Fan
- Qinghai University, Xining 810016, China; Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China; Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, China.
| | - Ning Peng
- Qinghai University, Xining 810016, China
| |
Collapse
|
23
|
Effects of Lycium barbarum polysaccharides on the proliferation and differentiation of primary Sertoli cells in young rats. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
Xu Z, Ren R, Jiang W. The protective role of raltegravir in experimental acute lung injury in vitro and in vivo. Braz J Med Biol Res 2022; 55:e12268. [DOI: 10.1590/1414-431x2022e12268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Zehui Xu
- Binzhou Medical University, China
| | - Rui Ren
- Binzhou Medical University, China
| | | |
Collapse
|
25
|
Han F, Wang C, Zhou L, Mo M, Kong X, Chai Z, Deng L, Zhang J, Cao K, Wei C, Xu L, Chen J. Research advances on antioxidation, neuroprotection, and molecular mechanisms of
Lycium barbarum polysaccharides. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2021.9050019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
26
|
Xu T, Liu R, Lu X, Wu X, Heneberg P, Mao Y, Jiang Q, Loor J, Yang Z. Lycium barbarum polysaccharides alleviate LPS-induced inflammatory responses through PPARγ/MAPK/NF-κB pathway in bovine mammary epithelial cells. J Anim Sci 2021; 100:6429718. [PMID: 34791267 DOI: 10.1093/jas/skab345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
As the main component of the gram-negative bacterial cell wall, lipopolysaccharide (LPS) is well-documented as an inducer of inflammation in bovine mammary cells. Lycium barbarum (goji) polysaccharides (LBP) have been used in non-ruminants as prebiotics to improve growth performance, immune ability and antioxidant capacity. We aimed to investigate the underlying effects of LBPs on pro-inflammatory responses in LPS-stimulated primary bovine mammary epithelial cells (bMECs). Cells were isolated from mammary tissue of 3 lactating Holstein cows without clinical disease (30.26 ± 3.1 kg/d of milk yield; 175 ± 6 DIM). For the pre-experimental treatment, bMECs were precultured with serum-free medium for 12 h. Treatments were as follows: pretreatment with culture medium devoid of LPS or LBP for 30 h (CON); CON for 24 h followed by challenge with 2 μg/mL LPS for 6 h (LPS); pretreatment with 100 μg/mL or 300 μg/mL LBP for 24 h followed by LPS challenge (2 μg/mL) for 6 h (LBP(100)+LPS; LBP(300)+LPS). To further determine if the effect of LBP on immune-regulation is PPARγ activation-dependent, an inhibitor of PPARγ, GW9662, at a concentration of 1 μM was used. Cells treated with LBP at 100, 300 and 500 μg/mL had upregulated protein abundance of PPARγ, while PGC1α had a higher expression only at 300 μg/mL of LBP treatment. Compared with CON, cells pretreated with LBP at 100 and 300 μg/mL had greater protein abundance of SCD1 and SREBP1. EdU staining and cell wound healing assays showed that the negative effect of LPS alone on cell proliferation was reversed by pretreatment with LBP at both 100 and 300 μg/mL. Upregulation of gene and protein abundance of proinflammatory factors and cytokines (COX-2, NLRP3, TNF-α, IL-1β and IL-6) induced by LPS stimulation were alleviated by LBP pretreatment at 300 μg/mL (more than 2-fold decrease). Compared with LPS challenge alone, phosphorylation of proteins involved in NF-κB (IκBα and p65) and MAPK (p38, JNK and ERK) pathways was downregulated following LBP treatment. Additionally, inhibition of PPARγ by GW9662 weakened the protective effect of LBP on LPS-induced protein abundance of phosphorylated p65, COX-2, IL-1β and TNF-α. These results indicated that the protective effect of LBP on LPS-induced bMECs inflammatory responses is PPARγ activation-dependent. As such, this knowledge might help design strategies for intervening against the detrimental effects of bovine mastitis.
Collapse
Affiliation(s)
- Tianle Xu
- Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| | - Run Liu
- Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China
| | - Xubin Lu
- Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China
| | - Xinyue Wu
- Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| | - Petr Heneberg
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Yongjiang Mao
- Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, USA
| | - Juan Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, USA
| | - Zhangping Yang
- Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
27
|
Gasparrini M, Forbes-Hernandez TY, Cianciosi D, Quiles JL, Mezzetti B, Xiao J, Giampieri F, Battino M. The efficacy of berries against lipopolysaccharide-induced inflammation: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Liang R, Zhao Q, Zhu Q, He X, Gao M, Wang Y. Lycium barbarum polysaccharide protects ARPE‑19 cells against H 2O 2‑induced oxidative stress via the Nrf2/HO‑1 pathway. Mol Med Rep 2021; 24:769. [PMID: 34490478 PMCID: PMC8436232 DOI: 10.3892/mmr.2021.12409] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration (AMD) is a global health problem. Lycium barbarum polysaccharide (LBP), a traditional Chinese herbal medicine, has been proven to be effective against several eye diseases. However, only a few studies have investigated the effectiveness of LBP for AMD. In the present study, the human retinal epithelial cell line, ARPE-19, was pretreated with LBP for 24 h before exposure to H2O2 (500 µM). Cell viability was assessed, and a series of oxidative and antioxidant indicators were evaluated to determine the influence of LBP on H2O2-triggered oxidative stress. The present study also determined the apoptosis status, as well as the expression levels of apoptotic proteins and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway proteins. The present study aimed to determine the protective role for LBP pretreatment and its underlying molecular mechanism. The results of the present study suggest that pretreatment of ARPE-19 cells with LBP exhibit high efficacy at reducing oxidative damage and inhibiting cell apoptosis. Furthermore, LBP may modulate the expression of proteins involved in the apoptotic pathway and activate the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Ran Liang
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Qi Zhao
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Qing Zhu
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Xin He
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Mingjun Gao
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Yiru Wang
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| |
Collapse
|
29
|
Bo L, Jin F, Ma Z, Li C. Redox signaling and antioxidant therapies in acute respiratory distress syndrome: a systematic review and meta-analysis. Expert Rev Respir Med 2021; 15:1355-1365. [PMID: 33928830 DOI: 10.1080/17476348.2021.1924681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objectives: No pharmacologic treatment that targets the pathophysiologic alterations of acute respiratory distress syndrome (ARDS) has proven effective. Previous studies have revealed overactive oxidative stress as a potential therapeutic target. Thus we conducted this systematic review to assess the efficacyof antioxidant therapy on the clinical outcomes of ARDS patients.Methods: We retrieved clinical trials from electronic databases. Articles and conference abstracts about antioxidant therapies for patients with ARDS were identified in which the overall effect of each antioxidant therapy on the mortality of ARDS patients was summarized.Results: We identified 18 relevant studies that met the inclusion criteria, including 899 patients in the experimental group and 870 patients in the control group. The pooled results indicated that most antioxidant therapies could not improve all-cause mortality and might even be harmful in ARDS patients at low risk of death.Conclusion: Unclassified patients could not benefit from the antioxidant therapies, and thus discretion must be exercised when using these therapies.Abbreviations ARDS: Acute respiratory distress syndrome; ICU: Intensive care unit; NAC: N-acetylcysteine; ROS: Reactive oxygen species; RNS: Reactive nitrogen species; RR: Relative risk; CI: Confidence interval; OTC: L-2-oxothiazolidine-4-carboxylic acid; EPA: Eicosapentaenoic acid; DHA: Docosahexaenoic acid; GLA: Gamma-linolenic acid; NA: Not applicable; PaO2/FiO2 ratio: The ratio of partial pressure arterial oxygen and fraction of inspired oxygen; ALI: Acute lung injury.
Collapse
Affiliation(s)
- Liyan Bo
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang, China.,Department of Respiratory and Critical Care Medicine, Chest Hospital of Xi'an, Xi'an, China
| | - Faguang Jin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Zhuang Ma
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Congcong Li
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
30
|
He Z, Ma T, Zhang W, Su E, Cao F, Huang M, Wang Y. Heat-induced gel formation by whey protein isolate-Lycium barbarum polysaccharides at varying pHs. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Lee W, Lee CH, Lee J, Jeong Y, Park JH, Nam IJ, Lee DS, Lee HM, Lee J, Yun N, Song J, Choi S, Kim S. Botanical formulation, TADIOS, alleviates lipopolysaccharide (LPS)-Induced acute lung injury in mice via modulation of the Nrf2-HO-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113795. [PMID: 33421604 PMCID: PMC7832766 DOI: 10.1016/j.jep.2021.113795] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE TADIOS is an herbal formulation prepared from a mixture of Taraxacum officinale (L.) Weber ex F.H.Wigg, Dioscorea batatas Decaisne and Schizonepeta tenuifolia (Benth.) Briquet. These plants have traditionally been used in Asia to treat a variety of respiratory diseases. A bulk of literature on traditional Korean medicine describe their activities and functions for respiratory problems. Therefore, we hypothesized that the combination of these plants might be effective in alleviating respiratory symptoms. AIM OF THE STUDY In this study, we investigated whether TADIOS ameliorates LPS-induced acute lung injury via regulation of the Nrf2-HO-1 signaling pathway. MATERIALS AND METHODS The LPS-induced acute lung injury mouse model was used to determine the anti-inflammatory and anti-oxidative stress effects of TADIOS. The amount of marker compounds contained in TADIOS was quantified using high-performance liquid chromatography (HPLC) analysis. The protein level of pro-inflammatory cytokines in culture supernatant was measured by ELISA. Changes in the RNA level of pro-inflammatory cytokines in mice lungs and RAW264.7 cells were measured by quantitative RT-PCR. The relative amounts of reactive oxygen species (ROS) were measured by DCF-DA assay. Western blot analysis was used to evaluate expression of cellular proteins. Effects of TADIOS on antioxidant responsive elements (AREs) were determined by luciferase assay. The severity of acute lung injury was evaluated by Hematoxylin & Eosin (H&E) staining. To test the effects of TADIOS on LPS-induced oxidative stress, myeloperoxidase (MPO) activity and the total antioxidant capacity were measured. RESULTS TADIOS was prepared by extraction of a blend of these three plants by ethanol, and quality control was performed through quantification of marker compounds by HPLC and measurement of bioactivities using cell-based bioassays. In the murine macrophage cell line RAW264.7, TADIOS effectively suppressed the production of pro-inflammatory cytokines such as IL-6 and IL-1β, and also ROS induced by LPS. When RAW264.7 cells were transfected with a luciferase reporter plasmid containing nucleotide sequences for AREs, TADIOS treatment increased the level of relative luciferase units in a dose-dependent manner. In the LPS-induced acute lung injury mouse model, orally administered TADIOS alleviated lung damage and neutrophil infiltration induced by LPS. Consistent with the in vitro data, treatment with TADIOS inhibited the LPS-mediated expression of pro-inflammatory cytokines and oxidative stress, and activated the Nrf2-HO-1 axis. CONCLUSION Our data suggest the potential for TADIOS to be developed as a safe and effective therapeutics for the treatment of acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Wonwoo Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Chang Hyung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jungkyu Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Yoonseon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jong-Hyung Park
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - In-Jeong Nam
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Doo Suk Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Hyun Myung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jaehyun Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Nayoung Yun
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jisun Song
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Sooyeon Choi
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Sunyoung Kim
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| |
Collapse
|
32
|
Ye C, Zhang N, Zhao Q, Xie X, Li X, Zhu HP, Peng C, Huang W, Han B. Evodiamine alleviates lipopolysaccharide-induced pulmonary inflammation and fibrosis by activating apelin pathway. Phytother Res 2021; 35:3406-3417. [PMID: 33657655 DOI: 10.1002/ptr.7062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 01/25/2023]
Abstract
Inflammation can cause a series of inflammatory lung disease, which seriously endangers human health. Pulmonary fibrosis is a kind of inflammatory disease with end-stage lung pathological changes. It has complicated and unknown pathogenesis and is still lack of effective therapeutic drugs. LPS-induced inflammation is a common feature of many infectious inflammations such as pneumonia, bacteremia, glomerulonephritis, etc. Evodiamine, one of the main components of Evodia rutaecarpa, is an alkaloid with excellent antiinflammatory effects. In this study, we evaluated the protective capacities of evodiamine on LPS-induced inflammatory damages in vitro and in vivo. MTT method, flow cytometry, immunofluorescence, and other methods were used for in vitro study to determine the protective capacities of evodiamine. The results suggest that evodiamine can protect murine macrophages from the LPS-nigericin-induced damages by (a) inhibiting cellular apoptosis, (b) inhibiting inflammatory cytokines releasing, and (c) activating the apelin pathway. We also used the exogenous apelin-13 peptide co-cultured with LPS-nigericin in RAW264.7 cells and found that apelin-13 contributes to protecting the effects of evodiamine. In vivo, the ELISA method and immunohistochemistry were used to examine inflammatory cytokines, apelin, and histological changes. BALB/c mice were exposed to LPS and subsequent administration of evodiamine (p.o.)for some time, the results of the alveolar lavage fluid and the tissue slices showed that evodiamine treatment alleviated the pulmonary inflammation and fibrosis, stimulated apelin expression and inhibited the inflammatory cytokines. These results provide a basis for the protective effect and mechanism of evodiamine in LPS-induced inflammation and suggest that it might be potential therapeutics in human pulmonary infections.
Collapse
Affiliation(s)
- Cui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Amaral-Machado L, Oliveira WN, Rodrigues VM, Albuquerque NA, Alencar ÉN, Egito EST. Could natural products modulate early inflammatory responses, preventing acute respiratory distress syndrome in COVID-19-confirmed patients? Biomed Pharmacother 2021; 134:111143. [PMID: 33360048 PMCID: PMC7832252 DOI: 10.1016/j.biopha.2020.111143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ARDS (Acute Respiratory Distress Syndrome) is a severe respiratory syndrome that was recently associated as the main death cause in the COVID-19 pandemic outbreak. Hence, in order to prevent ARDS, the pulmonary function maintenance has been the target of several pharmacological approaches. However, there is a lack of reports regarding the use of effective pharmaceutical active natural products (PANPs) for early treatment and prevention of COVID-19-related ARDS. Therefore, the aim of this work was to conduct a systematic review regarding the PANPs that could be further studied as alternatives to prevent ARDS. Consequently, this work can pave the way to spread the use of PANPs on the prevention of ARDS in COVID-19-confirmed or -suspected patients. METHODS The search strategy included scientific studies published in English from 2015 to 2020 that promoted the elucidation of anti-inflammatory pathways targeting ARDS by in vitro and/or in vivo experiments using PANPs. Then, 74 studies regarding PANPs, able to maintain or improve the pulmonary function, were reported. CONCLUSIONS The PANPs may present different pulmonary anti-inflammatory pathways, wherein (i) reduction/attenuation of pro-inflammatory cytokines, (ii) increase of the anti-inflammatory mediators' levels, (iii) pulmonary edema inhibition and (iv) attenuation of lung injury were the most observed biological effects of such products in in vitro experiments or in clinical studies. Finally, this work highlighted the PANPs with promising potential to be used on respiratory syndromes, allowing their possible use as alternative treatment at the prevention of ARDS in COVID-19-infected or -suspected patients.
Collapse
Affiliation(s)
- Lucas Amaral-Machado
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil
| | | | | | | | - Éverton N Alencar
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil
| | - Eryvaldo S T Egito
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil; Graduate Program in Health Sciences, UFRN, 59012-570, Natal, RN, Brazil.
| |
Collapse
|
34
|
Neelam K, Dey S, Sim R, Lee J, Au Eong KG. Fructus lycii: A Natural Dietary Supplement for Amelioration of Retinal Diseases. Nutrients 2021; 13:246. [PMID: 33467087 PMCID: PMC7830576 DOI: 10.3390/nu13010246] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Fructus lycii (F. lycii) is an exotic "berry-type" fruit of the plant Lycium barbarum that is characterized by a complex mixture of bioactive compounds distinguished by their high antioxidant potential. F. lycii is used in traditional Chinese home cooking and in the Chinese Pharmacopeia as an aid to vision and longevity as well as a remedy for diabetes to balance "yin" and "yang" in the body for about two centuries. Although a myriad of bioactive compounds have been isolated from F. lycii, polysaccharides, carotenoids, flavonoids, and phenolics represent the key functional components of F. lycii. F. lycii has been shown to exhibit a wide range of biological activities in experimental settings including antioxidant, anti-inflammatory, antiapoptotic, and neuroprotective effects. Despite its medicinal role dating back to the eighteenth century in the Far East and robust evidence of beneficial effects on ocular health and retinal diseases originating mainly from studies in animal models, the role of F. lycii in the clinical management of retinal diseases is yet to be established. This article comprehensively reviews the literature germane to F. lycii and retinal diseases with particular emphasis on age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa, which are commonly seen in clinical practice.
Collapse
Affiliation(s)
- Kumari Neelam
- Department of Ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore 768828, Singapore; (J.L.); (K.-G.A.E.)
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Sonali Dey
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (S.D.); (R.S.)
| | - Ralene Sim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (S.D.); (R.S.)
| | - Jason Lee
- Department of Ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore 768828, Singapore; (J.L.); (K.-G.A.E.)
| | - Kah-Guan Au Eong
- Department of Ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore 768828, Singapore; (J.L.); (K.-G.A.E.)
- International Eye Cataract Retina Center, Farrer Park Medical Center, Singapore 217562, Singapore
| |
Collapse
|
35
|
Ding H, Wang JJ, Zhang XY, Yin L, Feng T. Lycium barbarum Polysaccharide Antagonizes LPS-Induced Inflammation by Altering the Glycolysis and Differentiation of Macrophages by Triggering the Degradation of PKM2. Biol Pharm Bull 2020; 44:379-388. [PMID: 33390389 DOI: 10.1248/bpb.b20-00752] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipopolysaccharide (LPS)-induced inflammation is the leading cause of multiple organ failure in sepsis. Pyruvate kinase 2 (PKM2) is a protein kinase and transcriptional coactivator that plays an important role in glycolysis. Recent studies have confirmed that glycolysis maintains the M1 differentiation and induces immune activation in macrophages. Lycium barbarum polysaccharide (LBP), the main bioactive component of Chinese wolfberry, suppresses glycolysis and inflammation. Here, RAW264.7 macrophages were treated with LBP for evaluating its effects against LPS-induced inflammation. The differentiation of M1/M2 macrophages was assessed by flow cytometry for assessing the cell surface markers, CD86 and CD206. The enrichment of hypoxia inducible factor (HIF)-1α and ubiquitin in the PKM2 protein complex was determined by co-immunoprecipitation. LBP suppressed LPS-induced glycolysis, differentiation of M1 macrophages, and the production of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and high mobility group (HMG) 1 proteins. The suppressive effects of LBP were similar to those of PKM2 knockdown, but were abolished by the overexpression of PKM2. LPS elevated the mRNA and protein levels of PKM2. LBP reduced the LPS-induced expression of PKM2 protein, but had no effects on the expression of PKM2 mRNA. LPS inhibited the ubiquitination of PKM2, probably by downregulating the expression of ubiquitin ligases, including Nedd4L, Nedd4, and Gnb2. LBP interfered with the inhibition of PKM2 ubiquitination by upregulating the expression of Nedd4L, Nedd4, and Gnb2. In conclusion, LBP suppressed the LPS-induced inflammation by altering glycolysis and the M1 differentiation of macrophages. The effects of LBP were mediated by the downregulation of PKM2 via enhanced ubiquitination.
Collapse
Affiliation(s)
- Huan Ding
- Intensive Care Unit (ICU), Department of Critical Care Unit, General Hospital of Ningxia Medical University
| | - Jing-Jing Wang
- Coronary Care Unit (CCU), Department of Cardiology, General Hospital of Ningxia Medical University
| | - Xiao-Ya Zhang
- Intensive Care Unit (ICU), Department of Critical Care Unit, General Hospital of Ningxia Medical University
| | - Lei Yin
- Intensive Care Unit (ICU), Department of Critical Care Unit, General Hospital of Ningxia Medical University
| | - Tao Feng
- Intensive Care Unit (ICU), Department of Critical Care Unit, Ningxia Third Hospital
| |
Collapse
|
36
|
You Q, Li L, Li D, Yang D, Chen L, Chen HP, Liu YP. Meta-Analysis on the Chinese Herbal Formula Xiaoer-Feike Granules as a Complementary Therapy for Children With Acute Lower Respiratory Infections. Front Pharmacol 2020; 11:496348. [PMID: 33192498 PMCID: PMC7642815 DOI: 10.3389/fphar.2020.496348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background Over the past five years the Chinese herbal formula (CHF) medicine, Xiaoer-Feike granules (XFG), has become a widely used adjuvant therapy for acute lower respiratory infections (ALRI). Considering the rapid popularization and application of XFG, and the lack of systematic evidence evaluating its effectiveness and safety in treating ALRI, it is necessary to conduct a meta-analysis to determine its benefits for patients. Methods This study systematically identified randomized controlled trials (RCTs) of XFG treatments for ALRI through July 2019 using four English-databases (PubMed, Cochrane Library, Ovid, and Web of Science) and four Chinese-databases (Sino-med database, China National Knowledge Infrastructure (CNKI), VIP database, and the WANFANG database). We then performed a quality assessment and data analysis with Review Manager 5.3.5 and Stata 15.1. Results Twenty-one RCTs involving 3425 patients were randomly divided into an XFG group and a conventional medicine (CM) group. The results showed that the clinical efficacy rate (CER) of the XFG group was significantly higher than that of the CM group (RR=1.17, 95% CI =1.13-1.22, P< 0.00001). In comparison with the CM group, the XFG group had strikingly shortened: resolution time of cough (RTC) (MD = -1.92; 95% CI =-2.33, -1.51, P<0.00001); resolution time of rale (RTR) (MD = -1.68; 95% CI =-2.27, -1.10, P<0.00001); resolution time of fever (RTF) (MD = -1.46; 95% CI =-1.92, -1.00, P<0.00001); resolution time of inflammatory lesions (RTIL) (MD = -2.43, 95% CI =-2.94, -1.93, P< 0.00001); and hospital stays (HS) (MD = -2.26, 95% CI =-3.03, -1.49, P< 0.00001). At the cellular and molecular level, the CD4, CD8, CD4/CD8, IL-6, TNF-α, and CRP levels were significantly improved when CM was complemented with XFG. In addition, no significant difference was observed between the XFG and CM groups in terms of the adverse events (AE) (RR =0.97, 95% CI= 0.61-1.54, P= 0.89). Conclusions The findings of this meta-analysis support the use of XFG in the treatment of ALRI. However, these results should be treated with caution due to the significant heterogeneity and publication bias of existing data. Further well-designed and high-quality RCTs are needed to interrogate the efficacy and safety of XFG.
Collapse
Affiliation(s)
- Qiang You
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lan Li
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Dan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - You-Ping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
37
|
Cui F, Shi CL, Zhou XJ, Wen W, Gao XP, Wang LY, He B, Yin M, Zhao JQ. Lycium barbarum Polysaccharide Extracted from Lycium barbarum Leaves Ameliorates Asthma in Mice by Reducing Inflammation and Modulating Gut Microbiota. J Med Food 2020; 23:699-710. [PMID: 32392444 DOI: 10.1089/jmf.2019.4544] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study was designed to explore the impact of Lycium barbarum polysaccharide (LBP) on inflammation and gut microbiota in mice with allergic asthma. Mice were divided into four groups: control group, OVA (ovalbumin) group, Con+LBP group, OVA+LBP group. After 28 days of LBP intervention, mice were euthanized and associated indications were investigated. Histopathological examination demonstrated that LBP reduced lung injury. The results of our current study provide evidence that supplementation with LBP in asthmatic mice decreases TNF, IL-4, IL-6, MCP-1, and IL-17A in plasma and bronchoalveolar lavage fluid (BALF). Sequencing and analysis of gut microbiota indicated that compared with the OVA group, Lactobacillus and Bifidobacterium were increased, but Firmicutes, Actinobacteria, Alistipes, and Clostridiales were decreased in the OVA+LBP group. We also found that gut microbiota were related to inflammation-related factors. Therefore, we speculate that LBP may improve allergic asthma by altering gut microbiota and inhibiting inflammation in mice.
Collapse
Affiliation(s)
- Fang Cui
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Chun-Li Shi
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiao-Jing Zhou
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Wang Wen
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiao-Ping Gao
- Department of Otolaryngology Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Li-Ying Wang
- Ningxia Senmiao Goji Technology and Development Co., Ltd., Yinchuan, China
| | - Bin He
- Ningxia Senmiao Goji Technology and Development Co., Ltd., Yinchuan, China
| | - Mei Yin
- Department of Respiratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jia-Qing Zhao
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Medical Science Research Institution of NingXia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
38
|
Ma X, Liu X, Feng J, Zhang D, Huang L, Li D, Yin L, Li L, Wang XZ. Fraxin Alleviates LPS-Induced ARDS by Downregulating Inflammatory Responses and Oxidative Damages and Reducing Pulmonary Vascular Permeability. Inflammation 2020; 42:1901-1912. [PMID: 31273573 DOI: 10.1007/s10753-019-01052-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe acute disease that threatens human health, and few drugs that can effectively treat this disease are available. Fraxin, one of the main active ingredients of Cortex Fraxini, a Chinese herbal medicine, has presented various pharmacological and biological activities. However, the effects of fraxin on ARDS have yet to be reported. In the present study, the protective effect of fraxin in lipopolysaccharide (LPS)-induced ARDS in a mouse model was analyzed. Results from the hematoxylin and eosin staining showed that fraxin might alleviate pathological changes in the lung tissues of mice with ARDS. ELISA and Western blot results revealed that fraxin might inhibit the production of inflammatory factors, namely, IL-6, TNF-α, and IL-1β, and the activation of NF-κB and MAPK signaling pathways in the lungs. Thus, the inflammatory responses were reduced. Fraxin might inhibit the increase in reactive oxygen species (ROS) and malondialdehyde (MDA), a product of lipid peroxidation in lung tissues. Fraxin might increase the superoxide dismutase (SOD) activity to avoid oxidative damage. Vascular permeability was also assessed through Evans blue dye tissue extravasation and fluorescein isothiocyanate-labeled albumin (FITC-albumin) leakage. Fraxin might inhibit the increase in pulmonary vascular permeability and relieve pulmonary edema. Fraxin was also related to the inhibition of the increase in matrix metalloproteinase-9, which is a glycocalyx-degrading enzyme, and the relief of damages to the endothelial glycocalyx. Thus, fraxin elicited protective effects on mice with LPS-induced ARDS and might be used as a drug to cure ARDS induced by Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Xiaohong Ma
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| | - Xiangyong Liu
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.
| | - Jiali Feng
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| | - Dong Zhang
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| | - Lina Huang
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Dongxiao Li
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| | - Liang Yin
- Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong Province, China
| | - Lan Li
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Xiao-Zhi Wang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| |
Collapse
|
39
|
Zhang D, Qi BY, Zhu WW, Huang X, Wang XZ. Crocin alleviates lipopolysaccharide-induced acute respiratory distress syndrome by protecting against glycocalyx damage and suppressing inflammatory signaling pathways. Inflamm Res 2020; 69:267-278. [PMID: 31925528 PMCID: PMC7095881 DOI: 10.1007/s00011-019-01314-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022] Open
Abstract
Objective To explore the mechanisms of crocin against glycocalyx damage and inflammatory injury in lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS) mice and LPS-stimulated human umbilical vein endothelial cells (HUVECs). Methods Mice were randomly divided into control, LPS, and crocin + LPS (15, 30, and 60 mg/kg) groups. HUVECs were separated into eight groups: control, crocin, matrix metalloproteinase 9 inhibitor (MMP-9 inhib), cathepsin L inhibitor (CTL inhib), LPS, MMP-9 inhib + LPS, CTL inhib + LPS, and crocin + LPS. The potential cytotoxic effect of crocin on HUVECs was mainly evaluated through methylthiazolyldiphenyl-tetrazolium bromide assay. Histological changes were assessed via hemotoxylin and eosin staining. Lung capillary permeability was detected on the basis of wet–dry ratio and through fluorescein isothiocyanate-albumin assay. Then, protein levels were detected through Western blot analysis, immunohistochemical staining, and immunofluorescence. Results This study showed that crocin can improve the pulmonary vascular permeability in mice with LPS-induced ARDS and inhibit the inflammatory signaling pathways of high mobility group box, nuclear factor κB, and mitogen-activated protein kinase in vivo and in vitro. Crocin also protected against the degradation of endothelial glycocalyx heparan sulfate and syndecan-4 by inhibiting the expressions of CTL, heparanase, and MMP-9 in vivo and in vitro. Overall, this study revealed the protective effects of crocin on LPS-induced ARDS and elaborated their underlying mechanism. Conclusion Crocin alleviated LPS-induced ARDS by protecting against glycocalyx damage and suppressing inflammatory signaling pathways.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong, China
| | - Bo-Yang Qi
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong, China
| | - Wei- Wei Zhu
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong, China
| | - Xiao Huang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong, China
| | - Xiao-Zhi Wang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong, China.
| |
Collapse
|
40
|
Liu L, Sha XY, Wu YN, Chen MT, Zhong JX. Lycium barbarum polysaccharides protects retinal ganglion cells against oxidative stress injury. Neural Regen Res 2020; 15:1526-1531. [PMID: 31997818 PMCID: PMC7059572 DOI: 10.4103/1673-5374.274349] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The accumulation of excessive reactive oxygen species can exacerbate any injury of retinal tissue because free radicals can trigger lipid peroxidation, protein damage and DNA fragmentation. Increased oxidative stress is associated with the common pathological process of many eye diseases, such as glaucoma, diabetic retinopathy and ischemic optic neuropathy. Many studies have demonstrated that Lycium barbarum polysaccharides (LBP) protects against oxidative injury in numerous cells and tissues. For the model of hypoxia we used cultured retinal ganglion cells and induced hypoxia by incubating with 200 µM cobalt chloride (CoCl2) for 24 hours. To investigate the protective effect of LBP and its mechanism of action against oxidative stress injury, the retinal tissue was pretreated with 0.5 mg/mL LBP for 24 hours. The results of flow cytometric analysis showed LBP could effectively reduce the CoCl2-induced retinal ganglion cell apoptosis, inhibited the generation of reactive oxygen species and the reduction of mitochondrial membrane potential. These findings suggested that LBP could protect retinal ganglion cells from CoCl2-induced apoptosis by reducing mitochondrial membrane potential and reactive oxygen species.
Collapse
Affiliation(s)
- Lian Liu
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xiao-Yuan Sha
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Yi-Ning Wu
- Department of Ophthalmology, Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Meng-Ting Chen
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jing-Xiang Zhong
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
41
|
Zhang Z, Xiong T, Zheng R, Huang J, Guo L. N‑acetyl cysteine protects HUVECs against lipopolysaccharide‑mediated inflammatory reaction by blocking the NF‑κB signaling pathway. Mol Med Rep 2019; 20:4349-4357. [PMID: 31545445 DOI: 10.3892/mmr.2019.10678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/06/2019] [Indexed: 11/05/2022] Open
Abstract
The purpose of the study was to explore the potential protective effects of N‑acetylcysteine (NAC) against lipopolysaccharide (LPS)‑induced inflammatory injury to human umbilical vein endothelial cells (HUVECs). It was also assessed whether the underlying mechanism of this protective effect is mediated via suppression of the nuclear factor‑kappa B (NF‑κB) signaling pathway. Cell viability of HUVECs treated with different concentrations of NAC was assessed using Cell Counting Kit‑8 (CCK‑8) assay. The mRNA expression of inflammatory factors [interleukin‑8 (IL‑8), tumor necrosis factor α (TNF‑α), inducible nitric oxide synthase (iNOS), and intercellular cell adhesive molecule 1 (ICAM‑1)] were assessed using real time semi‑quantitative polymerase chain reaction. Protein expression levels of TNF‑α and IL‑8 were assessed using enzyme‑linked immunosorbent assay. Protein expression levels of ICAM‑1 and the NF‑κB signaling pathway were assessed using western blotting. Nitric reductase method was used to quantify nitric oxide (NO) and iNOS. LPS stimulated the production of TNF‑α, IL‑8, NO, and ICAM‑1 by HUVECs. Moreover, LPS induced activation of the NF‑κB signaling pathway and increased the protein expression of phosphorylated p65. However, pretreatment of HUVECs with NAC significantly attenuated the increase in the expression of inflammatory factors and the level of phosphorylated p65; this indicated that NAC prevented the activation of the NF‑κB signaling pathway. The present findings indicated that NAC protects HUVECs against LPS‑mediated inflammatory reaction and alleviates inflammation. The underlying mechanism is related to the NF‑κB signaling pathway. NAC appears to be a promising agent for prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ting Xiong
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Rui Zheng
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jialin Huang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ling Guo
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
42
|
Extraction, Structural Characterization, and Biological Functions of Lycium Barbarum Polysaccharides: A Review. Biomolecules 2019; 9:biom9090389. [PMID: 31438522 PMCID: PMC6770593 DOI: 10.3390/biom9090389] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Lycium barbarum polysaccharides (LBPs), as bioactive compounds extracted from L. barbarum L. fruit, have been widely explored for their potential health properties. The extraction and structural characterization methods of LBPs were reviewed to accurately understand the extraction method and structural and biological functions of LBPs. An overview of the biological functions of LBPs, such as antioxidant function, antitumor activity, neuroprotective effects, immune regulating function, and other functions, were summarized. This review provides an overview of LBPs and a theoretical basis for further studying and extending the applications of LBPs in the fields of medicine and food.
Collapse
|
43
|
Attenuation of hyperoxic acute lung injury by Lycium barbarum polysaccharide via inhibiting NLRP3 inflammasome. Arch Pharm Res 2019; 42:902-908. [PMID: 31388826 DOI: 10.1007/s12272-019-01175-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/13/2019] [Indexed: 12/20/2022]
Abstract
Lycium barbarum polysaccharide (LBP), an active component from Goji berry which is a traditional Chinese medicine, has anti-inflammatory and antioxidant features. The aim of our study was to investigate whether LBP has any role in hyperoxia-induced acute lung injury (ALI). Using a murine model of hyperoxia-induced ALI, we investigate the effect of LBP on pulmonary pathological changes as well as Sirtuin 1 (SIRT1) and the nucleotide binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome. Exposure to 100% oxygen for 72 h in male C57BL/6 mice resulted in increased protein levels of tumor necrosis factor-α and interleukin-1β in lung tissues, and aggravated lung histological alterations. These hyperoxia-induced changes and mortality were improved by LBP. LBP markedly suppressed the activation of NLRP3 inflammasome both in vivo and in vitro. Moreover, LBP upregulated SIRT1 expression compared with vehicle-treated group. Importantly, knockdown of SIRT1 reversed the inhibitory effect of LBP on NLRP3 inflammasome activation in vitro. LBP meliorated hyperoxia-induced ALI in mice by SIRT1-dependent inhibition of NLRP3 inflammasome activation.
Collapse
|
44
|
Tan X, Sun Z, Ye C, Lin H. The effects of dietary Lycium barbarum extract on growth performance, liver health and immune related genes expression in hybrid grouper (Epinephelus lanceolatus♂ × E. fuscoguttatus♀) fed high lipid diets. FISH & SHELLFISH IMMUNOLOGY 2019; 87:847-852. [PMID: 30790662 DOI: 10.1016/j.fsi.2019.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Growth performance, hepatic morphology and antioxidant ability, and expressions of antioxidant, inflammatory and apoptosis related genes were investigated in hybrid grouper fed high lipid diets containing 0, 0.5, 1, 2 and 10 g kg-1Lycium barbarum extract (LBE) for 8-week feeding. The study showed that dietary LBE significantly increased weight gain rate (WGR) and specific growth rate (SGR) of fish (P < 0.05), the highest WGR and SGR were observed in fish fed 10.00 g kg-1 LBE diet. Dietary LBE improved liver morphology by decreasing hepatocyte necrosis and inflammatory cell infiltration induced by high lipid diets. Meanwhile, high lipid diets supplemented with 0.5-2 g kg-1 LBE improved hepatic antioxidant ability by increasing the expression of antioxidant genes (GPx and CAT) and decreasing Keap1 mRNA levels. Moreover, dietary supplementation with 0.50-2.00 g kg -1 LBE significantly decreased IL-8, caspase-3, caspase-8 and caspase-9 mRNA levels and significantly increased IL-10 and TGF-β1 mRNA levels in the liver of fish fed high lipid diets. In conclusion, high lipid diets supplemented with LBE improved growth performance, feed utilization and liver health in hybrid groupers by increasing hepatic antioxidant enzymes activity and its genes expression, as well as inhibition of hepatic inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Xiaohong Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, PR China
| | - Zhenzhu Sun
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Chaoxia Ye
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China.
| |
Collapse
|
45
|
Lycium barbarum polysaccharide reduces hyperoxic acute lung injury in mice through Nrf2 pathway. Biomed Pharmacother 2019; 111:733-739. [PMID: 30611998 DOI: 10.1016/j.biopha.2018.12.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/08/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The disruption of the balance between antioxidants and oxidants plays a vital role in the pathogenesis of acute lung injury (ALI). Evidence has shown that Lycium barbarum polysaccharide (LBP) has antioxidant feature. We examined the efficacy and mechanisms of LBP on hyperoxia-induced acute lung injury (ALI) in the present study. MATERIALS AND METHODS C57BL/6 wild-type (WT) mice and nuclear factor erythroid 2-related factor 2 (Nrf2)-deficient (Nrf2-/-) mice were used in the present study. LBP was fed by gavages once daily for 1 week. Then, the mice were exposed to hyperoxia or room air for 72 h. Additional dosage of LBP was given per 24 h. RESULTS Reactive oxygen species production was increased in WT mice exposed to hyperoxia. Inflammatory cytokines including interleukin (IL)-1β as well as IL-6, and inflammatory cells were increased infiltration in the lung after 3 days hyperoxia exposure. Hyperoxia exposure also induced pulmonary edema and histopathological changes. These hyperoxia-induced changes were improved in LBP treated group. Moreover, elevated activities of heme oxygenase-1 and glutathione peroxidase and enhanced activation of Nrf2 were observed in mice treated with LBP. However, the benefit of LBP on hyperoxic ALI was abolished in Nrf2-/- mice. Moreover, our cell study showed that the LBP-induced activation of Nrf2 was dampened in pulmonary microvascular endothelial cells when the AMPK signal was inhibited by siRNA. CONCLUSIONS LBP improves hyperoxic ALI via Nrf2-dependent manner. The LBP-induced activation of Nrf2 is mediated, at least in part, by AMPK pathway.
Collapse
|
46
|
Deng Y, Zheng H, Yan Z, Liao D, Li C, Zhou J, Liao H. Full-Length Transcriptome Survey and Expression Analysis of Cassia obtusifolia to Discover Putative Genes Related to Aurantio-Obtusin Biosynthesis, Seed Formation and Development, and Stress Response. Int J Mol Sci 2018; 19:ijms19092476. [PMID: 30134624 PMCID: PMC6163539 DOI: 10.3390/ijms19092476] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
The seed is the pharmaceutical and breeding organ of Cassia obtusifolia, a well-known medical herb containing aurantio-obtusin (a kind of anthraquinone), food, and landscape. In order to understand the molecular mechanism of the biosynthesis of aurantio-obtusin, seed formation and development, and stress response of C. obtusifolia, it is necessary to understand the genomics information. Although previous seed transcriptome of C. obtusifolia has been carried out by short-read next-generation sequencing (NGS) technology, the vast majority of the resulting unigenes did not represent full-length cDNA sequences and supply enough gene expression profile information of the various organs or tissues. In this study, fifteen cDNA libraries, which were constructed from the seed, root, stem, leaf, and flower (three repetitions with each organ) of C. obtusifolia, were sequenced using hybrid approach combining single-molecule real-time (SMRT) and NGS platform. More than 4,315,774 long reads with 9.66 Gb sequencing data and 361,427,021 short reads with 108.13 Gb sequencing data were generated by SMRT and NGS platform, respectively. 67,222 consensus isoforms were clustered from the reads and 81.73% (61,016) of which were longer than 1000 bp. Furthermore, the 67,222 consensus isoforms represented 58,106 nonredundant transcripts, 98.25% (57,092) of which were annotated and 25,573 of which were assigned to specific metabolic pathways by KEGG. CoDXS and CoDXR genes were directly used for functional characterization to validate the accuracy of sequences obtained from transcriptome. A total of 658 seed-specific transcripts indicated their special roles in physiological processes in seed. Analysis of transcripts which were involved in the early stage of anthraquinone biosynthesis suggested that the aurantio-obtusin in C. obtusifolia was mainly generated from isochorismate and Mevalonate/methylerythritol phosphate (MVA/MEP) pathway, and three reactions catalyzed by Menaquinone-specific isochorismate synthase (ICS), 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and isopentenyl diphosphate (IPPS) might be the limited steps. Several seed-specific CYPs, SAM-dependent methyltransferase, and UDP-glycosyltransferase (UDPG) supplied promising candidate genes in the late stage of anthraquinone biosynthesis. In addition, four seed-specific transcriptional factors including three MYB Transcription Factor (MYB) and one MADS-box Transcription Factor (MADS) transcriptional factors) and alternative splicing might be involved with seed formation and development. Meanwhile, most members of Hsp20 genes showed high expression level in seed and flower; seven of which might have chaperon activities under various abiotic stresses. Finally, the expressional patterns of genes with particular interests showed similar trends in both transcriptome assay and qRT-PCR. In conclusion, this is the first full-length transcriptome sequencing reported in Caesalpiniaceae family, and thus providing a more complete insight into aurantio-obtusin biosynthesis, seed formation and development, and stress response as well in C. obtusifolia.
Collapse
Affiliation(s)
- Yin Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hui Zheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zicheng Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dongying Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Chaolin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
47
|
Li J, Ding Z, Yang Y, Mao B, Wang Y, Xu X. Lycium barbarum polysaccharides protect human trophoblast HTR8/SVneo cells from hydrogen peroxide‑induced oxidative stress and apoptosis. Mol Med Rep 2018; 18:2581-2588. [PMID: 30015960 PMCID: PMC6102627 DOI: 10.3892/mmr.2018.9274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/13/2018] [Indexed: 02/03/2023] Open
Abstract
Pregnancy complications are associated with abnormal cytotrophoblast differentiation and invasion. Hydrogen peroxide (H2O2) is an important mediator of oxidative ischemia/reperfusion stress in the placenta. Lycium barbarum polysaccharides (LBP) have been demonstrated to counteract oxidative free radicals. The effects of LBP in trophoblast HTR8/SVneo cells injured with H2O2 were examined. A cell counting kit-8 assay was performed to detect the effect of LBP at different concentrations on the proliferative ability of H2O2 injured trophoblast cells. Flow cytometry was used to determine the levels of reactive oxygen species (ROS), mitochondria membrane potential (MMP) disruption and apoptosis. Superoxide dismutase (SOD) activity and lactate dehydrogenase (LDH) leakage into the supernatant was detected by ultraviolet spectrophotometry. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to detect the expression of apoptosis-associated factors, including survivin, hypoxia inducible factor 1-α (HIF1-α), Bcl-2 apoptosis regulator (Bcl-2), Bcl-2 associated X apoptosis regulator (Bax). The results revealed that LBP protected the proliferative ability of trophoblast cells injured with H2O2 in a dose-dependent manner. LBP inhibited the oxidative stress induced by H2O2, by reducing ROS and LDH levels and increasing SOD activity. Additionally, LBP decreased MMP disruption and cell apoptosis induced by H2O2, by increasing the mRNA and protein expression of survivin, HIF1-α and Bcl-2 and decreasing Bax expression. Therefore, it was concluded that LBP protected human trophoblast cells from H2O2-induced oxidative stress and cell apoptosis via regulation of apoptosis-associated factor expression. It will provide a novel strategy for the treatment of pregnancy complications.
Collapse
Affiliation(s)
- Jing Li
- Department of Women and Children's Medical Center, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Zhongjun Ding
- Reproduction Medicine Center, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Yue Yang
- Discipline of Physiology, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Baohong Mao
- Department of Women and Children's Medical Center, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Yanxia Wang
- Department of Women and Children's Medical Center, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Xiaoying Xu
- Perinatal Center, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
48
|
Bao J, Ye C, Zheng Z, Zhou Z. Fmr1 protects cardiomyocytes against lipopolysaccharide-induced myocardial injury. Exp Ther Med 2018; 16:1825-1833. [PMID: 30186407 PMCID: PMC6122302 DOI: 10.3892/etm.2018.6386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
The present study explored the mechanisms by which fragile X mental retardation 1 (fmr1) overexpression inhibits lipopolysaccharide (LPS)-induced cardiomyocyte injury. Factors including oxidative stress reaction, mitochondrial membrane potential variation and cell apoptosis were evaluated. The viability of H9c2 cells was evaluated with a Cell Counting Kit-8 assay after cells were treated with LPS at different concentrations (0, 1, 3, 6 and 9 µg/ml) for various durations (4, 12 and 24 h). Flow cytometry was used to determine variations in reactive oxygen species (ROS), mitochondrial membrane potential and cell apoptosis. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to detect the levels of apoptosis-associated factors, and western blot analysis was used to determine the phosphorylation levels of phosphoinositide-3 kinase (PI3K), Akt and forkhead box (Fox)O3a. The results indicated that LPS decreased the viability of H9c2 cells in a dose- and time-dependent manner. Overexpression of fmr1 inhibited the LPS-induced decrease in the mitochondrial membrane potential and the production of ROS as well as apoptosis in H9c2 cells. Fmr1 also inhibited LPS-induced reductions in antioxidant enzyme activities, including those of superoxide dismutase and reduced/oxidized glutathione ratio, and decreased LPS-associated increases in the lipid peroxidation product malondialdehyde. Apoptosis-associated factors were identified to be involved in the effects of Fmr1. Overexpression of Fmr1 attenuated LPS-associated increases in the apoptosis-activating factors B-cell lymphoma 2 (Bcl-2)-associated X protein and caspase-3 and decreases in apoptosis inhibitors, including Bcl-2 and X-linked inhibitor of apoptosis protein. Fmr1 overexpression also reduced LPS-induced increases in the phosphorylation levels of PI3K, Akt and FoxO3a. In conclusion, fmr1 overexpression alleviated oxidative stress and apoptosis in H9c2 cardiomyocytes injured by LPS via regulating oxidative stress and apoptosis-associated factors, as well as the PI3K/Akt pathway. This information may provide a novel and effective therapeutic strategy for heart diseases.
Collapse
Affiliation(s)
- Jiasheng Bao
- Department of Electrocardiogram Diagnosis, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Chen Ye
- Department of Cardiovascular Medicine, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Zhelan Zheng
- Department of Cardiovascular Ultrasonic Center, The First Affiliated Hospital of Zhejiang University, The First Hospital of Zhejiang Province, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhengwen Zhou
- Department of Electrocardiogram Diagnosis, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|