1
|
Matheson A. The "Monsanto papers" and the nature of ghostwriting and related practices in contemporary peer review scientific literature. Account Res 2024; 31:1152-1181. [PMID: 37424374 DOI: 10.1080/08989621.2023.2234819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
The Monsanto company - now acquired by Bayer - has been accused of ghostwriting articles within peer review literature, with the goal of using influential names to front its content in defence of the herbicide Roundup. Here, I conduct a detailed analysis of three Monsanto review articles and a five-article journal supplement for which detailed information from company emails is publicly available following litigation over Roundup. All the articles had external, but not Monsanto authors, and ghostly practices including ghost authorship, corporate ghost authorship and ghost management were evident in their development. There was clear evidence of ghostwriting - that is, drafting of the manuscript by non-authors - in only two cases. I found no evidence of undeserving authorship among the external authors. The articles complied with the disclosure requirements of their journals, save for the journal supplement. While crude ghostwriting did occur, much of the literature involved subtler practices through which Monsanto exercised control over content, while the attribution of the articles downplayed the company's role - and correspondingly aggrandized that of the external authors. Such practices are widespread within industry journal literature and are the responsibility of byline authors and journals as well as corporations. I discuss these cultural problems and consider remedies.
Collapse
|
2
|
Ait Bali Y, Madougou FA, Ba-M'hamed S, Giustetto M, Bennis M. Glyphosate-based herbicide exposure affects cognitive flexibility and social cognition in adult mice. Neurosci Lett 2024; 837:137912. [PMID: 39032801 DOI: 10.1016/j.neulet.2024.137912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Glyphosate (Gly) is the active ingredient of several widely used herbicide formulations. Studies on Gly and glyphosate-based herbicide (GBH) exposure in different experimental models have suggested that the nervous system represented a key target for its toxicity, especially the prefrontal cortex (PFC). However, it is still unknown whether exposure to GBH affects higher brain functions dependent on PFC circuitry. The present work aimed to examine the effects of subtoxic doses of GBH on social cognition and cognitive flexibility as two functions belonging to higher brain function in mice. To do so, adult male mice were exposed daily to GBH by gavage at doses of 250 or 500 mg/kg for a sub-chronic period lasting 6 weeks. Then, mice were subjected to behavioral testing using the three-chamber and the Barnes maze paradigms. Our results indicate that GBH did not affect sociability. However, we found that GBH affects social cognition expressed by a lower discrimination index in the three-chamber test. Moreover, spatial memories evaluated during the probe trial, and cognitive flexibility evaluated during the reversal probe, were affected in mice exposed to GBH. Based on these results, exposure to subtoxic doses of GBH led to neurobehavioral alterations affecting the integrity of social cognition and cognitive flexibility functions. Finally, these data urge a thorough investigation of the cellular and molecular mechanisms underlying these alterations.
Collapse
Affiliation(s)
- Yassine Ait Bali
- Lumbricidae, Improving Soil Productivity and Environment Unit, Higher Normal School, Mohammed V University in Rabat, Rabat, Morocco; Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Cadi Ayyad University, Marrakech, Morocco.
| | - Fatiya Alfari Madougou
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Cadi Ayyad University, Marrakech, Morocco
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Cadi Ayyad University, Marrakech, Morocco
| | - Maurizio Giustetto
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy.
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
3
|
Ren YL, Liang Q, Lian CY, Zhang W, Wang L. Melatonin alleviates glyphosate-induced testosterone synthesis inhibition via targeting mitochondrial function in roosters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123828. [PMID: 38522604 DOI: 10.1016/j.envpol.2024.123828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Glyphosate (GLY) is a widely used herbicide that has been revealed to inhibit testosterone synthesis in humans and animals. Melatonin (MET) is an endogenous hormone that has been demonstrated to promote mammalian testosterone synthesis via protecting mitochondrial function. However, it remains unclear whether MET targets mitochondria to alleviate GLY-inhibited testosterone synthesis in avian. In this study, an avian model using 7-day-old rooster upon chronic exposure to GLY with the treatment of MET was designed to clarify this issue. Data first showed that GLY-induced testicular Leydig cell damage, structural damage of the seminiferous tubule, and sperm quality decrease were mitigated by MET. Transcriptomic analyses of the testicular tissues revealed the potentially critical role of mitophagy and steroid hormone biosynthesis in the process of MET counteracting GLY-induced testicular damage. Also, validation data demonstrated that the inhibition of testosterone synthesis due to GLY-induced mitochondrial dynamic imbalance and concomitant Parkin-dependent mitophagy activation is alleviated by MET. Moreover, GLY-induced oxidative stress in serum and testicular tissue were significantly reversed by MET. In summary, these findings demonstrate that MET effectively ameliorates GLY-inhibited testosterone synthesis by inhibiting mitophagy activation, which provides a promising remedy for the application of MET as a potential therapeutic agent to antagonize reproductive toxicity induced by GLY and similar contaminants.
Collapse
Affiliation(s)
- Yu-Long Ren
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Qing Liang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Cai-Yu Lian
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Wei Zhang
- Yantai Academy of Agricultural Sciences, Yan'tai City 265500, Shandong Province, China.
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
4
|
Roma D, Cecchini ME, Tonini MP, Capella V, Aiassa D, Rodriguez N, Mañas F. Toxicity assessment and DNA repair kinetics in HEK293 cells exposed to environmentally relevant concentrations of Glyphosate (Roundup® Control Max). Toxicol Res (Camb) 2023; 12:970-978. [PMID: 37915486 PMCID: PMC10615827 DOI: 10.1093/toxres/tfad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
Glyphosate is a systemic, non-selective, pre and post-emergence wide range herbicide. In 2015, IARC classified Glyphosate as "a probable carcinogenic agent for humans". The aim of this study was to evaluate the cytotoxicity and genotoxicity of the commercial formulation of glyphosate (Roundup® Control Max) at environmentally relevant concentrations and measure the potential effect of this herbicide over the cell capacity to repair DNA damage. HEK293 cells were exposed to 5 concentrations of Roundup® Control Max equivalent to 0.7; 7; 70; 700 and 3,500 μg/L glyphosate acid, for 1, 4 and 24 h. Cytotoxicity was quantified by the Trypan Blue staining method and by the MTT assay, while genotoxicity and evaluation of DNA damage repair kinetics were analyzed through the alkaline comet assay. In all treatments, cell viability was higher than 80%. The three highest glyphosate concentrations-70 μg/L, 700 μg/L, and 3,500 μg/L-increased levels of DNA damage compared to the control at the three exposure times tested. Finally, concerning the kinetics of DNA damage repair, cells initially exposed to 3,500 μg/L of glyphosate for 24 h were unable to repair the breaks in DNA strands even after 4 h of incubation in culture medium. The present study demonstrated for the first time that Roundup® Control Max may induce genetic damage and cause alterations in the DNA repair system in human embryonic kidney cells even at concentrations found in blood and breast milk of people exposed through residues of the herbicide in food, which values have been poorly assessed or not studied yet according to the existent literature.
Collapse
Affiliation(s)
- Dardo Roma
- Department of Animal Clinic, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - Maria Eugenia Cecchini
- Department of Animal Clinic, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - María Paula Tonini
- Department of Animal Clinic, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - Virginia Capella
- Department of Molecular Biology, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - Delia Aiassa
- Department of Natural Sciences, National University of Río Cuarto, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - Nancy Rodriguez
- Department of Molecular Biology, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - Fernando Mañas
- Department of Animal Clinic, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| |
Collapse
|
5
|
Heymann AK, Schnabel K, Billenkamp F, Bühler S, Frahm J, Kersten S, von Soosten D, Meyer U, Dänicke S. Influences of glyphosate residues and different concentrate feed proportions in dairy cow rations during early gestation on performance, blood parameters, functional properties and DNA damage of blood cells in cows and their offspring. PLoS One 2023; 18:e0286995. [PMID: 37294795 PMCID: PMC10256144 DOI: 10.1371/journal.pone.0286995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 05/29/2023] [Indexed: 06/11/2023] Open
Abstract
Maternal exposure to various stimuli can influence pre- and postnatal development of the offspring. This potential has been discussed for glyphosate (GLY), active substance in some non-selective herbicides. Accordingly, present study investigated putative effects of GLY residues in rations on cows and their offspring. Dams received either GLY-contaminated (GLY groups) or control (CON groups) rations combined with low (LC groups) or high (HC groups) concentrate feed proportions (CFP) for 16 weeks during mid- and late lactation and early gestation (59±4 days at beginning of GLY exposure; mean±SE). During this feeding trial, average daily GLY exposures of dams were 1.2 (CONLC), 1.1 (CONHC), 112.5 (GLYLC) and 130.3 (GLYHC) μg/kg body weight/d. After a depletion period (107±4 days; mean±SE) and calving, blood samples of dams and their calves were collected (5-345 min after birth) before calves were fed colostrum and analyzed for hematological and clinical-chemical traits, redox parameters, functional properties of leukocytes and DNA damage in leukocytes. No evidence for malformations of newborn calves could be collected. At parturition, most analyzed blood parameters were not affected by dietary treatment of dams during gestation. Significant GLY effects were observed for some traits, e.g. blood non-esterified fatty acids (NEFA) in calves. These deviations of GLY groups from CON groups likely resulted from strong time-dependent responses of NEFA levels within the first 105 minutes after birth and before colostrum intake (Spearman´s rank correlation R = 0.76, p<0.001). Additionally, significant GLY effects did not result in differences in measures that were beyond normally observed ranges questioning a pathological relevance. In summary, no evidence for teratogenic or other clear effects of GLY or CFP on analyzed parameters of dams and their newborn calves could be collected under applied conditions. However, detailed studies including GLY exposure during late and complete gestation period would be needed to rule out teratogenic effects.
Collapse
Affiliation(s)
- Ann-Katrin Heymann
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - Karina Schnabel
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - Fabian Billenkamp
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - Susanne Bühler
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - Dirk von Soosten
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| |
Collapse
|
6
|
Adewale OO, Adebisi OA, Ojurongbe TA, Adekomi DA, Babatunde IO, Adebayo EO. Xylopia aethiopica suppresses markers of oxidative stress, inflammation, and cell death in the brain of Wistar rats exposed to glyphosate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60946-60957. [PMID: 37042920 DOI: 10.1007/s11356-023-26470-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
The herbicide "Roundup" is used extensively in agriculture to control weeds. However, by translocation, it can be deposited in plants, their proceeds, and the soil, thus provoking organ toxicities in exposed individuals. Neurotoxicity among others is one of the side effects of roundup which has led to an increasing global concern about the contamination of food by herbicides. Xylopia aethiopica is known to have medicinal properties due to its antioxidative and anti-inflammatory properties, and it is hypothesized to neutralize roundup-induced neurotoxicity. Thirty-six (36) Wistar rats were used for this study. The animals were shared equally into six groups with six rats each. Glyphosate administration to three of the six groups was done orally and for 1 week. Either Xylopia aethiopica or vitamin C was co-administered to two of the three groups and also administered to two other groups and the final group served as the control. Our studies demonstrated that glyphosate administration led to a significant decrease in antioxidants such as catalase, superoxide dismutase, glutathione, and glutathione peroxidase. We also observed a significant increase in inflammatory markers such as tumor necrosis factor-α, interleukin 6, C-reactive protein, and immunohistochemical expression of caspase-3, cox-2, and p53 proteins (p < 0.05). However, Xylopia aethiopica co-administration with glyphosate was able to ameliorate the aforementioned changes when compared to the control (p < 0.05). Degenerative changes were also observed in the cerebellum, hippocampus, and cerebral cortex upon glyphosate administration. These changes were not observed in the groups treated with Xylopia aethiopica and vitamin C. Taken together, Xylopia aethiopica could possess anti-oxidative and anti-inflammatory properties that could be used in combating glyphosate neurotoxicity.
Collapse
Affiliation(s)
- Omowumi Oyeronke Adewale
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria.
| | - Oluwaseun Abraham Adebisi
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Taiwo A Ojurongbe
- Department of Statistics, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Damilare Adedayo Adekomi
- Department of Anatomy, Faculty of Basic Medical Sciences, Osun State University, Osogbo, Nigeria
| | - Isaac Olawale Babatunde
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Emmanuel O Adebayo
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| |
Collapse
|
7
|
Kale OE, Adebesin AN, Kale TF, Farouk O, Osonuga IO, Soyinka OO, Uwaezuoke D, Olajide O, Akinloye V, Adedugbe O, Odibosa F, Akindele F, Oladele B, Wahab M, Ebele CC. Effects of glyphosate-based herbicide on gametes fertilization and four developmental stages in Clarias gariepinus. Heliyon 2023; 9:e15048. [PMID: 37064447 PMCID: PMC10102446 DOI: 10.1016/j.heliyon.2023.e15048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Comparative toxicology continues to provide information on how the age of every living organism affects the frequency, severity, and nature of the potentially toxic agent. We investigated the effect of glyphosate-based herbicide (GBH) exposure on gametes and four developmental stages of Clarius gariepinus (C. gariepinus) (African Catfish). Gametes from healthy gravid female and mature male C. gariepinus were exposed to GBH in sublethal concentrations of 0.0 (G1, control), 0.02 (G2), 0.05 (G3), 0.1 (G4), 0.5 (G5), and 1.0 (G6) mg/L for 24 h at the standard conditions of temperature and water quality parameters. The surviving embryos were examined microscopically for malformation rate and edema occurrence post-GBH exposure. In a separate experiment; postfryer, fingerling, posfingerling and juvenile C. gariepinus were exposed to G1, G2, G3, G4, G5 and G6 of GBH concentrations daily consecutively for 28 days. Fish growth performance, behavioural changes, haematology, oxidative stress, and histology were assessed. From our results, GBH showed altered morphology 24 h post-fertilization, decreased body weight, growth parameters, behavioural indices, and survival rate in the various developmental stages. Oxidative stress metabolite, malondialdehyde levels, increases in the postfryer > postfingerlin > fingerling > juvenile C. gariepinus following GBH exposure. Leukopenia and thrombocytosis were observed in the postfingerlings and juvenile fish and decrease in the levels of reduced glutathione and activity of superoxide dismutase compared with the control. Histology showed gross necrosis of the fish gills, liver, brain, and cardiac myocytes in the exposed fish. Hence, our findings provide an insight into C. gariepinus developmental toxicity due to GBH, although continuous measurement of glyphosate levels in the fish and fish environment is essential.
Collapse
|
8
|
de Marins MLR, Nunes JA, Da Silva Moraes VG, de Lima RS, de Oliveira Cardoso MV, Araújo Ribeiro LAD, de Queiroz DB, Silva FS. Maternal exposure to glyphosate-based herbicide causes changes in the vascular function of offspring adult rats. Reprod Toxicol 2023; 115:94-101. [PMID: 36543306 DOI: 10.1016/j.reprotox.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
This study analyzed how glyphosate exposure in the gestational period affects vascular function in their offspring, focusing on the influence of age and whether oxidative stress is involved in this effect. To this, pregnant Wistar rats were exposed through drinking water to 0.2% of a glyphosate commercial formulation, and we analyzed the response to acetylcholine and phenylephrine in the aorta from offspring of glyphosate herbicide-based (O-GHB) and controls (O-CON) rats at 3, 6, and 12 months of age. O-GHB groups showed no changes in arterial blood pressure or aorta histological analysis. Relaxation to acetylcholine was reduced in O-GHB than O-CON. Acute TEMPOL increased relaxation to acetylcholine in O-GHB at 6 and 12 months of age. The aorta from O-GHB was hyperactive to phenylephrine only at 6 months of age. Preincubation with N-nitro-L-arginine methyl ester (L-NAME) increased contraction to phenylephrine more in O-CON than O-GHB. TEMPOL similarly reduced phenylephrine response. This effect was prevented by L-NAME. Results reinforce the concept that oxidative stress during the perinatal period contributes to the development of vascular changes in adulthood. Results also reveal that although no changes in cardiac or histological parameters have been demonstrated, the current levels considered safe for exposure to glyphosate deserve further investigation, especially during pregnancy.
Collapse
|
9
|
Zhang Y, Wu W, Zhu X, Wu J, Wu X. Organophosphorus insecticides exposure and sex hormones in general U.S. population: A cross-sectional study. ENVIRONMENTAL RESEARCH 2022; 215:114384. [PMID: 36150437 DOI: 10.1016/j.envres.2022.114384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Evidence showed organophosphorus (OPs) insecticide exposure is common in general population with endocrine-disrupting effects. However, the association between OPs metabolites and sex hormones remains unclear. OBJECTIVE To investigate the association between OPs metabolites and sex hormones. METHODS Data of 1438 participants from NHANES 2015-2016 was applied. Urinary OPs metabolites, dialkyl phosphates (DAPs), and serum sex hormones (total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG)) were measured. Free androgen index (FAI) and TT/E2 ratio were also calculated. The generalized linear regression model and restricted cubic spline (RCS) model were employed to evaluate the association and exposure-response curve of DAPs and sex hormones in males and females. The modulation effect of age on their associations in female participants was also explored. RESULTS After adjusting for confounding factors, DETP was negatively associated with E2 (β = -0.03; 95% CI: -0.05, -0.01) and FAI (β = -0.03; 95% CI: -0.06, -0.001) in males. In females, all the four DAP metabolites (DMP, DEP, DMTP, and DETP) were negatively associated with FAI (DMP: β = -0.06, 95% CI: -0.11, -0.01; DEP: β = -0.06, 95% CI: -0.12, -0.01; DMTP: -0.05, 95% CI: -0.09, -0.02; DETP: -0.09, 95% CI: -0.14, -0.04). DETP was also found negatively associated with TT and TT/E2 ratio in females. The associations between DETP and TT, FAI, and TT/E2 ratio were modified by gender (Pinteraction<0.05). RCS analysis found these associations were in linear decreased exposure-response curves. For females of different age groups, the inverse associations of DETP with TT and FAI remained stable. Decreased FAI with DMP and DMTP was also found in females ≤50 years old. CONCLUSIONS Our study indicates OPs metabolites had negative associations with androgen indicators, which was characterized as decreased FAI and E2 in males and decreased TT, FAI, and TT/E2 ratio in females, particularly among females ≤50 years old. Further studies are warranted in larger-scale populations.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wanke Wu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xingdi Zhu
- School of the First Clinical Mediine, Nanjing Medical University, Nanjing, China
| | - Jiangping Wu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Xiaoli Wu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
10
|
Ünlü Endirlik B, Bakır E, Ökçesiz A, Güler A, Hamurcu Z, Eken A, Dreij K, Gürbay A. Investigation of the toxicity of a glyphosate-based herbicide in a human liver cell line: Assessing the involvement of Nrf2 pathway and protective effects of vitamin E and α-lipoic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103999. [PMID: 36252731 DOI: 10.1016/j.etap.2022.103999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used herbicides all over the world and has gained more attention in recent years because of health safety concerns. In this study, Roundup, one of the most popular glyphosate formulations, was used to evaluate cytotoxic, oxidative stress and apoptosis inducing effects of GBHs in a human hepatocellular cell line (HepG2). Roundup was shown to significantly increase cellular reactive oxygen species (ROS) levels, which lead to activation of the nuclear factor-erythroid-2-related factor 2 (Nrf2) antioxidant defense pathway including reduced levels of heme oxygenase 1 (HO-1). Furthermore, Roundup was found to induce apoptosis and further analysis confirmed involvement of a mitochondrial-dependent pathway verified by increased Bax/Bcl-2 ratios. Investigation of the protective effects of antioxidants vitamin E (Vit E) and α-lipoic acid (LA) against Roundup toxicity showed that both antioxidants significantly reduced the cytotoxicity, ROS formation, HO-1 downregulation, and apoptosis and that Vit E did so more efficiently than LA. In conclusion, our findings highlight the ROS producing and apoptosis inducing effects associated with GBHs, the activation of Nrf2 pathway as a defense mechanism and the protective effects of Vit E and LA against GBH toxicity.
Collapse
Affiliation(s)
- Burcu Ünlü Endirlik
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.
| | - Elçin Bakır
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Aysun Ökçesiz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ahsen Güler
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Zuhal Hamurcu
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey; Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ayşe Eken
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aylin Gürbay
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Chen K, Liu JB, Tie CZ, Wang L. Trehalose prevents glyphosate-induced testicular damage in roosters via its antioxidative properties. Res Vet Sci 2022; 152:314-322. [PMID: 36084373 DOI: 10.1016/j.rvsc.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Glyphosate (GLY), an active ingredient of the most commonly used herbicide, when in crops and feed, is deleterious to male reproductive health. Trehalose (Tre), a naturally non-reducing disaccharide, is shown to counteract the adverse stresses due to its antioxidation effect. Thus, this study was designed to investigate whether Tre can improve GLY-induced testicular damage via suppressing oxidative stress. 60 healthy Hy-Line Brown breeder roosters were utilized to assess the protective effects of Tre supplementation against testicular oxidative damage caused by GLY. Data showed that Tre administration significantly alleviated GLY- induced reduction in testis weight, decreased GLY level in the testis tissues, and alleviated GLY-caused testicular pathological damage. Concurrently, GLY treatment significantly elevated serum malondialdehyde (MDA) and testicular reactive oxygen species (ROS) levels, decreased serum total anti-oxidation capacity (T-AOC), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, which were all notably reversed by Tre administration. Moreover, GLY- inhibited nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in rooster testis, a master regulator of oxidative stress, was markedly recovered by Tre administration. In summary, these findings demonstrated that Tre can prevent GLY-induced testicular damage in roosters by ameliorating oxidative stress.
Collapse
Affiliation(s)
- Kai Chen
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Ji'nan City 250101, Shandong Province, China; Shandong Technology Innovation Center of Artificial Phage Drug, 989 Xinluo Street, Ji'nan City 250101, Shandong Province, China
| | - Jing-Bo Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Cheng-Zhu Tie
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
12
|
Vessa B, Perlman B, McGovern PG, Morelli SS. Endocrine disruptors and female fertility: a review of pesticide and plasticizer effects. F S Rep 2022; 3:86-90. [PMID: 35789730 PMCID: PMC9250118 DOI: 10.1016/j.xfre.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022] Open
Abstract
An ongoing interest in environmental exposures and female fertility has led to an increasing number of studies focusing on endocrine-disrupting chemicals (EDCs). Both natural and synthetic compounds have the ability to impact reproductive health by altering the structure and/or function of genes and proteins that facilitate normal ovarian and endometrial functions. This mini-review aims to summarize the effects of some of the most common EDCs on female fertility, including the effects of pesticides and plasticizer alternatives (phthalates, bisphenol A), based on available data in human studies. A literature search was performed using the key words “pesticides, fertility, reproduction, plasticizers, bisphenol A, phthalate, miscarriage, and in vitro fertilization.” The data supporting EDCs’ role in female infertility remain limited, but existing evidence suggests that exposure may have an adverse impact. Accumulating evidence in animal studies provides important insights into the mechanisms underlying EDC effects. As dose-response dynamics are better elucidated, understanding the effects of EDCs on female fertility will help in the development of guidelines for both industry and individuals.
Collapse
|
13
|
Oláh M, Farkas E, Székács I, Horvath R, Székács A. Cytotoxic effects of Roundup Classic and its components on NE-4C and MC3T3-E1 cell lines determined by biochemical and flow cytometric assays. Toxicol Rep 2022; 9:914-926. [PMID: 35875257 PMCID: PMC9301602 DOI: 10.1016/j.toxrep.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022] Open
Abstract
Cytotoxic effects of the market leading broad-spectrum, synthetic herbicide product Roundup Classic, its active ingredient glyphosate (in a form of its isopropylamine (IPA) salt) and its formulating surfactant polyethoxylated tallowamine (POE-15) were determined on two murine cell lines, a neuroectodermal stem cell-like (NE-4C) and a high alkaline phosphatase activity osteoblastic cell line (MC3T3-E1). Cytotoxicity, genotoxicity, effects on cell viability and cell cycles were examined in five flow cytometry tests, the two former of which were compared by the enzymatic-assay and the alkaline single cell gel electrophoresis (Comet) assay. All of the tests indicated the NE-4C cells being more sensitive, than the MC3T3-E1 cell line to the treatments with the target compounds. Higher sensitivity differences were detected in the viability test by flow cytometry (7-9-fold), than by the MTT assay (1.5-3-fold); in the genotoxicity test by the Comet assay (3.5-403-fold), than by the DNA-damage test (9.3-158-fold); and in the apoptosis test by the Annexin V dead cell kit (1.1-12.7-fold), than by the Caspase 3/7 kit (1-6.5-fold). Cell cycle assays indicated high count of cells (~70%) in the G0/G1 phase for MC3T3-E1 cells, than in NE-4C cell (~40%) after 24 h. The order of the inhibitory potency of the target substances has unequivocally been POE-15 > Roundup Classic > > glyphosate IPA salt.
Collapse
Affiliation(s)
- Marianna Oláh
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó u. 15, H-1022 Budapest, Hungary
| | - Enikő Farkas
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. u. 29-33, H-1121 Budapest, Hungary
| | - Inna Székács
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. u. 29-33, H-1121 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. u. 29-33, H-1121 Budapest, Hungary
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó u. 15, H-1022 Budapest, Hungary
| |
Collapse
|
14
|
Eaton JL, Cathey AL, Fernandez JA, Watkins DJ, Silver MK, Milne GL, Velez-Vega C, Rosario Z, Cordero J, Alshawabkeh A, Meeker JD. The association between urinary glyphosate and aminomethyl phosphonic acid with biomarkers of oxidative stress among pregnant women in the PROTECT birth cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113300. [PMID: 35158254 PMCID: PMC8920761 DOI: 10.1016/j.ecoenv.2022.113300] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Glyphosate is a widely used herbicide in global agriculture. Glyphosate and its primary environmental degradate, aminomethyl phosphonic acid (AMPA), have been shown to disrupt endocrine function and induce oxidative stress in in vitro and animal studies. To our knowledge, these relationships have not been previously characterized in epidemiological settings. Elevated urinary levels of glyphosate and AMPA may be indicative of health effects caused by previous exposure via multiple mechanisms including oxidative stress. METHODS Glyphosate and AMPA were measured in 347 urine samples collected between 16 and 20 weeks gestation and 24-28 weeks gestation from pregnant women in the PROTECT birth cohort. Urinary biomarkers of oxidative stress, comprising 8-isoprostane-prostaglandin-F2α (8-iso-PGF2α), its metabolite 2,3-dinor-5,6-dihydro-15-F2 t-isoprostane (8-isoprostane metabolite) and prostaglandin-F2α (PGF2α), were also measured. Linear mixed effect models assessed the association between exposures and oxidative stress adjusting for maternal age, smoking status, alcohol consumption, household income and specific gravity. Potential nonlinear trends were also assessed using tertiles of glyphosate and AMPA exposure levels. RESULTS No significant differences in exposure or oxidative stress biomarker concentrations were observed between study visits. An interquartile range (IQR) increase in AMPA was associated with 9.5% (95% CI: 0.5-19.3%) higher 8-iso-PGF2α metabolite concentrations. Significant linear trends were also identified when examining tertiles of exposure variables. Compared to the lowest exposure group, the second and third tertiles of AMPA were significantly associated with 12.8% (0.6-26.5%) and 15.2% (1.8-30.3%) higher 8-isoprostane metabolite, respectively. An IQR increase in glyphosate was suggestively associated with 4.7% (-0.9 to 10.7%) higher 8-iso-PGF2α. CONCLUSIONS Urinary concentrations of the main environmental degradate of glyphosate, AMPA, were associated with higher levels of certain oxidative stress biomarkers. Associations with glyphosate reflected similar trends, although findings were not as strong. Additional research is required to better characterize the association between glyphosate exposure and biomarkers of oxidative stress, as well as potential downstream health consequences.
Collapse
Affiliation(s)
- Jarrod L Eaton
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Amber L Cathey
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Jennifer A Fernandez
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Deborah J Watkins
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Monica K Silver
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Ginger L Milne
- Department of Medicine - Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Carmen Velez-Vega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, PR, United States
| | - Zaira Rosario
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, PR, United States
| | - Jose Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | - Akram Alshawabkeh
- College of Engineering, Northeastern University, Boston, MA, United States
| | - John D Meeker
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States.
| |
Collapse
|
15
|
Wee J, Lee YS, Kim Y, Lee YH, Lee SE, Hyun S, Cho K. Multigeneration toxicity of Geunsami® (a glyphosate-based herbicide) to Allonychiurus kimi (Lee) (Collembola) from sub-individual to population levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118172. [PMID: 34543960 DOI: 10.1016/j.envpol.2021.118172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate-based herbicide (GBH) is the most widely used herbicide worldwide and has long been considered to have significantly low toxicity to non-target soil invertebrates based on short-term toxicity tests (<56 d). However, long-term GBH toxicity assessment is necessary as GBH is repeatedly applied in the same field annually because of the advent of glyphosate-resistant crops. In this study, a multigeneration test was conducted where Allonychiurus kimi (Collembola) was exposed to GBH for three generations (referred to as F0, F1, and F2) to evaluate the long-term toxic effect. The endpoints used were adult survival and juvenile production for the individual level toxicity assessment. Phospholipid profile and population age structure were the endpoints used for sub-individual and population levels, respectively. GBH was observed to have no negative effects on adult survivals of all generations, but juvenile production was found to decrease in a concentration-dependent manner, with EC50s being estimated as 572.5, 274.8, and 59.8 mg a.i. kg-1 in the F0, F1, and F2 generations, respectively. The age structure of A. kimi population produced in the test of all generations was altered by GBH exposure, mainly because of the decrease in the number of young juveniles. Further, differences between the phospholipid profiles of the control and GBH treatments became apparent over generations, with PA 16:0, PA 12:0, and PS 42:0 lipids not being detected at the highest concentration of 741 mg kg-1 in F2. Considering all our findings from sub-individual to population levels, repeated and long-term use of GBH could have significantly higher negative impacts on non-target soil organisms than expected.
Collapse
Affiliation(s)
- June Wee
- O-Jeong Eco-Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Yun-Sik Lee
- O-Jeong Eco-Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Yongeun Kim
- O-Jeong Eco-Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Yong Ho Lee
- O-Jeong Eco-Resilience Institute, Korea University, Seoul, 02841, Republic of Korea; Institute of Ecological Phytochemistry, Hankyong National University, Ansung, 17579, Republic of Korea
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seunghun Hyun
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kijong Cho
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
16
|
Mehta S, Kumar A, Achary VMM, Ganesan P, Rathi N, Singh A, Sahu KP, Lal SK, Das TK, Reddy MK. Antifungal activity of glyphosate against fungal blast disease on glyphosate-tolerant OsmEPSPS transgenic rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111009. [PMID: 34482912 DOI: 10.1016/j.plantsci.2021.111009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Weeds, pests, and pathogens are among the pre-harvest constraints in rice farming across rice-growing countries. For weed management, manual weeding and herbicides are widely practiced. Among the herbicides, glyphosate [N-(phosphonomethyl) glycine] is a broad-spectrum systemic chemical extensively used in agriculture. Being a competitive structural analog to phosphoenolpyruvate, it selectively inhibits the conserved 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme required for the biosynthesis of aromatic amino acids and essential metabolites in eukaryotes and prokaryotes. In the present study, we investigated the antifungal and defense elicitor activity of glyphosate against Magnaporthe oryzae on transgenic-rice overexpressing a glyphosate-resistance OsEPSPS gene (T173I + P177S; TIPS OsmEPSPS) for blast disease management. The glyphosate foliar spray on OsmEPSPS transgenic rice lines showed both prophylactic and curative suppression of blast disease comparable to a blasticide, tricyclazole. The glyphosate displayed direct antifungal activity on Magnaporthe oryzae as well as enhanced the levels of antioxidant enzymes and photosynthetic pigments in rice. However, the genes associated with phytohormones-mediated defense (OsPAD4, OsNPR1.3, and OsFMO) and innate immunity pathway (OsCEBiP and OsCERK1) were found repressed upon glyphosate spray. Altogether, the current study is the first report highlighting the overexpression of a crop-specific TIPS mutation in conjugation with glyphosate application showing potential for blast disease management in rice cultivation.
Collapse
Affiliation(s)
- Sahil Mehta
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Aundy Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - V Mohan Murali Achary
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prakash Ganesan
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelmani Rathi
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Asmita Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Shambhu Krishan Lal
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - T K Das
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Malireddy K Reddy
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
17
|
Socha M, Szczygieł J, Brzuska E, Sokołowska-Mikołajczyk M, Stonawski B, Grzesiak M. The effect of Roundup on embryonic development, early foxr1 and hsp70 gene expression and hatching of common carp (Cyprinus carpio L.). Theriogenology 2021; 175:163-169. [PMID: 34592515 DOI: 10.1016/j.theriogenology.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
The effects of herbicide Roundup (based on glyphosate) on the embryonic development, survival and hatching of common carp (Cyprinus carpio L.) larvae and alteration in foxr1 and hsp70 gene expression were determined. The eggs (obtained from 6 females) were fertilised and incubated in water containing 0; 1 or 10 μl L-1 of Roundup formulation. During early embryonic development (24 and 48 h post-fertilisation - hpf), Roundup caused a statistically important decrease in the embryonic survival rate of common carp. Moreover, retardation of the hatching rate was observed in the group treated with the higher concentration of Roundup at 81 to 99 hpf. At the end of the experiment (99 hpf), an important increase in number of deformed larvae was observed in both groups treated with Roundup in comparison to the control group (52.06; 16.02 and 5.08%, respectively). Significant differences in transcript of the gene foxr1 were found in Roundup-intoxicated groups in comparison to the controls. In the case of hsp70 transcripts, no important changes in exposed groups were observed. These results showed that even small, environmentally relevant amount of Roundup present in the aquatic environment is able to affect the early life stages of common carp and change the transcripts of foxr1, which may have an adverse effect on the later proper development of the reproductive system.
Collapse
Affiliation(s)
- M Socha
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - J Szczygieł
- Institute of Ichthyobiology and Aquaculture in Gołysz, Polish Academy of Sciences, Zaborze, Kalinowa 2, 43-520, Chybie, Poland
| | - E Brzuska
- Institute of Ichthyobiology and Aquaculture in Gołysz, Polish Academy of Sciences, Zaborze, Kalinowa 2, 43-520, Chybie, Poland
| | - M Sokołowska-Mikołajczyk
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, Al. A. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - B Stonawski
- Institute of Ichthyobiology and Aquaculture in Gołysz, Polish Academy of Sciences, Zaborze, Kalinowa 2, 43-520, Chybie, Poland
| | - M Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
18
|
Morales Velásquez M, Velásquez Rivera V, Cardona Maya WD. The Effect of Glyphosate on Human Sperm: In Vitro Approximation. Rev Urol 2021. [DOI: 10.1055/s-0041-1731413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Introduction Glyphosate is an herbicide used to eradicate illicit crops; however, its use is controversial due to different health problems associated with it. The present study aims to evaluate the effects of glyphosate on human sperm in vitro.
Methods Twenty-two semen samples from healthy normozoospermic men were included; 11 semen samples were incubated with Panzer (INVESA S.A., Antiquia, Colombia) and 11 with Roundup (Monsanto Company, MO, USA). The changes in motility and viability were observed. Functional seminal parameters were evaluated as well.
Results The samples exposed to glyphosate showed less motility and viability; a decrease in the potential of the mitochondrial membrane was observed, and an increase in the lipoperoxidation of the membrane was evidenced.
Conclusion Based on the present results, we concluded that glyphosate has cytotoxic potential for exposed people and may affect their fertility.
Collapse
Affiliation(s)
- Mateo Morales Velásquez
- Reproduction Group, Department of Microbiology and Parasitology, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Valentina Velásquez Rivera
- Reproduction Group, Department of Microbiology and Parasitology, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Walter D. Cardona Maya
- Reproduction Group, Department of Microbiology and Parasitology, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
19
|
Sopko B, Tejral G, Bitti G, Abate M, Medvedikova M, Hajduch M, Chloupek J, Fajmonova J, Skoric M, Amler E, Erban T. Glyphosate Interaction with eEF1α1 Indicates Altered Protein Synthesis: Evidence for Reduced Spermatogenesis and Cytostatic Effect. ACS OMEGA 2021; 6:14848-14857. [PMID: 34151066 PMCID: PMC8209799 DOI: 10.1021/acsomega.1c00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
The broad-spectrum herbicide, glyphosate, is considered safe for animals because it selectively affects the shikimate pathway that is specific to plants and microorganisms. We sought a previously unknown mechanism to explain the concerns that glyphosate exposure can negatively affect animals, including humans. Computer modeling showed a probable interaction between glyphosate and eukaryotic translation elongation factor 1 subunit alpha 1 (eEF1α1), which was confirmed by microcalorimetry. Only restricted, nondisrupted spermatogenesis in rats was observed after chronic glyphosate treatments (0.7 and 7 mg/L). Cytostatic and antiproliferative effects of glyphosate in GC-1 and SUP-B15 cells were indicated. Meta-analysis of public health data suggested a possible effect of glyphosate use on sperm count. The in silico, in vitro, and in vivo experimental results as well as the metastatistics indicate side effects of chronic glyphosate exposure. Together, these findings indicate that glyphosate delays protein synthesis through an interaction with eEF1α1, thereby suppressing spermatogenesis and cell growth.
Collapse
Affiliation(s)
- Bruno Sopko
- Crop
Research Institute, Prague 161 06, Czechia
- Department
of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague 150 06, Czechia
- Laboratory
of Tissue Engineering, Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czechia
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
| | - Gracian Tejral
- Laboratory
of Tissue Engineering, Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czechia
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
- Department
of Biophysics, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czechia
| | - Guissepe Bitti
- Laboratory
of Tissue Engineering, Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czechia
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
| | - Marianna Abate
- Department
of Precision Medicine, University of Campania
“Luigi Vanvitelli”, Naples 80131, Italy
| | - Martina Medvedikova
- Institute
of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc 779 00, Czechia
| | - Marian Hajduch
- Institute
of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc 779 00, Czechia
| | - Jan Chloupek
- Department
of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences
Brno, Brno 612 42, Czechia
| | - Jolana Fajmonova
- Department
of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences
Brno, Brno 612 42, Czechia
| | - Misa Skoric
- Department
of Pathological Morphology and Parasitology, Faculty of Veterinary
Medicine, University of Veterinary and Pharmaceutical
Sciences Brno, Brno 612 42, Czechia
| | - Evzen Amler
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
- Department
of Biophysics, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czechia
| | - Tomas Erban
- Crop
Research Institute, Prague 161 06, Czechia
| |
Collapse
|
20
|
Luna S, Neila LP, Vena R, Borgatello C, Rosso SB. Glyphosate exposure induces synaptic impairment in hippocampal neurons and cognitive deficits in developing rats. Arch Toxicol 2021; 95:2137-2150. [PMID: 33837468 DOI: 10.1007/s00204-021-03046-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Glyphosate is the active ingredient of several widely used herbicide formulations. Studies based on Glyphosate exposure in different experimental models have suggested that the nervous system represented a key target for its toxicity. Previously, we demonstrated that exposure to glyphosate during gestation induces deficits on behavioral and cognitive function in rats. The aim of the present work was to examine whether cognitive dysfunction induced by Glyphosate was connected to changes on synapse formation and maturation. To understand how glyphosate affects synaptic assembly, we performed in vitro assays on cultured hippocampal neurons that were exposed to the herbicide (0.5 or 1 mg/mL) for 5 or 10 days. Biochemical and immunocytochemical approaches revealed that Glyphosate treated neurons showed a decrease on dendritic complexity and synaptic spine formation and maturation. Moreover, results indicated that Glyphosate decreased synapse formation in hippocampal neurons. To evaluate these effects in vivo, pup rats were treated with 35 or 70 mg/kg of Glyphosate from PND 7 to PND 27, every 48 h. Results indicated that Glyphosate postnatal exposure induced cognitive impairments, since recognition and spatial memory were altered. To go further, we evaluated synaptic protein expression and synaptic organization in hippocampus. Images revealed that Glyphosate treatment downregulates synapsin-1, PSD-95, and CaMKII expression, and also decreased PSD-95 clustering in hippocampus. Taken together, these findings demonstrate for the first time that Glyphosate exposure affects synaptic assembly and reduced synaptic protein expression in hippocampus and that likely triggers the impairment of cognitive function and neuronal connectivity.
Collapse
Affiliation(s)
- Sebastian Luna
- Área Toxicología, Departamento de Ciencias de Los Alimentos Y Medio Ambiente. Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lorena P Neila
- Área Toxicología, Departamento de Ciencias de Los Alimentos Y Medio Ambiente. Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rodrigo Vena
- Instituto de Biología Molecular Y Celular de Rosario, Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Conrado Borgatello
- Área Toxicología, Departamento de Ciencias de Los Alimentos Y Medio Ambiente. Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvana B Rosso
- Área Toxicología, Departamento de Ciencias de Los Alimentos Y Medio Ambiente. Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina.
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
21
|
Mutwedu VB, Nyongesa AW, Azine PC, Chiregereza DK, Ngoumtsop VH, Mugumaarhahama Y, Ayagirwe RBB. Growth performance and reproductive function impairment of glyphosate-based herbicide in male guinea pig (Cavia porcellus). Vet Med Sci 2021; 7:1047-1055. [PMID: 33555111 PMCID: PMC8136967 DOI: 10.1002/vms3.443] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 01/26/2023] Open
Abstract
Glyphosate formulations, widely applied non-selective systemic herbicides, are progressively becoming the most controversial pesticides on the market due the adverse effects they pose to humans and environment. The information on these potential hazardous effects to the handlers of the pesticide remains obscure. This study investigated effects of glyphosate-based herbicide on growth performance, seminal parameters and hemato-biochemical profiles in male guinea pig. Forty sexually mature male guinea pigs weighing between 393.3 and 418.4 g were divided into four groups of 10 animals each and orally administered 0, 186, 280 and 560 mg/kg body weight of WILLOSATE daily for 60 days. Daily feed intake and body weight gain were recorded. At the end of experimental period all animals were humanely sacrificed, and blood samples and vital organs were collected for appropriate analysis. Results showed a significant decrease (p < 0.05) in body weight gain (-102.2%), final body weight (-9.8%) and feed intake (-13.1%) of animals following sub-chronic exposure of WILLOSATE. The weights of the liver and kidney increased significantly (p < 0.05) by 25.4% and 28.8%, respectively, while testicular weights decreased (p < 0.05) by 24% with increasing doses of WILLOSATE. A decrease in sperm motility (-67.9%), viability (-52.7%) and concentration per vas deferens (-40.7%), and an increase in sperm major (28.1%) and minor (45.3%) morphological aberrations were recorded in WILLOSATE - exposed guinea pigs when compared to controls. There was a dose-dependent increase (p < 0.05) in MCV and WBC and a decrease in Hb content and RBC, as well as serum content in total protein (-11.8%). The serum content of cholesterol (37.8%), urea (87.1%), creatinine (22.4%), ALAT (74.2%) and ASAT (88.7%) were significantly higher in treated groups compared to controls. These results point toward the toxic effects of WILLOSATE on vital organs and reproductive function of the body at high doses and long-term exposure.
Collapse
Affiliation(s)
- Valence Bwana Mutwedu
- Department of Animal ProductionFaculty of Agriculture and Environmental StudiesUniversité Evangélique en Afrique (UEA)BukavuDR Congo
| | | | - Pascaline Ciza Azine
- Department of Animal ProductionFaculty of Agriculture and Environmental StudiesUniversité Evangélique en Afrique (UEA)BukavuDR Congo
| | - Daniel Katulanya Chiregereza
- Department of Animal ProductionFaculty of Agriculture and Environmental StudiesUniversité Evangélique en Afrique (UEA)BukavuDR Congo
| | | | - Yannick Mugumaarhahama
- Department of Animal ProductionFaculty of Agriculture and Environmental StudiesUniversité Evangélique en Afrique (UEA)BukavuDR Congo
| | | |
Collapse
|
22
|
Cao M, Wang Y, Yang F, Li J, Qin X. Melatonin rescues the reproductive toxicity of low-dose glyphosate-based herbicide during mouse oocyte maturation via the GPER signaling pathway. J Pineal Res 2021; 70:e12718. [PMID: 33503294 DOI: 10.1111/jpi.12718] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/16/2020] [Accepted: 01/22/2021] [Indexed: 01/01/2023]
Abstract
Glyphosate-based herbicides (GBHs) are a group of widely used broad-spectrum agricultural pesticides. Due to the recalcitrance of GBH, it has been found in food and environment as a contaminant, posing a threat to public health. The health risks associated with GBH have been indicated by reporting acute toxicity data (an acute exposure of GBH at a 0.5% dose), which primarily discuss toxicity in relation to accidental high-rate exposure. Currently, there is little information regarding the toxicity of GBH at environmentally relevant levels. In this study, we used mature mouse oocytes to study the toxic effects of low-dose GBH exposure in vitro (0.00001%-0.00025%) and in vivo (0.0005%, orally administered through daily drinking water) during meiotic maturation. GBH exposure led to meiotic maturation failure with spindle defects and chromosome misalignment. In addition, GBH treatment severely reduced sperm-binding ability and disrupted early embryo cleavage. Moreover, GBH exposure significantly increased the reactive oxygen species (ROS) levels and apoptotic rates. Evidence indicates that such effects in GBH-exposed oocytes are likely due to overexpression of the G-protein estrogen receptor (GPER/GPR30). Remarkably, we found that melatonin administration elicited significant protection against GBH-induced oocyte deterioration via preserving the expression of GPR30, along with activation of its downstream signaling event (pERK/ERK). Taken together, these results revealed that low-dose glyphosate has a certain adverse effect on oocyte maturation and early embryo cleavage, and highlight the protective roles of melatonin.
Collapse
Affiliation(s)
- Mingjun Cao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yufeng Wang
- Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Fan Yang
- Bureau of Agriculture and Rural Affairs of Hanting District, Weifang, China
| | - Jizhou Li
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xunsi Qin
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Calcium oxyhydroxide (CaO/Ca(OH)2) nanoparticles: Synthesis, characterization and evaluation of their capacity to degrade glyphosate-based herbicides (GBH). ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Alarcón R, Rivera OE, Ingaramo PI, Tschopp MV, Dioguardi GH, Milesi MM, Muñoz-de-Toro M, Luque EH. Neonatal exposure to a glyphosate-based herbicide alters the uterine differentiation of prepubertal ewe lambs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114874. [PMID: 32599332 DOI: 10.1016/j.envpol.2020.114874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
The exposure to endocrine-disrupting compounds (EDCs), such as glyphosate-based herbicides (GBHs), during early life might alter female fertility. The aim of the present study was to evaluate the effects of neonatal exposure to a GBH on sheep uterine development. To achieve this, Friesian ewe lambs were exposed to GBH (2 mg/kg of body weight/day; n = 12) or vehicle (controls; n = 10) through s.c. injections, from postnatal day (PND) 1 to PND14; on PND45, the uteri were obtained to evaluate histomorphological and molecular parameters. Morphological parameters were determined by picrosirius-hematoxylin staining. Protein expression of Ki67 (as a cell proliferation marker), p27, and molecules involved in uterine organogenetic differentiation was measured by immunohistochemistry. We also determined the mRNA expression of the IGF molecular pathway by RT-PCR. Although histomorphology was not modified, the uteri of GBH-exposed ewe lambs showed lower cell proliferation, together with higher p27 protein expression. In addition, the uteri of GBH-exposed ewe lambs showed increased gene expression of insulin-like growth factor binding protein 3 (IGFBP-3), decreased expression of ERα in the luminal (LE) and glandular (GE) epithelia and in the subepithelial stroma (SS), and lower PR expression in the LE but higher in the GE and SS. In addition, GBH treatment decreased the uterine expression of Wnt5a in the GE, of Wnt7a in the SS, of β-catenin in the LE and GE, of Hoxa10 in the SS, and of Foxa2 in the GE as compared with controls. In conclusion, neonatal exposure to GBH decreased cell proliferation and altered the expression of molecules that control proliferation and development in the uterus. All these changes might have adverse consequences on uterine differentiation and functionality, affecting the female reproductive health of sheep. GBH may be responsible for uterine subfertility, acting as an EDC.
Collapse
Affiliation(s)
- Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oscar E Rivera
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAS), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María V Tschopp
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gisela H Dioguardi
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAS), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Mercedes M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
25
|
Coullery R, Pacchioni AM, Rosso SB. Exposure to glyphosate during pregnancy induces neurobehavioral alterations and downregulation of Wnt5a-CaMKII pathway. Reprod Toxicol 2020; 96:390-398. [PMID: 32805371 DOI: 10.1016/j.reprotox.2020.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023]
Abstract
Glyphosate-based formulations are the most popular herbicide used around the world. These herbicides are widely applied in agriculture to control weeds on genetically modified crops. Although there is much evidence showing that glyphosate-based herbicides induce toxic effect on reproductive and hepatic systems, and also cause oxidative damage on cells, studies from recent years revealed that the nervous system may represent a key target for their toxicity. In the present work, we evaluated the effect of glyphosate (without adjuvants) in neonate rats after gestational exposure. Particularly, we examined whether glyphosate during gestation affected the nervous system function at early development. Pregnant Wistar rats were treated with 24 or 35 mg/kg of pure glyphosate every 48 h and neurobehavioral studies were performed. Our results indicated that gestational exposure to glyphosate induced changes in reflexes development, motor activity and cognitive function, in a dose-dependent manner. To go further, we evaluated whether prenatal exposure to glyphosate affected the Ca+2-mediated Wnt non-canonical signaling pathway. Results indicated that embryos exposed to glyphosate showed an inhibition of Wnt5a-CaMKII signaling pathway, an essential cascade controlling the formation and integration of neural circuits. Taken together, these findings suggest that gestational exposure to glyphosate leads to a downregulation of Wnt/Ca+2 pathway that could induce a developmental neurotoxicity evidenced by deficits at behavioral and cognitive levels in rat pups.
Collapse
Affiliation(s)
- Romina Coullery
- Área Toxicología, Departamento de Ciencias de los Alimentos y Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina
| | - Alejandra M Pacchioni
- Área Toxicología, Departamento de Ciencias de los Alimentos y Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina
| | - Silvana B Rosso
- Área Toxicología, Departamento de Ciencias de los Alimentos y Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina.
| |
Collapse
|
26
|
Yang C, Song G, Lim W. Effects of endocrine disrupting chemicals in pigs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114505. [PMID: 32268228 DOI: 10.1016/j.envpol.2020.114505] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are compounds that interfere with the expression, synthesis, and activity of hormones in organisms. They are released into the environment from flame retardants and products containing plasticizers. Persistent pesticides, such as dichlorodiphenyltrichloroethane (DDT) and hexachlorobenzene, also disrupt the endocrine system through interaction with hormone receptors. Endogenous hormones, such as 17β-estradiol (E2), are released in the urine and feces of farm animals and seep into terrestrial and aquatic ecosystems through sewage. Pigs are widely used as animal models to determine the effects of EDCs because they are physiologically, biochemically, and histologically similar to humans. EDCs primarily disrupt the reproductive and nervous systems of pigs. Moreover, embryonic development during the prenatal and early postnatal periods is particularly sensitive to EDCs. Mycotoxins, such as zearalenone, are food contaminants that alter hormonal activities in pigs. Mycotoxins also alter the innate immune system in pigs, making them vulnerable to diseases. It has been reported that farm animals are exposed to various types of EDCs, which accumulate in tissues, such as those of gonads, livers, and intestines. There is a lack of an integrated understanding of the impact of EDCs on porcine reproduction and development. Thus, this article aims to provide a comprehensive review of literature regarding the effects of EDCs in pigs.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
27
|
Tizhe EV, Ibrahim NDG, Fatihu MY, Ambali SF, Igbokwe IO, Tizhe UD. Effect of zinc supplementation on chronic hepatorenal toxicity following oral exposure to glyphosate-based herbicide (Bushfire®) in rats. J Int Med Res 2020; 48:300060520925343. [PMID: 32865084 PMCID: PMC7469744 DOI: 10.1177/0300060520925343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES To assess the effects of zinc pretreatment on hepatorenal toxicity following chronic exposure to glyphosate-based herbicides in male rats. METHODS Following zinc pretreatment (50 mg/kg and 100 mg/kg), 14.4 to 750 mg/kg of oral glyphosate (Bushfire® herbicide) was administered daily for 36 weeks. Thereafter, serum samples were obtained following jugular venipuncture. Liver and kidney samples were processed for histopathological examination. RESULTS Serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase activity as well as levels of bicarbonate, calcium, creatinine were significantly increased following chronic exposure to Bushfire®. Serum levels of sodium, potassium, chloride, total protein, albumin, globulin and urea were unchanged. Moderate to severe coagulative necrosis of hepatocytes as well as glomerular and renal tubular necrosis were observed in herbicide-treated rats. Zinc pretreatment reduced the elevation of serum enzymes associated with hepatobiliary lesions, abrogated hypercalcemia and metabolic alkalosis, and mitigated serum accumulation of creatinine following Bushfire® exposure, but was ineffective in completely preventing histological lesions. CONCLUSION Chronic Bushfire® exposure in rats caused hepatorenal toxicity. The effects of exposure on serum parameters were ameliorated by zinc pretreatment, but the histopathological changes associated with toxicity persisted in milder forms in zinc-pretreated animals.
Collapse
Affiliation(s)
- Emmanuel Vandi Tizhe
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Najume Dogon-Giginya Ibrahim
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Mohammed Yakasai Fatihu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Suleiman Folorunsho Ambali
- Department of Veterinary Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Ikechukwu Onyebuchi Igbokwe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Ussa Delia Tizhe
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
28
|
Spinaci M, Nerozzi C, Tamanini CL, Bucci D, Galeati G. Glyphosate and its formulation Roundup impair pig oocyte maturation. Sci Rep 2020; 10:12007. [PMID: 32686734 PMCID: PMC7371730 DOI: 10.1038/s41598-020-68813-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022] Open
Abstract
Glyphosate, formulated as glyphosate-based herbicides (GBHs) including the best-known formulation Roundup, is the world's most widely used herbicide. During the last years, the growing and widespread use of GBHs has raised a great concern about the impact of environmental contamination on animal and human health including potential effect on reproductive systems. Using an in vitro model of pig oocyte maturation, we examined the biological impact of both glyphosate and Roundup on female gamete evaluating nuclear maturation, cytoplasmic maturation and developmental competence of oocytes, steroidogenic activity of cumulus cells as well as intracellular levels of glutathione (GSH) and ROS of oocytes. Our results indicate that although exposure to glyphosate and Roundup during in vitro maturation does not affect nuclear maturation and embryo cleavage, it does impair oocyte developmental competence in terms of blastocyst rate and cellularity. Moreover, Roundup at the same glyphosate-equivalent concentrations was shown to be more toxic than pure glyphosate, altering steroidogenesis and increasing oocyte ROS levels, thus confirming that Roundup adjuvants enhance glyphosate toxic effects and/or are biologically active in their side-effect and therefore should be considered and tested as active ingredients.
Collapse
Affiliation(s)
- Marcella Spinaci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, Bologna, Italy.
| | - Chiara Nerozzi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Car Lo Tamanini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Diego Bucci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Giovanna Galeati
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|
29
|
Yahfoufi ZA, Bai D, Khan SN, Chatzicharalampous C, Kohan-Ghadr HR, Morris RT, Abu-Soud HM. Glyphosate Induces Metaphase II Oocyte Deterioration and Embryo Damage by Zinc Depletion and Overproduction of Reactive Oxygen Species. Toxicology 2020; 439:152466. [PMID: 32315717 DOI: 10.1016/j.tox.2020.152466] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
Glyphosate is the most popular herbicide used in modern agriculture, and its use has been increasing substantially since its introduction. Accordingly, glyphosate exposure from food and water, the environment, and accidental and occupational venues has also increased. Recent studies have demonstrated a relationship between glyphosate exposure and a number of disorders such as cancer, immune and metabolic disorders, endocrine disruption, imbalance of intestinal flora, cardiovascular disease, and infertility; these results have given glyphosate a considerable amount of media and scientific attention. Notably, glyphosate is a powerful metal chelator, which could help explain some of its effects. Recently, our findings on 2,3-dimercapto-1-propanesulfonic acid, another metal chelator, showed deterioration of oocyte quality. Here, to generalize, we investigated the effects of glyphosate (0 - 300 μM) on metaphase II mouse oocyte quality and embryo damage to obtain insight on its mechanisms of cellular action and the tolerance of oocytes and embryos towards this chemical. Our work shows for the first time that glyphosate exposure impairs metaphase II mouse oocyte quality via two mechanisms: 1) disruption of the microtubule organizing center and chromosomes such as anomalous pericentrin formation, spindle fiber destruction and disappearance, and defective chromosomal alignment and 2) substantial depletion of intracellular zinc bioavailability and enhancement of reactive oxygen species accumulation. Similar effects were found in embryos. These results may help clarify the effects of glyphosate exposure on female fertility and provide counseling and preventative steps for excessive glyphosate intake and resulting oxidative stress and reduced zinc bioavailability.
Collapse
Affiliation(s)
- Zeina A Yahfoufi
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI,48201, United States
| | - David Bai
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Sana N Khan
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Charalampos Chatzicharalampous
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Hamid-Reza Kohan-Ghadr
- Michigan State University, Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Grand Rapids, Michigan 45903, United States
| | - Robert T Morris
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, United States; Karmaros Cancer Institute, Detroit, MI, 48201, United States
| | - Husam M Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI,48201, United States; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, United States.
| |
Collapse
|
30
|
Hao Y, Zhang Y, Cheng J, Xu W, Xu Z, Gao J, Tao L. Adjuvant contributes Roundup's unexpected effects on A549 cells. ENVIRONMENTAL RESEARCH 2020; 184:109306. [PMID: 32120119 DOI: 10.1016/j.envres.2020.109306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/16/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Roundup® (RDP) is one of the most representative glyphosate-based herbicides (GBHs), which extensive use increases pressure on environmental safety and potential human health risk. The aim of this study was to investigate whether the adjuvant polyethoxylated tallow amine (POEA) or the herbicidal active ingredient glyphosate isopropylamine salt (GP) in formulation confers RDP cytotoxicity. We demonstrated that RDP and POEA could inhibit the proliferation of human lung A549 cells. Intracellular biochemical assay indicated that collapse of mitochondrial membrane, release of cytochrome c into cytosol, activation of caspase-9/-3, cleavage of poly (ADP-ribose) polymerase (PARP), oxidative DNA damage, DNA single-strand breaks and double-strand breaks are occurred in RDP and POEA treated A549 cells, not occurred in GP treated A549 cells. We conclude that the RDP's effect of apoptosis and DNA damage on human A549 cells is related to the presence of adjuvant POEA in formulation, independent of the herbicidal active ingredient GP. This study would enrich the theoretical basis of the RDP toxicity effects and attract attention on potential human health and environmental safety threat caused by adjuvant.
Collapse
Affiliation(s)
- Youwu Hao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jufang Gao
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
31
|
Xia Y, Yang X, Lu J, Xie Q, Ye A, Sun W. The endoplasmic reticulum stress and related signal pathway mediated the glyphosate-induced testosterone synthesis inhibition in TM3 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113949. [PMID: 31968290 DOI: 10.1016/j.envpol.2020.113949] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Glyphosate is the most widely used herbicide in the world. In recent years, many studies have demonstrated that exposure to glyphosate-based herbicides (GHBs) was related to the decrease of serum testosterone and the decline in semen quality. However, the molecular mechanism of glyphosate-induced testosterone synthesis disorders is still unclear. In the present study, the effects of glyphosate on testosterone secretion and the role of endoplasmic reticulum (ER) stress in the process were investigated in TM3 cells. The effects of glyphosate at different concentrations on the viability of TM3 cells were detected by CCK8 method. The effect of glyphosate exposure on testosterone secretion was determined by enzyme-linked immunosorbent assay (ELISA). The expression levels of testosterone synthases and ER stress-related proteins were detected by Western blot and Immunofluorescence stain. Results showed that exposure to glyphosate at concentrations below 200 mg/L had no effect on cell viability, while the glyphosate above 0.5 mg/L could inhibit the testosterone secretion in TM3 cells. Treatment TM3 cells with glyphosate at 5 mg/L not only reduced the protein levels of testosterone synthase StAR and CYP17A1, inhibited testosterone secretion, but also increased the protein level of ER stress molecule Bip and promoted the phosphorylation of PERK and eIF2α. Pretreatment cells with PBA, an inhibitor of ER stress, alleviated glyphosate-induced increase in Bip, p-PERK and p-eIF2α protein levels, meanwhile rescuing glyphosate-induced testosterone synthesis disorders. When pretreatment with GSK2606414, a PERK inhibitor, the glyphosate-induced phosphorylation of PERK and eIF2α was blocked, and the glyphosate-inhibited testosterone synthesis and secretion was also restored. Overall, our findings suggest that glyphosate can interfere with the expression of StAR and CYP17A1 and inhibit testosterone synthesis and secretion via ER stress-mediated the activation of PERK/eIF2α signaling pathway in Leydig cells.
Collapse
Affiliation(s)
- Yongpeng Xia
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xiaobo Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300041, PR China
| | - Jingchun Lu
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Qixin Xie
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Anfang Ye
- Department of Occupational Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, PR China.
| | - Wenjun Sun
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310058, PR China; Institute of Environmental Medicine, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310058, PR China; Department of Occupational Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, PR China.
| |
Collapse
|
32
|
Zhang F, Xu Y, Liu X, Pan L, Ding E, Dou J, Zhu B. Concentration Distribution and Analysis of Urinary Glyphosate and Its Metabolites in Occupationally Exposed Workers in Eastern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2943. [PMID: 32344631 PMCID: PMC7215609 DOI: 10.3390/ijerph17082943] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 01/17/2023]
Abstract
Background: There are few published studies concerning occupational exposure to glyphosate (GLY), and these are limited to spraying, horticulture and other agricultural aspects. Therefore, the concentration of glyphosate and its metabolite aminomethylphosphonic acid (AMPA), in the urine of workers exposed to glyphosate during glyphosate production was determined, and the relationship between internal (urinary glyphosate and AMPA concentration) and external exposure dose (time weighted average (TWA) value of glyphosate in the air of workplace) was analyzed. Methods: To avoid the influence of preparations, we selected people who were only involved in GLY production (without exposure to its preparations) as our research subjects. We collected 134 urine samples of workers exposed to GLY (prototype, not preparation). The urinary concentrations of GLY and AMPA (internal exposure dose) were detected by gas chromatography-mass spectrometry. The subjects' exposure to the amount of GLY in the air (external dose) was determined using ion chromatography. Conventional statistical methods, including quartiles, t-tests and regression analysis, were applied for data processing. Results: An on-site investigation revealed that the workers involved in centrifugation, crystallization, drying, and packaging and feeding were exposed to GLY. The TWA value of GLY in the workshop air was <0.02 mg/m3-34.58 mg/m3. The detection rates of GLY and AMPA in the urine samples were 86.6% and 81.3%, respectively. The concentration of urinary GLY was <0.020-17.202 mg/L (median, 0.292 mg/L). The urinary AMPA concentration was <0.010 mg/L-2.730 mg/L (median, 0.068 mg/L). The geometric means were 0.262 mg/L and 0.072 mg/L for GLY and AMPA, respectively. There was a correlation between the urinary concentration of GLY and AMPA and the TWA value of exposed workers (correlation coefficient [r] = 0.914 and 0.683, respectively; p < 0.01). Furthermore, there was a correlation between the urinary concentration of GLY and AMPA in the exposure group (r = 0.736, p < 0.01). Conclusions: The urinary concentration of GLY and AMPA of workers was correlated with the TWA value of workers' exposure, which could reflect the actual exposure of the workers.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China; (Y.X.); (X.L.); (E.D.)
| | - Yanqiong Xu
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China; (Y.X.); (X.L.); (E.D.)
| | - Xin Liu
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China; (Y.X.); (X.L.); (E.D.)
| | - Liping Pan
- Medical Examination Center, Nanjing Prevention and Treatment Center for Occupational Disease, Nanjing 210038, China
| | - Enmin Ding
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China; (Y.X.); (X.L.); (E.D.)
| | - Jianrui Dou
- Department of Occupational Hygiene, Yangzhou City Center for Disease Prevention and Control, Yangzhou 225000, China;
| | - Baoli Zhu
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China; (Y.X.); (X.L.); (E.D.)
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
33
|
Páez MR, Ochoa-Muñoz Y, Rodriguez-Páez J. Efficient removal of a glyphosate-based herbicide from water using ZnO nanoparticles (ZnO-NPs). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Hirano LQL, Alves LDS, Menezes-Reis LT, Mendonça JDS, Simões K, Santos ALQ, Vieira LG. Effects of egg exposure to atrazine and/or glyphosate on bone development in Podocnemis unifilis (Testudines, Podocnemididae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109400. [PMID: 31276883 DOI: 10.1016/j.ecoenv.2019.109400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
This study was designed to investigate skeletal changes in Podocnemis unifilis embryos derived from artificially incubated eggs exposed to different concentrations of atrazine, glyphosate or atrazine and glyphosate mixture. Forty-two eggs were randomly allocated to one of seven trays containing vermiculite treated distilled water (control group) or the following solutions: 2 or 200 μg L-1 of atrazine (groups A1 and A2 respectively); 65 or 6500 μg L-1 of glyphosate (groups G1 and G2 respectively); 2 μg L-1 and 65 μg L-1 or 200 μg L-1 and 6500 μg L-1 of atrazine and glyphosate mixture (groups AG1 and AG2 respectively). Three eggs per tray were randomly collected on days 30 and 50 of the incubation period. Embryos were submitted to soft tissue diaphanization and stained with Alizarin red S or Alcian blue for morphological analysis of bone and cartilage tissues; histological analysis was performed to confirm ossification changes. Findings were compared between groups. Morphological changes were limited to sclerotic ring features and number of ribs. Malformations rates differed significantly (p < 0.05) between embryos in the control and treated groups A2, AG1 and AG2. Concurrent exposure to atrazine and glyphosate did not affect the presence or severity of embryonic malformations and was not associated with appendicular skeleton changes in P. unifilis embryos. However, further studies focusing on the axial skeleton with particular emphasis on rib abnormalities are warranted.
Collapse
Affiliation(s)
| | | | | | | | - Karina Simões
- (b)Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | | | | |
Collapse
|
35
|
Hao Y, Xu W, Gao J, Zhang Y, Yang Y, Tao L. Roundup-Induced AMPK/mTOR-Mediated Autophagy in Human A549 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11364-11372. [PMID: 31542934 DOI: 10.1021/acs.jafc.9b04679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The extensive use of pesticide caused an amount of pressure on the environment and increased the potential human health risk. Glyphosate-based herbicide (GBH) is one of the most widely used pesticides based on a 5-enolpyruvylshikimate-3-phosphate synthase target, which does not exist in vertebrates. Here, we study autophagic effects of the most famous commercial GBH Roundup (RDP) on human A549 cells in vitro. Intracellular biochemical assay indicated opening of mitochondrial permeability transition pore, LC3-II conversion, up-regulation of beclin-1, down-regulation of p62, and the changes in the phosphorylation of AMPK and mTOR induced by RDP in A549 cells. Further experimental results indicated that all the effects induced by RDP were related to its adjuvant polyethoxylated tallow amine, not its herbicidal active ingredient glyphosate isopropylamine salt. All these results showed that RDP has the ability to induce AMPK/mTOR-mediated cell autophagy in human A549 cells. This study would provide a theoretical basis for understanding RDP's autophagic effects on human A549 cells and attract attention on the potential human health risks induced by the adjuvant.
Collapse
Affiliation(s)
- Youwu Hao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Jufang Gao
- College of Life Sciences , Shanghai Normal University , Shanghai 200234 , China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
36
|
Martens MA, Bleeke MS, Leopold VA, Farmer DR. Toxicology and human health risk assessment of polyethoxylated tallow amine surfactant used in glyphosate formulations. Regul Toxicol Pharmacol 2019; 107:104347. [PMID: 31082430 DOI: 10.1016/j.yrtph.2019.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 10/26/2022]
Abstract
Roundup® branded herbicides contain glyphosate, a surfactant system and water. One of the surfactants used is polyethoxylated tallow amine (POE-T). A toxicology dataset has been developed to derive the most representative points of departure for human health risk assessments. Concentrated POE-T was very irritating to skin, corrosive to eyes, and sensitizing to skin. The irritation and sensitization potential of POE-T diminishes significantly upon dilution with water. Repeated dosing of rats with POE-T produced gastrointestinal effects but no systemic effect on organ systems. POE-T was not genotoxic and had no effect on embryo-fetal development or reproduction. The occupational risk assessment of POE- T for the agricultural use of glyphosate products has demonstrated that margins of exposure (MOEs) are 2517 and 100,000 for maximum and geometric mean dermal exposures, respectively. In the food risk assessment for relevant agricultural uses, the range of MOEs for consumption of foods from plant and animal origin were 330 to 2909. MOEs ≥100 are generally considered to be of no toxicological concern. Based on the results of the occupational and food risk assessments, it is concluded that there are no significant human health issues associated with the use of POE-T as a surfactant in glyphosate products.
Collapse
Affiliation(s)
- Mark A Martens
- MMTA bvba, Consulting in Preclinical Development and Toxicology, Jachthuislaan 26, B-3210, Lubbeek, Belgium.
| | - Marian S Bleeke
- Bayer US Crop Science Division, 700 Chesterfield Parkway, St Louis, MO, United States.
| | - Vincent A Leopold
- Bayer US Crop Science Division, 700 Chesterfield Parkway, St Louis, MO, United States.
| | - Donna R Farmer
- Bayer US Crop Science Division, 700 Chesterfield Parkway, St Louis, MO, United States.
| |
Collapse
|
37
|
de Souza JS, Laureano-Melo R, Herai RH, da Conceição RR, Oliveira KC, da Silva IDCG, Dias-da-Silva MR, Romano RM, Romano MA, Maciel RMDB, Chiamolera MI, Giannocco G. Maternal glyphosate-based herbicide exposure alters antioxidant-related genes in the brain and serum metabolites of male rat offspring. Neurotoxicology 2019; 74:121-131. [PMID: 31226268 DOI: 10.1016/j.neuro.2019.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/31/2019] [Accepted: 06/14/2019] [Indexed: 01/09/2023]
Abstract
In response to the rapid development of genetically engineered glyphosate-tolerant crops, the use of glyphosate-based herbicides (GBHs), in agriculture, has increased substantially. Currently, it is estimated that 747 million kg of GBHs are applied per year. Although several epidemiological studies have demonstrated that there are health risks associated with GBH exposure, the effects these chemicals have on the oxidative and inflammatory response in the brain are still unclear. In fact, alterations in these processes could contribute to the development of neurological diseases, such as Alzheimer's disease and autism spectrum disorders. The present study exposed pregnant rats to GBH and evaluated changes in the expression of genes related to oxidnte defense and inflammation response and monitored the serum metabolome in the adult male offspring. Pregnant Wistar rats were administered distilled water or Roundup®, at either 5 and 50 mg/kg/day, (p.o.) from gestational day (GD) 18 to postnatal day (PND) 5. There was a significant increase in the gene expression levels of Neuroglobin (Ngb - oxygen storage and tissue protection) (105%, p = 0.031), Glutathione Peroxidase 1 (Gpx1 - oxidative stress) (95%, p = 0.005), Prostaglandin-Endoperoxidase Synthase 1 (Ptgs1 - inflammation) (109%, p = 0.033) and Hypoxia inducible factor 1 subunit alpha (Hif1α - oxygen sensor) (73%, p = 0.017), in the cerebellum of PND90 rats perinatally exposed to 50 mg GBH/kg/day. Moreover, both GBH-exposed groups displayed a significant decrease in the expression of Catalase (Cat - oxidative stress) (49%, p = 0.003; and 31% p = 0.050, respectively) expression, in the cortex. Serum metabolites analyses, from the same animals of each group, demonstrated that there were significant changes in the concentrations of lysophosphatidylcholine and phosphatidylcholine, which have been associated with neurodegenerative diseases. The results of the present study suggest GBH exposure during pregnancy alters the expression of genes associated with oxidant defense, inflammation and lipid metabolism. It is plausible that maternal GBH exposure could have lasting neuronal effects on the offspring later in life.
Collapse
Affiliation(s)
- Janaina Sena de Souza
- Universidade Federal de São Paulo, UNIFESP/EPM, Departamento de Medicina, Disciplina de Endocrinologia Clínica, São Paulo, São Paulo, 04039-032, Brazil.
| | - Roberto Laureano-Melo
- Universidade Federal de São Paulo, UNIFESP/EPM, Departamento de Medicina, Disciplina de Endocrinologia Clínica, São Paulo, São Paulo, 04039-032, Brazil
| | - Roberto Hirochi Herai
- Pontifícia Universidade Católica do Paraná, School of Medicine, Graduate Program in Health Sciences (PUCPR/PPGCS), Curitiba, Paraná, 80215-901, Brazil; Instituto Lico Kaesemodel (ILK), Curitiba, Paraná, 80240-000, Brazil
| | - Rodrigo Rodrigues da Conceição
- Universidade Federal de São Paulo, UNIFESP/EPM, Departamento de Medicina, Disciplina de Endocrinologia Clínica, São Paulo, São Paulo, 04039-032, Brazil
| | - Kelen Carneiro Oliveira
- Universidade Federal de São Paulo, UNIFESP/EPM, Departamento de Medicina, Disciplina de Endocrinologia Clínica, São Paulo, São Paulo, 04039-032, Brazil
| | | | - Magnus Régios Dias-da-Silva
- Universidade Federal de São Paulo, UNIFESP/EPM, Departamento de Medicina, Disciplina de Endocrinologia Clínica, São Paulo, São Paulo, 04039-032, Brazil
| | - Renata Marino Romano
- Universidade Estadual do Centro-Oeste, Departamento de Farmácia, Guarapuava, Paraná, Brazil
| | - Marco Aurélio Romano
- Universidade Estadual do Centro-Oeste, Departamento de Farmácia, Guarapuava, Paraná, Brazil
| | - Rui Monteiro de Barros Maciel
- Universidade Federal de São Paulo, UNIFESP/EPM, Departamento de Medicina, Disciplina de Endocrinologia Clínica, São Paulo, São Paulo, 04039-032, Brazil
| | - Maria Izabel Chiamolera
- Universidade Federal de São Paulo, UNIFESP/EPM, Departamento de Medicina, Disciplina de Endocrinologia Clínica, São Paulo, São Paulo, 04039-032, Brazil
| | - Gisele Giannocco
- Universidade Federal de São Paulo, UNIFESP/EPM, Departamento de Medicina, Disciplina de Endocrinologia Clínica, São Paulo, São Paulo, 04039-032, Brazil; Universidade Federal de São Paulo, Departamento de Ciências Biológicas, Diadema, São Paulo, 09972-270, Brazil.
| |
Collapse
|
38
|
Gao H, Chen J, Ding F, Chou X, Zhang X, Wan Y, Hu J, Wu Q. Activation of the N-methyl-d-aspartate receptor is involved in glyphosate-induced renal proximal tubule cell apoptosis. J Appl Toxicol 2019; 39:1096-1107. [PMID: 30907447 DOI: 10.1002/jat.3795] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/17/2023]
Abstract
Glyphosate-based herbicides have been used worldwide for decades and have been suggested to induce nephrotoxicity, but the underlying mechanism is not yet clear. In this study, we treated a human renal proximal tubule cell line (HK-2) with glyphosate for 24 hours at concentrations of 0, 20, 40 and 60 μm. Glyphosate was found to reduce cell viability and induce apoptosis and oxidative stress in a dose-dependent manner. Because the chemical structures of glyphosate and those of its metabolite AMPA are similar to glycine and glutamate, which are agonists of the N-methyl-d-aspartate receptor (NMDAR), we investigated the potential role of the NMDAR pathway in mediating the proapoptotic effect of glyphosate on proximal tubule cells. We found that NMDAR1 expression, as well as intracellular Ca2+ ([Ca2+ ]i ) and reactive oxygen species (ROS) levels, increased after glyphosate treatment. Blocking NMDAR attenuated glyphosate-induced upregulation of [Ca2+ ]i and ROS levels as well as apoptosis. Meanwhile, inhibition of [Ca2+ ]i reduced glyphosate-induced ROS and apoptosis, and inhibition of ROS alleviated glyphosate-induced apoptosis. In mice exposed to 400 mg/kg glyphosate, the urine low molecular weight protein levels started to increase from day 7. Upregulation of apoptosis and NMDAR1 expression in renal proximal tubule epithelium and an imbalance of oxidant and antioxidative products were observed. These results strongly suggest that activation of the NMDAR1 pathway, together with its downstream [Ca2+ ]i and oxidative stress, is involved in glyphosate-induced renal proximal tubule epithelium apoptosis.
Collapse
Affiliation(s)
- Hui Gao
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fan Ding
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Xin Chou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, 200032, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, 200032, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Qing Wu
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| |
Collapse
|
39
|
Grube M, Kalnenieks U, Muter O. Metabolic response of bacteria to elevated concentrations of glyphosate-based herbicide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:373-380. [PMID: 30784801 DOI: 10.1016/j.ecoenv.2019.02.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most widespread commonly used broad-spectrum herbicides that contaminate soils and waters, are toxic to bacteria, plants and animals, and have been classified as 'probably carcinogenic to humans' by the International Agency for Research on Cancer in 2015. Particular soil bacteria and fungi can degrade GBHs, hence, search for new GBH-degrading strains or microbial consortia, effective under specific growth conditions and local environment, seems to be a promising solution for bio-remediation of glyphosate-contaminated environment. Consequently, there is a need for rapid and informative methods to evaluate the GBH-induced changes of the metabolic pathways in cells, that may serve as indicators of GBH-degrading potential. Three new GBH-degrading bacterial strains, Pseudomonas sp., Actinobacteria and Serratia sp. were isolated from sludge of municipal waste water treatment plant (Daugavgriva, Riga, Latvia), agricultural soil and plant tissue, respectively. This study examined the response of these isolates to elevated concentrations of glyphosate (GLP) (100 and 500 mg/L) in GBH Klinik® 360 SL. The GBH-induced shift of metabolic activity in cells of Pseudomonas sp. was shown by tests on EcoPlates™. Fourier transform infrared (FTIR) spectroscopy analyses were used to evaluate the metabolomic response of bacteria to elevated concentrations of GBH in the growth environment. The spectra of Pseudomonas sp. and Serratia sp., incubated with and without GBH, were similar, thus indicating their GBH-resistance. The absorption at 1736 cm-1, assigned to ester carbonyl stretch vibrations, was detected in spectra of all three bacteria. The highest ester content was detected in Actinobacteria grown in medium with 1.0% molasses and 100 or 500 mg/L GLP in GBH Klinik®. An increase of cellular amounts of esters, either those of phospholipids or poly-β-hydroxybutyrates, indicates degradation of GLP. Therefore, monitoring the ester carbonyl stretch vibration band in FTIR spectra of bacterial biomass may speed up the search GBH-degrading strains. Microbiological tests and cell metabolic response studies by FTIR spectroscopy showed that the three new isolates of Pseudomonas sp., Actinobacteria and Serratia sp. were resistant to elevated concentrations of GBH Klinik® in growth environment and exhibited the potential for GBH degradation.
Collapse
Affiliation(s)
- Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia.
| | - Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Olga Muter
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| |
Collapse
|
40
|
Alarcón R, Ingaramo PI, Rivera OE, Dioguardi GH, Repetti MR, Demonte LD, Milesi MM, Varayoud J, Muñoz-de-Toro M, Luque EH. Neonatal exposure to a glyphosate-based herbicide alters the histofunctional differentiation of the ovaries and uterus in lambs. Mol Cell Endocrinol 2019; 482:45-56. [PMID: 30550814 DOI: 10.1016/j.mce.2018.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to compare the effect of oral and subcutaneous exposure to a glyphosate-based herbicide (GBH) on the female reproductive system, specifically in the ovaries and uterus of prepubertal lambs. To this end, ewe lambs were exposed to a s.c. (n: 5) or an oral (n: 5) environmentally relevant dose of GBH (2 mg/kg/day) or to vehicle (controls, n: 12), from postnatal day (PND) 1 to PND14. Serum glyphosate and aminomethylphosphonic acid (AMPA) concentrations were measured on PND15 and PND45. The ovaries and uterus were obtained and weighed on PND45. Ovarian follicular dynamics and uterine morphological features were determined by picrosirius-hematoxylin staining. The proliferation marker Ki67 was evaluated by immunohistochemistry in ovarian and uterine samples. Glyphosate but not AMPA was detected in serum of exposed lambs on PND15, whereas neither glyphosate nor AMPA were detected on PND45. Controls were negative for glyphosate and AMPA on PND15 and PND45. GBH exposure did not affect ovarian or uterine weight. However, on PND45, the ovary of GBH-exposed lambs showed altered follicular dynamics, increased proliferation of granulosa and theca cells, and decreased mRNA expression of FSHR and GDF9, whereas their uterus showed decreased cell proliferation but no alterations in the histomorphology or gene expression. In conclusion, GBH exposure altered the ovarian follicular dynamics and gene expression, and the proliferative activity of the ovaries and uterus of lambs. It is noteworthy that all the adverse effects found in the ovaries and uterus of both GBH-exposed groups were similar, independently of the administration route.
Collapse
Affiliation(s)
- Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oscar E Rivera
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAs), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Gisela H Dioguardi
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAs), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mercedes M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
41
|
Desaulniers D, Khan N, Cummings-Lorbetskie C, Leingartner K, Xiao GH, Williams A, Yauk CL. Effects of cross-fostering and developmental exposure to mixtures of environmental contaminants on hepatic gene expression in prepubertal 21 days old and adult male Sprague-Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1-27. [PMID: 30744511 DOI: 10.1080/15287394.2018.1542360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 06/09/2023]
Abstract
The notion that adverse health effects produced by exposure to environmental contaminants (EC) may be modulated by the presence of non-chemical stressors is gaining attention. Previously, our lab demonstrated that cross-fostering (adoption of a litter at birth) acted as a non-chemical stressor that amplified the influence of developmental exposure to EC on the glucocorticoid stress-response in adult rats. Using liver from the same rats, the aim of the current study was to investigate whether cross-fostering might also modulate EC-induced alterations in hepatic gene expression profiles. During pregnancy and nursing, Sprague-Dawley dams were fed cookies laced with corn oil (control, C) or a chemical mixture (M) composed of polychlorinated biphenyls (PCB), organochlorine pesticides (OCP), and methylmercury (MeHg), at 1 mg/kg/day. This mixture simulated the contaminant profile reported in maternal human blood. At birth, some control and M treated litters were cross-fostered to form two additional groups with different biological/nursing mothers (CC and MM). The hepatic transcriptome was analyzed by DNA microarray in male offspring at postnatal days 21 and 78-86. Mixture exposure altered the expression of detoxification and energy metabolism genes in both age groups, but with different sets of genes affected at day 21 and 78-86. Cross-fostering modulated the effects of M on gene expression pattern (MM vs M), as well as expression of energy metabolism genes between control groups (CC vs C). In conclusion, while describing short and long-term effects of developmental exposure to EC on hepatic transcriptomes, these cross-fostering results further support the consideration of non-chemical stressors in EC risk assessments.
Collapse
Affiliation(s)
- D Desaulniers
- a Health Canada, Healthy Environments and Consumer Safety Branch , Environmental Health Science and Research Bureau , Ottawa , Ontario , Canada
| | - N Khan
- a Health Canada, Healthy Environments and Consumer Safety Branch , Environmental Health Science and Research Bureau , Ottawa , Ontario , Canada
| | - C Cummings-Lorbetskie
- a Health Canada, Healthy Environments and Consumer Safety Branch , Environmental Health Science and Research Bureau , Ottawa , Ontario , Canada
| | - K Leingartner
- a Health Canada, Healthy Environments and Consumer Safety Branch , Environmental Health Science and Research Bureau , Ottawa , Ontario , Canada
| | - G-H Xiao
- a Health Canada, Healthy Environments and Consumer Safety Branch , Environmental Health Science and Research Bureau , Ottawa , Ontario , Canada
| | - A Williams
- a Health Canada, Healthy Environments and Consumer Safety Branch , Environmental Health Science and Research Bureau , Ottawa , Ontario , Canada
| | - C L Yauk
- a Health Canada, Healthy Environments and Consumer Safety Branch , Environmental Health Science and Research Bureau , Ottawa , Ontario , Canada
| |
Collapse
|
42
|
Albañil Sánchez JA, da Costa Klosterhoff M, Romano LA, De Martinez Gaspar Martins C. Histological evaluation of vital organs of the livebearer Jenynsia multidentata (Jenyns, 1842) exposed to glyphosate: A comparative analysis of Roundup ® formulations. CHEMOSPHERE 2019; 217:914-924. [PMID: 30471482 DOI: 10.1016/j.chemosphere.2018.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Roundup formulations are herbicides whose active principle is glyphosate. However, these formulations are potentially more toxic to non-target organisms than pure glyphosate. This study aimed to evaluate and compare the toxic potential of the Roundup formulations through histological alterations in fish. Thus, males and females of the neotropical fish species Jenynsia multidentata (Jenyns, 1842) were exposed for 24 or 96 h to the Roundup Original® (RO), Roundup Transorb® (RT) or Roundup WG® (RWG) formulations, at a fixed concentration of 0.5 mg/L of glyphosate. This concentration is close to the maximum glyphosate limits found in the environment and is non-lethal to J. multidentata. The three formulations caused histological damage to the liver, gills and brain of J. multidentata, which increased over the exposure time. Differences in the histological alterations between females and males were observed in the liver and brain. Females were more tolerant to RO and RT than RWG. Males did not exhibit these differences in sensitiveness with formulations. The RWG caused more damage in the liver and gills and RT in the brain. Overall, there were differences in the toxicity of RO, RT and RWG and the toxic effect was presented through histological damage, reinforcing the usefulness of histological biomarkers for Roundup® toxicity. The comparison of the toxic potential of glyphosate-based herbicides is important because it could give support to the governmental organizations to set protective rules for the water ecosystems and human health, as well as to reduce the use of highly toxic formulations in agriculture.
Collapse
Affiliation(s)
- Jessica Andrea Albañil Sánchez
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil
| | - Marta da Costa Klosterhoff
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil
| | - Luis Alberto Romano
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil
| | - Camila De Martinez Gaspar Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
43
|
Bhardwaj JK, Mittal M, Saraf P. Effective attenuation of glyphosate-induced oxidative stress and granulosa cell apoptosis by vitamins C and E in caprines. Mol Reprod Dev 2019; 86:42-52. [PMID: 30411421 DOI: 10.1002/mrd.23084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022]
Abstract
Pesticides are known to cause a wide range of reproductive problems that possess degenerative effects on mammalian fertility. Glyphosate (GLP), a broad-spectrum organophosphate herbicide, is known to be a potent mammalian toxicant. The present study aims at assessing the GLP-induced (0.1, 2.0, and 4.0 mg/ml) granulosa cells toxicity and evaluating the mitigating effects of vitamins C and E (0.5 mM and 1.0 mM) in healthy caprine antral follicles, cultured in vitro in a dose- and time-dependent manner (24, 48, and 72 hr) and subjected to various cytotoxic and geno-toxic analysis, namely, classic histology, EB/AO differential staining, oxidative stress parameters, and antioxidant enzymatic activity. The histomorphological analysis and EB/AO staining elucidated increase in the incidence of apoptotic attributes within granulosa cells with increasing dose and duration of the GLP treatment. The highest apoptotic frequency was observed at 4.0 mg/ml GLP after 72-hr exposure duration in comparison with the control. GLP exposure also led to a significant decline in the antioxidant enzymes' activity, namely, SOD, catalase, and GST along with enhanced lipid peroxidation and reduced FRAP activity in a dose- and time-dependent manner. Vitamins C and E supplementation decreased oxidative stress-mediated granulosa cells apoptosis, suggesting its efficiency to diminish GLP-mediated GCs cytotoxicity and thereby, preventing associated fertility disorders.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Department of Zoology, Reproductive Physiology Laboratory, Kurukshetra University, Kurukshetra, Haryana, India
| | - Meenu Mittal
- Department of Zoology, Reproductive Physiology Laboratory, Kurukshetra University, Kurukshetra, Haryana, India
| | - Priyanka Saraf
- Department of Zoology, Reproductive Physiology Laboratory, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
44
|
Johansson HKL, Schwartz CL, Nielsen LN, Boberg J, Vinggaard AM, Bahl MI, Svingen T. Exposure to a glyphosate-based herbicide formulation, but not glyphosate alone, has only minor effects on adult rat testis. Reprod Toxicol 2018; 82:25-31. [PMID: 30268827 DOI: 10.1016/j.reprotox.2018.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/25/2022]
Abstract
Glyphosate has been suggested to be an endocrine disrupting chemical capable of disrupting male reproduction. There are conflicting data, however, with studies reporting effects from exposure to either glyphosate alone or to herbicide formulations, making comparisons difficult. We assessed rat testis histopathology and androgen function following two weeks exposure to either glyphosate at 2.5 and 25 mg/kg bw/day (5x and 50x Acceptable Daily Intake, ADI, respectively), or equivalent high dose of glyphosate in a herbicide formulation; Glyfonova. We observed no significant effects on testes or testosterone synthesis in rats exposed to glyphosate. Limited effects were observed in rats exposed to Glyfonova, with a small upregulation of the steroidogenic genes Cyp11a1 and Cyp17a1. We conclude that glyphosate alone has no effect on adult rat testis at exposure levels up to 25 mg/kg bw/day. Glyfonova induced only minor effects on steroidogenic gene expression, likely caused by additives other than glyphosate.
Collapse
Affiliation(s)
- Hanna Katarina Lilith Johansson
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Camilla Lindgren Schwartz
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Lene Nørby Nielsen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Martin Iain Bahl
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
45
|
Davoren MJ, Schiestl RH. Glyphosate-based herbicides and cancer risk: a post-IARC decision review of potential mechanisms, policy and avenues of research. Carcinogenesis 2018; 39:1207-1215. [PMID: 30060078 PMCID: PMC7530464 DOI: 10.1093/carcin/bgy105] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/04/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Since its initial sales in the 1970s, the herbicide glyphosate attained widespread use in modern agriculture, becoming the most commercially successful and widely used herbicide of all time as of 2016. Despite a primary mechanism that targets a pathway absent from animal cells and regulatory studies showing safety margins orders of magnitude better than many other, more directly toxic herbicides, the safety status of glyphosate has recently been brought into question by a slow accumulation of studies suggesting more subtle health risks, especially when considered in combination with the surfactants it is usually applied with. Current, official views of respected international regulatory and health bodies remain divided on glyphosate's status as a human carcinogen, but the 2015 International Agency for Research on Cancer decision to reclassify the compound as Category 2A (probably carcinogenic to humans) marked a sea change in the scientific community's consensus view. The goal of this review is to consider the state of science regarding glyphosate's potential as a human carcinogen and genotoxin, with particular focus on studies suggesting mechanisms that would go largely undetected in traditional toxicology studies, such as microbiome disruption and endocrine mimicry at very low concentrations.
Collapse
Affiliation(s)
- Michael J Davoren
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Robert H Schiestl
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, CA, USA
- Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
- Environmental Health Science, University of California, Los Angeles, CA, USA
| |
Collapse
|
46
|
Dedeke GA, Owagboriaye FO, Ademolu KO, Olujimi OO, Aladesida AA. Comparative Assessment on Mechanism Underlying Renal Toxicity of Commercial Formulation of Roundup Herbicide and Glyphosate Alone in Male Albino Rat. Int J Toxicol 2018; 37:285-295. [PMID: 29890881 DOI: 10.1177/1091581818779553] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There have been major concerns that the nephrotoxicity of commercial formulations of Roundup herbicide is due to the active ingredient glyphosate. We therefore investigated and compared the mechanisms underlining the nephrotoxicity of Roundup herbicide and glyphosate alone in rat. Fifty-six adult male rats randomized into 7 groups of 8 rats per group were exposed to Roundup formulation and glyphosate alone daily by gavage at 3.6, 50.4, and 248.4 mg/kg body weight (bw) of glyphosate concentrations for 12 weeks with distilled water administered to the control group. Kidney biomarker (serum urea and creatinine, plasma cystatin-C, and neutrophil gelatinase-associated lipocalin), oxidative stress indices in the kidney tissue, activities of kidney membrane-bound enzymes (Mg-adenosine triphosphatase [ATPase], Ca-ATPase, Na/K-ATPase, and total ATPase), and histopathological changes in the kidney were monitored. Glyphosate concentration in the kidney was quantified by high-performance liquid chromatography with ultraviolet detection. Significant ( P < 0.05) alterations in the levels of the kidney biomarker, oxidative stress markers, and membrane-bound enzymes were observed in the rats exposed to Roundup compared to the rats exposed to glyphosate alone. Rats exposed to Roundup accumulated more glyphosate residue in their kidney tissue. Severe histopathological lesions were only seen in the kidneys of rats exposed to Roundup. The nephrotoxicity observed cannot be due to the active ingredient in the Roundup formulation, as glyphosate alone has virtually no effect on the renal function of the exposed animals. Therefore, the general claim attributing nephrotoxicity of a glyphosate-based herbicide to its active ingredient should be discouraged.
Collapse
Affiliation(s)
- Gabriel A Dedeke
- 1 Department of Biological Sciences, Covenant University, Sango Ota-Idiroko Road, Ogun State, Nigeria
- 2 Department of Pure and Applied Zoology, College of Bioscience, Federal University of Agriculture, Abeokuta, Nigeria
| | - Folarin O Owagboriaye
- 3 Faculty of Science, Department of Zoology and Environmental Biology, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Kehinde O Ademolu
- 2 Department of Pure and Applied Zoology, College of Bioscience, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olanrewaju O Olujimi
- 4 Department of Environmental Management and Toxicology, College of Environmental Management, Federal University of Agriculture, Abeokuta, Nigeria
| | - Adeyinka A Aladesida
- 2 Department of Pure and Applied Zoology, College of Bioscience, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
47
|
Anifandis G, Katsanaki K, Lagodonti G, Messini C, Simopoulou M, Dafopoulos K, Daponte A. The Effect of Glyphosate on Human Sperm Motility and Sperm DNA Fragmentation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1117. [PMID: 29848988 PMCID: PMC6024999 DOI: 10.3390/ijerph15061117] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023]
Abstract
Glyphosate is the active ingredient of Roundup®, which is one of the most popular herbicides worldwide. Although many studies have focused on the reproductive toxicity of glyphosate or glyphosate-based herbicides, the majority of them have concluded that the effect of the specific herbicide is negligible, while only a few studies indicate the male reproductive toxicity of glyphosate alone. The aim of the present study was to investigate the effect of 0.36 mg/L glyphosate on sperm motility and sperm DNA fragmentation (SDF). Thirty healthy men volunteered to undergo semen analysis for the purpose of the study. Sperm motility was calculated according to WHO 2010 guidelines at collection time (zero time) and 1 h post-treatment with glyphosate. Sperm DNA fragmentation was evaluated with Halosperm® G2 kit for both the control and glyphosate-treated sperm samples. Sperm progressive motility of glyphosate-treated samples was significantly reduced after 1 h post-treatment in comparison to the respective controls, in contrast to the SDF of glyphosate-treated samples, which was comparable to the respective controls. Conclusively, under these in vitro conditions, at high concentrations that greatly exceed environmental exposures, glyphosate exerts toxic effects on sperm progressive motility but not on sperm DNA integrity, meaning that the toxic effect is limited only to motility, at least in the first hour.
Collapse
Affiliation(s)
- George Anifandis
- Department of Obstetrics and Gynecology, ART Unit, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa 41222, Greece.
| | - Katerina Katsanaki
- Department of Obstetrics and Gynecology, ART Unit, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa 41222, Greece.
| | - Georgia Lagodonti
- Department of Obstetrics and Gynecology, ART Unit, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa 41222, Greece.
| | - Christina Messini
- Department of Obstetrics and Gynecology, ART Unit, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa 41222, Greece.
| | - Mara Simopoulou
- Department of Physiology, School of Health Sciences, Faculty of Medicine, Kapodistrian University of Athens, Athens 11225, Greece.
| | - Konstantinos Dafopoulos
- Department of Obstetrics and Gynecology, ART Unit, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa 41222, Greece.
| | - Alexandros Daponte
- Department of Obstetrics and Gynecology, ART Unit, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa 41222, Greece.
| |
Collapse
|
48
|
Mao Q, Manservisi F, Panzacchi S, Mandrioli D, Menghetti I, Vornoli A, Bua L, Falcioni L, Lesseur C, Chen J, Belpoggi F, Hu J. The Ramazzini Institute 13-week pilot study on glyphosate and Roundup administered at human-equivalent dose to Sprague Dawley rats: effects on the microbiome. Environ Health 2018; 17:50. [PMID: 29843725 PMCID: PMC5972442 DOI: 10.1186/s12940-018-0394-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/10/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Glyphosate-based herbicides (GBHs) are broad-spectrum herbicides that act on the shikimate pathway in bacteria, fungi, and plants. The possible effects of GBHs on human health are the subject of an intense public debate for both its potential carcinogenic and non-carcinogenic effects, including its effects on microbiome. The present pilot study examines whether exposure to GBHs at doses of glyphosate considered to be "safe" (the US Acceptable Daily Intake - ADI - of 1.75 mg/kg bw/day), starting from in utero, may modify the composition of gut microbiome in Sprague Dawley (SD) rats. METHODS Glyphosate alone and Roundup, a commercial brand of GBHs, were administered in drinking water at doses comparable to the US glyphosate ADI (1.75 mg/kg bw/day) to F0 dams starting from the gestational day (GD) 6 up to postnatal day (PND) 125. Animal feces were collected at multiple time points from both F0 dams and F1 pups. The gut microbiota of 433 fecal samples were profiled at V3-V4 region of 16S ribosomal RNA gene and further taxonomically assigned and assessed for diversity analysis. We tested the effect of exposure on overall microbiome diversity using PERMANOVA and on individual taxa by LEfSe analysis. RESULTS Microbiome profiling revealed that low-dose exposure to Roundup and glyphosate resulted in significant and distinctive changes in overall bacterial composition in F1 pups only. Specifically, at PND31, corresponding to pre-pubertal age in humans, relative abundance for Bacteriodetes (Prevotella) was increased while the Firmicutes (Lactobacillus) was reduced in both Roundup and glyphosate exposed F1 pups compared to controls. CONCLUSIONS This study provides initial evidence that exposures to commonly used GBHs, at doses considered safe, are capable of modifying the gut microbiota in early development, particularly before the onset of puberty. These findings warrant future studies on potential health effects of GBHs in early development such as childhood.
Collapse
Affiliation(s)
- Qixing Mao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1428 Madison, New York, NY 10029 USA
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Fabiana Manservisi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Simona Panzacchi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Ilaria Menghetti
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
| | - Andrea Vornoli
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
| | - Luciano Bua
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
| | - Laura Falcioni
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison, New York, NY 10029 USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison, New York, NY 10029 USA
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
| | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1428 Madison, New York, NY 10029 USA
| |
Collapse
|
49
|
Duke SO. The history and current status of glyphosate. PEST MANAGEMENT SCIENCE 2018; 74:1027-1034. [PMID: 28643882 DOI: 10.1002/ps.4652] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 05/09/2023]
Abstract
Glyphosate is the only herbicide to target the enzyme 5-enolpyruvyl-3-shikimate phosphate synthase (EPSPS). It is a high use rate, non-selective herbicide that translocates primarily to metabolic sinks, killing meristematic tissues away from the application site. Its phloem-mobile properties and slow action in killing weeds allow the herbicide to move throughout the plant to kill all meristems, making it effective for perennial weed control. Since commercialization in 1974, its use has grown to dominate the herbicide market. Much of its use is on transgenic, glyphosate-resistant crops (GRCs), which have been the dominant transgenic crops worldwide. GRCs with glyphosate provided the most effective and inexpensive weed management technology in history for a decade or more. However, as a consequence of the rapid increase in glyphosate-resistant (GR) weeds, the effectiveness of glyphosate use in GRCs is declining. Critics have claimed that glyphosate-treated GRCs have altered mineral nutrition and increased susceptibility to plant pathogens because of glyphosate's ability to chelate divalent metal cations, but the complete resistance of GRCs to glyphosate indicates that chelating metal cations do not contribute to the herbicidal activity or significantly affect mineral nutrition. The rates of increases in yields of maize, soybean, and cotton in the USA have been unchanged after high adoption rates of GRCs. Glyphosate is toxic to some plant pathogens, and thereby can act as a fungicide in GRCs. Ultra-low doses of glyphosate stimulate plant growth in glyphosate-susceptible plants by unknown mechanisms. Despite rapid and widespread increases in GR weeds, glyphosate use has not decreased. However, as GR weeds increase, adoption of alternative technologies will eventually lead to decreased use. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Stephen O Duke
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, Thad Cochran Research Center, University, MS, USA
| |
Collapse
|
50
|
Santo GD, Grotto A, Boligon AA, Da Costa B, Rambo CL, Fantini EA, Sauer E, Lazzarotto LMV, Bertoncello KT, Júnior OT, Garcia SC, Siebel AM, Rosemberg DB, Magro JD, Conterato GMM, Zanatta L. Protective effect of Uncaria tomentosa extract against oxidative stress and genotoxicity induced by glyphosate-Roundup® using zebrafish (Danio rerio) as a model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11703-11715. [PMID: 29442306 DOI: 10.1007/s11356-018-1350-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Oxidative stress and DNA damage are involved in the glyphosate-based herbicide toxicity. Uncaria tomentosa (UT; Rubiaceae) is a plant species from South America containing bioactive compounds with known beneficial properties. The objective of this work was to evaluate the antioxidant and antigenotoxic potential of UT extract in a model of acute exposure to glyphosate-Roundup® (GR) in zebrafish (Danio rerio). We showed that UT (1.0 mg/mL) prevented the decrease of brain total thiols, the increase of lipid peroxidation in both brain and liver, and the decrease of liver GPx activity caused after 96 h of GR (5.0 mg/L) exposure. In addition, UT partially protected against the increase of micronucleus frequency induced by GR exposure in fish brain. Overall, our results indicate that UT protects against damage induced by a glyphosate-based herbicide by providing antioxidant and antigenotoxic effects, which may be related to the phenolic compounds identified in the extract.
Collapse
Affiliation(s)
- Glaucia Dal Santo
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil
| | - Alan Grotto
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil
| | - Aline A Boligon
- Laboratório de Pesquisa Fitoquímica, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Prédio 26, Sala 1115, Santa Maria, CEP 97105-900, Brazil
| | - Bárbara Da Costa
- Laboratório de Toxicologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, RGS, 90610-000, Brazil
| | - Cassiano L Rambo
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, Porto Alegre, RS, 6681, Brazil
| | - Emily A Fantini
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil
| | - Elisa Sauer
- Laboratório de Toxicologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, RGS, 90610-000, Brazil
| | - Luan M V Lazzarotto
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil
| | - Kanandra T Bertoncello
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil
| | - Osmar Tomazelli Júnior
- Epagri, Development Center for Aqua culture and Fisheries, Florianópolis, SC, 8801-970-000, Brazil
| | - Solange C Garcia
- Laboratório de Toxicologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, RGS, 90610-000, Brazil
| | - Anna M Siebel
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil
- Laboratório de Genética e Ecotoxicologia Molecular, Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Chapecó, SC, 89809-000, Brazil
| | - Denis B Rosemberg
- Programa de Pós-Graduação em Bioquímica Toxicológica e Biodiversidade Animal, Laboratório de Toxicologia Aquática, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Jacir Dal Magro
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil
| | - Greicy M M Conterato
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil
- Laboratório de Fisiologia da Reprodução Animal, Universidade Federal de Santa Catarina, Campus Curitibanos, Rodovia Ulisses Gaboardi-Km 3, Curitibanos, SC, 89520-000, Brazil
| | - Leila Zanatta
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, Bairro Efapi, Chapecó, SC, 89809-000, Brazil.
- Centro de Educação Superior do Oeste, Departamento de Enfermagem, Universidade do Estado de Santa Catarina, Rua 7 de Setembro 77-D, Centro, Chapecó, SC, 89806-152, Brazil.
| |
Collapse
|