1
|
Puerarin alleviates atherosclerosis via the inhibition of Prevotella copri and its trimethylamine production. Gut 2024; 73:1934-1943. [PMID: 38777572 DOI: 10.1136/gutjnl-2024-331880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Puerarin (PU) is a natural compound that exhibits limited oral bioavailability but has shown promise in the treatment of atherosclerosis (AS). However, the precise mechanisms underlying its therapeutic effects remain incompletely understood. This study aimed to investigate the effects of PU and its mechanisms in mitigating AS in both mice and humans. DESIGN The impact of PU on AS was examined in ApoE -/- mice fed a high-fat diet (HFD) and in human patients with carotid artery plaque. To explore the causal link between PU-associated gut microbiota and AS, faecal microbiota transplantation (FMT) and mono-colonisation of mice with Prevotella copri (P. copri) were employed. RESULTS PU alleviated AS by modulating the gut microbiota, as evidenced by alterations in gut microbiota composition and the amelioration of AS following FMT from PU-treated mice into ApoE-/- mice fed HFD. Specifically, PU reduced the abundance of P. copri, which exacerbated AS by producing trimethylamine (TMA). Prolonged mono-colonisation of P. copri undermines the beneficial effects of PU on AS. In clinical, the plaque scores of AS patients were positively correlated with the abundance of P. copri and plasma trimethylamine-N-oxide (TMAO) levels. A 1-week oral intervention with PU effectively decreased P. copri levels and reduced TMAO concentrations in patients with carotid artery plaque. CONCLUSION PU may provide therapeutic benefits in combating AS by targeting P. copri and its production of TMA. TRIAL REGISTRATION NUMBER ChiCTR1900022488.
Collapse
|
2
|
Chen J, Xu Y, Liu Y, Meng Y, Wu L, Cao W, Jiang D, Chu X. Preparation of cubic liquid crystal nanoparticles of puerarin and its protective effect on ischemic stroke. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102786. [PMID: 39341480 DOI: 10.1016/j.nano.2024.102786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/19/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
The low oral bioavailability of puerarin (Pur) affects its efficacy. Preparation of puerarin cubic liquid crystal nanoparticles (Pur-Cub) enhances the protective effect of Pur against ischemic stroke (IS) by increasing its bioavailability. The average particle size, PDI, and zeta potential of Pur-Cub were 274.70 ± 16.20 nm, 0.24 ± 0.05 and -25.30 ± 2.34 mV, respectively. Polarized light microscopy (PLM) and Small angle X-ray diffraction (SAXS) identified Pur-Cub as a cubic phase (Pn3m). The in vitro release of Pur-Cub was fast and then slow, in accordance with the biphasic kinetic equation. Pur-Cub increased the penetration of Pur in the intestine (mainly the duodenum) and significantly improved the bioavailability of Pur in the blood (304.16 %) and its distribution in the brain (1.69-fold) compared to Pur suspension. Pur-Cub narrowed down cerebral infarcts and significantly reduced levels of TNF-α, IL-1β, and IL-6 in a rat model of middle cerebral artery occlusion (MCAO).
Collapse
Affiliation(s)
- Jingbao Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Traditional Chinese Hospital of LuAn, Luan, Anhui 237006, China
| | - Yuhang Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yue Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yun Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Long Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Wenxuan Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Dayuan Jiang
- Anhui Medical College, Hefei, Anhui 230601, China.
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department(AUCM), Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China.
| |
Collapse
|
3
|
He YX, Liu MN, Wu H, Lan Q, Liu H, Mazhar M, Xue JY, Zhou X, Chen H, Li Z. Puerarin: a hepatoprotective drug from bench to bedside. Chin Med 2024; 19:139. [PMID: 39380120 PMCID: PMC11460048 DOI: 10.1186/s13020-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
Pueraria is a time-honored food and medicinal plant, which is widely used in China. Puerarin, the main component extracted from pueraria, has a variety of pharmacological characteristics. In recent years, puerarin has received increasing attention for its significant hepatoprotective effects, such as metabolic dysfunction-associated steatotic liver disease, alcohol-related liver disease, and hepatic carcinoma. This paper explores the pharmacological effects of puerarin on various liver diseases through multiple mechanisms, including inflammation factors, oxidative stress, lipid metabolism, apoptosis, and autophagy. Due to its restricted solubility, pharmacokinetic studies revealed that puerarin has a low bioavailability. However, combining puerarin with novel drug delivery systems can improve its bioavailability. Meanwhile, puerarin has very low toxicity and high safety, providing a solid foundation for its further. In addition, this paper discusses puerarin's clinical trials, highlighting its unique advantages. Given its excellent pharmacological effects, puerarin is expected to be a potential drug for the treatment of various liver diseases.
Collapse
Affiliation(s)
- Yi-Xiang He
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Meng-Nan Liu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hao Wu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qi Lan
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hao Liu
- Department of Pediatrics, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Maryam Mazhar
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jin-Yi Xue
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xin Zhou
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Hui Chen
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Zhi Li
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Wan Q, Luo S, Lu Q, Guan C, Zhang H, Deng Z. Protective effects of puerarin on metabolic diseases: Emphasis on the therapeutical effects and the underlying molecular mechanisms. Biomed Pharmacother 2024; 179:117319. [PMID: 39197190 DOI: 10.1016/j.biopha.2024.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Metabolic diseases (MetD) such as diabetes mellitus, obesity, and hyperlipidemia have become global health challenges. As a naturally occurring plant component, puerarin has been verified to possess a wide range of pharmacological effects including lowering blood glucose, improving insulin resistance, and regulating lipid metabolism, which has attracted extensive attention in recent years, and its potential in the treatment of MetD has been highly acclaimed. In addition, puerarin has exhibited antioxidant, anti-inflammatory, and cardiovascular protective effects, which are of great significance in the prevention and treatment of MetD. This article comprehensively summarizes the research progress of puerarin in the treatment of MetD and explores its pharmacological mechanisms, clinical applications, and future perspectives. More importantly, this review provided a list of the involved molecular mechanims in treating MetD of puerarin. Taking into account these conclusions, it may provide a strong foundation for the optimized use of puerarin in the treatment of patients suffering from MetD.
Collapse
Affiliation(s)
- Qiang Wan
- Department of Medical Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China; Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhiyan Deng
- Department of Gastroenterology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua 321017, China.
| |
Collapse
|
5
|
Wan Q, Lu Q, Luo S, Guan C, Zhang H. The beneficial health effects of puerarin in the treatment of cardiovascular diseases: from mechanisms to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7273-7296. [PMID: 38709267 DOI: 10.1007/s00210-024-03142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death globally that seriously threaten human health. Although novel western medicines have continued to be discovered over the past few decades to inhibit the progression of CVDs, new drug research and development for treating CVDs with less side effects and adverse reactions are continuously being desired. Puerarin is a natural product found in a variety of medicinal plants belonging to the flavonoid family with potent biological and pharmacological activities. Abundant research findings in the literature have suggested that puerarin possesses a promising prospect in treating CVDs. In recent years, numerous new molecular mechanisms of puerarin have been explored in experimental and clinical studies, providing new evidence for this plant metabolite to protect against CVDs. This article systematically introduces the history of use, bioavailability, and various dosage forms of puerarin and further summarizes recently published data on the major research advances and their underlying therapeutic mechanisms in treating CVDs. It may provide references for researchers in the fields of pharmacology, natural products, and internal medicine.
Collapse
Affiliation(s)
- Qiang Wan
- Affiliated Hospital of Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
- Clinical Medical College, Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| |
Collapse
|
6
|
Qian S, Chen G, Li R, Ma Y, Pan L, Wang X, Wang X. Disulfide stress and its role in cardiovascular diseases. Redox Biol 2024; 75:103297. [PMID: 39127015 PMCID: PMC11364009 DOI: 10.1016/j.redox.2024.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of mortality in humans, and oxidative stress plays a pivotal role in disease progression. This phenomenon typically arises from weakening of the cellular antioxidant system or excessive accumulation of peroxides. This review focuses on a specialized form of oxidative stress-disulfide stress-which is triggered by an imbalance in the glutaredoxin and thioredoxin antioxidant systems within the cell, leading to the accumulation of disulfide bonds. The genesis of disulfide stress is usually induced by extrinsic pathological factors that disrupt the thiol-dependent antioxidant system, manifesting as sustained glutathionylation of proteins, formation of abnormal intermolecular disulfide bonds between cysteine-rich proteins, or irreversible oxidation of thiol groups to sulfenic and sulfonic acids. Disulfide stress not only precipitates the collapse of the antioxidant system and the accumulation of reactive oxygen species, exacerbating oxidative stress, but may also initiate cellular inflammation, autophagy, and apoptosis through a cascade of signaling pathways. Furthermore, this review explores the detrimental effects of disulfide stress on the progression of various CVDs including atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, diabetic cardiomyopathy, cardiac hypertrophy, and heart failure. This review also proposes several potential therapeutic avenues to improve the future treatment of CVDs.
Collapse
Affiliation(s)
- Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
| | - Guanyu Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ruixue Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Yinghua Ma
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lin Pan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xiaoping Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Department of Human Anatomy and Histoembryology, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Department of Human Anatomy and Histoembryology, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
7
|
Gong P, Wang J, Wang S, Yang W, Yao W, Li N, Wang J, Zhao Y, Chen F, Xie J, Zhou T, Guo Y. Metabolomic analysis of the Puerarin hypoglycemic activity via AMPK-mTOR and PPARγ-NF-κB signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155546. [PMID: 38833790 DOI: 10.1016/j.phymed.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia, and its increasing prevalence is a global concern. Early diagnostic markers and therapeutic targets are essential for DM prevention and treatment. Pueraria, derived from kudzu root, is used clinically for various symptoms, and its active compound, Puerarin, shows promise in improving insulin resistance and reducing inflammation. PURPOSE This study aims to evaluate the protective effects of metformin and Puerarin at different doses in an STZ-induced DM mouse model. The intricate metabolites within the serum of STZ-induced diabetic mice were subjected to thorough investigation, thus elucidating the intricate mechanism through which Puerarin demonstrates notable efficacy in the treatment of diabetes. METHODS An STZ-induced DM mouse model is established. Mice are treated with metformin and puerarin at varying doses. Physiological, biochemical, and histomorphological assessments are performed. Metabolomics analysis is carried out on serum samples from control, DM, metformin, and medium-dose Puerarin groups. Western blot and qRT-PCR technologies are used to validate the mechanisms. RESULTS The DM mouse model replicates abnormal blood glucose, insulin levels, physiological, biochemical irregularities, as well as liver and pancreas damage. Treatment with metformin and Puerarin restores these abnormalities, reduces organ injury, and modulates AMPK, PPARγ, mTOR, and NF-κB protein and mRNA expression. Puerarin activates the AMPK-mTOR and PPARγ-NF-κB signaling pathways, regulating insulin signaling, glucolipid metabolism, and mitigating inflammatory damage. CONCLUSION This study demonstrates that Puerarin has the potential to treat diabetes by modulating key signaling pathways. The focus was on the finding that Puerarin has been shown to improve insulin signaling, glucolipid metabolism and attenuate inflammatory damage through the modulation of the AMPK-mTOR and PPARγ-NF-κB pathways. The discovery of Puerarin's favorable protective effect and extremely complex mechanism highlights its prospect in the treatment of diabetes and provides theoretical support for its comprehensive development and utilization.
Collapse
Affiliation(s)
- Pin Gong
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China.
| | - Jiating Wang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Shuang Wang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Wenjuan Yang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Wenbo Yao
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Nan Li
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Jing Wang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Yanni Zhao
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi' an University of Science and Technology, Xi'an 710054, China
| | - Jianwu Xie
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Ting Zhou
- China Certification & Inspection Group shaanxi Co, Ltd., Xi'an 710054, China
| | - Yuxi Guo
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China.
| |
Collapse
|
8
|
Zou R, Hao Y, Qi C, Peng X, Huang Z, Li D, Wang Y. Trimethyl chitosan-cysteine-based nanoparticles as an effective delivery system for portulacerebroside A in the management of hepatocellular carcinoma cells in vitro and in vivo. J Drug Target 2024; 32:570-584. [PMID: 38625591 DOI: 10.1080/1061186x.2024.2344495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Portulacerebroside A (PCA), a cerebroside compound extracted from Portulaca oleracea L., has been shown to suppress hepatocellular carcinoma (HCC) cells. This study aims to investigate the effectiveness of trimethyl chitosan-cysteine (TMC-Cys) nanocarrier in delivering PCA for HCC management and to elucidate the molecular mechanisms behind PCA's function. TMC-Cys nanocarriers notably augmented PCA's function, diminishing the proliferation, migration, and invasiveness of HCC cells in vitro, reducing hepatocellular tumorigenesis in immunocompetent mice, and impeding metastasis of xenograft tumours in nude mice. Comprehensive bioinformatics analyses, incorporating Super-PRED systems alongside pathway enrichment analysis, pinpointed toll-like receptor 4 (TLR4) and epidermal growth factor receptor (EGFR) as two promising targets of PCA, enriched in immune checkpoint pathway. PCA/nanocarrier (PCA) reduced levels of TLR4 and EGFR and their downstream proteins, including programmed cell death ligand 1, thereby increasing populations and activity of T cells co-cultured with HCC cells in vitro or in primary HCC tumours in mice. However, these effects were counteracted by additional artificial activation of TLR4 and EGFR. In conclusion, this study provides novel evidence of PCA's function in immunomodulation in addition to its direct tumour suppressive effect. TMC-Cys nanocarriers significantly enhance PCA efficacy, indicating promising application as a drug delivery system.
Collapse
Affiliation(s)
- Rui Zou
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, Haikou, P.R. China
| | - Yunhe Hao
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, Haikou, P.R. China
| | - Chunchun Qi
- Medical College of Nankai University, Tianjin, P.R. China
| | - Xu Peng
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, Haikou, P.R. China
| | - Zepeng Huang
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, Haikou, P.R. China
| | - Duo Li
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, Haikou, P.R. China
| | - Yiyao Wang
- Department of Integrated Traditional Chinese and Western Medicine, Hainan Cancer Hospital, Haikou, P.R. China
| |
Collapse
|
9
|
Chauhan P, Wadhwa K, Mishra R, Gupta S, Ahmad F, Kamal M, Iqbal D, Alsaweed M, Nuli MV, Abomughaid MM, Almutary AG, Mishra PC, Jha SK, Ojha S, Nelson VK, Dargar A, Singh G, Jha NK. Investigating the Potential Therapeutic Mechanisms of Puerarin in Neurological Diseases. Mol Neurobiol 2024:10.1007/s12035-024-04222-4. [PMID: 38780722 DOI: 10.1007/s12035-024-04222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Plants and their derived phytochemicals have a long history of treating a wide range of illnesses for several decades. They are believed to be the origin of a diverse array of medicinal compounds. One of the compounds found in kudzu root is puerarin, a isoflavone glycoside commonly used as an alternative medicine to treat various diseases. From a biological perspective, puerarin can be described as a white needle crystal with the chemical name of 7-hydroxy-3-(4-hydroxyphenyl)-1-benzopyran-4-one-8-D-glucopyranoside. Besides, puerarin is sparingly soluble in water and produces no color or light yellow solution. Multiple experimental and clinical studies have confirmed the significant therapeutic effects of puerarin. These effects span a wide range of pharmacological effects, including neuroprotection, hepatoprotection, cardioprotection, immunomodulation, anticancer properties, anti-diabetic properties, anti-osteoporosis properties, and more. Puerarin achieves these effects by interacting with various cellular and molecular pathways, such as MAPK, AMPK, NF-κB, mTOR, β-catenin, and PKB/Akt, as well as different receptors, enzymes, and growth factors. The current review highlights the molecular mechanism of puerarin as a neuroprotective agent in the treatment of various neurodegenerative and neurological diseases. Extensive cellular, animal, and clinical research has provided valuable insights into its effectiveness in conditions such as Alzheimer's disease, Parkinson's disease, epilepsy, cerebral stroke, depression, and more.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Gujrat, Vadodara, 391760, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| | - Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Abha Dargar
- Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, Virudhunagar, Tamilnadu, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| |
Collapse
|
10
|
Yuan L, Liu Y, Sun Y, Ren L, Gu X, Chen L, Zhou G, Sun X, Huang Q, Chen X, Gong G. Puerarin attenuates remifentanil‑induced postoperative hyperalgesia via targeting PAX6 to regulate the transcription of TRPV1. Mol Med Rep 2024; 29:81. [PMID: 38516772 PMCID: PMC10975072 DOI: 10.3892/mmr.2024.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Remifentanil‑induced hyperalgesia (RIH) is characterized by the emergence of stimulation‑induced pain, including phenomena such as allodynia and thermal hyperalgesia following remifentanil infusion. As a sequence‑specific DNA binding transcription factor, PAX6 positively and negatively regulates transcription and is expressed in multiple cell types in the developing and adult central nervous system. It was hypothesized that puerarin could relieve RIH via targeting PAX6 to regulate transcription of transient receptor potential cation channel subfamily V Member 1 (TRPV1). A total of 32 rats were randomly divided into five groups, namely control group, RI group, RI + 10 mg/kg puerarin group (RI + puerarin10), RI + 20 mg/kg puerarin group (RI + puerarin20), and RI + 40 mg/kg puerarin group (RI + puerarin40). Mechanical and thermal hyperalgesia were tested at ‑24, 2, 6, 24 and 48 h after remifentanil infusion. Following the sacrifice of rats after the last behavioral test, western blot was used to detect the expression levels of TRPV1 in the tissues; Immunofluorescence staining and western blotting were used to detect the expression of PAX6 in the spinal cord. PharmMapper and JASPAR were used to predict the binding sites of puerarin/PAX6/TRPV1. Chromatin immunoprecipitation‑PCR and dual luciferase reporter assay were used to verify the targeting relationship between PAX6 and TRPV1. Immunofluorescence was used to detect the expression levels of TRPV1 and p‑NR2B. The results revealed that puerarin (10, 20, 40 mg/kg) dose‑dependently reduced thermal and mechanical hyperalgesia from 2 to 48 h after remifentanil infusion. Remifentanil infusion remarkably stimulated the expression of phosphorylated (p‑)NR2B. Nevertheless, the increased amount of p‑NR2B by RIH was dose‑dependently suppressed by puerarin in rats. In conclusion, puerarin was revealed to attenuate postoperative RIH via targeting PAX6 to regulate the transcription of TRPV1.
Collapse
Affiliation(s)
- Libang Yuan
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Yinghai Liu
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Yangyang Sun
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Ling Ren
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Xiaoping Gu
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Liang Chen
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Gongrui Zhou
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Xiaoqin Sun
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Qingqing Huang
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Xufei Chen
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Gu Gong
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
11
|
Zhang TC, Lin YC, Sun NN, Liu S, Hu WZ, Zhao Y, Dong XH, He XP. Icariin, astragaloside a and puerarin mixture attenuates cognitive impairment in APP/PS1 mice via inhibition of ferroptosis-lipid peroxidation. Neurochem Int 2024; 175:105705. [PMID: 38412923 DOI: 10.1016/j.neuint.2024.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that seriously threatens the quality of life of the elderly. Its pathogenesis has not yet been fully elucidated. Ferroptosis, a cell death caused by excessive accumulation of iron-dependent lipid peroxides, has been implicated in the pathogenesis of AD. Uncontrolled lipid peroxidation is the core process of ferroptosis, and inhibiting lipid peroxidation of ferroptosis may be an important therapeutic target for AD. Based on previous studies, we mixed standards of icariin, astragaloside IV, and puerarin, named the standard mixture YHG, and investigated the effect of YHG on ferroptosis -lipid peroxidation in APP/PS1 mice. DFX, a ferroptosis inhibitor, was used as a control drug. In this study, APP/PS1 mice were used as an AD animal model, and behavioral experiments, iron level detection, Transmission electron microscopy (TEM) observation, lipid peroxidation level detection, antioxidant capacity detection, immunofluorescence, Western blot and real-time qPCR were performed. It was found that YHG could reduce body weight, significantly improve abnormal behaviors and the ultrastructure of hippocampal neurons in APP/PS1 mice. The results of biochemical tests showed that YHG reduced the contents of iron, malondialdehyde (MDA) and lipid peroxide (LPO) in brain tissue and serum, and increased the levels of superoxide dismutase (SOD) and reduced glutathione (GSH). Immunofluorescence, WesternBlot and real-time qPCR results showed that YHG could promote the expression of solute carrier family 7 member 11 (SLC7A11), solute carrier family 3 member 2 (SLC3A2) and glutathione peroxidase 4(GPX4). Inhibited the expression of long-chain acyllipid coenzyme a synthetase 4(ACSL4) and lysophosphatidyltransferase 3 (LPCAT3). This study suggests that the mechanism by which YHG improves cognitive dysfunction in APP/PS1 mice may be related to the inhibition of ferroptosis-lipid peroxidation.
Collapse
Affiliation(s)
- Tian-Ci Zhang
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Yi-Can Lin
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Ning-Ning Sun
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Shan Liu
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Wen-Zhu Hu
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Yan Zhao
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Xian-Hui Dong
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China.
| | - Xiao-Ping He
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China.
| |
Collapse
|
12
|
Khaire OT, Mhaske A, Prasad AG, Almalki WH, Srivastava N, Kesharwani P, Shukla R. State-of-the-art drug delivery system to target the lymphatics. J Drug Target 2024; 32:347-364. [PMID: 38253594 DOI: 10.1080/1061186x.2024.2309671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
PRIMARY OBJECTIVE The primary objective of the review is to assess the potential of lymphatic-targeted drug delivery systems, with a particular emphasis on their role in tumour therapy and vaccination efficacy. REASON FOR LYMPHATIC TARGETING The lymphatic system's crucial functions in maintaining bodily equilibrium, regulating metabolism, and orchestrating immune responses make it an ideal target for drug delivery. Lymph nodes, being primary sites for tumour metastasis, underscore the importance of targeting the lymphatic system for effective treatment. OUTCOME Nanotechnologies and innovative biomaterials have facilitated the development of lymphatic-targeted drug carriers, leveraging endogenous macromolecules to enhance drug delivery efficiency. Various systems such as liposomes, micelles, inorganic nanomaterials, hydrogels, and nano-capsules demonstrate significant potential for delivering drugs to the lymphatic system. CONCLUSION Understanding the physiological functions of the lymphatic system and its involvement in diseases underscores the promise of targeted drug delivery in improving treatment outcomes. The strategic targeting of the lymphatic system presents opportunities to enhance patient prognosis and advance therapeutic interventions across various medical contexts, indicating the importance of ongoing research and development in this area.
Collapse
Affiliation(s)
- Omkar T Khaire
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| | - Akshada Mhaske
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| | - Aprameya Ganesh Prasad
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| |
Collapse
|
13
|
Chen S, Jiao Y, Han Y, Zhang J, Deng Y, Yu Z, Wang J, He S, Cai W, Xu J. Edible traditional Chinese medicines improve type 2 diabetes by modulating gut microbiotal metabolites. Acta Diabetol 2024; 61:393-411. [PMID: 38227209 DOI: 10.1007/s00592-023-02217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder with intricate pathogenic mechanisms. Despite the availability of various oral medications for controlling the condition, reports of poor glycemic control in type 2 diabetes persist, possibly involving unknown pathogenic mechanisms. In recent years, the gut microbiota have emerged as a highly promising target for T2DM treatment, with the metabolites produced by gut microbiota serving as crucial intermediaries connecting gut microbiota and strongly related to T2DM. Increasingly, traditional Chinese medicine is being considered to target the gut microbiota for T2DM treatment, and many of them are edible. In studies conducted on animal models, edible traditional Chinese medicine have been shown to primarily alter three significant gut microbiotal metabolites: short-chain fatty acids, bile acids, and branched-chain amino acids. These metabolites play crucial roles in alleviating T2DM by improving glucose metabolism and reducing inflammation. This review primarily summarizes twelve edible traditional Chinese medicines that improve T2DM by modulating the aforementioned three gut microbiotal metabolites, along with potential underlying molecular mechanisms, and also incorporation of edible traditional Chinese medicines into the diets of T2DM patients and combined use with probiotics for treating T2DM are discussed.
Collapse
Affiliation(s)
- Shen Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiqiao Jiao
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiyang Han
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yuanyuan Deng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zilu Yu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shasha He
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
14
|
Wang YS, Li BY, Xing YF, Huang JC, Chen ZS, Yue L, Zou YG, Guo B. Puerarin Ameliorated PCOS through Preventing Mitochondrial Dysfunction Dependent on the Maintenance of Intracellular Calcium Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2963-2976. [PMID: 38305024 DOI: 10.1021/acs.jafc.3c06361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Polycystic ovarian syndrome (PCOS) is the major cause of infertility in reproductive women, but no universal drug is feasible. Although puerarin clinically treats cerebrovascular and cardiovascular diseases, its curative effect on PCOS remains elusive. The present study discovered that administration of puerarin restored estrous cycle of PCOS mice and diminished the number of cystic follicles with the concomitant recovery for circulating testosterone, LH and FSH levels, and LH/FSH ratio, indicating the therapeutic role of puerarin in PCOS. KEGG analysis of differential genes between PCOS and control revealed the enrichment in MAPK and calcium signaling pathway. Application of puerarin restricted the phosphorylation of ERK1/2 and JNK, whose activation neutralized the improvement of puerarin on the secretory function and apoptosis of ovarian granulosa cells (GCs). Meanwhile, puerarin alleviated the accumulation of cytosolic Ca2+ through restricting the opening of Ryr and Itpr channels, but this effectiveness was counteracted by the activatory ERK1/2 and JNK. Attenuation of cytosolic Ca2+ counteracted the antagonistic effects of ERK1/2 and JNK activation on puerarin's role in rescuing the calcineurin and Nfatc. Further analysis manifested that Mcu had been authenticated as a direct downstream target of Nfatc to mediate the amelioration of puerarin on mitochondrial Ca2+ uptake. Moreover, puerarin prevented the disorder of ATP content, mitochondrial membrane potential, and mitochondrial permeability transition pore opening through maintaining mitochondrial Ca2+ homeostasis. Collectively, puerarin might ameliorate the symptoms of PCOS mice through preventing mitochondrial dysfunction that is dependent on the maintenance of intracellular Ca2+ homeostasis after inactivation of ERK1/2 and JNK.
Collapse
Affiliation(s)
- Yu-Si Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bai-Yu Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yin-Fei Xing
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ji-Cheng Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhi-Song Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Liang Yue
- Reproductive Medical Center, the Second Hospital of Jilin University, Changchun 130041, China
| | - Ying-Gang Zou
- Reproductive Medical Center, the Second Hospital of Jilin University, Changchun 130041, China
| | - Bin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
15
|
Jiao X, Peng X, Jin X, Liu N, Yu Y, Liu R, Li Z. Nano-composite system of traditional Chinese medicine for ocular applications: molecular docking and three-dimensional modeling insight for intelligent drug evaluation. Drug Deliv Transl Res 2023; 13:3132-3144. [PMID: 37355484 DOI: 10.1007/s13346-023-01376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
The absorption of drugs was impeded in the posterior part of the eye due to the special structure. In addition, it was crucial to comprehend transport laws of molecules in ocular drug delivery for designing effective strategies. However, the current quality evaluation methods of the eye were backward and lack of dynamic monitoring of drug processes in vivo. Herein, nano-drug delivery system and three-dimensional (3D) model were combined to overcome the problems of low bioavailability and diffusion law. The model drugs were screened by molecular docking. The flexible nano-liposome (FNL) and temperature-sensitive gel (TSG) composite formulation was characterized through comprehensive evaluation. COMSOL software was utilized to build 3D eyeball to predict the bioavailability of drugs. The size of the preparation was about 98.34 nm which is relatively optimal for the enhanced permeability of the eyes. The formulation showed a stronger safety and non-irritant. The pharmacokinetics results of aqueous humor showed that the AUC of two drugs in this system increased by 3.79 and 3.94 times, respectively. The results of 3D calculation model proved that the concentrations of drugs reaching the retina were 1.90×10-5 mol/m3 and 6.37×10-6 mol/m3. In conclusion, the FNL-TSG markedly improved the bioavailability of multiple components in the eye. More importantly, a simplified 3D model was developed to preliminarily forecast the bioavailability of the retina after drug infusion, providing technical support for the accurate evaluation of ocular drug delivery. It provided new pattern for the development of intelligent versatile ophthalmic preparations.
Collapse
Affiliation(s)
- Xinyi Jiao
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingru Peng
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xin Jin
- Military Medicine Section, Dongli District, Logistics University of People's Armed Police Force, 1 Huizhihuan Road, Tianjin, 300309, China
| | - Ning Liu
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Yu
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Liu
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Zheng Li
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
16
|
Wang K, Tang Z, Liu S, Liu Y, Zhang H, Zhan H. Puerarin protects renal ischemia-reperfusion injury in rats through NLRP3/Caspase-1/GSDMD pathway. Acta Cir Bras 2023; 38:e387323. [PMID: 38055404 DOI: 10.1590/acb387323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/22/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE To observe the effect of puerarin on renal ischemia-reperfusion (I/R) injury in rats, and to explore its mechanism based on NLRP3/Caspase-1/GSDMD pathway. METHODS Twenty-one Sprague-Dawley rats were divided into three groups: sham-operated group (sham), model group (RIRI), and puerarin treatment group (RIRI + Pue). The model of acute renal I/R injury was established by cutting the right kidney and clamping the left renal pedicle for 45 min. RESULTS Renal function parameters were statistically significant in group comparisons. The renal tissue structure of rats in sham group was basically normal. Pathological changes were observed in the RIRI group. The renal pathological damage score and apoptosis rate in the RIRI group were higher than those in the sham group, and significantly lower in the RIRI + Pue group than in the RIRI group. Indicators of oxidative stress-superoxide dismutase, malondialdehyde, and glutathione peroxidase-were statistically significant in group comparisons. Compared with the sham group, the relative expressions of NLRP3, Caspase-1 and GSDMD proteins in the RIRI group were increased. Compared with the RIRI group, the RIRI + Pue group had significant reductions. CONCLUSIONS Puerarin can inhibit the activation of NLRP3/Caspase-1/GSDMD pathway, inhibit inflammatory response and pyroptosis, and enhance the antioxidant capacity of kidney, thereby protecting renal I/R injury in rats.
Collapse
Affiliation(s)
- Kangyu Wang
- The First Affiliated Hospital of Xinxiang Medical University - Department of Urology - Weihui - China
- The First Affiliated Hospital of Xinxiang Medical University - Life Science Center - Weihui - China
| | - Zhao Tang
- The First Affiliated Hospital of Xinxiang Medical University - Department of Urology - Weihui - China
| | - Shuai Liu
- The First Affiliated Hospital of Xinxiang Medical University - Department of Urology - Weihui - China
| | - Yan Liu
- The First Affiliated Hospital of Xinxiang Medical University - Department of Urology - Weihui - China
| | - Huiqing Zhang
- The First Affiliated Hospital of Xinxiang Medical University - Department of Urology - Weihui - China
| | - Haocheng Zhan
- The First Affiliated Hospital of Xinxiang Medical University - Department of Urology - Weihui - China
| |
Collapse
|
17
|
Yang B, Yu N. Traditional Chinese medicine alleviating neuropathic pain targeting purinergic receptor P2 in purinergic signaling: A review. Brain Res Bull 2023; 204:110800. [PMID: 37913850 DOI: 10.1016/j.brainresbull.2023.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Past studies have suggested that Chinese herbal may alleviate neuropathic pain, and the mechanism might target the inhibition of purinergic receptor P2. This review discusses whether traditional Chinese medicine target P2 receptors in neuropathic pain and its mechanism in order to provide references for future clinical drug development. The related literatures were searched from Pubmed, Embase, Sinomed, and CNKI databases before June 2023. The search terms included"neuropathic pain", "purinergic receptor P2", "P2", "traditional Chinese medicine", "Chinese herbal medicine", and "herb". We described the traditional Chinese medicine alleviating neuropathic pain via purinergic receptor P2 signaling pathway including P2X2/3 R, P2X3R, P2X4R, P2X7R, P2Y1R. Inhibition of activating glial cells, changing synaptic transmission, increasing painful postsynaptic potential, and activating inflammatory signaling pathways maybe the mechanism. Purine receptor P2 can mediate the occurrence of neuropathic pain. And many of traditional Chinese medicines can target P2 receptors to relieve neuropathic pain, which provides reasonable evidences for the future development of drugs. Also, the safety and efficacy and mechanism need more in-depth experimental research.
Collapse
Affiliation(s)
- Bo Yang
- Department of Center for Psychosomatic Medicine,Sichuan Provincial Center for Mental Health,Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611135, China
| | - Nengwei Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
18
|
Zhou W, He H, Wei Q, Che L, Zhao X, Liu W, Yan Y, Hu L, Du Y, Yin Z, Shuai Y, Yang L, Feng R. Puerarin protects against acetaminophen-induced oxidative damage in liver through activation of the Keap1/Nrf2 signaling pathway. Food Sci Nutr 2023; 11:6604-6615. [PMID: 37823166 PMCID: PMC10563760 DOI: 10.1002/fsn3.3609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/08/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Puerarin (Pue) is a kind of isoflavone compound extracted from Pueraria lobata, which has significant antioxidant activity. Excessive use of acetaminophen (APAP) can cause oxidative stress in the liver and eventually lead to acute liver injury. The purpose of this study was to investigate the protective effect and the mechanism of puerarin on APAP-induced liver oxidative damage. In in vitro experiments, puerarin significantly increased the cell activity of HepG2 cells, reduced the ROS accumulation, alleviated the oxidative damage and mitochondrial dysfunction. In in vivo studies, our results showed that puerarin enhanced antioxidant activity and alleviated histopathological damage. Further studies showed that puerarin decreased the expression of Keap1, promoted the nuclear migration of Nrf2, and up-regulated the expression of GCLC, GCLM, HO-1 and NQO1. This study demonstrated that puerarin can protect APAP-induced liver injury via alleviating oxidative stress and mitochondrial dysfunction by affecting the nuclear migration of Nrf2 via inhibiting Keap1.
Collapse
Affiliation(s)
- Wanhai Zhou
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
- Faculty of Agriculture, Forestry and Food EngineeringYiBin UniversityYibinChina
| | - Heng He
- Natural Medicine Research Center, College of Veterinary MedicineSichuan Agricultural UniversityChengduChina
| | - Qin Wei
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
| | - Litao Che
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
- Faculty of Agriculture, Forestry and Food EngineeringYiBin UniversityYibinChina
| | - Xin Zhao
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
- Faculty of Agriculture, Forestry and Food EngineeringYiBin UniversityYibinChina
| | - Wenwen Liu
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
- Faculty of Agriculture, Forestry and Food EngineeringYiBin UniversityYibinChina
| | - Yue Yan
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
- Faculty of Agriculture, Forestry and Food EngineeringYiBin UniversityYibinChina
| | - Lianqing Hu
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
- Faculty of Agriculture, Forestry and Food EngineeringYiBin UniversityYibinChina
| | - Yonghua Du
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
- Faculty of Agriculture, Forestry and Food EngineeringYiBin UniversityYibinChina
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary MedicineSichuan Agricultural UniversityChengduChina
| | - Yongkang Shuai
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
| | - Li Yang
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
| | - Ruizhang Feng
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
| |
Collapse
|
19
|
Ren Y, Qu S. Constituent isoflavones of Puerariae radix as a potential neuroprotector in cognitive impairment: Evidence from preclinical studies. Ageing Res Rev 2023; 90:102040. [PMID: 37619620 DOI: 10.1016/j.arr.2023.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
With the increasing aging population worldwide, the incidence of senile cognitive impairment (CI) is increasing, posing a serious threat to the health of elderly persons. Despite developing new drugs aimed at improving CI, progress in this regard has been insufficient. Natural preparations derived from plants have become an unparalleled resource for developing new drugs. Puerariae radix (PR) has a long history as Chinese herbal medicine. PR is rich in various chemical components such as isoflavones, triterpenes, and saponins. The isoflavones (puerarin, daidzein, formononetin, and genistein) exhibit potential therapeutic effects on CI through multiple mechanisms. Relevant literature was organized from major scientific databases such as PubMed, Elsevier, SpringerLink, ScienceDirect, and Web of Science. Using "Puerariae radix," "Pueraria lobata," "isoflavones," "puerarin," "antioxidant," "daidzein," "formononetin," "genistein," "Alzheimer"s disease," and "vascular cognitive impairment" as keywords, the relevant literature was extracted from the databases mentioned above. We found that isoflavones from PR have neuroprotective effects on multiple models of CI via multiple targets and mechanisms. These isoflavones prevent Aβ aggregation, inhibit tau hyperphosphorylation, increase cholinergic neurotransmitter levels, reduce neuroinflammation and oxidative stress, improve synaptic plasticity, promote nerve regeneration, and prevent apoptosis. PR has been used as traditional Chinese herbal medicine for a long time, and its constituent isoflavones exert significant therapeutic effects on CI through various neuroprotective mechanisms. This review will contribute to the future development of isoflavones present in PR as novel drug candidates for the clinical treatment of CI.
Collapse
Affiliation(s)
- Yaoyao Ren
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao St, Shenyang 110004, PR China.
| |
Collapse
|
20
|
Yang R, Gu Y, Qin J, Liu Q, Liu Q. Potential role of Chinese medicine nanoparticles to treat coronary artery disease. Heliyon 2023; 9:e19766. [PMID: 37809499 PMCID: PMC10559060 DOI: 10.1016/j.heliyon.2023.e19766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Coronary artery disease (CAD) is a leading cause of death worldwide, while conventional treatments such as percutaneous coronary intervention (PCI) have limitations. This review aims to explore the potential of nanoparticles loaded with Chinese medicine in the treatment of CAD. We conducted a comprehensive literature search to summarize the characteristics of nanovehicle systems, targeting strategies, and administration methods of various nanoparticles containing Chinese medicine for CAD treatment. Nanoparticle-based drug delivery systems, capable of delivering Chinese medicine, offer several advantages, including high targeting efficiency, prolonged half-life, and low systemic toxicity, making them promising for CAD treatment. Overall, nanoparticles containing Chinese medicine present a promising approach for the treatment of CAD.
Collapse
Affiliation(s)
- Rongyuan Yang
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, 510120, China
| | - Yingming Gu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, 510120, China
| | - Jinying Qin
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, 510120, China
| | - Qingqing Liu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, 510120, China
| | - Qing Liu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, 510120, China
| |
Collapse
|
21
|
Yan JB, Nie YM, Xu SM, Zhang S, Chen ZY. Pure total flavonoids from citrus alleviate oxidative stress and inflammation in nonalcoholic fatty liver disease by regulating the miR-137-3p/NOXA2/NOX2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154944. [PMID: 37393830 DOI: 10.1016/j.phymed.2023.154944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/25/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has become a global health issue owing to its large disease population and high morbidity. We previously reported that the improvement in oxidative stress (OS) using pure total flavonoids from citrus (PTFC), flavonoids isolated from the peel of Citrus changshan-huyou Y.B. Chan, is a crucial strategy for NAFLD treatment. However, OS-associated intervention pathways in NAFLD remain unclear. METHODS In this study, we used microRNA (miR)- and mRNA-sequencing to identify the pathway by which PTFC improve OS in NAFLD. Clinical data, mimic/inhibitor assays, and a dual-luciferase reporter assay were selected to verify the regulatory relationships of this pathway. Moreover, in vivo and in vitro experiments were used to confime the regulatory effect of PTFC on this pathway. RESULTS miR-seq, mRNA-seq, and bioinformatics analyses revealed that the miR-137-3p/neutrophil cytosolic factor 2 (NCF2, also known as NOXA2)/cytochrome b-245 beta chain (CYBB, also known as NOX2) pathway may be a target pathway for PTFC to improve OS and NAFLD. Additionally, bivariate logistic regression analysis combining the serum and clinical data of patients revealed NOX2 and NOXA2 as risk factors and total antioxidant capacity (indicator of OS level) as a protective factor for NAFLD. miR-137-3p mimic/inhibitor assays revealed that the upregulation of miR-137-3p is vital for improving cellular steatosis, OS, and inflammation. Dual-luciferase reporter assay confirmed that NOXA2 acts as an miR-137-3p sponge. These results co-determined that miR-137-3p/NOXA2/NOX2 is an essential pathway involved in NAFLD pathogenesis, including lipid accumulation, OS, and inflammation. In vivo and in vitro experiments further confirmed that the miR-137-3p/NOXA2/NOX2 pathway is regulated by PTFC. CONCLUSION PTFC alleviates OS and inflammation in NAFLD by regulating the miR-137-3p/NOXA2/NOX2 pathway.
Collapse
Affiliation(s)
- Jun-Bin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, 310000, China
| | - Yun-Meng Nie
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Su-Mei Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, 310000, China; Key Laboratory of Traditional Chinese Medicine for the treatment of Intestine-Liver of Zhejiang Province, Hangzhou, 310000, China.
| | - Zhi-Yun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China; Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
22
|
Oberacker T, Kraft L, Schanz M, Latus J, Schricker S. The Importance of Thioredoxin-1 in Health and Disease. Antioxidants (Basel) 2023; 12:antiox12051078. [PMID: 37237944 DOI: 10.3390/antiox12051078] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Thioredoxin-1 (Trx-1) is a multifunctional protein ubiquitously found in the human body. Trx-1 plays an important role in various cellular functions such as maintenance of redox homeostasis, proliferation, and DNA synthesis, but also modulation of transcription factors and control of cell death. Thus, Trx-1 is one of the most important proteins for proper cell and organ function. Therefore, modulation of Trx gene expression or modulation of Trx activity by various mechanisms, including post-translational modifications or protein-protein interactions, could cause a transition from the physiological state of cells and organs to various pathologies such as cancer, and neurodegenerative and cardiovascular diseases. In this review, we not only discuss the current knowledge of Trx in health and disease, but also highlight its potential function as a biomarker.
Collapse
Affiliation(s)
- Tina Oberacker
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Leonie Kraft
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| | - Moritz Schanz
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| | - Jörg Latus
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| | - Severin Schricker
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| |
Collapse
|
23
|
Wang L, Wang T, Wen S, Song R, Zou H, Gu J, Liu X, Bian J, Liu Z, Yuan Y. Puerarin Prevents Cadmium-Induced Neuronal Injury by Alleviating Autophagic Dysfunction in Rat Cerebral Cortical Neurons. Int J Mol Sci 2023; 24:ijms24098328. [PMID: 37176033 PMCID: PMC10179714 DOI: 10.3390/ijms24098328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Autophagic dysfunction is one of the main mechanisms of cadmium (Cd)-induced neurotoxicity. Puerarin (Pue) is a natural antioxidant extracted from the medicinal and edible homologous plant Pueraria lobata. Studies have shown that Pue has neuroprotective effects in a variety of brain injuries, including Cd-induced neuronal injury. However, the role of Pue in the regulation of autophagy to alleviate Cd-induced injury in rat cerebral cortical neurons remains unclear. This study aimed to elucidate the protective mechanism of Pue in alleviating Cd-induced injury in rat cerebral cortical neurons by targeting autophagy. Our results showed that Pue alleviated Cd-induced injury in rat cerebral cortical neurons in vitro and in vivo. Pue activates autophagy and alleviates Cd-induced autophagic blockade in rat cerebral cortical neurons. Further studies have shown that Pue alleviates the Cd-induced inhibition of autophagosome-lysosome fusion, as well as the inhibition of lysosomal degradation. The specific mechanism is related to Pue alleviating the inhibition of Cd on the expression levels of the key proteins Rab7, VPS41, and SNAP29, which regulate autophagosome-lysosome fusion, as well as the lysosome-related proteins LAMP2, CTSB, and CTSD. In summary, these results indicate that Pue alleviates Cd-induced autophagic dysfunction in rat cerebral cortical neurons by alleviating autophagosome-lysosome fusion dysfunction and lysosomal degradation dysfunction, thereby alleviating Cd-induced neuronal injury.
Collapse
Affiliation(s)
- Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
24
|
Huang Y, Xue M. Combination of losartan and puerarin induced pharmacokinetic interaction in hypertension rats and enhances the antihypertensive effect of losartan. Xenobiotica 2023:1-6. [PMID: 37114483 DOI: 10.1080/00498254.2023.2207639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The co-administration of losartan and puerarin in hypertension rat models was investigated aiming to evaluate their interaction and potential mechanism.Hypertension rat models were established with N (omega)-nitro-L-arginine methyl ester and the pharmacokinetics and antihypertensive effect of losartan were analyzed in normal and hypertension rats. In vitro, the metabolic stability of losartan was evaluated in rat liver microsomes, and the effect of puerarin on the activity of CYP2C9 and 3A4 was assessed in human liver microsomes.Puerarin significantly changed the pharmacokinetic profiling of losartan in hypertension rats behavior with the increasing AUC, AUMC, Cmax, and prolonged t1/2. The antihypertensive effect of losartan was enhanced by the co-administration of puerarin, which reduced the systolic blood pressure and diastolic blood pressure below normal levels. In vitro, puerarin significantly improved the metabolic stability of losartan with a reduced intrinsic clearance rate. Puerarin also showed significant inhibitory effects on the activity of CYP2C9 and 3A4 with the IC50 of 17.15 and 7.69 μM, respectively.Losartan co-administered with puerarin increased the system exposure and metabolic stability of losartan and enhanced its antihypertensive effect. The inhibition of CYP2C9 and 3A4 by puerarin was the potential mechanism mediating their interaction.
Collapse
Affiliation(s)
- Yingying Huang
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejinag 325000, China
| | - Minglei Xue
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejinag 325000, China
| |
Collapse
|
25
|
Zhou S, Li Y, Hong Y, Zhong Z, Zhao M. Puerarin protects against sepsis-associated encephalopathy by inhibiting NLRP3/Caspase-1/GSDMD pyroptosis pathway and reducing blood-brain barrier damage. Eur J Pharmacol 2023; 945:175616. [PMID: 36863556 DOI: 10.1016/j.ejphar.2023.175616] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Puerarin (Pue), an isoflavone compound extracted from Pueraria, has been shown to inhibit inflammation and reduce cerebral edema. The neuroprotective effect of puerarin has attracted much attention in recent years. Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis that causes damage to the nervous system. This study aimed to investigate the effect of puerarin on SAE and elucidate the potential underlying mechanisms. A rat model of SAE was established by cecal ligation and puncture, and puerarin was injected intraperitoneally immediately after the operation. Puerarin was found to improve the survival rate and neurobehavioral score of SAE rats, alleviate symptoms, inhibit the level of brain injury markers NSE and S100β, and improve the pathological changes in rat brain tissue. Puerarin was also found to inhibit the level of factors related to the classical pathway of pyroptosis, such as NLRP3, Caspase-1, GSDMD, ASC, IL-1β, and IL-18. Puerarin also reduced the brain water content and penetration of Evan's Blue dye in SAE rats, and reduced the expression of MMP-9. In the in vitro experiments, we further confirmed the inhibitory effect of puerarin on neuronal pyroptosis by establishing a pyroptosis model in HT22 cells. Our findings suggest that puerarin may improve SAE by inhibiting the classical pathway of NLRP3/Caspase-1/GSDMD-mediated pyroptosis and reducing blood-brain barrier damage, thus playing a role in brain protection. Our study may provide a novel therapeutic strategy for SAE.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| | - Yuhua Li
- Department of Critical Care Medicine, Wuhan Children's Hospital, Wuhan, Hubei Province, 430014, China
| | - Yi Hong
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Zhitao Zhong
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Min Zhao
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
26
|
Study of Hydroxypropyl β-Cyclodextrin and Puerarin Inclusion Complexes Encapsulated in Sodium Alginate-Grafted 2-Acrylamido-2-Methyl-1-Propane Sulfonic Acid Hydrogels for Oral Controlled Drug Delivery. Gels 2023; 9:gels9030246. [PMID: 36975695 PMCID: PMC10048200 DOI: 10.3390/gels9030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Puerarin has been reported to have anti-inflammatory, antioxidant, immunity enhancement, neuroprotective, cardioprotective, antitumor, and antimicrobial effects. However, due to its poor pharmacokinetic profile (low oral bioavailability, rapid systemic clearance, and short half-life) and physicochemical properties (e.g., low aqueous solubility and poor stability) its therapeutic efficacy is limited. The hydrophobic nature of puerarin makes it difficult to load into hydrogels. Hence, hydroxypropyl-β-cyclodextrin (HP-βCD)-puerarin inclusion complexes (PIC) were first prepared to enhance solubility and stability; then, they were incorporated into sodium alginate-grafted 2-acrylamido-2-methyl-1-propane sulfonic acid (SA-g-AMPS) hydrogels for controlled drug release in order to increase bioavailability. The puerarin inclusion complexes and hydrogels were evaluated via FTIR, TGA, SEM, XRD, and DSC. Swelling ratio and drug release were both highest at pH 1.2 (36.38% swelling ratio and 86.17% drug release) versus pH 7.4 (27.50% swelling ratio and 73.25% drug release) after 48 h. The hydrogels exhibited high porosity (85%) and biodegradability (10% in 1 week in phosphate buffer saline). In addition, the in vitro antioxidative activity (DPPH (71%), ABTS (75%), and antibacterial activity (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) indicated the puerarin inclusion complex-loaded hydrogels had antioxidative and antibacterial capabilities. This study provides a basis for the successful encapsulation of hydrophobic drugs inside hydrogels for controlled drug release and other purposes.
Collapse
|
27
|
Chen WH, Tan Y, Wang YL, Wang X, Liu ZH. Rheumatic valvular heart disease treated with traditional Chinese medicine: A case report. World J Clin Cases 2023; 11:1600-1606. [PMID: 36926399 PMCID: PMC10011998 DOI: 10.12998/wjcc.v11.i7.1600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Rheumatic heart disease (RHD) is an autoimmune disease that leads to irreversible valve damage and heart failure. Surgery is an effective treatment; however, it is invasive and carries risks, restricting its broad application. Therefore, it is essential to find alternative nonsurgical treatments for RHD.
CASE SUMMARY A 57-year-old woman was assessed with cardiac color Doppler ultrasound, left heart function tests, and tissue Doppler imaging evaluation at Zhongshan Hospital of Fudan University. The results showed mild mitral valve stenosis with mild to moderate mitral and aortic regurgitation, confirming a diagnosis of rheumatic valve disease. After her symptoms became severe, with frequent ventricular tachycardia and supraventricular tachycardia > 200 beats per minute, her physicians recommended surgery. During a 10-day preoperative waiting period, the patient asked to be treated with traditional Chinese medicine. After 1 week of this treatment, her symptoms improved significantly, including resolution of the ventricular tachycardia, and the surgery was postponed pending further follow-up. At 3 -month follow-up, color Doppler ultrasound showed mild mitral valve stenosis with mild mitral and aortic regurgitation. Therefore, it was determined that no surgical treatment was required.
CONCLUSION Traditional Chinese medicine treatment effectively relieves symptoms of RHD, particularly mitral valve stenosis and mitral and aortic regurgitation.
Collapse
Affiliation(s)
- Wei-Hang Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Tan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ya-Lei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhao-Heng Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
28
|
Liu T, Su K, Cai W, Ao H, Li M. Therapeutic potential of puerarin against cerebral diseases: From bench to bedside. Eur J Pharmacol 2023:175695. [PMID: 36977450 DOI: 10.1016/j.ejphar.2023.175695] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
The incidence of cerebral diseases is rapidly increasing worldwide, and they have become an important challenge for modern medicine. Most of the available chemical drugs used in the treatment of cerebral diseases are highly toxic and single-targeted. Therefore, novel drugs from natural resources have attracted much attention for their potential to manage cerebral diseases. Puerarin is a natural isoflavone isolated from the roots of Pueraria species such as P. lobata (Willd) Ohwi, P. thomsonii, and P. mirifica. Several authors have reported the beneficial effects of puerarin in cerebral ischemic disease, intracerebral hemorrhage, vascular dementia, Alzheimer's disease, Parkinson's disease, depression, anxiety, and traumatic brain injury. This review summarizes the brain pharmacokinetics, brain drug delivery system, clinical use (in cerebral diseases), toxicity, and the adverse clinical reactions of puerarin. We have systematically presented the pharmacological actions and the molecular mechanisms of puerarin in various cerebral diseases to provide a direction for future research on the therapeutic use of puerarin in cerebral diseases.
Collapse
|
29
|
Zeng M, Guo D, Fernández-Varo G, Zhang X, Fu S, Ju S, Yang H, Liu X, Wang YC, Zeng Y, Casals G, Casals E. The Integration of Nanomedicine with Traditional Chinese Medicine: Drug Delivery of Natural Products and Other Opportunities. Mol Pharm 2023; 20:886-904. [PMID: 36563052 DOI: 10.1021/acs.molpharmaceut.2c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The integration of progressive technologies such as nanomedicine with the use of natural products from traditional medicine (TM) provides a unique opportunity for the longed-for harmonization between traditional and modern medicine. Although several actions have been initiated decades ago, a disparity of reasons including some misunderstandings between each other limits the possibilities of a truly complementation. Herein, we analyze some common challenges between nanomedicine and traditional Chinese medicine (TCM). These challenges, if solved in a consensual way, can give a boost to such harmonization. Nanomedicine is a recently born technology, while TCM has been used by the Chinese people for thousands of years. However, for these disciplines, the regulation and standardization of many of the protocols, especially related to the toxicity and safety, regulatory aspects, and manufacturing procedures, are under discussion. Besides, both TCM and nanomedicine still need to achieve a wider social acceptance. Herein, we first briefly discuss the strengths and weaknesses of TCM. This analysis serves to focus afterward on the aspects where TCM and nanomedicine can mutually help to bridge the existing gaps between TCM and Western modern medicine. As discussed, many of these challenges can be applied to TM in general. Finally, recent successful cases in scientific literature that merge TCM and nanomedicine are reviewed as examples of the benefits of this harmonization.
Collapse
Affiliation(s)
- Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Dongdong Guo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Guillermo Fernández-Varo
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer de Villarroel, 170, 08036 Barcelona, Spain.,Department of Biomedicine, University of Barcelona, 08007 Barcelona, Spain
| | - Xu Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Siqi Fu
- Department of Dermatology, Second Xiangya Hospital Central South University, Changsha 410011, China
| | - Shijie Ju
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Huiling Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xingfei Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Ya-Chao Wang
- The Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha 410008, China.,First Clinical Department of Changsha Medical University, Changsha 410219, China
| | - Gregori Casals
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
30
|
Wang S, Yao W, Zhu X, Wang J, Lu L, Zhu N, Lan T, Kuang Y, Zhu W, Liu R, Huang L. Exploring the mechanism of the antithrombotic effects of Pueraria lobata and Pueraria lobata var. thomsonii based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115701. [PMID: 36089177 DOI: 10.1016/j.jep.2022.115701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/26/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pueraria lobata (Willd.) Ohwi and Pueraria lobata var. thomsonii (Benth.) Maesen are nutritious medicine food homology plants that are widely used in the food and health products industry and are excellent natural materials for the development of new health foods, with great potential for domestic and foreign markets. Clinically, P. lobata and P. thomsonii are used to treat coronary heart disease, atherosclerosis, cerebral infarction and other cardiovascular diseases, and antithrombotic actions may be their core effect in the treatment of thrombotic diseases. However, the underlying mechanisms of the antithrombotic properties of P. lobata and P. thomsonii have not been clarified. METHODS First, P. lobata and P. thomsonii were identified by high-performance liquid chromatography (HPLC). An arteriovenous bypass thrombosis rat model was established. Thrombus dry‒wet weight, platelet accumulation rate and the four coagulation indices, including activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and fibrinogen (FIB), were detected in plasma to manifest the P. lobata and P. thomsonii antithrombotic function. Network pharmacology and molecular docking methods were used to obtain key targets and verify reliability. David 6.8 was used for GO and KEGG analyses to explore pathways and potential targets for P. lobata and P. thomsonii antithrombotic functions. Prostaglandin I2 (PGI2), thromboxane A2 (TXA2), cyclooxygenase 2 (COX-2), myeloperoxidase (MPO) and endothelial nitric oxide synthase (eNOS) were tested by enzyme-linked immunosorbent assay (ELISA). RESULTS The results indicated that P. lobata and P. thomsonii can reduce thrombus dry‒wet weight and platelet accumulation in rats and inhibit TT, APTT, FIB, and PT. A comprehensive network pharmacology approach successfully identified 9 active ingredients in P. lobata and P. thomsonii. The main active ingredients include polyphenols, amino acids and flavonoids. A total of 15 antithrombotic function targets were obtained, including 3 key targets (PTGS2, NOS3, MPO). Pathway analysis showed 10 significant related pathways and 29 biological processes. P. lobata and P. thomsonii inhibited platelet aggregation by upregulating PGI2 and downregulating TXA2, inhibited PTGS2 to reduce inflammation, and increased the level of eNOS to promote vasodilation. In addition, P. lobata and P. thomsonii alleviated oxidative stress by increasing SOD levels and significantly decreasing MDA contents. CONCLUSION The results of the study further clarify the antithrombotic mechanism of action of P. lobata and P. thomsonii, which provides a scientific basis for the development of new drugs for thrombogenic diseases and lays the foundation for the development of P. lobata and P. thomsonii herbal resources and P. lobata and P. thomsonii health products.
Collapse
Affiliation(s)
- Song Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China; Key Laboratory of Pharmacology of TCM in Jiangxi Province, Nanchang, Jiangxi, 330004, China
| | - Wei Yao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China; Key Laboratory of Pharmacology of TCM in Jiangxi Province, Nanchang, Jiangxi, 330004, China
| | - Xudong Zhu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China; Key Laboratory of Pharmacology of TCM in Jiangxi Province, Nanchang, Jiangxi, 330004, China
| | - Jingjing Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China; Key Laboratory of Pharmacology of TCM in Jiangxi Province, Nanchang, Jiangxi, 330004, China
| | - Longhui Lu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China; Key Laboratory of Pharmacology of TCM in Jiangxi Province, Nanchang, Jiangxi, 330004, China
| | - Na Zhu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China; Key Laboratory of Pharmacology of TCM in Jiangxi Province, Nanchang, Jiangxi, 330004, China
| | - Tong Lan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Yunxia Kuang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Weifeng Zhu
- Key Laboratory of Jiangxi University of Chinese Medicine, Ministry of Education, Nanchang, Jiangxi, 330004, China
| | - Ronghua Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Liping Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China; Key Laboratory of Pharmacology of TCM in Jiangxi Province, Nanchang, Jiangxi, 330004, China.
| |
Collapse
|
31
|
Qiang S, Gu L, Kuang Y, Zhao M, You Y, Han Q. Changes in the content of Puerarin-PLGA nanoparticles in mice under the influence of alcohol and analysis of their antialcoholism. J Appl Biomater Funct Mater 2023; 21:22808000221148100. [PMID: 36708246 DOI: 10.1177/22808000221148100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To observe the metabolic changes and antialcoholic effect of Puerarin-PLGA nanoparticles (PUE-NP) in mice. PUE-NP was prepared and characterized by particle size distribution and morphology. The mouse models with acute alcoholism were established to observe their behavioral changes after alcohol poisoning. The expressions of biologically active enzymes such as CRE, BUN, AST, ALT in serum and SOD and TLR4 in liver of mice in each group were detected, and the pathological changes in liver and kidney tissues were observed by HE staining. The PUE-NP metabolism in mice was determined by in vitro release assay and HPLC. PUE-NP nanoparticles had good morphology and structure, and the mouse models with alcohol poisoning were established successfully. Compared with alcohol group, puerarin and PUE-NP increased the disappearance latency time of righting reflex, and the recovery time of righting reflex was significantly shortened. Water maze results showed that Puerarin and PUE-NP had inhibitory effect on impaired memory. HPLC results showed that PUE-NP reached its peak in mice after 1 h, and the content percentage was twice that of puerarin preparation alone, and the distribution time of puerarin concentration in vivo was prolonged, indicating that PLGA nanoparticles had a loading and slow-release effect on puerarin and increased the bioavailability of puerarin in mice. In addition, compared with the alcohol group, Puerarin and PUE-NP improved serum ALT, AST, CRE, and BUN levels in mice, enhanced SOD activity in liver, and inhibited TLR4 expression. The effect was better in the PUE-NP group than in the Puerarin group. PUE-NP delayed the release and metabolism of Puerarin and had better effect in the treatment of the alcoholic liver and kidney injury.
Collapse
Affiliation(s)
- Siyu Qiang
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Lixiang Gu
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Yu Kuang
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Minyao Zhao
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Yu You
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Qin Han
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| |
Collapse
|
32
|
ROS-triggered drug release of puerarin from boronic ester modified nanoparticles to reduce oxidative damage in HUVECs. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
33
|
Bai X, Bian Z, Zhang M. Targeting the Nrf2 signaling pathway using phytochemical ingredients: A novel therapeutic road map to combat neurodegenerative diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154582. [PMID: 36610130 DOI: 10.1016/j.phymed.2022.154582] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (Nrf2) is a classical nuclear transcription factor that regulates the system's anti-oxidative stress response. The activation of Nrf2 induces the expression of antioxidant proteins and improves the system's anti-oxidative stress ability. Accumulating evidence suggests that Nrf2-centered signaling pathways may be a key pharmacological target for the treatment of neurodegenerative diseases (NDDs). However, phytochemicals as new therapeutic agents against NDDs have not been clearly delineated. PURPOSE To review the therapeutic effects of phytochemical ingredients on NDDs by activating Nrf2 and reducing oxidative stress injury. METHODS A comprehensive search of published articles was performed using various literature databases including PubMed, Google Scholar, and China National Knowledge Infrastructure. The search terms included "Nrf2", "phytochemical ingredients", "natural bioactive agents", "neurodegenerative diseases", "Antioxidant", "Alzheimer's disease", "Parkinson's disease", "Huntington's disease", "amyotrophic lateral sclerosis" "multiple sclerosis", "toxicity", and combinations of these keywords. A total of 769 preclinical studies were retrieved until August 2022, and we included 39 of these articless on phytochemistry, pharmacology, toxicology and other fields. RESULTS Numerous in vivo and in vitro studies showed that phytochemical ingredients could act as an Nrf2 activator in the treatment of NDDs through the antioxidant defense mechanism. These phytochemical ingredients, such as salidroside, naringenin, resveratrol, sesaminol, ellagic acid, ginsenoside Re, tanshinone I, sulforaphane, curcumin, naringin, tetramethylpyrazine, withametelin, magnolol, piperine, and myricetin, had the potential to improve Nrf2 signaling, thereby combatting NDDs. CONCLUSION As Nrf2 activators, phytochemical ingredients may provide a novel potential strategy for the treatment of NDDs. Here, we reviewed the interaction between phytochemical ingredients, Nrf2, and its antioxidant damaging pathway in NDDs and explored the advantages of phytochemical ingredients in anti-oxidative stress, which provides a reliable basis for improving the treatment of NDDs. However, further clinical trials are needed to determine the safety and efficacy of Nrf2 activators for NDDs.
Collapse
Affiliation(s)
- Xue Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China.
| |
Collapse
|
34
|
Kampa RP, Sęk A, Bednarczyk P, Szewczyk A, Calderone V, Testai L. Flavonoids as new regulators of mitochondrial potassium channels: contribution to cardioprotection. J Pharm Pharmacol 2022; 75:466-481. [PMID: 36508341 DOI: 10.1093/jpp/rgac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Acute myocardial ischemia is one of the major causes of illness in western society. Reduced coronary blood supply leads to cell death and loss of cardiomyocyte population, resulting in serious and often irreversible consequences on myocardial function. Mitochondrial potassium (mitoK) channels have been identified as fine regulators of mitochondrial function and, consequently, in the metabolism of the whole cell, and in the mechanisms underlying the cardioprotection. Interestingly, mitoK channels represent a novel putative target for treating cardiovascular diseases, particularly myocardial infarction, and their modulators represent an interesting tool for pharmacological intervention. In this review, we took up the challenge of selecting flavonoids that show cardioprotective properties through the activation of mitoK channels.
Key findings
A brief overview of the main information on mitoK channels and their participation in the induction of cytoprotective processes was provided. Then, naringenin, quercetin, morin, theaflavin, baicalein, epigallocatechin gallate, genistein, puerarin, luteolin and proanthocyanidins demonstrated to be effective modulators of mitoK channels activity, mediating many beneficial effects.
Summary
The pathophysiological role of mitoK channels has been investigated as well as the impact of flavonoids on this target with particular attention to their potential role in the prevention of cardiovascular disorders.
Collapse
Affiliation(s)
- Rafał P Kampa
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
- Department of Pharmacy, University of Pisa , Italy
| | - Aleksandra Sęk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
- Faculty of Chemistry, University of Warsaw , Warsaw , Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, SGGW , Warsaw , Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa , Italy
| |
Collapse
|
35
|
Jing X, Zhou J, Zhang N, Zhao L, Wang S, Zhang L, Zhou F. A Review of the Effects of Puerarin on Glucose and Lipid Metabolism in Metabolic Syndrome: Mechanisms and Opportunities. Foods 2022; 11:foods11233941. [PMID: 36496749 PMCID: PMC9739247 DOI: 10.3390/foods11233941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic diseases, including metabolic syndrome related to sugar and lipid metabolic disorders, are the leading causes of premature death around the world. Novel treatment strategies without undesirable effects are urgently needed. As a natural functional ingredient, puerarin is a promising alternative for the treatment of sugar and lipid metabolic disorders. However, the applications of puerarin are limited due to its poor solubility and short half-life. Various drug delivery systems have been investigated to improve the bioavailability of puerarin. This review summarizes the mechanisms involved in the beneficial action of puerarin: suppressing the release of glucose and FFA; regulating the transport of glucose and fatty acids; acting on the PI3K-Akt and AMPK signaling pathways to decrease the synthesis of glucose and fatty acids; acting on the PPAR signaling pathway to promote β-oxidation; and improving insulin secretion and sensitivity. In addition, the preparation technologies used to improve the bioavailability of puerarin are also summarized in this review, in the hope of helping to promote the application of puerarin.
Collapse
Affiliation(s)
- Xiaoxuan Jing
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Shiran Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (L.Z.); (F.Z.)
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (L.Z.); (F.Z.)
| |
Collapse
|
36
|
The protective effect of puerarin-loaded mesoporous silicon nanoparticles on alcoholic hepatitis through mTOR-mediated autophagy pathway. Biomed Microdevices 2022; 24:37. [DOI: 10.1007/s10544-022-00622-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
|
37
|
Meng F, Guo B, Ma YQ, Li KW, Niu FJ. Puerarin: A review of its mechanisms of action and clinical studies in ophthalmology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154465. [PMID: 36166943 DOI: 10.1016/j.phymed.2022.154465] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pueraria is the common name of the dried root of either Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) or Pueraria montana var. thomsonii (Benth.) M.R.Almeida (syn. Pueraria thomsonii Benth.). Puerarin is a C-glucoside of the isoflavone daidzein extracted from Pueraria. It has been widely investigated to explore its therapeutic role in eye diseases and the molecular mechanisms. PURPOSE To collect the available literature from 2000 to 2022 on puerarin in the treatment of ocular diseases and suggest the future required directions to improve its medicinal value. METHOD The content of this review was obtained from databases such as Web of Science, PubMed, Google Scholar, China National Knowledge Infrastructure (CNKI), and the Wanfang Database. RESULTS The search yielded 428 articles, of which 159 articles were included after excluding duplicate articles and articles related to puerarin but less relevant to the topic of the review. In eleven articles, the bioavailability of puerarin was discussed. Despite puerarin possesses diverse biological activities, its bioavailability on its own is poor. There are 95 articles in which the therapeutic mechanisms of puerarin in ocular diseases was reported. Of these, 54 articles discussed the various signalling pathways related to occular diseases affected by puerarin. The other 41 articles discussed specific biological activities of puerarin. It plays a therapeutic role in ophthalmopathy via regulating nuclear factor kappa-B (NF-ĸB), mitogen-activated protein kinases (MAPKs), PI3K/AKT, JAK/STAT, protein kinase C (PKC) and other related pathways, affecting the expression of tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β), intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1), superoxide dismutase (SOD), B-cell lymphoma-2 (Bcl-2) and other cytokines resulting in anti-inflammatory, antioxidant and anti-apoptotic effects. The clinical applications of puerarin in ophthalmology were discussed in 25 articles. Eleven articles discussed the toxicity of puerarin. The literature suggests that puerarin has a good curative effect and can be used safely in clinical practice. CONCLUSION This review has illustrated the diverse applications of puerarin acting on ocular diseases and suggested that puerarin can be used for treating diabetic retinopathy, retinal vascular occlusion, glaucoma and other ocular diseases in the clinic. Some ocular diseases are the result of the combined action of multiple factors, and the effect of puerarin on different factors needs to be further studied to improve a more complete mechanism of action of puerarin. In addition, it is necessary to increase the number of subjects in clinical trials and conduct clinical trials for other ocular diseases. The information presented here will guide future research studies.
Collapse
Affiliation(s)
- Fan Meng
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Bin Guo
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Yi-Qing Ma
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Kun-Wei Li
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China.
| | - Feng-Ju Niu
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China.
| |
Collapse
|
38
|
Shi X, Chang M, Zhao M, Shi Y, Zhang Y. Traditional Chinese medicine compounds ameliorating glomerular diseases via autophagy: A mechanism review. Biomed Pharmacother 2022; 156:113916. [DOI: 10.1016/j.biopha.2022.113916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
|
39
|
Muhammad Z, Ramzan R, Zhang R, Zhao D, Khalid N, Deng M, Dong L, Aziz M, Batool R, Zhang M. Enhanced Bioaccessibility of Microencapsulated Puerarin Delivered by Pickering Emulsions Stabilized with OSA-Modified Hydrolyzed Pueraria montana Starch: In Vitro Release, Storage Stability, and Physicochemical Properties. Foods 2022; 11:foods11223591. [PMID: 36429183 PMCID: PMC9689181 DOI: 10.3390/foods11223591] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Puerarin is a bioactive flavonoid isolated from Kudzu roots that possesses numerous health benefits. However, its poor bioavailability and existing complex delivery systems with safety issues are challenging tasks for its incorporation into functional foods. Preparing modified-starch-stabilized Pickering emulsions containing microencapsulated puerarin with improved bioaccessibility was the key objective of the present research work. Acid-hydrolyzed high-amylose Pueraria montana starch (PMS) was modified with octenyl succinic anhydride (OSA) and evaluated as an emulsifier to prepare emulsions. The FTIR, SEM, and XRD results showed that PMS was successfully modified. Furthermore, the emulsification index (EI), mean droplet size, and ζ-potential values showed that modified starch with a higher degree of substitution (DS) enhanced the storage stability of emulsions. Similarly, the retention degree and encapsulation efficiency results of puerarin proved the assumption after storage of 16 d. The Pickering emulsions also helped in the controlled release of microencapsulated puerarin in vitro. The study outcomes proved that Pickering emulsions stabilized with OSA-modified PMS have promising applicability in functional foods as efficient food-grade delivery systems, enhancing oral supplementation and accessibility of puerarin.
Collapse
Affiliation(s)
- Zafarullah Muhammad
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Rabia Ramzan
- Department of Food Science and Technology, Government College Women University, Faisalabad 38000, Pakistan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Dong Zhao
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Nazia Khalid
- Department of Food Science and Technology, Government College Women University, Faisalabad 38000, Pakistan
| | - Mei Deng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mahwash Aziz
- Department of Food Science and Technology, Government College Women University, Faisalabad 38000, Pakistan
| | - Rizwana Batool
- Department of Food Science and Technology, Government College Women University, Faisalabad 38000, Pakistan
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
- Correspondence:
| |
Collapse
|
40
|
Feng Y, Sun W, Sun F, Yin G, Liang P, Chen S, Liu X, Jiang T, Zhang F. Biological Mechanisms and Related Natural Inhibitors of CD36 in Nonalcoholic Fatty Liver. Drug Des Devel Ther 2022; 16:3829-3845. [PMID: 36388082 PMCID: PMC9642071 DOI: 10.2147/dddt.s386982] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), a spectrum of liver disorders from non-alcoholic fatty liver (NAFL) to the more severe non-alcoholic steatohepatitis (NASH), is the leading etiology of chronic liver disease and its global prevalence is increasing. Hepatic steatosis, a condition marked by an abnormal buildup of triglycerides in the liver, is the precursor to NAFLD. Differentiated cluster 36 (CD36), a scavenger receptor class B protein, is a membrane receptor that recognizes multiple lipid and non-lipid ligands. It is generally agreed that CD36 contributes significantly to hepatic steatosis by taking part in fatty acid uptake as well as triglyceride storage and secretion. While there has not been any conclusive research on how CD36 inhibitors prevent NAFLD from progressing and no clinically approved CD36 inhibitors are currently available for use in NAFLD, CD36 remains a target worthy of further investigation in NAFLD. In recent years, the potential role of natural products acting through CD36 in treating non-alcoholic fatty liver disease has attracted much attention. This paper offers an overview of the pathogenesis of CD36 in NAFLD and summarizes some of the natural compounds or extracts that are currently being investigated for modulating NAFLD via CD36 or the CD36 pathway, providing an alternative approach to the development of CD36-related drugs in NAFLD.
Collapse
Affiliation(s)
- Yanan Feng
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Wenxiu Sun
- Department of Nursing, Taishan Vocational College of Nursing, Taian, People’s Republic of China
| | - Fengcui Sun
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Pengpeng Liang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Suwen Chen
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Xiangyi Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Tongfei Jiang
- Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| |
Collapse
|
41
|
Lu Q, Tan D, Luo J, Ye Y, Zuo M, Wang S, Li C. Potential of natural products in the treatment of irritable bowel syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154419. [PMID: 36087525 DOI: 10.1016/j.phymed.2022.154419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a kind of functional bowel disease that is characterized by bellyache, abdominal distension, and diarrhea. Although not life-threatening, IBS has a long course and recurrent attacks and seriously affects the life quality of patients. Current drugs for treating IBS possess remarkable limitations, such as limited efficacy and severe adverse reactions. Therefore, developing novel medications to treat IBS is quite essential, and natural products may be a substantial source. PURPOSE This is the first systematic review elaborating the recent advancement of natural products as potential drugs for the therapy of IBS. METHODS A comprehensive retrieval of studies was carried out in scientific databases including PubMed, Web of Science, Elsevier, and CNKI. By using ("irritable bowel syndrome" OR "IBS") AND ("natural product" OR "natural compound" OR "phytochemical") as keywords, the eligible studies were screened, and the relevant information about therapeutic action and mechanism of natural products treating IBS was extracted. RESULTS Natural products against IBS consisted of four categories, namely, terpenoids, flavonoids, alkaloids, and phenols. Furthermore, the underlying mechanisms for natural products treating IBS were tightly associated with increased TJs and mucus protein expression, regulation of the brain-gut axis and gut microbiota structure, and inhibition of inflammatory response and intestinal mucosal damage. CONCLUSION Natural products could be extremely prospective candidate drugs used to treat IBS, and further preclinical and clinical researches are needed to guarantee their efficacy and safety.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Daopeng Tan
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, PR China
| | - Jingbin Luo
- China Traditional Chinese Medicine Holdings Company Limited, Foshan 528000, PR China
| | - Yonghao Ye
- Zhuhai Resproly Pharmaceutical Technology Company Limited, Zhuhai 519040, PR China
| | - Manhua Zuo
- Department of Nursing, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Siyu Wang
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, PR China; Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, PR China.
| |
Collapse
|
42
|
Fang X, Zhang Y, Cao Y, Shan M, Song D, Ye C, Zhu D. Studies on Chemical Composition of Pueraria lobata and Its Anti-Tumor Mechanism. Molecules 2022; 27:molecules27217253. [PMID: 36364084 PMCID: PMC9657109 DOI: 10.3390/molecules27217253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Fourteen compounds were isolated from Pueraria lobata (Willd.) Ohwi by column chromatography and preparative thin-layer chromatography; the structures were identified by spectroscopic analysis and compared with data reported in the literature. Seven compounds were isolated and identified from Pueraria lobata for the first time: Linoleic acid, Sandwicensin, Isovanillin, Ethyl ferulate, Haginin A, Isopterofuran, 3′.7-Dihydroxyisoflavan. The other 10 compounds were structurally identified as follows: Lupenone, Lupeol, β-sitosterol, Genistein, Medicarpin, Coniferyl Aldehyde, Syringaldehyde. All compounds were evaluated for their ability to inhibit SW480 and SW620 cells using the CCK-8 method; compound 5 (Sandwicensin) had the best activity, and compounds 6, 9, 11 and 12 exhibited moderate inhibitory activity. In addition, the targets and signaling pathways of Sandwicensin treatment for CRC were mined using network pharmacology, and MAPK3, MTOR, CCND1 and CDK4 were found to be closely associated with Sandwicensin treatment for CRC; the GO and KEGG analysis showed that Sandwicensin may directly regulate the cycle, proliferation and apoptosis of CRC cells through cancer-related pathways.
Collapse
Affiliation(s)
- Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun 130117, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun 130117, China
| | - Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun 130117, China
| | - Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun 130117, China
| | - Dimeng Song
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun 130117, China
| | - Chao Ye
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
- Correspondence: (C.Y.); (D.Z.)
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun 130117, China
- Correspondence: (C.Y.); (D.Z.)
| |
Collapse
|
43
|
Wang Q, Shen ZN, Zhang SJ, Sun Y, Zheng FJ, Li YH. Protective effects and mechanism of puerarin targeting PI3K/Akt signal pathway on neurological diseases. Front Pharmacol 2022; 13:1022053. [PMID: 36353499 PMCID: PMC9637631 DOI: 10.3389/fphar.2022.1022053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 07/22/2023] Open
Abstract
Neurological diseases impose a tremendous and increasing burden on global health, and there is currently no curative agent. Puerarin, a natural isoflavone extracted from the dried root of Pueraria montana var. Lobata (Willd.) Sanjappa and Predeep, is an active ingredient with anti-inflammatory, antioxidant, anti-apoptotic, and autophagy-regulating effects. It has great potential in the treatment of neurological and other diseases. Phosphatidylinositol 3-kinases/protein kinase B (PI3K/Akt) signal pathway is a crucial signal transduction mechanism that regulates biological processes such as cell regeneration, apoptosis, and cognitive memory in the central nervous system, and is closely related to the pathogenesis of nervous system diseases. Accumulating evidence suggests that the excellent neuroprotective effect of puerarin may be related to the regulation of the PI3K/Akt signal pathway. Here, we summarized the main biological functions and neuroprotective effects of puerarin via activating PI3K/Akt signal pathway in neurological diseases. This paper illustrates that puerarin, as a neuroprotective agent, can protect nerve cells and delay the progression of neurological diseases through the PI3K/Akt signal pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu-Hang Li
- *Correspondence: Feng-Jie Zheng, ; Yu-Hang Li,
| |
Collapse
|
44
|
Li C, Xie J, Wang J, Cao Y, Pu M, Gong Q, Lu Q. Therapeutic effects and mechanisms of plant-derived natural compounds against intestinal mucositis. Front Pharmacol 2022; 13:969550. [PMID: 36210837 PMCID: PMC9533105 DOI: 10.3389/fphar.2022.969550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 01/26/2023] Open
Abstract
Intestinal mucositis is a clinically related adverse reaction of antitumor treatment. Majority of patients receiving high-dose chemical therapy, radiotherapy, and bone-marrow transplant suffer from intestinal mucositis. Clinical manifestations of intestinal mucositis mainly include pain, body-weight reduction, inflammatory symptom, diarrhea, hemoproctia, and infection, which all affect regular nutritional input and enteric function. Intestinal mucositis often influences adherence to antitumor treatment because it frequently restricts the sufferer’s capacity to tolerate treatment, thus resulting in schedule delay, interruption, or premature suspension. In certain circumstances, partial and general secondary infections are found, increasing the expenditures on medical care and hospitalization. Current methods of treating intestinal mucositis are provided, which do not always counteract this disorder. Against this background, novel therapeutical measures are extremely required to prevent and treat intestinal mucositis. Plant-derived natural compounds have lately become potential candidates against enteric injury ascribed to the capacity to facilitate mucosal healing and anti-inflammatory effects. These roles are associated with the improvement of intestinal mucosal barrier, suppression of inflammatory response and oxidant stress, and modulation of gut microflora and immune system. The present article aims at systematically discussing the recent progress of plant-derived natural compounds as promising treatments for intestinal mucositis.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahao Wang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ying Cao
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Min Pu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
- *Correspondence: Qihai Gong, ; Qiang Lu,
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- *Correspondence: Qihai Gong, ; Qiang Lu,
| |
Collapse
|
45
|
Zheng Y, Li R, Fan X. Targeting Oxidative Stress in Intracerebral Hemorrhage: Prospects of the Natural Products Approach. Antioxidants (Basel) 2022; 11:1811. [PMID: 36139885 PMCID: PMC9495708 DOI: 10.3390/antiox11091811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Intracerebral hemorrhage (ICH), the second most common subtype of stroke, remains a significant cause of morbidity and mortality worldwide. The pathological mechanism of ICH is very complex, and it has been demonstrated that oxidative stress (OS) plays an important role in the pathogenesis of ICH. Previous studies have shown that OS is a therapeutic target after ICH, and antioxidants have also achieved some benefits in the treatment of ICH. This review aimed to explore the promise of natural products therapy to target OS in ICH. We searched PubMed using the keywords "oxidative stress in intracerebral hemorrhage" and "natural products in intracerebral hemorrhage". Numerous animal and cell studies on ICH have demonstrated the potent antioxidant properties of natural products, including polyphenols and phenolic compounds, terpenoids, alkaloids, etc. In summary, natural products such as antioxidants offer the possibility of treatment of OS after ICH. However, researchers still have a long way to go to apply these natural products for the treatment of ICH more widely in the clinic.
Collapse
Affiliation(s)
| | | | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
46
|
Zhang X, Chen S, Li X, Zhang L, Ren L. Flavonoids as Potential Antiviral Agents for Porcine Viruses. Pharmaceutics 2022; 14:pharmaceutics14091793. [PMID: 36145539 PMCID: PMC9501777 DOI: 10.3390/pharmaceutics14091793] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are types of natural substances with phenolic structures isolated from a variety of plants. Flavonoids have antioxidant, anti-inflammatory, anticancer, and antiviral activities. Although most of the research or applications of flavonoids are focused on human diseases, flavonoids also show potential applicability against porcine virus infection. This review focuses on the recent progress in antiviral mechanisms of potential flavonoids against the most common porcine viruses. The mechanism discussed in this paper may provide a theoretical basis for drug screening and application of natural flavonoid compounds and flavonoid-containing herbs to control porcine virus infection and guide the research and development of pig feed additives.
Collapse
|
47
|
Gao M, Zhang Z, Lai K, Deng Y, Zhao C, Lu Z, Geng Q. Puerarin: A protective drug against ischemia-reperfusion injury. Front Pharmacol 2022; 13:927611. [PMID: 36091830 PMCID: PMC9449408 DOI: 10.3389/fphar.2022.927611] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Ischemia-reperfusion (I/R) is a pathological process that occurs in numerous organs throughout the human body and is frequently associated with severe cellular damage and death. Puerarin is an isoflavone compound extracted from the root of Pueraria lobata and has pharmacological effects such as dilating cerebral vessels and anti-free radical generation in cerebral ischemic tissues. With the deepening of experimental research and clinical research on puerarin, it has been found that puerarin has a protective effect on ischemia-reperfusion injury (IRI) of the heart, brain, spinal cord, lung, intestine and other organs. In summary, puerarin has a vast range of pharmacological effects and significant protective effects, and it also has obvious advantages in the clinical protection of patients with organ IRI. With the deepening of experimental pharmacological research and clinical research, it is expected to be an effective drug for IRI treatment. In this review, we summarize the current knowledge of the protective effect of puerarin on I/R organ injury and its possible underlying molecular mechanisms.
Collapse
Affiliation(s)
- Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ziyao Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kai Lai
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuanbing Zhao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zilong Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
48
|
Puerarin ameliorates acute lung injury by modulating NLRP3 inflammasome-induced pyroptosis. Cell Death Dis 2022; 8:368. [PMID: 35977927 PMCID: PMC9385627 DOI: 10.1038/s41420-022-01137-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
We commenced to analyze putative anti-pyroptosis effects of puerarin (PU) as mediated by the PP2A-HDAC1-NLRP3 pathway in acute lung injury (ALI). ALI animal and cell models were constructed, followed by treatment of PU. Then, the effect of HDAC1, PP2A, and NLRP3 on cell inflammation and pyroptosis was explored. The interaction between HDAC1 and PP2A as well as between PP2A and NLRP3 was analyzed. Our findings suggested that PU downregulated HDAC1 expression to alleviate symptoms of ALI. HDAC1 overexpression promoted inflammation induced by LPS, which reversed the inhibitory effect of PU on ALI. HDAC1 overexpression also decreased PP2A expression, suggesting that PP2A was involved in the effects of HDAC1 on LPS-induced inflammation. PP2A exerted inhibitory effects on NLRP3. Meanwhile, PU hindered the progression of ALI by silencing HDAC1 or overexpressing PP2A both in vivo and in vitro. Taken together, PU restrained pyroptosis of cells induced by NLRP3 inflammasome to abate ALI.
Collapse
|
49
|
Li Y, Liu C, Yang L, Li L, Hong L. Puerarin protects fibroblasts against mechanical stretching injury through Nrf2/TGF-β1 signaling pathway. Int Urogynecol J 2022; 33:2565-2576. [PMID: 35962806 DOI: 10.1007/s00192-022-05325-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Stress urinary incontinence (SUI) is the most common form of urinary incontinence in women, which affects women's quality of life worldwide. Mechanical injury of the pelvic floor may disrupt the pelvic supportive tissues and connections via the remodeling of extracellular matrix (ECM), which is supposed to be one of the main pathological mechanisms of SUI. METHODS The SUI mouse model was established using vaginal distension (VD). Leak point pressure (LPP), maximum cystometric capacity (MCC), collagen, Nrf2 and TGF-β1 in the anterior vaginal wall were measured in either wild-type or Nrf2-knockout (Nrf2-/-) female C57BL/6 mice with or without puerarin treatment. Then, the mechanical stretching (MS) loaded on L929 cells was generated by a four-point bending device. mTGF-β1 or LY2109761 (an inhibitor of TGF-β1) was used to verify the protective effect of puerarin after Nrf2 knockdown or overexpression. RESULTS The collagen content of the anterior vaginal tissues in VD mice and LPP and MCC was decreased significantly. Besides, the expression levels of Nrf2, TGF-β1, collagen I and collagen III of MS group were downregulated in L929 cells. Puerarin pretreatment could reverse mechanical injury-induced collagen downregulation and Nrf2/TGF-β1 signaling inhibition. Moreover, both LY2109761 pretreatment and Nrf2 knockdown could attenuate the protective effect of puerarin in the mechanical injury-induced ECM remodeling, whereas exogenous TGF-β1 could counteract the effect of Nrf2 downregulation. CONCLUSIONS Puerarin protected fibroblasts from mechanical injury-induced ECM remodeling through the Nrf2/TGF-β1 signaling pathway. This might be a new strategy for the treatment of SUI.
Collapse
Affiliation(s)
- Yang Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Cheng Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Lian Yang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Lu Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
50
|
Li Z, Fan Y, Huang C, Liu Q, Huang M, Chen B, Peng Z, Zhu W, Ding B. Efficacy and safety of Puerarin injection on acute heart failure: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:934598. [PMID: 35958424 PMCID: PMC9357890 DOI: 10.3389/fcvm.2022.934598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This study aimed to assess the adjunctive efficacy and safety of Puerarin injection (PI) on acute heart failure (AHF) based on a systematic review and meta-analysis. Methods Nine databases were searched from March 1990 to March 2022 to identify randomized controlled trials (RCTs) related to the adjunctive treatment of PI for AHF. The Cochrane collaboration tool was used to assess the risk of bias in the included studies. Meta-analysis and subgroup and sensitivity analyses were conducted by RevMan 5.3 software. The evidence’s certainty was evaluated by grading recommendations assessment, development, and evaluation (GRADE) methods. Results A total of 8 studies were included with a total of 614 patients with AHF. The meta-analysis demonstrated that adjunctive treatment with PI on AHF was superior to conventional medicine alone. It increased the total effective rate (RR = 1.38; 95% CI, 1.22–1.55; p < 0.001) and improved left ventricular ejection fraction [SMD = 0.85; 95% CI (0.62, 1.09); p < 0.001]. Regarding safety, a total of 11.9% (23/194) adverse reactions were observed in the PI group and 9.8% (19/194) adverse reactions in the control group, and there were no significant differences in the incident rate of adverse events between both groups [RR = 1.16; 95% CI (0.66–2.05); p = 0.061]. The outcomes’ evidentiary quality was assessed as “moderate.” Conclusion PI had an adjunctive effect on AHF combined with conventional medicine, and it seemed to be safe and more effective than the conventional medical treatment alone for improving the total clinical effective rate and left ventricular ejection fraction. But further well-designed RCTs are required to confirm the efficacy and safety of XBP in treating AHF due to the poor methodological quality of the included RCTs. Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=327636], identifier [CRD42022327636].
Collapse
Affiliation(s)
- Zunjiang Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ye Fan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chunxia Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Quanle Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Manhua Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baijian Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhe Peng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Wei Zhu,
| | - Banghan Ding
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Banghan Ding,
| |
Collapse
|