1
|
Liu H, Liu Z, He J, Hu C, Rong R, Han H, Wang L, Wang D. Reducing airborne transmission of SARS-CoV-2 by an upper-room ultraviolet germicidal irradiation system in a hospital isolation environment. ENVIRONMENTAL RESEARCH 2023; 237:116952. [PMID: 37619635 DOI: 10.1016/j.envres.2023.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Upper-room ultraviolet germicidal irradiation (UVGI) technology can potentially inhibit the transmission of airborne disease pathogens. There is a lack of quantitative evaluation of the performance of the upper-room UVGI for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) airborne transmission under the combined effects of ventilation and UV irradiation. Therefore, this study aimed to explore the performance of the upper-room UVGI system for reducing SARS-CoV-2 virus transmission in a hospital isolation environment. Computational fluid dynamics and virological data on SARS-CoV-2 were integrated to obtain virus aerosol exposure in the hospital isolation environment containing buffer rooms, wards and bathrooms. The UV inactivation model was applied to investigate the effects of ventilation rate, irradiation flux and irradiation height on the upper-room UVGI performance. The results showed that increasing ventilation rate from 8 to 16 air changes per hour (ACH) without UVGI obtained 54.32% and 45.63% virus reduction in the wards and bathrooms, respectively. However, the upper-room UVGI could achieve 90.43% and 99.09% virus disinfection, respectively, with the ventilation rate of 8 ACH and the irradiation flux of 10 μW cm-2. Higher percentage of virus could be inactivated by the upper-room UVGI at a lower ventilation rate; the rate of improvement of UVGI elimination effect slowed down with the increase of irradiation flux. Increase irradiation height at lower ventilation rate was more effective in improving the UVGI performance than the increase in irradiation flux at smaller irradiation height. These results could provide theoretical support for the practical application of UVGI in hospital isolation environments.
Collapse
Affiliation(s)
- Haiyang Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Zhijian Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China.
| | - Junzhou He
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Chenxing Hu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Rui Rong
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Hao Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China.
| | - Lingyun Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China
| | - Desheng Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China
| |
Collapse
|
2
|
Park S, Mistrick R, Sitzabee W, Rim D. Effect of ventilation strategy on performance of upper-room ultraviolet germicidal irradiation (UVGI) system in a learning environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165454. [PMID: 37467991 DOI: 10.1016/j.scitotenv.2023.165454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Upper-room ultraviolet germicidal irradiation (UVGI) system is recently in the limelight as a potentially effective method to mitigate the risk of airborne virus infection in indoor environments. However, few studies quantitatively evaluated the relationship between ventilation effectiveness and virus disinfection performance of a UVGI system. The objective of this study is to investigate the effects of ventilation strategy on detailed airflow distributions and UVGI disinfection performance in an occupied classroom. Three-dimensional computational fluid dynamics (CFD) simulations were performed for representative cooling, heating, and ventilation scenarios. The results show that when the ventilation rate is 1.1 h-1 (the minimum ventilation rate based on ASHRAE 62.1), enhancing indoor air circulation with the mixing fan notably improves the UVGI disinfection performance, especially for cooling with displacement ventilation and all-air-heating conditions. However, increasing indoor air mixing yields negligible effect on the disinfection performance for forced-convection cooling condition. The results also reveal that regardless of indoor thermal condition, disinfection effectiveness of a UVGI system increases as ventilation effectiveness is close to unity. Moreover, when the room average air speed is >0.1 m/s, upper-room UVGI system could yield about 90% disinfection effect for the aerosol size of 1 μm-10 μm. The findings of this study imply that upper-room UVGI systems in indoor environments (i.e., classrooms, hospitals) should be designed considering ventilation strategy and occupancy conditions, especially for occupied buildings with insufficient air mixing throughout the space.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Architectural Engineering, Pennsylvania State University, United States of America.
| | - Richard Mistrick
- Architectural Engineering Department, Pennsylvania State University, 104 Engineering Unit A, University Park, PA 16802, United States of America.
| | - William Sitzabee
- Pennsylvania State University, 201 Physical Plant Building, University Park, PA 16802, United States of America.
| | - Donghyun Rim
- Architectural Engineering Department, Pennsylvania State University, 222 Engineering Unit A, University Park, PA 16802, United States of America.
| |
Collapse
|
3
|
Nguyen TT, He C, Carter R, Ballard EL, Smith K, Groth R, Jaatinen E, Kidd TJ, Thomson RM, Tay G, Johnson GR, Bell SC, Knibbs LD. Quantifying the effectiveness of ultraviolet-C light at inactivating airborne Mycobacterium abscessus. J Hosp Infect 2023; 132:133-139. [PMID: 36309203 DOI: 10.1016/j.jhin.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Mycobacterium abscessus (MABS) group are environmental organisms that can cause infection in people with cystic fibrosis (CF) and other suppurative lung diseases. There is potential for person-to-person airborne transmission of MABS among people with CF attending the same care centre. Ultraviolet light (band C, UV-C) is used for Mycobacterium tuberculosis control indoors; however, no studies have assessed UV-C for airborne MABS. AIM To determine whether a range of UV-C doses increased the inactivation of airborne MABS, compared with no-UVC conditions. METHODS MABS was generated by a vibrating mesh nebulizer located within a 400 L rotating drum sampler, and then exposed to an array of 265 nm UV-C light-emitting diodes (LED). A six-stage Andersen Cascade Impactor was used to collect aerosols. Standard microbiological protocols were used for enumerating MABS, and these quantified the effectiveness of UV-C doses (in triplicate). UV-C effectiveness was estimated using the difference between inactivation with and without UV-C. FINDINGS Sixteen tests were performed, with UV-C doses ranging from 276 to 1104 μW s/cm2. Mean (±SD) UV-C effectiveness ranged from 47.1% (±13.4) to 83.6% (±3.3). UV-C led to significantly greater inactivation of MABS (all P-values ≤0.045) than natural decay at all doses assessed. Using an indoor model of the hospital environment, it was estimated that UV-C doses in the range studied here could be safely delivered in clinical settings where patients and staff are present. CONCLUSION This study provides empirical in-vitro evidence that nebulized MABS are susceptible to UV-C inactivation.
Collapse
Affiliation(s)
- T T Nguyen
- Faculty of Medicine, School of Public Health, University of Queensland, Brisbane, QLD, Australia.
| | - C He
- International Laboratory for Air Quality & Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - R Carter
- Centre for Children's Health Research, Brisbane, QLD, Australia
| | - E L Ballard
- QIMR Berghofer Institute of Medical Research, Brisbane, QLD 4006, Australia
| | - K Smith
- Centre for Children's Health Research, Brisbane, QLD, Australia
| | - R Groth
- International Laboratory for Air Quality & Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - E Jaatinen
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - T J Kidd
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia; Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - R M Thomson
- The Prince Charles Hospital, Brisbane, QLD, Australia; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia; Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Brisbane, QLD, Australia
| | - G Tay
- The Prince Charles Hospital, Brisbane, QLD, Australia
| | - G R Johnson
- International Laboratory for Air Quality & Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - S C Bell
- Centre for Children's Health Research, Brisbane, QLD, Australia; The Prince Charles Hospital, Brisbane, QLD, Australia; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia; Translational Research Institute, Brisbane, QLD, Australia
| | - L D Knibbs
- Public Health Unit, Sydney Local Health District, Camperdown, NSW, Australia; Faculty of Medicine and Health, School of Public Health, University of Sydney, NSW, Australia
| |
Collapse
|
4
|
Ryan CW. Decreased Respiratory-Related Absenteeism among Preschool Students after Installation of Upper Room Germicidal Ultraviolet Light: Analysis of Newly Discovered Historical Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2536. [PMID: 36767899 PMCID: PMC9915224 DOI: 10.3390/ijerph20032536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The COVID-19 pandemic has brought renewed urgency to air disinfection. Upper room germicidal ultraviolet light (GUV) disinfects room air very efficiently. Its effect on practical outcomes in public settings remains unclear, but history may provide some insights. An interrupted time series model was fitted to a newly discovered dataset of attendance records from a preschool between 1941 to 1949, where GUV was installed in December 1945. GUV was associated with a sizable reduction in child absenteeism due to respiratory illnesses of any cause. Odds ratios for the effect ranged from 0.5 to 0.77, depending on the season. In all but high summer, model-predicted absenteeism rates were reduced by between a third and a half by GUV. Wider use of upper room germicidal UV systems in schools and preschools may be worthwhile, to reduce absenteeism due to respiratory illness and the educational, social, and economic consequences that ensue.
Collapse
Affiliation(s)
- Christopher W. Ryan
- Binghamton Clinical Campus, SUNY Upstate Medical University, 48 Corliss Avenue, Johnson City, NY 13790, USA;
- Broome County Health Department, 225 Front Street, Binghamton, NY 13905, USA
| |
Collapse
|
5
|
Abkar L, Zimmermann K, Dixit F, Kheyrandish A, Mohseni M. COVID-19 pandemic lesson learned- critical parameters and research needs for UVC inactivation of viral aerosols. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 8:100183. [PMID: 36619826 PMCID: PMC9553962 DOI: 10.1016/j.hazadv.2022.100183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
Abstract
The COVID-19 pandemic highlighted public awareness of airborne disease transmission in indoor settings and emphasized the need for reliable air disinfection technologies. This increased awareness will carry in the post-pandemic era along with the ever-emerging SARS-CoV variants, necessitating effective and well-defined protocols, methods, and devices for air disinfection. Ultraviolet (UV)-based air disinfection demonstrated promising results in inactivating viral bioaerosols. However, the reported data diversity on the required UVC doses has hindered determining the best UVC practices and led to confusion among the public and regulators. This article reviews available information on critical parameters influencing the efficacy of a UVC air disinfection system and, consequently, the required dose including the system's components as well as operational and environmental factors. There is a consensus in the literature that the interrelation of humidity and air temperature has a significant impact on the UVC susceptibility, which translate to changing the UVC efficacy of commercialized devices in indoor settings under varying conditions. Sampling and aerosolization techniques reported to have major influence on the result interpretation and it is recommended to use several sampling methods simultaneously to generate comparable and conclusive data. We also considered the safety concerns and the potential safe alternative of UVC, far-UVC. Finally, the gaps in each critical parameter and the future research needs of the field are represented. This paper is the first step to consolidating literature towards developing a standard validation protocol for UVC air disinfection devices which is determined as the one of the research needs.
Collapse
Key Words
- Aerosolization of pathogens
- Air sampling methods
- Airborne transmission
- CDC, centre for disease control and prevention (USA)
- CMD, count median diameter
- DNA, deoxyribonucleic acid
- DSB, double strand break
- Far-UVC
- Far-UVC, ultraviolet irradiation in the ‘far’ range of 200–230 nm
- GTC, growth tube collectors
- LED, light emitting diode
- LPUV, low-pressure ultraviolet lamp
- NIOSH, national institute for occupational safety and health
- PBS, phosphate buffered saline
- PRRS, porcine reproductive and respiratory syndrome
- Particle size distribution
- REL, recommended exposure limit
- RH, relative humidity
- RNA, ribonucleic acid
- ROS, reactive oxygen species
- SARS-CoV-2, severe acute respiratory syndrome coronavirus-2
- SSB, single strand break
- Suspending media
- UV, ultraviolet irradiation
- UV-LED, light emitting diode in the ultraviolet range
- UVC, ultraviolet irradiation in the ‘C’, or germicidal, spectrum from 200 to 290 nm
- UVGI, ultraviolet germicidal irradiation
- Viral UVC susceptibility
- dsDNA, double-stranded deoxyribonucleic acid
- ssRNA, single-stranded ribonucleic acid
Collapse
|
6
|
Nguyen TT, He C, Carter R, Ballard EL, Smith K, Groth R, Jaatinen E, Kidd TJ, Nguyen TK, Stockwell RE, Tay G, Johnson GR, Bell SC, Knibbs LD. The Effectiveness of Ultraviolet-C (UV-C) Irradiation on the Viability of Airborne Pseudomonas aeruginosa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013706. [PMID: 36294279 PMCID: PMC9602727 DOI: 10.3390/ijerph192013706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 05/17/2023]
Abstract
Pseudomonas aeruginosa (Pa) is the predominant bacterial pathogen in people with cystic fibrosis (CF) and can be transmitted by airborne droplet nuclei. Little is known about the ability of ultraviolet band C (UV-C) irradiation to inactivate Pa at doses and conditions relevant to implementation in indoor clinical settings. We assessed the effectiveness of UV-C (265 nm) at up to seven doses on the decay of nebulized Pa aerosols (clonal Pa strain) under a range of experimental conditions. Experiments were done in a 400 L rotating sampling drum. A six-stage Andersen cascade impactor was used to collect aerosols inside the drum and the particle size distribution was characterized by an optical particle counter. UV-C effectiveness was characterized relative to control tests (no UV-C) of the natural decay of Pa. We performed 112 tests in total across all experimental conditions. The addition of UV-C significantly increased the inactivation of Pa compared with natural decay alone at all but one of the UV-C doses assessed. UV-C doses from 246-1968 µW s/cm2 had an estimated effectiveness of approximately 50-90% for airborne Pa. The effectiveness of doses ≥984 µW s/cm2 were not significantly different from each other (p-values: 0.365 to ~1), consistent with a flattening of effectiveness at higher doses. Modelling showed that delivering the highest dose associated with significant improvement in effectiveness (984 µW s/cm2) to the upper air of three clinical rooms would lead to lower room doses from 37-49% of the 8 h occupational limit. Our results suggest that UV-C can expedite the inactivation of nebulized airborne Pa under controlled conditions, at levels that can be delivered safely in occupied settings. These findings need corroboration, but UV-C may have potential applications in locations where people with CF congregate, coupled with other indoor and administrative infection control measures.
Collapse
Affiliation(s)
- Thi Tham Nguyen
- School of Public Health, The University of Queensland, Brisbane, QLD 4006, Australia
- Correspondence:
| | - Congrong He
- International Laboratory for Air Quality & Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Robyn Carter
- Centre for Children’s Health Research, Brisbane, QLD 4101, Australia
| | - Emma L. Ballard
- QIMR Berghofer Institute of Medical Research, Brisbane, QLD 4006, Australia
| | - Kim Smith
- Centre for Children’s Health Research, Brisbane, QLD 4101, Australia
| | - Robert Groth
- International Laboratory for Air Quality & Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Esa Jaatinen
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Timothy J. Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4032, Australia
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4006, Australia
| | - Thuy-Khanh Nguyen
- QIMR Berghofer Institute of Medical Research, Brisbane, QLD 4006, Australia
| | | | - George Tay
- The Prince Charles Hospital, Brisbane, QLD 4032, Australia
| | - Graham R. Johnson
- International Laboratory for Air Quality & Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Scott C. Bell
- Centre for Children’s Health Research, Brisbane, QLD 4101, Australia
- The Prince Charles Hospital, Brisbane, QLD 4032, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Luke D. Knibbs
- Public Health Unit, Sydney Local Health District, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health, School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Zhu S, Lin T, Wang L, Nardell EA, Vincent RL, Srebric J. Ceiling impact on air disinfection performance of Upper-Room Germicidal Ultraviolet (UR-GUV). BUILDING AND ENVIRONMENT 2022; 224:109530. [PMID: 36065253 PMCID: PMC9429126 DOI: 10.1016/j.buildenv.2022.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
This study used Computational Fluid Dynamics (CFD) to investigate air disinfection for SARS-CoV-2 by the Upper-Room Germicidal Ultraviolet (UR-GUV), with focus on ceiling impact. The study includes three indoor settings, i.e., low (airport bus), medium (classroom) and high (rehearsal room) ceilings, which were ventilated with 100% clean air (CA case), 80% air-recirculation with a low filtration (LF case), and 80% air-recirculation with a high filtration (HF case). According to the results, using UR-GUV can offset the increased infection risk caused by air recirculation, with viral concentrations in near field (NF) and far field (FF) in the LF case similar to those in the CA case. In the CA case, fraction remaining (FR) was 0.48-0.73 with 25% occupancy rate (OR) and 0.49-0.91 with 45% OR in the bus, 0.41 in NF and 0.11 in FF in the classroom, and 0.18 in NF and 0.09 in FF in the rehearsal room. Obviously, UR-GUV performance in NF can be improved in a room with a high ceiling where FR has a power relationship with UV zone height. As using UR-GUV can only extend the exposure time to get infection risk of 1% (T 1% ) to 8 min in NF in the classroom, and 47 min in NF in the rehearsal room, it is necessary to abide by social distancing in the two rooms. In addition, T 1% in FF was calculated to be 18.3 min with 25% OR and 21.4% with 45% OR in the airport bus, showing the necessity to further wear a mask.
Collapse
Affiliation(s)
- Shengwei Zhu
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Tong Lin
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Lingzhe Wang
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Edward A Nardell
- Departments of Environmental Health and Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Jelena Srebric
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
8
|
Fischer RJ, Port JR, Holbrook MG, Yinda KC, Creusen M, ter Stege J, de Samber M, Munster VJ. UV-C Light Completely Blocks Aerosol Transmission of Highly Contagious SARS-CoV-2 Variants WA1 and Delta in Hamsters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12424-12430. [PMID: 36001075 PMCID: PMC9437662 DOI: 10.1021/acs.est.2c02822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Behavioral and medical control measures have not been effective in containing the spread of SARS-CoV-2 in large part due to the unwillingness of populations to adhere to "best practices". Ultraviolet light with wavelengths of between 200 and 280 nm (UV-C) and, in particular, germicidal ultraviolet light, which refers to wavelengths around 254 nm, have the potential to unobtrusively reduce the risk of SARS-CoV-2 transmission in enclosed spaces. We investigated the effectiveness of a strategy using UV-C light to prevent airborne transmission of the virus in a hamster model. Treatment of environmental air with 254 nm UV-C light prevented transmission of SARS-CoV-2 between individuals in a model using highly susceptible Syrian golden hamsters. The prevention of transmission of SARS-CoV-2 in a natural system by treating elements of the surrounding environment is one more weapon in the arsenal to combat COVID. The results presented indicate that coupling mitigation strategies utilizing UV-C light, along with current methods to reduce transmission risk, have the potential to allow a return to normal indoor activities.
Collapse
Affiliation(s)
- Robert J. Fischer
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| | - Julia R. Port
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| | - Myndi G. Holbrook
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| | - Kwe Claude Yinda
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| | - Martin Creusen
- Signify, High Tech Campus 48, 5656 AE Eindhoven, The Netherlands
| | - Jeroen ter Stege
- UVConsult
BV, Hoofdstraat 249, 1611 AG Bovenkarspel, The Netherlands
| | - Marc de Samber
- Signify, High Tech Campus 48, 5656 AE Eindhoven, The Netherlands
| | - Vincent J. Munster
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| |
Collapse
|
9
|
Thornton GM, Fleck BA, Fleck N, Kroeker E, Dandnayak D, Zhong L, Hartling L. The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: A systematic review of ultraviolet radiation. PLoS One 2022; 17:e0266487. [PMID: 35395010 PMCID: PMC8992995 DOI: 10.1371/journal.pone.0266487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/22/2022] [Indexed: 01/14/2023] Open
Abstract
Respiratory viruses are capable of transmitting via an aerosol route. Emerging evidence suggests that SARS-CoV-2 which causes COVID-19 can be spread through airborne transmission, particularly in indoor environments with poor ventilation. Heating, ventilation, and air conditioning (HVAC) systems can play a role in mitigating airborne virus transmission. Ultraviolet germicidal irradiation (UVGI), a feature that can be incorporated into HVAC systems, can be used to impede the ability of viruses to replicate and infect a host. We conducted a systematic review of the scientific literature examining the effectiveness of HVAC design features in reducing virus transmission-here we report results for ultraviolet (UV) radiation. We followed international standards for conducting systematic reviews and developed an a priori protocol. We conducted a comprehensive search to January 2021 of published and grey literature using Ovid MEDLINE, Compendex, and Web of Science Core. Two reviewers were involved in study selection, data extraction, and risk of bias assessments. We presented study characteristics and results in evidence tables, and synthesized results across studies narratively. We identified 32 relevant studies published between 1936 and 2020. Research demonstrates that: viruses and bacteriophages are inactivated by UV radiation; increasing UV dose is associated with decreasing survival fraction of viruses and bacteriophages; increasing relative humidity is associated with decreasing susceptibility to UV radiation; UV dose and corresponding survival fraction are affected by airflow pattern, air changes per hour, and UV device location; and UV radiation is associated with decreased transmission in both animal and human studies. While UV radiation has been shown to be effective in inactivating viruses and reducing disease transmission, practical implementation of UVGI in HVAC systems needs to consider airflow patterns, air changes per hour, and UV device location. The majority of the scientific literature is comprised of experimental, laboratory-based studies. Further, a variety of viruses have been examined; however, there are few studies of coronaviruses and none to date of SARS-CoV-2. Future field studies of UVGI systems could address an existing research gap and provide important information on system performance in real-world situations, particularly in the context of the current COVID-19 pandemic. This comprehensive synthesis of the scientific evidence examining the impact of UV radiation on virus transmission can be used to guide implementation of systems to mitigate airborne spread and identify priorities for future research. Trial registration PROSPERO 2020 CRD42020193968.
Collapse
Affiliation(s)
- Gail M. Thornton
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Brian A. Fleck
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Natalie Fleck
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Emily Kroeker
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Dhyey Dandnayak
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Lexuan Zhong
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Lisa Hartling
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
10
|
Fischer RJ, Port JR, Holbrook MG, Yinda KC, Creusen M, Ter Stege J, de Samber M, Munster VJ. UV-C light completely blocks highly contagious Delta SARS-CoV-2 aerosol transmission in hamsters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.10.475722. [PMID: 35043111 PMCID: PMC8764719 DOI: 10.1101/2022.01.10.475722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Behavioral and medical control measures are not effective in containing the spread of SARS-CoV-2. Here we report on the effectiveness of a preemptive environmental strategy using UV-C light to prevent airborne transmission of the virus in a hamster model and show that UV-C exposure completely prevents airborne transmission between individuals.
Collapse
Affiliation(s)
- Robert J Fischer
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Julia R Port
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G Holbrook
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kwe Claude Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Martin Creusen
- Signify, High Tech Campus 48, 5656 AE, Eindhoven, The Netherlands
| | - Jeroen Ter Stege
- UVConsult BV, Hoofdstraat 249, 1611AG Bovenkarspel, The Netherlands
| | - Marc de Samber
- Signify, High Tech Campus 48, 5656 AE, Eindhoven, The Netherlands
| | - Vincent J Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
11
|
Brought to Light: How Ultraviolet Disinfection Can Prevent the Nosocomial Transmission of COVID-19 and Other Infectious Diseases. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1030035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic has brought to light the role of environmental hygiene in controlling disease transmission. Healthcare facilities are hot spots for infectious pathogens where physical distancing and personal protective equipment (PPE) are not always sufficient to prevent disease transmission. Healthcare facilities need to consider adjunct strategies to prevent transmission of infectious pathogens. In combination with current infection control procedures, many healthcare facilities are incorporating ultraviolet (UV) disinfection into their routines. This review considers how pathogens are transmitted in healthcare facilities, the mechanism of UV microbial inactivation and the documented activity of UV against clinical pathogens. Emphasis is placed on the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) as well as multidrug resistant organisms (MDROs) that are commonly transmitted in healthcare facilities. The potential benefits and limitations of UV technologies are discussed to help inform healthcare workers, including clinical studies where UV technology is used in healthcare facilities.
Collapse
|
12
|
Božič A, Kanduč M. Relative humidity in droplet and airborne transmission of disease. J Biol Phys 2021; 47:1-29. [PMID: 33564965 PMCID: PMC7872882 DOI: 10.1007/s10867-020-09562-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
A large number of infectious diseases are transmitted by respiratory droplets. How long these droplets persist in the air, how far they can travel, and how long the pathogens they might carry survive are all decisive factors for the spread of droplet-borne diseases. The subject is extremely multifaceted and its aspects range across different disciplines, yet most of them have only seldom been considered in the physics community. In this review, we discuss the physical principles that govern the fate of respiratory droplets and any viruses trapped inside them, with a focus on the role of relative humidity. Importantly, low relative humidity-as encountered, for instance, indoors during winter and inside aircraft-facilitates evaporation and keeps even initially large droplets suspended in air as aerosol for extended periods of time. What is more, relative humidity affects the stability of viruses in aerosol through several physical mechanisms such as efflorescence and inactivation at the air-water interface, whose role in virus inactivation nonetheless remains poorly understood. Elucidating the role of relative humidity in the droplet spread of disease would permit us to design preventive measures that could aid in reducing the chance of transmission, particularly in indoor environment.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Matej Kanduč
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
13
|
Abstract
Traditional tuberculosis (TB) infection control focuses on the known patient with TB, usually on appropriate treatment. A refocused, intensified TB infection control approach is presented. Combined with active case finding and rapid molecular diagnostics, an approach called FAST is described as a convenient way to call attention to the untreated patient. Natural ventilation is the mainstay of air disinfection in much of the world. Germicidal ultraviolet technology is the most sustainable approach to air disinfection under resource-limited conditions. Testing and treatment of latent TB infection works to prevent reactivation but requires greater risk targeting in both low- and high-risk settings.
Collapse
Affiliation(s)
- Edward A Nardell
- Division of Global Health Equity, Harvard Medical School, Brigham & Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Nathavitharana RR, Lederer P, Tierney DB, Nardell E. Treatment as prevention and other interventions to reduce transmission of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 2020; 23:396-404. [PMID: 31064617 DOI: 10.5588/ijtld.18.0276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug-resistant tuberculosis (DR-TB) represents a major programmatic challenge at the national and global levels. Only ∼30% of patients with multidrug-resistant TB (MDR-TB) were diagnosed, and ∼25% were initiated on treatment for MDR-TB in 2016. Increasing evidence now points towards primary transmission of DR-TB, rather than inadequate treatment, as the main driver of the DR-TB epidemic. The cornerstone of DR-TB transmission prevention should be earlier diagnosis and prompt initiation of effective treatment for all patients with DR-TB. Despite the extensive scale-up of Xpert® MTB/RIF testing, major implementation barriers continue to limit its impact. Although there is longstanding evidence in support of the rapid impact of treatment on patient infectiousness, delays in the initiation of effective DR-TB treatment persist, resulting in ongoing transmission. However, it is also imperative to address the burden of latent drug-resistant tuberculous infection because it is estimated that many DR-TB patients will become infectious before seeking care and encounter various diagnostic delays before treatment. Addressing latent DR-TB primarily consists of identifying, treating and following the contacts of patients with MDR-TB, typically through household contact evaluation. Adjunctive measures, such as improved ventilation and use of germicidal ultraviolet technology can further reduce TB transmission in high-risk congregate settings. Although many gaps remain in our biological understanding of TB transmission, implementation barriers to early diagnosis and rapid initiation of effective DR-TB treatment can and must be overcome if we are to impact DR-TB incidence in the short and long term.
Collapse
Affiliation(s)
- R R Nathavitharana
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - P Lederer
- Section of Infectious Diseases, Boston Medical Center, Boston, Massachusetts
| | - D B Tierney
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - E Nardell
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
15
|
The Study of an Ultraviolet Radiation Technique for Removal of the Indoor Air Volatile Organic Compounds and Bioaerosol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16142557. [PMID: 31319616 PMCID: PMC6678761 DOI: 10.3390/ijerph16142557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 11/17/2022]
Abstract
This study examined the use of high dosages of ultraviolet germicidal irradiation (UVGI) (253.7 nm) to deal with various concentrations of air pollutants, such as formaldehyde (HCHO), total volatile organic compounds (TVOC), under various conditions of humidity. A number of irradiation methods were applied for various durations in field studies to examine the efficiency of removing HCHO, TVOC, bacteria, and fungi. The removal efficiency of air pollutants (HCHO and bacteria) through long-term exposure to UVGI appears to increase with time. The effects on TVOC and fungi concentration were insignificant in the first week; however, improvements were observed in the second week. No differences were observed regarding the removal of HCHO and TVOC among the various irradiation methods in this study; however significant differences were observed in the removal of bacteria and fungi.
Collapse
|
16
|
Mamahlodi MT. Potential benefits and harms of the use of UV radiation in transmission of tuberculosis in South African health facilities. J Public Health Afr 2019; 10:742. [PMID: 31285811 PMCID: PMC6589622 DOI: 10.4081/jphia.2019.742] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/06/2018] [Indexed: 11/23/2022] Open
Abstract
The incidence and prevalence of transmitted Mycobacterium tuberculosis have risen very rapidly in modern society. Environmental control measure such as ultraviolet radiation has been introduced in various health care facilities. This preventative measure has been extensively explored in the medical, legislative and public forums. However, the guidelines and manufacturer's claims have created controversies, in terms of prevention of cross-transmission of M. tuberculosis in health care facilities. In this article, the authors reviewed the overall benefits and harms associated with the use of ultraviolet radiation in the prevention of M. tuberculosis transmission. The author concluded that there are still existing gaps in proving beyond any reasonable doubt that ultraviolet radiations absolutely prevent the spread of M. tuberculosis in South African health facilities.
Collapse
Affiliation(s)
- Marang Tebogo Mamahlodi
- Department of Health Studies, College of Human Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
17
|
|
18
|
Bing-Yuan, Zhang YH, Leung NH, Cowling BJ, Yang ZF. Role of viral bioaerosols in nosocomial infections and measures for prevention and control. JOURNAL OF AEROSOL SCIENCE 2018; 117:200-211. [PMID: 32226118 PMCID: PMC7094610 DOI: 10.1016/j.jaerosci.2017.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 09/21/2023]
Abstract
The presence of patients with diverse pathologies in hospitals results in an environment that can be rich in various microorganisms including respiratory and enteric viruses, leading to outbreaks in hospitals or spillover infections to the community. All hospital patients are at risk of nosocomial viral infections, but vulnerable groups such as older adults, children and immuno-compromised/-suppressed patients are at particular risk of severe outcomes including prolonged hospitalization or death. These pathogens could transmit through direct or indirect physical contact, droplets or aerosols, with increasing evidence suggesting the importance of aerosol transmission in nosocomial infections of respiratory and enteric viruses. Factors affecting the propensity to transmit and the severity of disease transmitted via the aerosol route include the biological characteristics affecting infectivity of the viruses and susceptibility of the host, the physical properties of aerosol particles, and the environmental stresses that alter these properties such as temperature and humidity. Non-specific systematic and individual-based interventions designed to mitigate the aerosol route are available although empirical evidence of their effectiveness in controlling transmission of respiratory and enteric viruses in healthcare settings are sparse. The relative importance of aerosol transmission in healthcare setting is still an on-going debate, with particular challenge being the recovery of infectious viral bioaerosols from real-life settings and the difficulty in delineating transmission events that may also be a result of other modes of transmission. For the prevention and control of nosocomial infections via the aerosol route, more research is needed on identifying settings, medical procedures or equipment that may be associated with an increased risk of aerosol transmission, including defining which procedures are aerosol-generating; and on the effectiveness of systematic interventions on aerosol transmission of respiratory and enteric viruses in healthcare settings.
Collapse
Affiliation(s)
- Bing-Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, No. 151, Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong 510120, China
- Department of Respiration, First People's Hospital of Yunnan Province, 157, Jinbi Road, Kunming, Yunnan 650032, China
| | - Yun-Hui Zhang
- Department of Respiration, First People's Hospital of Yunnan Province, 157, Jinbi Road, Kunming, Yunnan 650032, China
| | - Nancy H.L. Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Patrick Manson Building (North Wing), 7 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Benjamin J. Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Patrick Manson Building (North Wing), 7 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Zi-Feng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, No. 151, Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong 510120, China
| |
Collapse
|
19
|
Viegas C, Viegas S, Gomes A, Täubel M, Sabino R. Indoor Microbial Aerosol and Its Health Effects: Microbial Exposure in Public Buildings – Viruses, Bacteria, and Fungi. EXPOSURE TO MICROBIOLOGICAL AGENTS IN INDOOR AND OCCUPATIONAL ENVIRONMENTS 2017. [PMCID: PMC7123258 DOI: 10.1007/978-3-319-61688-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Mechanisms of aerosolization of microorganisms, composition and dynamics of microbioaerosol are characterized. As well as methods of its detection, incl. modern equipment set-ups and sampling procedures recommended are outlined. Medical impact of (indoor) air disperged viral, bacterial and fungal propagules (allergies, intoxications, infections), together with the related European legislation is summarized. An overview of real mycoaerosol conditions in our dwellings and their outdoors with different microclimate, settlement and building types, household characteristics and health state of occupants is given, too. Finally, examples of several possible health damages due to exposition to (aerosolized) fungal toxicants in vitro and in vivo are demonstrated.
Collapse
Affiliation(s)
- Carla Viegas
- Lisbon School of Health Technology Environment and Health RG, Polytechnic Institute of Lisbon, Lisbon, Portugal
| | - Susana Viegas
- Lisbon School of Health Technology Environment and Health RG, Polytechnic Institute of Lisbon, Lisbon, Portugal
| | - Anita Gomes
- Lisbon School of Health Technology Polytechnic Institute of Lisbon, University of Lisbon, Lisbon, Portugal
| | - Martin Täubel
- Department Health Protection, National Institute for Health & Welfare, Kuopio, Finland
| | - Raquel Sabino
- National Health Institute Portugal, Lisbon, Portugal
| |
Collapse
|
20
|
Rudnick S, McDevitt J, Hunt G, Stawnychy M, Vincent R, Brickner P. Influence of ceiling fan's speed and direction on efficacy of upperroom, ultraviolet germicidal irradiation: Experimental. BUILDING AND ENVIRONMENT 2015; 92:756-763. [PMID: 32288032 PMCID: PMC7127731 DOI: 10.1016/j.buildenv.2014.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 05/22/2023]
Abstract
Increasing a ceiling fan's speed from its lowest setting of 61 rpm, which resulted in 0.77 m3/s of airflow, to its highest setting of 176 rpm, which resulted in 2.5 m3/s of airflow, or having the fan blow either upward or downward had no statistically significant effect on the efficacy of upper-room ultraviolet germicidal irradiation (UVGI). This outcome suggests that air circulation due to the ceiling fan was sufficient and that any additional increase would not improve efficacy. Numerous experimental studies on upper-room UVGI in which fans were used to provide air mixing have been published. However, none have quantified the air movement produced by these fans or described their tests in sufficient detail to allow results to be compared to predictions using computational fluid dynamics (CFD). The present work provides the required information. In addition to the usual boundary conditions needed for CFD, we made experimental measurements of UV susceptibility of the microorganisms used in the upper-room UVGI tests. We measured UV susceptibilities for Mycobacterium parafortuitum and Bacillus atrophaeus spores to be 0.074 and 0.018 m2/J, respectively. In a previous publication, we reported the spatial distribution of fluence rate, which is also needed for predicting efficacy from CFD. In a companion paper referred to as Part II, upper-room UVGI efficacy was predicted by both Eulerian and Lagrangian CFD and compared to the experimental results from the present study.
Collapse
Affiliation(s)
- S.N. Rudnick
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - J.J. McDevitt
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - G.M. Hunt
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - M.T. Stawnychy
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - R.L. Vincent
- Department of Medicine, Section of General Internal Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1087, New York, NY 10029, USA
- Corresponding author.
| | - P.W. Brickner
- Department of Medicine, Section of General Internal Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1087, New York, NY 10029, USA
| |
Collapse
|
21
|
Nardell EA. Transmission and Institutional Infection Control of Tuberculosis. Cold Spring Harb Perspect Med 2015; 6:a018192. [PMID: 26292985 DOI: 10.1101/cshperspect.a018192] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tuberculosis (TB) transmission control in institutions is evolving with increased awareness of the rapid impact of treatment on transmission, the importance of the unsuspected, untreated case of transmission, and the advent of rapid molecular diagnostics. With active case finding based on cough surveillance and rapid drug susceptibility testing, in theory, it is possible to be reasonably sure that no patient enters a facility with undiagnosed TB or drug resistance. Droplet nuclei transmission of TB is reviewed with an emphasis on risk factors relevant to control. Among environmental controls, natural ventilation and upper-room ultraviolet germicidal ultraviolet air disinfection are the most cost-effective choices, although high-volume mechanical ventilation can also be used. Room air cleaners are generally not recommended. Maintenance is required for all engineering solutions. Finally, personal protection with fit-tested respirators is used in many situations where administrative and engineering methods cannot assure protection.
Collapse
Affiliation(s)
- Edward A Nardell
- Division of Global Health Equity, Brigham & Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
22
|
Mphaphlele M, Dharmadhikari AS, Jensen PA, Rudnick SN, van Reenen TH, Pagano MA, Leuschner W, Sears TA, Milonova SP, van der Walt M, Stoltz AC, Weyer K, Nardell EA. Institutional Tuberculosis Transmission. Controlled Trial of Upper Room Ultraviolet Air Disinfection: A Basis for New Dosing Guidelines. Am J Respir Crit Care Med 2015; 192:477-84. [PMID: 25928547 PMCID: PMC4595666 DOI: 10.1164/rccm.201501-0060oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/29/2015] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Transmission is driving the global tuberculosis epidemic, especially in congregate settings. Worldwide, natural ventilation is the most common means of air disinfection, but it is inherently unreliable and of limited use in cold climates. Upper room germicidal ultraviolet (UV) air disinfection with air mixing has been shown to be highly effective, but improved evidence-based dosing guidelines are needed. OBJECTIVES To test the efficacy of upper room germicidal air disinfection with air mixing to reduce tuberculosis transmission under real hospital conditions, and to define the application parameters responsible as a basis for proposed new dosing guidelines. METHODS Over an exposure period of 7 months, 90 guinea pigs breathed only untreated exhaust ward air, and another 90 guinea pigs breathed only air from the same six-bed tuberculosis ward on alternate days when upper room germicidal air disinfection was turned on throughout the ward. MEASUREMENTS AND MAIN RESULTS The tuberculin skin test conversion rates (>6 mm) of the two chambers were compared. The hazard ratio for guinea pigs in the control chamber converting their skin test to positive was 4.9 (95% confidence interval, 2.8-8.6), with an efficacy of approximately 80%. CONCLUSIONS Upper room germicidal UV air disinfection with air mixing was highly effective in reducing tuberculosis transmission under hospital conditions. These data support using either a total fixture output (rather than electrical or UV lamp wattage) of 15-20 mW/m(3) total room volume, or an average whole-room UV irradiance (fluence rate) of 5-7 μW/cm(2), calculated by a lighting computer-assisted design program modified for UV use.
Collapse
Affiliation(s)
| | | | - Paul A. Jensen
- CDC Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Atlanta, Georgia
| | - Stephen N. Rudnick
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | | | | | - Wilhelm Leuschner
- Department of Electronic and Computer Engineering, University of Pretoria, Pretoria, South Africa
| | | | - Sonya P. Milonova
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | | | - Anton C. Stoltz
- Division of Infectious Diseases, Internal Medicine, University of Pretoria Medical School, Pretoria, South Africa; and
| | - Karin Weyer
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Edward A. Nardell
- Division of Pulmonary and Critical Care Medicine and
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
23
|
Linnes JC, Rudnick SN, Hunt GM, McDevitt JJ, Nardell EA. Eggcrate UV: a whole ceiling upper-room ultraviolet germicidal irradiation system for air disinfection in occupied rooms. INDOOR AIR 2014; 24:116-24. [PMID: 23889191 DOI: 10.1111/ina.12063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/20/2013] [Indexed: 06/02/2023]
Abstract
A novel whole ceiling upper-room ultraviolet germicidal irradiation (UVGI) system [eggcrate ultraviolet (UV)] has been developed that incorporates open-cell 'eggcrate'-suspended ceiling panels and bare UV lamps with a ceiling fan. Upper-room UVGI is more effective for air disinfection than mechanical ventilation at much lower installation and operating costs. Conventional upper-room UVGI fixtures employ multiple tightly spaced horizontal louvers to confine UV to the upper-room. These louvered fixtures protect occupants in the lower-room from UV-induced eye and skin irritation, but at a major cost to fixture efficiency. Using a lamp and ballast from a conventional upper-room UVGI fixture in the eggcrate UV system, the germicidal efficacy was markedly improved even though the UV radiation emitted by the lamp was unchanged. This fundamental change in the application of upper-room UVGI air disinfection should permit wider, more effective application of UVGI globally to reduce the spread of airborne infection.
Collapse
Affiliation(s)
- J C Linnes
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA; Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
24
|
ZHU SHENGWEI, SREBRIC JELENA, RUDNICK STEPHENN, VINCENT RICHARDL, NARDELL EDWARDA. Numerical Modeling of Indoor Environment with a Ceiling Fan and an Upper-Room Ultraviolet Germicidal Irradiation System. BUILDING AND ENVIRONMENT 2014; 72:116-124. [PMID: 24426180 PMCID: PMC3888502 DOI: 10.1016/j.buildenv.2013.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study proposes a numerical modeling method for the indoor environment with ceiling fans and upper-room ultraviolet germicidal irradiation (UR-UVGI) fixtures. The numerical modeling deployed steady-state Computational Fluid Dynamics (CFD) with a rotating reference frame to simulate the rotation of fan blades. CFD was validated with experimental data of velocity field and fraction of microorganism remaining at the exhaust diffuser. The fraction of microorganism remaining represented the ratio of the concentration of airborne microorganisms measured with UVGI turned on to the one measured with UVGI turned off. According to the validation results, the CFD model correctly reproduced the air movement induced by the rotation of ceiling fan. When the ambient ventilation rate was 2 ACH (air changes per hour) or 6 ACH, the CFD model accurately predicted the average vertical speeds in the section 2.44 m above the floor with the errors less than 10%, regardless of the ceiling fan's rotational direction or speed. In addition, the simulation results showed that the fraction of microorganism remaining increased with the ambient air exchange rate when the fan blew air downward with a rotational speed as high as 235 rpm, which corresponded with the experimental results. Furthermore, the simulation results accurately predicted the fraction of microorganism remaining when the ambient air exchange rate was 2 ACH. We conclude that this novel numerical model can reproduce the effects of ceiling fans and UR-UVGI fixtures on indoor environment, and should aid in the investigation of the impact of ceiling fans on UR-UVGI disinfection efficacy.
Collapse
Affiliation(s)
- SHENGWEI ZHU
- School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - JELENA SREBRIC
- Department of Architectural Engineering, The Pennsylvania State University, State College, Pennsylvania, USA
| | - STEPHEN N. RUDNICK
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | - EDWARD A. NARDELL
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Pyrgiotakis G, McDevitt J, Bordini A, Diaz E, Molina R, Watson C, Deloid G, Lenard S, Fix N, Mizuyama Y, Yamauchi T, Brain J, Demokritou P. A chemical free, nanotechnology-based method for airborne bacterial inactivation using engineered water nanostructures. ENVIRONMENTAL SCIENCE. NANO 2014; 2014:15-26. [PMID: 26180637 PMCID: PMC4500755 DOI: 10.1039/c3en00007a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Airborne pathogens are associated with the spread of infectious diseases and increased morbidity and mortality. Herein we present an emerging chemical free, nanotechnology-based method for airborne pathogen inactivation. This technique is based on transforming atmospheric water vapor into Engineered Water Nano-Structures (EWNS) via electrospray. The generated EWNS possess a unique set of physical, chemical, morphological and biological properties. Their average size is 25 nm and they contain reactive oxygen species (ROS) such as hydroxyl and superoxide radicals. In addition, EWNS are highly electrically charged (10 electrons per particle on average). A link between their electric charge and the reduction of their evaporation rate was illustrated resulting in an extended lifetime (over an hour) at room conditions. Furthermore, it was clearly demonstrated that the EWNS have the ability to interact with and inactivate airborne bacteria. Finally, inhaled EWNS were found to have minimal toxicological effects, as illustrated in an acute in-vivo inhalation study using a mouse model. In conclusion, this novel, chemical free, nanotechnology-based method has the potential to be used in the battle against airborne infectious diseases.
Collapse
Affiliation(s)
- Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, 02115, USA
| | - James McDevitt
- Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Andre Bordini
- Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Edgar Diaz
- Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Ramon Molina
- Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Christa Watson
- Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Glen Deloid
- Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Steve Lenard
- National Institute of Occupational Safety and Health, CDC, Morgantown, WV 26505, USA
| | - Natalie Fix
- National Institute of Occupational Safety and Health, CDC, Morgantown, WV 26505, USA
| | - Yosuke Mizuyama
- Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, 02115, USA
| | | | - Joseph Brain
- Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
26
|
Nardell E, Vincent R, Sliney DH. Upper-Room Ultraviolet Germicidal Irradiation (UVGI) for Air Disinfection: A Symposium in Print. Photochem Photobiol 2013; 89:764-9. [DOI: 10.1111/php.12098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Edward Nardell
- Harvard Medical School; Harvard School of Public Health; Boston; MA
| | - Richard Vincent
- General Internal Medicine; Icahn School of Medicine at Mount Sinai; New York; NY
| | - David H. Sliney
- Department of Environmental Health Sciences; Johns Hopkins Bloomberg School of Public Health; Baltimore; MD
| |
Collapse
|
27
|
Zhu S, Srebric J, Rudnick SN, Vincent RL, Nardell EA. Numerical investigation of upper-room UVGI disinfection efficacy in an environmental chamber with a ceiling fan. Photochem Photobiol 2013; 89:782-91. [PMID: 23311354 PMCID: PMC3656133 DOI: 10.1111/php.12039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/21/2012] [Indexed: 11/29/2022]
Abstract
This study investigated the disinfection efficacy of the upper-room ultraviolet germicidal irradiation (UR-UVGI) system with ceiling fans. The investigation used the steady-state computational fluid dynamics (CFD) simulations to solve the rotation of ceiling fan with a rotating reference frame. Two ambient air exchange rates, 2 and 6 air changes per hour (ACH), and four downward fan rotational speeds, 0, 80, 150 and 235 rpm were considered. In addition, the passive scalar concentration simulations incorporated ultraviolet (UV) dose by two methods: one based on the total exposure time and average UV fluence rate, and another based on SVE3* (New Scale for Ventilation Efficiency 3), originally defined to evaluate the mean age of the air from an air supply opening. Overall, the CFD results enabled the evaluation of UR-UVGI disinfection efficacy using different indices, including the fraction of remaining microorganisms, equivalent air exchange rate, UR-UVGI effectiveness and tuberculosis infection probability by the Wells-Riley equation. The results indicated that air exchange rate was the decisive factor for determining UR-UVGI performance in disinfecting indoor air. Using a ceiling fan could also improve the performance in general. Furthermore, the results clarified the mechanism for the ceiling fan to influence UR-UVGI disinfection efficacy.
Collapse
Affiliation(s)
- Shengwei Zhu
- School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | |
Collapse
|
28
|
Sliney D. Balancing the risk of eye irritation from UV-C with infection from bioaerosols. Photochem Photobiol 2013; 89:770-6. [PMID: 23668297 DOI: 10.1111/php.12093] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 05/03/2013] [Indexed: 11/28/2022]
Abstract
The very aspect (phototoxicity) that makes short-wavelength ultraviolet (UV) radiation an effective germicidal agent also is responsible for the unwanted side effects of erythema (reddening of the skin) and photokeratitis ("welder's flash" or "snow-blindness"). Overexposure to this short-wavelength UV radiation can produce these unwanted side effects from a very mild irritation of the skin and eyes to a rather painful case of photokeratitis. These effects are fortunately transient, as only superficial cells of the eye-the corneal epithelium-and the most superficial layer of the skin-the superficial epidermis-are significantly affected. Normal turnover of these cells soon erase the signs and symptoms of these effects. Radiant energy in the UV-C band has very shallow penetration depths which account for the very superficial nature of any injury to the skin and eyes from excessive exposure, minimum risk of delayed effects and at the same time the strong absorption by bioaerosols. Guidelines for human exposure to UV-C must be applied intelligently so as not to limit germicidal efficacy in upper-room ultraviolet germicidal irradiation.
Collapse
Affiliation(s)
- David Sliney
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
29
|
McDevitt JJ, Rudnick SN, Radonovich LJ. Aerosol susceptibility of influenza virus to UV-C light. Appl Environ Microbiol 2012; 78:1666-9. [PMID: 22226954 PMCID: PMC3298127 DOI: 10.1128/aem.06960-11] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/22/2011] [Indexed: 11/20/2022] Open
Abstract
The person-to-person transmission of influenza virus, especially in the event of a pandemic caused by a highly virulent strain of influenza, such as H5N1 avian influenza, is of great concern due to widespread mortality and morbidity. The consequences of seasonal influenza are also substantial. Because airborne transmission appears to play a role in the spread of influenza, public health interventions should focus on preventing or interrupting this process. Air disinfection via upper-room 254-nm germicidal UV (UV-C) light in public buildings may be able to reduce influenza transmission via the airborne route. We characterized the susceptibility of influenza A virus (H1N1, PR-8) aerosols to UV-C light using a benchtop chamber equipped with a UVC exposure window. We evaluated virus susceptibility to UV-C doses ranging from 4 to 12 J/m(2) at three relative humidity levels (25, 50, and 75%). Our data show that the Z values (susceptibility factors) were higher (more susceptible) to UV-C than what has been reported previously. Furthermore, dose-response plots showed that influenza virus susceptibility increases with decreasing relative humidity. This work provides an essential scientific basis for designing and utilizing effective upper-room UV-C light installations for the prevention of the airborne transmission of influenza by characterizing its susceptibility to UV-C.
Collapse
|
30
|
Sung M, Kato S. Estimating the germicidal effect of upper-room UVGI system on exhaled air of patients based on ventilation efficiency. BUILDING AND ENVIRONMENT 2011; 46:2326-2332. [PMID: 32288012 PMCID: PMC7127715 DOI: 10.1016/j.buildenv.2011.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/28/2011] [Accepted: 05/16/2011] [Indexed: 05/23/2023]
Abstract
Upper room (UR)-ultraviolet germicidal (UVGI) systems, one of several disinfection applications of UV, target airborne infectious diseases in rooms of buildings such as healthcare facilities. Previous studies have introduced many experiments showing the germicidal effect of UR-UVGI systems. In this study, a novel numerical method of estimating the germicidal effect of UR-UVGI systems for air exhaled by ward patients was introduced. The method adopts and modifies the concept of ventilation efficiency because the germicidal effect depends upon how the air containing airborne infectious particles flows and stays within UV-radiated area. A case study based on a four-patient ward showed that UV doses were correlated with the age of the air exhaled by a source patient, as expected. Moreover, the UV doses were considerably affected by the position of the UR-UVGI system. Inactivation rates of the influenza virus estimated using the UV doses, were in the range of 48-74%, and those of Mycobacterium tuberculosis were 68-90% in the breathing area of a neighboring patient. The results indicate not directly the decreased concentration of airborne infectious particles, but the possibility of inactivation caused by the UR-UVGI system, which is useful for system optimization.
Collapse
Affiliation(s)
- Minki Sung
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | | |
Collapse
|
31
|
Faure M, Gerardin F, André JC, Pons MN, Zahraa O. Study of photocatalytic damages induced on E. coli by different photocatalytic supports (various types and TiO2 configurations). J Photochem Photobiol A Chem 2011. [DOI: 10.1016/j.jphotochem.2011.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Memarzadeh F, Olmsted RN, Bartley JM. Applications of ultraviolet germicidal irradiation disinfection in health care facilities: effective adjunct, but not stand-alone technology. Am J Infect Control 2010; 38:S13-24. [PMID: 20569852 PMCID: PMC7115255 DOI: 10.1016/j.ajic.2010.04.208] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 11/29/2022]
Abstract
This review evaluates the applicability and relative contribution of ultraviolet germicidal irradiation (UVGI) to disinfection of air in health care facilities. A section addressing the use of UVGI for environmental surfaces is also included. The germicidal susceptibility of biologic agents is addressed, but with emphasis on application in health care facilities. The balance of scientific evidence indicates that UVGI should be considered as a disinfection application in a health care setting only in conjunction with other well-established elements, such as appropriate heating, ventilating, and air-conditioning (HVAC) systems; dynamic removal of contaminants from the air; and preventive maintenance in combination with through cleaning of the care environment. We conclude that although UVGI is microbiocidal, it is not "ready for prime time" as a primary intervention to kill or inactivate infectious microorganisms; rather, it should be considered an adjunct. Other factors, such as careful design of the built environment, installation and effective operation of the HVAC system, and a high level of attention to traditional cleaning and disinfection, must be assessed before a health care facility can decide to rely solely on UVGI to meet indoor air quality requirements for health care facilities. More targeted and multiparameter studies are needed to evaluate the efficacy, safety, and incremental benefit of UVGI for mitigating reservoirs of microorganisms and ultimately preventing cross-transmission of pathogens that lead to health care-associated infections.
Collapse
Affiliation(s)
| | - Russell N. Olmsted
- Infection Prevention and Control Services, St Joseph Mercy Health System, Ann Arbor, MI
| | | |
Collapse
|
33
|
Abstract
Public health concerns such as multi- and extensive drug-resistant tuberculosis, bioterrorism, pandemic influenza, and severe acute respiratory syndrome have intensified efforts to prevent transmission of infections that are completely or partially airborne using environmental controls. One such control, ultraviolet germicidal irradiation (UVGI), has received renewed interest after decades of underutilization and neglect. With renewed interest, however, come renewed questions, especially regarding efficacy and safety. There is a long history of investigations concluding that, if used properly, UVGI can be safe and highly effective in disinfecting the air, thereby preventing transmission of a variety of airborne infections. Despite this long history, many infection control professionals are not familiar with the history of UVGI and how it has, and has not, been used safely and effectively. This article reviews that history of UVGI for air disinfection, starting with its biological basis, moving to its application in the real world, and ending with its current status.
Collapse
Affiliation(s)
- Nicholas G Reed
- U.S. Army Center for Health Promotion and Preventive Medicine, Laser/Optical Radiation Program, Aberdeen Proving Ground, MD, USA.
| |
Collapse
|
34
|
Escombe AR, Moore DAJ, Gilman RH, Navincopa M, Ticona E, Mitchell B, Noakes C, Martínez C, Sheen P, Ramirez R, Quino W, Gonzalez A, Friedland JS, Evans CA. Upper-room ultraviolet light and negative air ionization to prevent tuberculosis transmission. PLoS Med 2009; 6:e43. [PMID: 19296717 PMCID: PMC2656548 DOI: 10.1371/journal.pmed.1000043] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 01/21/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Institutional tuberculosis (TB) transmission is an important public health problem highlighted by the HIV/AIDS pandemic and the emergence of multidrug- and extensively drug-resistant TB. Effective TB infection control measures are urgently needed. We evaluated the efficacy of upper-room ultraviolet (UV) lights and negative air ionization for preventing airborne TB transmission using a guinea pig air-sampling model to measure the TB infectiousness of ward air. METHODS AND FINDINGS For 535 consecutive days, exhaust air from an HIV-TB ward in Lima, Perú, was passed through three guinea pig air-sampling enclosures each housing approximately 150 guinea pigs, using a 2-d cycle. On UV-off days, ward air passed in parallel through a control animal enclosure and a similar enclosure containing negative ionizers. On UV-on days, UV lights and mixing fans were turned on in the ward, and a third animal enclosure alone received ward air. TB infection in guinea pigs was defined by monthly tuberculin skin tests. All guinea pigs underwent autopsy to test for TB disease, defined by characteristic autopsy changes or by the culture of Mycobacterium tuberculosis from organs. 35% (106/304) of guinea pigs in the control group developed TB infection, and this was reduced to 14% (43/303) by ionizers, and to 9.5% (29/307) by UV lights (both p < 0.0001 compared with the control group). TB disease was confirmed in 8.6% (26/304) of control group animals, and this was reduced to 4.3% (13/303) by ionizers, and to 3.6% (11/307) by UV lights (both p < 0.03 compared with the control group). Time-to-event analysis demonstrated that TB infection was prevented by ionizers (log-rank 27; p < 0.0001) and by UV lights (log-rank 46; p < 0.0001). Time-to-event analysis also demonstrated that TB disease was prevented by ionizers (log-rank 3.7; p = 0.055) and by UV lights (log-rank 5.4; p = 0.02). An alternative analysis using an airborne infection model demonstrated that ionizers prevented 60% of TB infection and 51% of TB disease, and that UV lights prevented 70% of TB infection and 54% of TB disease. In all analysis strategies, UV lights tended to be more protective than ionizers. CONCLUSIONS Upper-room UV lights and negative air ionization each prevented most airborne TB transmission detectable by guinea pig air sampling. Provided there is adequate mixing of room air, upper-room UV light is an effective, low-cost intervention for use in TB infection control in high-risk clinical settings.
Collapse
Affiliation(s)
- A Roderick Escombe
- Department of Infectious Diseases & Immunity, Imperial College London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Radonovich LJ, Martinello RA, Hodgson M, Milton DK, Nardell EA. Influenza and ultraviolet germicidal irradiation. Virol J 2008; 5:149. [PMID: 19087288 PMCID: PMC2615759 DOI: 10.1186/1743-422x-5-149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 12/16/2008] [Indexed: 11/10/2022] Open
Affiliation(s)
- Lewis J Radonovich
- Biosecurity Programs, Office of Program Development, North Florida/South Georgia Veterans Health System, University of Floirda, Florida, USA.
| | | | | | | | | |
Collapse
|
36
|
McDevitt JJ, Milton DK, Rudnick SN, First MW. Inactivation of poxviruses by upper-room UVC light in a simulated hospital room environment. PLoS One 2008; 3:e3186. [PMID: 18781204 PMCID: PMC2527528 DOI: 10.1371/journal.pone.0003186] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 08/19/2008] [Indexed: 11/18/2022] Open
Abstract
In the event of a smallpox outbreak due to bioterrorism, delays in vaccination programs may lead to significant secondary transmission. In the early phases of such an outbreak, transmission of smallpox will take place especially in locations where infected persons may congregate, such as hospital emergency rooms. Air disinfection using upper-room 254 nm (UVC) light can lower the airborne concentrations of infective viruses in the lower part of the room, and thereby control the spread of airborne infections among room occupants without exposing occupants to a significant amount of UVC. Using vaccinia virus aerosols as a surrogate for smallpox we report on the effectiveness of air disinfection, via upper-room UVC light, under simulated real world conditions including the effects of convection, mechanical mixing, temperature and relative humidity. In decay experiments, upper-room UVC fixtures used with mixing by a conventional ceiling fan produced decreases in airborne virus concentrations that would require additional ventilation of more than 87 air changes per hour. Under steady state conditions the effective air changes per hour associated with upper-room UVC ranged from 18 to 1000. The surprisingly high end of the observed range resulted from the extreme susceptibility of vaccinia virus to UVC at low relative humidity and use of 4 UVC fixtures in a small room with efficient air mixing. Increasing the number of UVC fixtures or mechanical ventilation rates resulted in greater fractional reduction in virus aerosol and UVC effectiveness was higher in winter compared to summer for each scenario tested. These data demonstrate that upper-room UVC has the potential to greatly reduce exposure to susceptible viral aerosols. The greater survival at baseline and greater UVC susceptibility of vaccinia under winter conditions suggest that while risk from an aerosol attack with smallpox would be greatest in winter, protective measures using UVC may also be most efficient at this time. These data may also be relevant to influenza, which also has improved aerosol survival at low RH and somewhat similar sensitivity to UVC.
Collapse
Affiliation(s)
- James J. McDevitt
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Donald K. Milton
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Work Environment, University of Massachusetts Lowell, Lowell, Massachusetts, United States of America
- * E-mail:
| | - Stephen N. Rudnick
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Melvin W. First
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
37
|
Abstract
To better understand the underlying mechanisms of aerovirology, accurate sampling of airborne viruses is fundamental. The sampling instruments commonly used in aerobiology have also been used to recover viruses suspended in the air. We reviewed over 100 papers to evaluate the methods currently used for viral aerosol sampling. Differentiating infections caused by direct contact from those caused by airborne dissemination can be a very demanding task given the wide variety of sources of viral aerosols. While epidemiological data can help to determine the source of the contamination, direct data obtained from air samples can provide very useful information for risk assessment purposes. Many types of samplers have been used over the years, including liquid impingers, solid impactors, filters, electrostatic precipitators, and many others. The efficiencies of these samplers depend on a variety of environmental and methodological factors that can affect the integrity of the virus structure. The aerodynamic size distribution of the aerosol also has a direct effect on sampler efficiency. Viral aerosols can be studied under controlled laboratory conditions, using biological or nonbiological tracers and surrogate viruses, which are also discussed in this review. Lastly, general recommendations are made regarding future studies on the sampling of airborne viruses.
Collapse
Affiliation(s)
- Daniel Verreault
- Centre de Recherche, Hôpital Laval, Institut Universitaire de Cardiologie et de Pneumologie, 2725 Chemin Ste.-Foy, Quebec City, Quebec, Canada G1V 4G5
| | | | | |
Collapse
|
38
|
Nardell EA, Bucher SJ, Brickner PW, Wang C, Vincent RL, Becan-McBride K, James MA, Michael M, Wright JD. Safety of upper-room ultraviolet germicidal air disinfection for room occupants: results from the Tuberculosis Ultraviolet Shelter Study. Public Health Rep 2008; 123:52-60. [PMID: 18348480 DOI: 10.1177/003335490812300108] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES We evaluated the safety of room occupants in the Tuberculosis Ultraviolet Shelter Study (TUSS), a double-blind, placebo-controlled field trial of upper-room ultraviolet germicidal irradiation (UVGI) at 14 homeless shelters in six U.S. cities from 1997 to 2004. METHODS Data collection involved administering questionnaires regarding eye and skin irritation to a total of 3,611 staff and homeless study subjects. RESULTS Among these subjects, there were 223 reports of eye or skin symptoms. During the active UV period, 95 questionnaires (6%) noted such symptoms, and during the placebo period, 92 questionnaires (6%) did so. In the 36 remaining cases, either the UV period when symptoms took place was unknown or the symptoms spanned both periods. There was no statistically significant difference in the number of reports of symptoms between the active and placebo periods. One definite instance of UV-related keratoconjunctivitis occurred, resulting from a placement of a bunk bed in a dormitory where a single bed had been used when the UV fixtures were first installed. CONCLUSIONS These findings demonstrate that careful application of upper-room UVGI can be achieved without an apparent increase in the incidence of the most common side effects of accidental UV overexposure.
Collapse
|