1
|
Lee S, Kim HR, Woo Y, Kim J, Kim HW, Park JY, Suh B, Choi Y, Ahn J, Ryu JH, Roe JS, Song J, Lee SH. UBX-390: A Novel Androgen Receptor Degrader for Therapeutic Intervention in Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400398. [PMID: 38958553 PMCID: PMC11434238 DOI: 10.1002/advs.202400398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The androgen receptor (AR) is an attractive target for treating prostate cancer, considering its role in the development and progression of localized and metastatic prostate cancer. The high global mortality burden of prostate cancer, despite medical treatments such as androgen deprivation or AR antagonist therapy, highlights the need to explore alternative strategies. One strategy involves the use of heterobifunctional degraders, also known as proteolysis-targeting chimeras, which are novel small-molecule therapeutics that inhibit amplified or mutated targets. Here, the study reports a novel cereblon-based AR degrader, UBX-390, and demonstrates its superior activity over established AR degraders, such as ARV-110 or ARCC-4, in prostate cancer cells under short- and long-term treatment conditions. UBX-390 suppresses chromatin binding and gene expression of AR and demonstrates substantial efficacy in the degradation of AR mutants in patients with treatment-resistant prostate cancer. UBX-390 is presented as an optimized AR degrader with remarkable potential for treating castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Soohyun Lee
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yaejin Woo
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| | - Jiyoung Kim
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| | - Han Wool Kim
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| | - Ji Youn Park
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| | - Beomseon Suh
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| | - Yuri Choi
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| | - Jungmin Ahn
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| | - Je Ho Ryu
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Song Hee Lee
- Ubix Therapeutics, Seoul, 05836, Republic of Korea
| |
Collapse
|
2
|
Rahman M, Akter K, Ahmed KR, Fahim MMH, Aktary N, Park MN, Shin SW, Kim B. Synergistic Strategies for Castration-Resistant Prostate Cancer: Targeting AR-V7, Exploring Natural Compounds, and Optimizing FDA-Approved Therapies. Cancers (Basel) 2024; 16:2777. [PMID: 39199550 PMCID: PMC11352813 DOI: 10.3390/cancers16162777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Castration-resistant prostate cancer (CRPC) remains a significant therapeutic challenge due to its resistance to standard androgen deprivation therapy (ADT). The emergence of androgen receptor splice variant 7 (AR-V7) has been implicated in CRPC progression, contributing to treatment resistance. Current treatments, including first-generation chemotherapy, androgen receptor blockers, radiation therapy, immune therapy, and PARP inhibitors, often come with substantial side effects and limited efficacy. Natural compounds, particularly those derived from herbal medicine, have garnered increasing interest as adjunctive therapeutic agents against CRPC. This review explores the role of AR-V7 in CRPC and highlights the promising benefits of natural compounds as complementary treatments to conventional drugs in reducing CRPC and overcoming therapeutic resistance. We delve into the mechanisms of action underlying the anti-CRPC effects of natural compounds, showcasing their potential to enhance therapeutic outcomes while mitigating the side effects associated with conventional therapies. The exploration of natural compounds offers promising avenues for developing novel treatment strategies that enhance therapeutic outcomes and reduce the adverse effects of conventional CRPC therapies. These compounds provide a safer, more effective approach to managing CRPC, representing a significant advancement in improving patient care.
Collapse
Affiliation(s)
- Muntajin Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Khadija Akter
- Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea;
| | - Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Md. Maharub Hossain Fahim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Nahida Aktary
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Sang-Won Shin
- Department of Humanities & Social Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
- Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea;
| |
Collapse
|
3
|
Sarıkaya EA, Korhan P, Incir C, Yıldız AH, Deger DM, Özer SM, Tuncok Y, Ergor G, Islakoğlu YÖ, Sen V, Bozkurt O, Atabey N, Esen AA. Evaluation of androgen receptor and androgen receptor splice-variant 7 in bladder cancer; a novel approach into an ancient topic. World J Urol 2024; 42:459. [PMID: 39083104 PMCID: PMC11291539 DOI: 10.1007/s00345-024-05166-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/08/2024] [Indexed: 08/03/2024] Open
Abstract
PURPOSE The contribution of androgen receptors (AR) on bladder cancer has been demonstrated in pre-clinical studies, however in clinical studies, only the canonical AR (AR-FL) protein was measured by immunohistochemistry and conflicting results were obtained. To get better insight into the alterations of AR signalling, we used western blotting (WB) method and simultaneously measured both mRNA and protein levels of AR-FL and AR-V7. METHODS 23 naive non-muscle invasive bladder cancer patients and 12 healthy individuals were included. AR-FL protein, AR-FL mRNA, AR-V7 protein and AR-V7 mRNA levels were quantitatively measured by WB and qRT-PCR. RESULTS While AR-FL protein and AR-V7 mRNA were significantly higher in bladder cancer, AR-FL mRNA and AR-V7 protein were lower. AR-V7 mRNA level was higher in patients with tumour size over 3 cm and AR-FL protein was higher in single tumours (p < 0,005). The small sampling size and the inclusion of only male participants were the main limitations. CONCLUSIONS The increase of AR-FL protein in bladder cancer supports the contribution of the AR pathway in bladder cancer. The presence of high AR-FL protein despite low mRNA levels may be due to a disruption in post-transcriptional regulatory mechanisms. AR-V7 was demonstrated for the first time in bladder tissue and found significantly different in bladder cancer tissues. Our study reached new and valuable findings and will shed light on the studies that aim to clarify the role of the AR pathway in bladder cancer.
Collapse
Affiliation(s)
| | - Peyda Korhan
- Izmir Biomedicine and Genome Center, Balcova, Izmir, 35340, Turkey
- Galen Research Center, Izmir Tinaztepe University, Buca, Izmir, 35400, Turkey
- Department of Medical Biology and Genetics, Faculty of Medicine, Izmir Tinaztepe University, Buca, Izmir, 35400, Turkey
| | - Canet Incir
- Dokuz Eylul University Hospital Medical Pharmacology Department, İzmir, Turkey
| | - Alperen H Yıldız
- Bolu Abant Izzet Baysal Üniversitesi Faculty of Medicine University Hospital Urology Department, Bolu, Turkey
| | - Dogan M Deger
- Edirne Sultan 1. Murat State Hospital, Edirne, Turkey
| | - Selçuk M Özer
- Dokuz Eylul University Hospital Urology Department, Edirne, Turkey
| | - Yesim Tuncok
- Dokuz Eylul University Hospital Medical Pharmacology Department, İzmir, Turkey
| | - Gul Ergor
- Dokuz Eylul University Hospital Public Health Department, Izmir, Turkey
| | | | - Volkan Sen
- Dokuz Eylul University Hospital Urology Department, Edirne, Turkey
| | - Ozan Bozkurt
- Dokuz Eylul University Hospital Urology Department, Edirne, Turkey
| | - Neşe Atabey
- Izmir Biomedicine and Genome Center, Balcova, Izmir, 35340, Turkey
- Galen Research Center, Izmir Tinaztepe University, Buca, Izmir, 35400, Turkey
- Department of Medical Biology and Genetics, Faculty of Medicine, Izmir Tinaztepe University, Buca, Izmir, 35400, Turkey
| | - Adil A Esen
- Dokuz Eylul University Hospital Urology Department, Edirne, Turkey
| |
Collapse
|
4
|
Yi Q, Han X, Yu HG, Chen HY, Qiu D, Su J, Lin R, Batist G, Wu JH. SC912 inhibits AR-V7 activity in castration-resistant prostate cancer by targeting the androgen receptor N-terminal domain. Oncogene 2024; 43:1522-1533. [PMID: 38532114 DOI: 10.1038/s41388-024-02944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 03/28/2024]
Abstract
Androgen deprivation therapies (ADT) are the mainstay treatments for castration-resistant prostate cancer (CRPC). ADT suppresses the androgen receptor (AR) signaling by blocking androgen biosynthesis or inhibiting AR with antiandrogens that target AR's ligand-binding domain (LBD). However, the ADT's effect is short-lived, as the AR signaling inevitably arises again, which is frequently coupled with AR-V7 overexpression. AR-V7 is a truncated form of AR that lacks the LBD, thus being constitutively active in the absence of androgens and irresponsive to AR-LBD-targeting inhibitors. Though compelling evidence has tied AR-V7 to drug resistance in CRPC, pharmacological inhibition of AR-V7 is still an unmet need. Here, we discovered a small molecule, SC912, which binds to full-length AR as well as AR-V7 through AR N-terminal domain (AR-NTD). This pan-AR targeting relies on the amino acids 507-531 in the AR-NTD. SC912 also disrupted AR-V7 transcriptional activity, impaired AR-V7 nuclear localization and DNA binding. In the AR-V7 positive CRPC cells, SC912 suppressed proliferation, induced cell-cycle arrest, and apoptosis. In the AR-V7 expressing CRPC xenografts, SC912 attenuated tumor growth and antagonized intratumoral AR signaling. Together, these results suggested the therapeutic potential of SC912 for CRPC.
Collapse
Affiliation(s)
- Qianhui Yi
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada
- Departments of Oncology and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Xiaojun Han
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada
| | - Henry G Yu
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada
- Departments of Oncology and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Huei-Yu Chen
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada
- Departments of Oncology and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dinghong Qiu
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada
| | - Jie Su
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada
| | - Rongtuan Lin
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada
- Departments of Oncology and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Gerald Batist
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada
- Departments of Oncology and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Jian Hui Wu
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada.
- Departments of Oncology and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Saini T, Gupta P, Raut R, Nayak V, Bharathnaveen P, Mishra P, Misra A. AR-V7 expression facilitates accelerated G2/M phase transition in castration-resistant prostate cancer. Exp Cell Res 2024; 438:114026. [PMID: 38604522 DOI: 10.1016/j.yexcr.2024.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
The emergence of AR-V7, a truncated isoform of AR upon androgen deprivation therapy treatment, leads to the development of castration resistant prostate cancer (CRPC). Understanding mechanisms that regulate AR-V7 expression is critical for developing newer therapeutic strategies. In this study, we have investigated the regulation of AR-V7 during cell cycle and identified a distinct pattern of periodic fluctuation, peaking during G2/M phase. This fluctuation correlates with the expression of Cdc-2 like kinase 1 (CLK1) and phosphorylated serine/arginine-rich splicing factor 1 (p-SRSF1) during these phases, pointing towards their role in AR-V7 generation. Functional assays reveal that CLK1 knockdown prolongs the S phase, leading to altered cell cycle distribution and increased accumulation of AR-V7 and pSRSF1 in G1/S phase. Conversely, CLK1 overexpression rescues AR-V7 and p-SRSF1 levels in the G2/M phase, consistent with observed cell cycle alterations upon AR-V7 knockdown and overexpression in CRPC cells. Furthermore, overexpression of kinase-deficient CLK1 mutant leads to diminished AR-V7 levels during G2/M, underlining the essential contribution of CLK1's kinase activity in modulating AR-V7 expression. Collectively, our findings, for the first time, show periodic regulation of AR-V7 expression, its effect on cell cycle progression and the critical role of CLK1-pSRSF1 axis in modulating AR-V7 expression throughout the cell cycle.
Collapse
Affiliation(s)
- Taruna Saini
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, India
| | - Parth Gupta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, India
| | - Rajnikant Raut
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, India
| | - Vinayak Nayak
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, India
| | - Pabbithi Bharathnaveen
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, India
| | - Parul Mishra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ashish Misra
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, India.
| |
Collapse
|
6
|
Ma B, Liu D, Zheng M, Wang Z, Zhang D, Jian Y, Ma J, Fan Y, Chen Y, Gao Y, Liu J, Li X, Li L. Development of a Double-Stapled Peptide Stabilizing Both α-Helix and β-Sheet Structures for Degrading Transcription Factor AR-V7. JACS AU 2024; 4:816-827. [PMID: 38425893 PMCID: PMC10900202 DOI: 10.1021/jacsau.3c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 03/02/2024]
Abstract
Peptide drugs offer distinct advantages in therapeutics; however, their limited stability and membrane penetration abilities hinder their widespread application. One strategy to overcome these challenges is the hydrocarbon peptide stapling technique, which addresses issues such as poor conformational stability, weak proteolytic resistance, and limited membrane permeability. Nonetheless, while peptide stapling has successfully stabilized α-helical peptides, it has shown limited applicability for most β-sheet peptide motifs. In this study, we present the design of a novel double-stapled peptide capable of simultaneously stabilizing both α-helix and β-sheet structures. Our designed double-stapled peptide, named DSARTC, specifically targets the androgen receptor (AR) DNA binding domain and MDM2 as E3 ligase. Serving as a peptide-based PROTAC (proteolysis-targeting chimera), DSARTC exhibits the ability to degrade both the full-length AR and AR-V7. Molecular dynamics simulations and circular dichroism analysis validate the successful constraint of both secondary structures, demonstrating that DSARTC is a "first-in-class" heterogeneous-conformational double-stapled peptide drug candidate. Compared to its linear counterpart, DSARTC displays enhanced stability and an improved cell penetration ability. In an enzalutamide-resistant prostate cancer animal model, DSARTC effectively inhibits tumor growth and reduces the levels of both AR and AR-V7 proteins. These results highlight the potential of DSARTC as a more potent and specific peptide PROTAC for AR-V7. Furthermore, our findings provide a promising strategy for expanding the design of staple peptide-based PROTAC drugs, targeting a wide range of "undruggable" transcription factors.
Collapse
Affiliation(s)
- Bohan Ma
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Donghua Liu
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Mengjun Zheng
- School
of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhe Wang
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Dize Zhang
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yanlin Jian
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jian Ma
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yizeng Fan
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yule Chen
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yang Gao
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jing Liu
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiang Li
- School
of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Lei Li
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
7
|
Hong Z, Xu C, Zheng S, Wang X, Tao Y, Tan Y, Lin G, Wu D, Ye D. Nucleophosmin 1 cooperates with BRD4 to facilitate c-Myc transcription to promote prostate cancer progression. Cell Death Discov 2023; 9:392. [PMID: 37875480 PMCID: PMC10597990 DOI: 10.1038/s41420-023-01682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Nucleophosmin 1 (NPM1) is a multifunctional protein that promotes tumor progression in various cancers and is associated with a poor prognosis of prostate cancer (PCa). However, the mechanism by which NPM1 exerts its malignant potential in PCa remains elusive. Here, we showed that NPM1 is overexpressed in PCa cell lines and tissues and that the dysregulation of NPM1 promotes PCa proliferation. We also demonstrated that NPM1 transcriptionally upregulates c-Myc expression in PCa cells that is diminished by blockade of bromodomain-containing protein 4 (BRD4). Furthermore, we detected a correlation between NPM1 and c-Myc in patient PCa specimens. Mechanistically, NPM1 influences and cooperates with BRD4 to facilitate c-Myc transcription to promote PCa progression. In addition, JQ1, a bromodomain and extra-terminal domain (BET) inhibitor, in combination with NPM1 inhibition suppresses PCa progression in vitro and in vivo. These results indicate that NPM1 promotes PCa progression through a c-Myc -mediated pathway via BRD4, and blockade of the NPM1-c-Myc oncogenic pathway may be a therapeutic strategy for PCa.
Collapse
Affiliation(s)
- Zhe Hong
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Shengfeng Zheng
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China
| | - Xinan Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Yiran Tao
- Department of Urology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, 317000, Taizhou, China
| | - Yao Tan
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
| | - Guowen Lin
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China.
| |
Collapse
|
8
|
Toriki E, Papatzimas JW, Nishikawa K, Dovala D, Frank AO, Hesse MJ, Dankova D, Song JG, Bruce-Smythe M, Struble H, Garcia FJ, Brittain SM, Kile AC, McGregor LM, McKenna JM, Tallarico JA, Schirle M, Nomura DK. Rational Chemical Design of Molecular Glue Degraders. ACS CENTRAL SCIENCE 2023; 9:915-926. [PMID: 37252349 PMCID: PMC10214506 DOI: 10.1021/acscentsci.2c01317] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Indexed: 05/31/2023]
Abstract
Targeted protein degradation with molecular glue degraders has arisen as a powerful therapeutic modality for eliminating classically undruggable disease-causing proteins through proteasome-mediated degradation. However, we currently lack rational chemical design principles for converting protein-targeting ligands into molecular glue degraders. To overcome this challenge, we sought to identify a transposable chemical handle that would convert protein-targeting ligands into molecular degraders of their corresponding targets. Using the CDK4/6 inhibitor ribociclib as a prototype, we identified a covalent handle that, when appended to the exit vector of ribociclib, induced the proteasome-mediated degradation of CDK4 in cancer cells. Further modification of our initial covalent scaffold led to an improved CDK4 degrader with the development of a but-2-ene-1,4-dione ("fumarate") handle that showed improved interactions with RNF126. Subsequent chemoproteomic profiling revealed interactions of the CDK4 degrader and the optimized fumarate handle with RNF126 as well as additional RING-family E3 ligases. We then transplanted this covalent handle onto a diverse set of protein-targeting ligands to induce the degradation of BRD4, BCR-ABL and c-ABL, PDE5, AR and AR-V7, BTK, LRRK2, HDAC1/3, and SMARCA2/4. Our study undercovers a design strategy for converting protein-targeting ligands into covalent molecular glue degraders.
Collapse
Affiliation(s)
- Ethan
S. Toriki
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Innovative
Genomics Institute, Berkeley, California 94704, United States
| | - James W. Papatzimas
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Innovative
Genomics Institute, Berkeley, California 94704, United States
| | - Kaila Nishikawa
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Innovative
Genomics Institute, Berkeley, California 94704, United States
| | - Dustin Dovala
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis
Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Andreas O. Frank
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis
Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Matthew J. Hesse
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis
Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Daniela Dankova
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Innovative
Genomics Institute, Berkeley, California 94704, United States
| | - Jae-Geun Song
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis
Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Megan Bruce-Smythe
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis
Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Heidi Struble
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis
Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Francisco J. Garcia
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis
Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Scott M. Brittain
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis
Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Andrew C. Kile
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis
Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Lynn M. McGregor
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis
Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Jeffrey M. McKenna
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis
Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - John A. Tallarico
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis
Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Markus Schirle
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis
Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Daniel K. Nomura
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Innovative
Genomics Institute, Berkeley, California 94704, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Kiss MA, Peřina M, Bereczki L, Baji Á, Bělíček J, Jorda R, Frank É. Dihydrotestosterone-based A-ring-fused pyridines: microwave-assisted synthesis and biological evaluation in prostate cancer cells compared to structurally related quinolines. J Steroid Biochem Mol Biol 2023; 231:106315. [PMID: 37086925 DOI: 10.1016/j.jsbmb.2023.106315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/24/2023]
Abstract
Dysfunction of the androgen receptor (AR) signalling axis plays a pivotal role in the development and progression of prostate cancer (PCa). Steroidal and non-steroidal AR antagonists can significantly improve the survival of PCa patients by blocking the action of the endogenous ligand through binding to the hormone receptor and preventing its activation. Herein, we report two synthetic strategies, each utilizing the advantages of microwave irradiation, to modify the A-ring of natural androgen 5α-dihydrotestosterone (DHT) with pyridine scaffolds. Treatment of DHT with appropriate Mannich salts led to 1,5-diketones, which were then converted with hydroxylamine to A-ring-fused 6'-substituted pyridines. To extend the compound library with 4',6'-disubstituted analogues, 2-arylidene derivatives of DHT were subjected to ring closure reactions according to the Kröhnke's pyridine synthesis. The crystal structure of a monosubstituted pyridine product was determined by single crystal X-ray diffraction. AR transcriptional activity in a reporter cell line was investigated for all novel A-ring-fused pyridines and a number of previously synthesized DHT-based quinolines were included to the biological study to obtain information about the structure-activity relationship. It was shown that several A-ring-fused quinolines acted as AR antagonists, in comparison with the dual or agonist character of the majority of A-ring-fused pyridines. Derivative 1d (A-ring-fused 6'-methoxyquinoline) was studied in detail and showed to be a low-micromolar AR antagonist (IC50 = 10.5µM), and it suppressed the viability and proliferation of AR-positive PCa cell lines. Moreover, the candidate compound blocked the AR downstream signalling, induced moderate cell-cycle arrest and showed to bind recombinant AR and to target AR in cells. The binding mode and crucial interactions were described using molecular modelling.
Collapse
Affiliation(s)
- Márton A Kiss
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Miroslav Peřina
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Laura Bereczki
- Structural Research Centre, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Ádám Baji
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Jakub Bělíček
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Radek Jorda
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| |
Collapse
|
10
|
Peřina M, Kiss MA, Mótyán G, Szczyrbová E, Eliáš M, Študent V, Kurfürstová D, Kovalová M, Mada L, Bouchal J, Frank É, Jorda R. A-ring-fused pyrazoles of dihydrotestosterone targeting prostate cancer cells via the downregulation of the androgen receptor. Eur J Med Chem 2023; 249:115086. [PMID: 36682291 DOI: 10.1016/j.ejmech.2023.115086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 01/01/2023] [Indexed: 01/15/2023]
Abstract
High expression of the androgen receptor (AR) and the disruption of its regulation are strongly responsible for the development of prostate cancer (PCa). Therapeutically relevant non-steroidal or steroidal antiandrogens are able to block the AR effect by eliminating AR-mediated signalling. Herein we report the synthesis of novel steroidal pyrazoles derived from the natural sex hormone 5α-dihydrotestosterone (DHT). 2-Ethylidene or 2-(hetero)arylidene derivatives of DHT obtained by regioselective Claisen-Schmidt condensation with acetaldehyde or (hetero)aromatic aldehydes in alkaline ethanol were reacted with monosubstituted hydrazines to give A-ring-fused 1,5-disubstituted pyrazoles as main or exclusive products, depending on the reaction conditions applied. Spontaneous or 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ)-induced oxidation of the primarily formed pyrazolines resulted in the desired products in moderate to good yields, while 17-oxidation also occurred by using the Jones reagent as a strong oxidant. Transcriptional activity of the AR in a reporter cell line was examined for all novel compounds, and several previously synthesized similar DHT-based pyrazoles with differently substituted heteroring were also included to obtain information about the structure-activity relationship. Two specific regioisomeric groups of derivatives significantly diminished the transcriptional activity of the AR in reporter cell line in 10 μM concentration, and displayed reasonable antiproliferative activity in AR-positive PCa cell lines. Lead compound (3d) was found to be a potent AR antagonist (IC50 = 1.18 μM), it generally suppressed AR signalling in time and dose dependent manner, moreover, it also led to a sharp decrease in wt-AR protein level probably caused by proteasomal degradation. We confirmed the antiproliferative activity of 3d in AR-positive PCa cell lines (with GI50 in low micromolar ranges), and its cellular, biochemical and in silico binding in AR ligand-binding domain. Moreover, compound 3d was shown to be potent even ex vivo in patient-derived tissues, which highlights the therapeutic potential of A-ring-fused pyrazoles.
Collapse
Affiliation(s)
- Miroslav Peřina
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Márton A Kiss
- Department of Organic Chemistry, University of Szeged, Dóm Tér 8, H-6720, Szeged, Hungary
| | - Gergő Mótyán
- Department of Organic Chemistry, University of Szeged, Dóm Tér 8, H-6720, Szeged, Hungary
| | - Eva Szczyrbová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Palacký University Olomouc and University Hospital Olomouc, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Martin Eliáš
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Palacký University Olomouc and University Hospital Olomouc, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Vladimír Študent
- Department of Urology, Palacký University Olomouc and University Hospital Olomouc, I.P.Pavlova 6, 77900, Olomouc, Czech Republic
| | - Daniela Kurfürstová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Palacký University Olomouc and University Hospital Olomouc, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Markéta Kovalová
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Lukáš Mada
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Palacký University Olomouc and University Hospital Olomouc, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm Tér 8, H-6720, Szeged, Hungary.
| | - Radek Jorda
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech Republic.
| |
Collapse
|
11
|
Ota A, Kawai M, Kudo Y, Segawa J, Hoshi M, Kawano S, Yoshino Y, Ichihara K, Shiota M, Fujimoto N, Matsunaga T, Endo S, Ikari A. Artepillin C overcomes apalutamide resistance through blocking androgen signaling in prostate cancer cells. Arch Biochem Biophys 2023; 735:109519. [PMID: 36642262 DOI: 10.1016/j.abb.2023.109519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Prostate cancer has a relatively good prognosis, but most cases develop resistance to hormone therapy, leading to castration-resistant prostate cancer (CRPC). Androgen receptor (AR) antagonists and a cytochrome P450 17A1 inhibitor have been used to treat CRPC, but cancer cells readily develop resistance to these drugs. In this study, to improve the therapy of CRPC, we searched for natural compounds which block androgen signaling. Among cinnamic acid derivatives contained in Brazilian green propolis, artepillin C (ArtC) suppressed expressions of androgen-induced prostate-specific antigen and transmembrane protease serine 2 in a dose-dependent manner. Reporter assays revealed that ArtC displayed AR antagonist activity, albeit weaker than an AR antagonist flutamide. In general, aberrant activation of the androgen signaling is involved in the resistance of prostate cancer cells to hormone therapy. Recently, apalutamide, a novel AR antagonist, has been in clinical use, but its drug-resistant cases have been already reported. To search for compounds which overcome the resistance to apalutamide, we established apalutamide-resistant prostate cancer 22Rv1 cells (22Rv1/APA). The 22Rv1/APA cells showed higher AR expression and androgen sensitivity than parental 22Rv1 cells. ArtC inhibited androgen-induced proliferation of 22Rv1/APA cells by suppressing the enhanced androgen signaling through blocking the nuclear translocation of AR. In addition, ArtC potently sensitized the resistant cells to apalutamide by inducing apoptotic cell death due to mitochondrial dysfunction. These results suggest that the intake of Brazilian green propolis containing ArtC improves prostate cancer therapy.
Collapse
Affiliation(s)
- Atsumi Ota
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Mina Kawai
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Yudai Kudo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Jin Segawa
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Manami Hoshi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Shinya Kawano
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Kenji Ichihara
- Nagaragawa Research Center, API Co., Ltd., Gifu, 502-0071, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan.
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| |
Collapse
|
12
|
Urabe F, Yamamoto Y, Kimura T. miRNAs in prostate cancer: Intercellular and extracellular communications. Int J Urol 2022; 29:1429-1438. [PMID: 36122303 DOI: 10.1111/iju.15043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 12/23/2022]
Abstract
Prostate cancer is the most prevalent male cancer in Western Europe and North America. Although new drugs were recently approved, clinical challenges such as accurately predicting and screening drug-resistant prostate cancer remain. microRNAs are short noncoding RNA molecules that participate in gene regulation at the post-transcriptional level by targeting messenger RNAs. There is accumulating evidence that intracellular microRNAs play important roles as promoters or inhibitors of prostate cancer progression. Additionally, recent studies showed that microRNAs are encapsulated in extracellular vesicles and shuttled into the extracellular space. Transfer of extracellular microRNAs contributes to intercellular communication between prostate cancer cells and components of the tumor microenvironment, which can promote prostate cancer progression. Furthermore, due to their encapsulation in extracellular vesicles, extracellular microRNAs can be stably present in body fluids which contain high levels of RNase. Thus, circulating microRNAs have great potential as noninvasive diagnostic and prognostic biomarkers for prostate cancer. Here, we summarize the roles of intracellular and extracellular microRNAs in prostate cancer progression and discuss the potential of microRNA-based therapeutics as a novel treatment strategy for prostate cancer.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022; 12:1590. [PMID: 36358940 PMCID: PMC9687810 DOI: 10.3390/biom12111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
There is an urgent need for exploring new actionable targets other than androgen receptor to improve outcome from lethal castration-resistant prostate cancer. Tumor metabolism has reemerged as a hallmark of cancer that drives and supports oncogenesis. In this regard, it is important to understand the relationship between distinctive metabolic features, androgen receptor signaling, genetic drivers in prostate cancer, and the tumor microenvironment (symbiotic and competitive metabolic interactions) to identify metabolic vulnerabilities. We explore the links between metabolism and gene regulation, and thus the unique metabolic signatures that define the malignant phenotypes at given stages of prostate tumor progression. We also provide an overview of current metabolism-based pharmacological strategies to be developed or repurposed for metabolism-based therapeutics for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Stephen Y. C. Choi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
- New York Genome Center, New York, NY 10013, USA
| | - Stephen R. Plymate
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Takuma Uo
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
14
|
Ma B, Fan Y, Zhang D, Wei Y, Jian Y, Liu D, Wang Z, Gao Y, Ma J, Chen Y, Xu S, Li L. De Novo Design of an Androgen Receptor DNA Binding Domain-Targeted peptide PROTAC for Prostate Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201859. [PMID: 35971165 PMCID: PMC9534960 DOI: 10.1002/advs.202201859] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/10/2022] [Indexed: 05/27/2023]
Abstract
Androgen receptor splice variant-7 (AR-V7), one of the major driving factors, is the most attractive drug target in castration-resistant prostate cancer (CRPC). Currently, no available drugs efficiently target AR-V7 in clinical practice. The DNA binding domain (DBD) is indispensable for the transcriptional activity of AR full length and AR splice variants, including AR-V7. Based on the homodimerization structure of the AR DBD, a novel peptide-based proteolysis-targeting chimera (PROTAC) drug is designed to induce AR and AR-V7 degradation in a DBD and MDM2-dependent manner, without showing any activity on other hormone receptors. To overcome the short half-life and poor cell penetrability of peptide PROTAC drugs, an ultrasmall gold (Au)-peptide complex platform to deliver the AR DBD PROTAC in vivo is developed. The obtained Au-AR pep-PROTAC effectively degrades AR and AR-V7 in prostate cancer cell lines, particularly in CWR22Rv1 cells with DC50 values 48.8 and 79.2 nM, respectively. Au-AR pep-PROTAC results in suppression of AR levels and induces tumor regression in both enzalutamide sensitive and resistant prostate cancer animal models. Further optimization of the Au-AR pep-PROTAC can ultimately lead to a new therapy for AR-V7-positive CRPC.
Collapse
Affiliation(s)
- Bohan Ma
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Yizeng Fan
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Dize Zhang
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Yi Wei
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Yanlin Jian
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Donghua Liu
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Zixi Wang
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Yang Gao
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Jian Ma
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Yule Chen
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Shan Xu
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| | - Lei Li
- Department of UrologyThe First Affiliated HospitalXi'an Jiaotong University#277 Yanta West RoadXi'anChina
| |
Collapse
|
15
|
Kim S, Au CC, Jamalruddin MAB, Abou-Ghali NE, Mukhtar E, Portella L, Berger A, Worroll D, Vatsa P, Rickman DS, Nanus DM, Giannakakou P. AR-V7 exhibits non-canonical mechanisms of nuclear import and chromatin engagement in castrate-resistant prostate cancer. eLife 2022; 11:e73396. [PMID: 35848798 PMCID: PMC9398446 DOI: 10.7554/elife.73396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 07/17/2022] [Indexed: 11/19/2022] Open
Abstract
Expression of the AR splice variant, androgen receptor variant 7 (AR-V7), in prostate cancer is correlated with poor patient survival and resistance to AR targeted therapies and taxanes. Currently, there is no specific inhibitor of AR-V7, while the molecular mechanisms regulating its biological function are not well elucidated. Here, we report that AR-V7 has unique biological features that functionally differentiate it from canonical AR-fl or from the second most prevalent variant, AR-v567. First, AR-V7 exhibits fast nuclear import kinetics via a pathway distinct from the nuclear localization signal dependent importin-α/β pathway used by AR-fl and AR-v567. We also show that the dimerization box domain, known to mediate AR dimerization and transactivation, is required for AR-V7 nuclear import but not for AR-fl. Once in the nucleus, AR-V7 is transcriptionally active, yet exhibits unusually high intranuclear mobility and transient chromatin interactions, unlike the stable chromatin association of liganded AR-fl. The high intranuclear mobility of AR-V7 together with its high transcriptional output, suggest a Hit-and-Run mode of transcription. Our findings reveal unique mechanisms regulating AR-V7 activity, offering the opportunity to develop selective therapeutic interventions.
Collapse
Affiliation(s)
- Seaho Kim
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - CheukMan C Au
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | | | | | - Eiman Mukhtar
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Luigi Portella
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Adeline Berger
- Department of Pathology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Daniel Worroll
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Prerna Vatsa
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - David S Rickman
- Department of Pathology, Weill Cornell Medical CollegeNew YorkUnited States
| | - David M Nanus
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
- Meyer Cancer Center, Weill Cornell Medical CollegeNew YorkUnited States
| | - Paraskevi Giannakakou
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
- Meyer Cancer Center, Weill Cornell Medical CollegeNew YorkUnited States
| |
Collapse
|
16
|
Luna Velez MV, Paulino da Silva Filho O, Verhaegh GW, van Hooij O, El Boujnouni N, Brock R, Schalken JA. Delivery of antisense oligonucleotides for splice-correction of androgen receptor pre-mRNA in castration-resistant prostate cancer models using cell-penetrating peptides. Prostate 2022; 82:657-665. [PMID: 35098567 PMCID: PMC9303360 DOI: 10.1002/pros.24309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 07/19/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Cell-penetrating peptides (CPPs) are a promising approach for delivering antisense oligonucleotides (AONs) as they form nanosized complexes through noncovalent interactions that show efficient cellular uptake. Previously, we have designed an AON system to correct splicing of the androgen receptor (AR) pre-mRNA, thereby preventing the generation of the splice variant AR-V7 mRNA. AON-mediated knockdown of AR-V7 resulted in inhibition of androgen-independent cell proliferation. In this study, we evaluated the CPP-mediated delivery of this AON into castration-resistant prostate cancer cell line models 22Rv1, DuCaP (dura mater cancer of the prostate), and VCaP (vertebral cancer of the prostate). METHODS Nanoparticles (polyplexes) of AONs and CPPs were formed through rapid mixing. The impact of the peptide carrier, the formulation parameters, and cell incubation conditions on cellular uptake of fluorescently labeled AONs were assessed through flow cytometry. The cytotoxic activity of these formulations was measured using the CellTiter-Glo cell viability assay. The effectivity of CPP-mediated delivery of the splice-correcting AON-intronic splicing enhancer (ISE) targeting the ISE in the castration-resistant prostate cancer (CRPC)-derived 22Rv1, DuCaP, and VCaP cells was determined by measuring levels of AR-V7 mRNA normalized to those of the human heterochromatin protein 1 binding protein 3 (HP1BP3). Western blot analysis was used to confirm AR-V7 downregulation at a protein level. The cellular distribution of fluorescently labeled AON delivered by a CPP or a transfection reagent was determined through confocal laser scanning microscopy. RESULTS The amphipathic and stearylated CPP PepFect 14 (PF14) showed higher uptake efficiency than arginine-rich CPPs. Through adjustment of formulation parameters, concentration and incubation time, an optimal balance between carrier-associated toxicity and delivery efficiency was found with a formulation consisting of an amino/phosphate ratio of 3, 0.35 μM AON concentration and 30 min incubation time of the cells with polyplexes. Cellular delivery of AON-ISE directed against AR pre-mRNA achieved significant downregulation of AR-V7 by 50%, 37%, and 59% for 22Rv1, DuCaP, and VCaP cells, respectively, and reduced androgen-independent cell proliferation of DuCaP and VCaP cells. CONCLUSIONS This proof-of-principle study constitutes the basis for further development of CPP-mediated delivery of AONs for targeted therapy in prostate cancer.
Collapse
Affiliation(s)
- Maria V. Luna Velez
- Department of Urology, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Omar Paulino da Silva Filho
- Department of Biochemistry, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
- CAPES FoundationMinistry of Education of BrazilBrasíliaBrazil
| | - Gerald W. Verhaegh
- Department of Urology, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Onno van Hooij
- Department of Urology, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Najoua El Boujnouni
- Department of Biochemistry, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical SciencesArabian Gulf UniversityKingdom of Bahrain
| | - Jack A. Schalken
- Department of Urology, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
17
|
Tietz KT, Dehm SM. Androgen receptor variants: RNA-based mechanisms and therapeutic targets. Hum Mol Genet 2021; 29:R19-R26. [PMID: 32412639 DOI: 10.1093/hmg/ddaa089] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer is the second leading cause of male cancer death in the United States. The androgen receptor (AR) transcription factor is a master regulator of normal glandular homeostasis in the prostate, as well as growth and survival of prostate cancer cells. Therefore, AR-targeted therapies are effective for improving overall survival of patients with advanced prostate cancer that is incurable by surgery or radiation. However, prostate cancer will inevitably progress on AR-targeted therapies to a castration-resistant prostate cancer (CRPC) phenotype that accounts for virtually all prostate cancer-specific death. mRNA transcript variants of the AR gene are expressed in CRPC cells and can be translated to produce AR variant (AR-V) proteins that function as ligand-independent, constitutively active transcription factors. AR-Vs are able to support growth of CRPC cells by promoting expression of AR target genes that are normally suppressed by AR-targeted therapies. Knowledge of mechanisms that govern expression of AR-Vs is incomplete. Studies have shown genomic rearrangements of the AR gene underlie expression of diverse AR-Vs in certain CRPC tumors, but post-transcriptional processes represent a broader regulatory mechanism for expression of AR-Vs in CRPC. This review focuses on alternative splicing, 3' end processing, miRNA-mediated mRNA repression, of AR and AR-V expression and the potential these mechanisms hold as therapeutic targets for CRPC.
Collapse
Affiliation(s)
- Kiel T Tietz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Kiss MA, Peřina M, Bazgier V, May NV, Baji Á, Jorda R, Frank É. Synthesis of dihydrotestosterone derivatives modified in the A-ring with (hetero)arylidene, pyrazolo[1,5-a]pyrimidine and triazolo[1,5-a]pyrimidine moieties and their targeting of the androgen receptor in prostate cancer. J Steroid Biochem Mol Biol 2021; 211:105904. [PMID: 33933576 DOI: 10.1016/j.jsbmb.2021.105904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022]
Abstract
One of the main directions of steroid research is the preparation of modified derivatives in which, in addition to changes in physicochemical properties, receptor binding is significantly altered, thus a bioactivity different from that of the parent compound predominates. In the frame of this work, 2-arylidene derivatives were first synthesized by regioselective modification of the A-ring of natural sex hormone, 5α-dihydrotestosterone (DHT). After Claisen-Schmidt condensations of DHT with (hetero)aromatic aldehydes in alkaline EtOH, heterocyclizations of the α,β-enones were performed with 3-amino-1,2,4-triazole, 3-aminopyrazole and 3-amino-5-methylpyrazole in the presence of t-BuOK in DMF to afford 7'-epimeric mixtures of A-ring-fused azolo-dihydropyrimidines, respectively. Depending on the electronic demand of the substituents of the arylidene moiety, spontaneous or 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ)-induced oxidation of the heteroring led to triazolo[1,5-a]pyrimidines and pyrazolo[1,5-a]pyrimidines in good yields, while, using the Jones reagent as a strong oxidant, 17-oxidation also occurred. The crystal structures of an arylidene and a triazolopyrimidine product have been determined by single crystal X-ray diffraction and both were found to crystallize in the monoclinic crystal system at P21 space group. Most derivatives were found to diminish the transcriptional activity of androgen receptor (AR) in reporter cell line. The candidate compound (17β-hydroxy-2-(4-chloro)benzylidene-5α-androstan-3-one, 2f) showed to suppress androgen-mediated AR transactivation in a dose-dependent manner. We confirmed the cellular interaction of 2f with AR, described the binding in AR-binding cavity by the flexible docking and showed the ability of the compound to suppress the expression of AR-regulated genes in two prostate cancer cell lines.
Collapse
Affiliation(s)
- Márton A Kiss
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720, Hungary
| | - Miroslav Peřina
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 78371, Czech Republic
| | - Václav Bazgier
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 77900, Czech Republic; Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc, 78371, Czech Republic
| | - Nóra V May
- Centre for Structural Science, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, H-1117, Hungary
| | - Ádám Baji
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720, Hungary
| | - Radek Jorda
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 78371, Czech Republic.
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720, Hungary.
| |
Collapse
|
19
|
Hong Z, Xiang Z, Zhang P, Wu Q, Xu C, Wang X, Shi G, Hong Z, Wu D. Histone acetyltransferase 1 upregulates androgen receptor expression to modulate CRPC cell resistance to enzalutamide. Clin Transl Med 2021; 11:e495. [PMID: 34323404 PMCID: PMC8299045 DOI: 10.1002/ctm2.495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is the latest stage of PCa, and there is almost no effective treatment available for the patients with CRPC when next-generation androgen deprivation therapy drugs, such as enzalutamide (ENZ), fail. The androgen receptor (AR) plays key roles in PCa and CRPC progression and drug resistance. Histone acetyltransferase 1 (HAT1) has recently been reported to be highly expressed in some tumors, such as lung carcinoma. However, what relationship between the AR and HAT1, and whether or how HAT1 plays roles in CRPC progression and drug resistance remain elusive. In the present study, we found that HAT1 is highly expressed in PCa cells, and the overexpression of HAT1 is linked with CRPC cell proliferation. Moreover, the HAT1 expression is positively correlated with the expression of AR, including both AR-FL (full-length) and AR-V7 (variant 7), which is mainly mediated by a bromodomain containing protein 4 (BRD4) -mediated pathway. Furthermore, knockdown of HAT1 can re-sensitize the response of CRPC cells to ENZ treatment in cells and mouse models. In addition, ascorbate was observed to decrease AR expression through downregulation of HAT1 expression. Collectively, our findings reveal a novel AR signaling regulation pathway in PCa and CRPC and suggest that HAT1 serves as a critical oncoprotein and an ideal target for the treatment of ENZ resistance in CRPC patients.
Collapse
Affiliation(s)
- Zhe Hong
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhendong Xiang
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Pan Zhang
- Illinois Informatics InstituteUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| | - Qiang Wu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinan Wang
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Guowei Shi
- Department of Urology, the Fifth People's Hospital of ShanghaiUrology Research Center of Fudan UniversityShanghaiChina
| | - Zongyuan Hong
- Laboratory of Quantitative PharmacologyWannan Medical CollegeWuhuChina
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
20
|
Resistance to second-generation androgen receptor antagonists in prostate cancer. Nat Rev Urol 2021; 18:209-226. [PMID: 33742189 DOI: 10.1038/s41585-021-00438-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
The introduction of second-generation androgen receptor antagonists (SG-ARAs) has greatly impacted the treatment of metastatic prostate cancer, providing tolerable and efficacious alternatives to chemotherapy. SG-ARAs provide similar therapeutic benefit to abiraterone, a potent CYP17 inhibitor, and do not require the co-administration of prednisone. Despite considerable improvements in clinical outcomes in the settings of both castration sensitivity and castration resistance, the durability of clinical response to the SG-ARAs enzalutamide, apalutamide and darolutamide, similar to abiraterone, is limited by inevitable acquired resistance. Genomic aberrations that confer resistance to SG-ARAs or provide potential alternative treatment modalities have been identified in numerous studies, including alterations of the androgen receptor, DNA repair, cell cycle, PI3K-AKT-mTOR and Wnt-β-catenin pathways. To combat resistance, researchers have explored approaches to optimizing the utility of available treatments, as well as the use of alternative agents with a variety of targets, including AR-V7, AKT, EZH2 and HIF1α. Ongoing research to establish predictive biomarkers for the treatment of tumours with resistance to SG-ARAs led to the approval of the PARP inhibitors olaparib and rucaparib in pre-treated metastatic castration-resistant prostate cancer. The results of ongoing studies will help to shape precision medicine in prostate cancer and further optimize treatment paradigms to maximize clinical outcomes.
Collapse
|
21
|
Sugiura M, Sato H, Okabe A, Fukuyo M, Mano Y, Shinohara KI, Rahmutulla B, Higuchi K, Maimaiti M, Kanesaka M, Imamura Y, Furihata T, Sakamoto S, Komiya A, Anzai N, Kanai Y, Luo J, Ichikawa T, Kaneda A. Identification of AR-V7 downstream genes commonly targeted by AR/AR-V7 and specifically targeted by AR-V7 in castration resistant prostate cancer. Transl Oncol 2021; 14:100915. [PMID: 33096335 PMCID: PMC7581977 DOI: 10.1016/j.tranon.2020.100915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Primary prostate cancer (PC) progresses to castration-resistant PC (CRPC) under androgen deprivation therapy, by mechanisms e.g. expression of androgen receptor (AR) splice variant-7 (AR-V7). Here we conducted comprehensive epigenome and transcriptome analyses comparing LNCaP, primary PC cells, and LNCaP95, AR-V7-expressing CRPC cells derived from LNCaP. Of 399 AR-V7 target regions identified through ChIP-seq analysis, 377 could be commonly targeted by hormone-stimulated AR, and 22 were specifically targeted by AR-V7. Among genes neighboring to these AR-V7 target regions, 78 genes were highly expressed in LNCaP95, while AR-V7 knockdown led to significant repression of these genes and suppression of growth of LNCaP95. Of the 78 AR-V7 target genes, 74 were common AR/AR-V7 target genes and 4 were specific AR-V7 target genes; their most suppressed genes by AR-V7 knockdown were NUP210 and SLC3A2, respectively, and underwent subsequent analyses. NUP210 and SLC3A2 were significantly upregulated in clinical CRPC tissues, and their knockdown resulted in significant suppression of cellular growth of LNCaP95 through apoptosis and growth arrest. Collectively, AR-V7 contributes to CRPC proliferation by activating both common AR/AR-V7 target and specific AR-V7 target, e.g. NUP210 and SLC3A2.
Collapse
Affiliation(s)
- Masahiro Sugiura
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Hiroaki Sato
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Yasunobu Mano
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Ken-Ichi Shinohara
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Kosuke Higuchi
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Maihulan Maimaiti
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Manato Kanesaka
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Yusuke Imamura
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomomi Furihata
- Department of Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichi Sakamoto
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akira Komiya
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan.
| |
Collapse
|
22
|
Uo T, Sprenger CC, Plymate SR. Androgen Receptor Signaling and Metabolic and Cellular Plasticity During Progression to Castration Resistant Prostate Cancer. Front Oncol 2020; 10:580617. [PMID: 33163409 PMCID: PMC7581990 DOI: 10.3389/fonc.2020.580617] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming is associated with re/activation and antagonism of androgen receptor (AR) signaling that drives prostate cancer (PCa) progression to castration resistance, respectively. In particular, AR signaling influences the fates of citrate that uniquely characterizes normal and malignant prostatic metabolism (i.e., mitochondrial export and extracellular secretion in normal prostate, mitochondrial retention and oxidation to support oxidative phenotype of primary PCa, and extra-mitochondrial interconversion into acetyl-CoA for fatty acid synthesis and epigenetics in the advanced PCa). The emergence of castration-resistant PCa (CRPC) involves reactivation of AR signaling, which is then further targeted by androgen synthesis inhibitors (abiraterone) and AR-ligand inhibitors (enzalutamide, apalutamide, and daroglutamide). However, based on AR dependency, two distinct metabolic and cellular adaptations contribute to development of resistance to these agents and progression to aggressive and lethal disease, with the tumor ultimately becoming highly glycolytic and with imaging by a tracer of tumor energetics, 18F-fluorodoxyglucose (18F-FDG). Another major resistance mechanism involves a lineage alteration into AR-indifferent carcinoma such a neuroendocrine which is diagnostically characterized by robust 18F-FDG uptake and loss of AR signaling. PCa is also characterized by metabolic alterations such as fatty acid and polyamine metabolism depending on AR signaling. In some cases, AR targeting induces rather than suppresses these alterations in cellular metabolism and energetics, which can be explored as therapeutic targets in lethal CRPC.
Collapse
Affiliation(s)
- Takuma Uo
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Cynthia C. Sprenger
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Stephen R. Plymate
- Department of Medicine, University of Washington, Seattle, WA, United States
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, United States
| |
Collapse
|
23
|
Fernández-Lázaro D, García Hernández JL, Caballero García A, Caballero del Castillo A, Villaverde Hueso M, Cruz-Hernández JJ. Clinical Perspective and Translational Oncology of Liquid Biopsy. Diagnostics (Basel) 2020; 10:E443. [PMID: 32629823 PMCID: PMC7400430 DOI: 10.3390/diagnostics10070443] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023] Open
Abstract
The term liquid biopsy (LB) refers to the study of circulating tumor cells, circulating tumors nucleic acids free of cells or contained in exosomes, and information about platelets associated with tumors. LB can be performed in different biofluids and allows the limitations of tissue biopsy to be overcome offering possibilities of tumor identification reflecting in real time tumor heterogeneity. In addition, LB allows screening and early detection of cancer, real-time monitoring of therapy, stratification and therapeutic intervention, a therapeutic target and resistance mechanism, and a risk of metastatic relapse. Currently, LB has been shown to be effective for its application in different types of tumors including lung, colorectal, prostate, melanoma, breast and pancreatic cancer, by the determination and identification of biomarkers that with a high probability have the potential to change the way in which medical oncology could predict the course of the disease. These biomarkers make it possible to capture the heterogeneity of the cancer, monitor its clonal evolution, indicate new treatments or retreatments and evaluate the responses to different evolutionary and/or therapeutic pressures in the cancer disease.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus de Soria, 42003 Soria, Spain;
| | - Juan Luis García Hernández
- Cancer Research Centre, University of Salamanca, 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca (IBSAL), 3007 Salamanca, Spain;
| | - Alberto Caballero García
- Department of Anatomy and Radiology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain;
| | | | - María Villaverde Hueso
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus de Soria, 42003 Soria, Spain;
| | - Juan Jesús Cruz-Hernández
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca (IBSAL), 3007 Salamanca, Spain;
- Oncology Service, University Hospital of Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
24
|
Vummidi Giridhar P, Williams K, VonHandorf AP, Deford PL, Kasper S. Constant Degradation of the Androgen Receptor by MDM2 Conserves Prostate Cancer Stem Cell Integrity. Cancer Res 2019; 79:1124-1137. [PMID: 30626627 PMCID: PMC6428062 DOI: 10.1158/0008-5472.can-18-1753] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/14/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
Prostate cancer stem cells (CSC) are implicated in tumor initiation, cancer progression, metastasis, and the development of therapeutic-resistant disease. It is well known that the bulk of prostate cancer cells express androgen receptor (AR) and that androgens are required for prostate cancer growth, progression, and emergence of castration-resistant disease. In contrast, the small subpopulation of self-renewing CSCs exhibits an AR-negative (AR-) signature. The mechanisms underlying the absence of AR are unknown. Using CSC-like cell models isolated from clinical biopsy tissues, we identify the E3 ligase MDM2 as a key regulator of prostate CSC integrity. First, unlike what has been reported for the bulk of AR+ tumor cells where MDM2 regulates the temporal expression of AR during transcriptional activity, MDM2 in CSCs promoted the constant ubiquitination and degradation of AR, resulting in sustained loss of total AR protein. Second, MDM2 promoted CSC self-renewal, the expression of stem cell factors, and CSC proliferation. Loss of MDM2 reversed these processes and induced expression of full-length AR (and not AR variants), terminal differentiation into luminal cells, and cell death. Selectively blocking MDM2-mediated activity in combination with androgen/AR-targeted therapy may offer a novel strategy for eliminating AR- CSCs in addition to the bulk of AR+ prostate cancer cells, decreasing metastatic tumor burden and inhibiting the emergence of therapeutic resistance.Significance: These findings provide a novel mechanistic aspect of prostate cancer cell stemness that advances our understanding of the diverse transcriptional activity that bypasses AR in contributing to therapeutic resistance, tumor progression, and metastasis.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/6/1124/F1.large.jpg.
Collapse
Affiliation(s)
- Premkumar Vummidi Giridhar
- Department of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio
| | - Karin Williams
- Translational Radiation Biology, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences University of Glasgow, Glasgow, Scotland
| | - Andrew P VonHandorf
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Paul L Deford
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Susan Kasper
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|