1
|
Askew WT, Edwards MG, Gatehouse AMR. Ex vivo delivery of dsRNA targeting ryanodine receptors for control of Tuta absoluta. PEST MANAGEMENT SCIENCE 2024; 80:6400-6408. [PMID: 39148493 DOI: 10.1002/ps.8368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND RNA interference (RNAi) is an endogenous eukaryote viral defence mechanism representing a unique form of post-transcriptional gene silencing. Owing to its high specificity, this technology is being developed for use in dsRNA-based biopesticides for control of pest insects. Whilst many lepidopteran species are recalcitrant to RNAi, Tuta absoluta, a polyphagous insect responsible for extensive crop damage, is sensitive. Ryanodine receptors (RyRs) are intracellular calcium channels regulating calcium ion (Ca2+) release. The chemical pesticide class of diamides functions agonistically against lepidopteran RyR, resulting in uncontrolled Ca2+ release, feeding cessation and death. Resistance to diamides has emerged in T. absoluta, derived from RyR point mutations. RESULTS RNAi was used to target RyR transcripts of T. absoluta. Data presented here demonstrate the systemic use of exogenous T. absoluta RyR-specific (TaRy) dsRNA in tomato plants (Solanum lycopersicum) to significantly downregulate expression of the target gene, resulting in significant insect mortality and reduced leaf damage. Using a leaflet delivery system, daily dosing of 3 μg TaRy dsRNA for 72 h resulted in 50% downregulation of the target gene and 50% reduction in tomato leaf damage. Corrected larval mortality and adult emergence were reduced by 38% and 33%, respectively. TaRy dsRNA demonstrated stability in tomato leaves ≤72 h after dosing. CONCLUSIONS This work identifies TaRy as a promising target for RNAi control of this widespread crop pest. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- William T Askew
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Martin G Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Zarrabian M, Sherif SM. Silence is not always golden: A closer look at potential environmental and ecotoxicological impacts of large-scale dsRNA application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175311. [PMID: 39122031 DOI: 10.1016/j.scitotenv.2024.175311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
RNA interference (RNAi) technology has emerged as a pivotal strategy in sustainable pest management, offering a targeted approach that significantly mitigates the environmental and health risks associated with traditional insecticides. Originally implemented through genetically modified organisms (GMOs) to produce specific RNAi constructs, the technology has evolved in response to public and regulatory concerns over GMOs. This evolution has spurred the development of non-transgenic RNAi applications such as spray-induced gene silencing (SIGS), which employs double-stranded RNA (dsRNA) to silence pest genes directly without altering the plant's genetic makeup. Despite its advantages in specificity and reduced ecological footprint, SIGS faces significant obstacles, particularly the instability of dsRNA in field conditions, which limits its practical efficacy. To overcome these limitations, innovative delivery mechanisms have been developed. These include nanotechnology-based systems, minicells, and nanovesicles, which are designed to protect dsRNA from degradation and enhance its delivery to target organisms. While these advancements have improved the stability and application efficiency of dsRNA, comprehensive assessments of their environmental safety and the potential for increased exposure risks to non-target organisms remain incomplete. This comprehensive review aims to elucidate the environmental fate of dsRNA and evaluate the potential risks associated with its widespread application on non-target organisms, encompassing soil microorganisms, beneficial insects, host plants, and mammals. The objective is to establish a more refined framework for RNAi risk assessment within environmental and ecotoxicological contexts, thereby fostering the development of safer, non-transgenic RNAi-based pest control strategies.
Collapse
Affiliation(s)
- Mohammad Zarrabian
- Virginia Tech, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research, and Extension Center, Winchester, VA 22602, United States
| | - Sherif M Sherif
- Virginia Tech, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research, and Extension Center, Winchester, VA 22602, United States.
| |
Collapse
|
3
|
Lebenzon JE, Toxopeus J. Knock down to level up: Reframing RNAi for invertebrate ecophysiology. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111703. [PMID: 39029617 DOI: 10.1016/j.cbpa.2024.111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Comparative ecophysiologists strive to understand physiological problems in non-model organisms, but molecular tools such as RNA interference (RNAi) are under-used in our field. Here, we provide a framework for invertebrate ecophysiologists to use RNAi to answer questions focused on physiological processes, rather than as a tool to investigate gene function. We specifically focus on non-model invertebrates, in which the use of other genetic tools (e.g., genetic knockout lines) is less likely. We argue that because RNAi elicits a temporary manipulation of gene expression, and resources to carry out RNAi are technically and financially accessible, it is an effective tool for invertebrate ecophysiologists. We cover the terminology and basic mechanisms of RNA interference as an accessible introduction for "non-molecular" physiologists, include a suggested workflow for identifying RNAi gene targets and validating biologically relevant gene knockdowns, and present a hypothesis-testing framework for using RNAi to answer common questions in the realm of invertebrate ecophysiology. This review encourages invertebrate ecophysiologists to use these tools and workflows to explore physiological processes and bridge genotypes to phenotypes in their animal(s) of interest.
Collapse
Affiliation(s)
- Jacqueline E Lebenzon
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| | - Jantina Toxopeus
- Department of Biology, St. Francis Xavier University, 2321 Notre Dame Ave, Antigonish, NS, Canada B2G 2W5
| |
Collapse
|
4
|
Cedden D, Bucher G. The quest for the best target genes for RNAi-mediated pest control. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39450789 DOI: 10.1111/imb.12966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
RNA interference (RNAi) has emerged as an eco-friendly alternative to classic pesticides for pest control. This review highlights the importance of identifying the best target genes for RNAi-mediated pest control. We argue that the knowledge-based approach to predicting effective targets is limited by our current gaps of knowledge, making unbiased screening a superior method for discovering the best target processes and genes. We emphasize the recent evidence that suggests targeting conserved basic cellular processes, such as protein degradation and translation, is more effective than targeting the classic pesticide target processes. We support these claims by comparing the efficacy of previously reported RNAi target genes and classic insecticide targets with data from our genome-wide RNAi screen in the red flour beetle, Tribolium castaneum. Finally, we provide practical advice for identifying excellent target genes in other pests, where large-scale RNAi screenings are typically challenging.
Collapse
Affiliation(s)
- Doga Cedden
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Li J, Shi Y, Xue Q, Smagghe G, De Schutter K, Taning CNT. Identification and functional analysis of gut dsRNases in the beet armyworm Spodoptera exigua. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 175:104206. [PMID: 39454683 DOI: 10.1016/j.ibmb.2024.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/18/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
RNA interference (RNAi)-based products have the potential to significantly contribute to insect pest control. However, RNAi efficiency varies widely among different insect orders, particularly in Lepidoptera, where it is often low. One key factor affecting RNAi efficiency is the presence of double-stranded ribonuclease (dsRNase) in the digestive tract, which can degrade dsRNA prior to uptake by gut cells. In this study, four dsRNases were identified in the beet armyworm, Spdoptera exigua, of which two were highly expressed gut dsRNases, SedsRNase1 and SedsRNase2. To assess their effect on dsRNA degradation activity via the oral route, CRISPR/Cas9-based gene editing was employed to knock out these gut dsRNases. The results indicate that all mutant strains, including SeKO1 (knockout SedsRNase1), SeKO2 (knockout SedsRNase2), and SeKO1KO2 (knockout SedsRNase1 and SedsRNase2), showed significantly decreased dsRNA degradation activity, particularly in the SeKO1KO2 mutant strain, where the weakest degradation occurred in both the gut and whole body. Additionally, we noticed that the lack of gut SedsRNases led to a slight extended developmental period and reduced reproductive capacity in S. exigua. Collectively, these findings deepen our understanding of gut SedsRNases and how they can impact the biology of the beet armyworm and can support the exploration dsRNA-based approaches for pest control.
Collapse
Affiliation(s)
- Jiangjie Li
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Yan Shi
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Qi Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Kristof De Schutter
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
6
|
Choudhary C, Kishore D, Meghwanshi KK, Verma V, Shukla JN. A sex-specific homologue of waprin is essential for embryonic development in the red flour beetle, Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39167359 DOI: 10.1111/imb.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/03/2024] [Indexed: 08/23/2024]
Abstract
Waprin, a WAP (Whey acidic protein) domain-containing extracellular secretory protein, is widely known for its antibacterial properties. In this study, a waprin homologue (Tc_wapF) expressing in a female-specific manner was identified in Tribolium castaneum, through the analysis of sex-specific transcriptomes. Developmental- and tissue-specific profiling revealed the widespread expression of Tc_wapF in adult female tissues, particularly in the ovary, gut and fatbody. This female-specific expression of Tc_wapF is not regulated by the classical sex-determination cascade of T. castaneum, as we fail to get any attenuation in Tc_wapF transcript levels in Tcdsx and Tctra (key players of sex determination cascade of T. castaneum) knockdown females. RNA interference-mediated knockdown of Tc_wapF in females led to the non-hatching of eggs laid by these females, suggesting the crucial role of Tc_wapF in the embryonic development in T. castaneum. This is the first report on the identification of a sex-specific waprin homologue in an insect and its involvement in embryonic development. Future investigations on the functional conservation of insect waprins and their mechanistic role in embryonic development can be exploited for improving pest management strategies.
Collapse
Affiliation(s)
- Chhavi Choudhary
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Divyanshu Kishore
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Keshav Kumar Meghwanshi
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Vivek Verma
- Gujarat Biotechnology University, Gandhinagar, India
| | - Jayendra Nath Shukla
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
7
|
Koo J, Palli SR. Recent advances in understanding of the mechanisms of RNA interference in insects. INSECT MOLECULAR BIOLOGY 2024. [PMID: 38957135 DOI: 10.1111/imb.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
We highlight the recent 5 years of research that contributed to our understanding of the mechanisms of RNA interference (RNAi) in insects. Since its first discovery, RNAi has contributed enormously as a reverse genetic tool for functional genomic studies. RNAi is also being used in therapeutics, as well as agricultural crop and livestock production and protection. Yet, for the wider application of RNAi, improvement of its potency and delivery technologies is needed. A mechanistic understanding of every step of RNAi, from cellular uptake of RNAi trigger molecules to targeted mRNA degradation, is key for developing an efficient strategy to improve RNAi technology. Insects provide an excellent model for studying the mechanism of RNAi due to species-specific variations in RNAi efficiency. This allows us to perform comparative studies in insect species with different RNAi sensitivity. Understanding the mechanisms of RNAi in different insects can lead to the development of better strategies to improve RNAi and its application to manage agriculturally and medically important insects.
Collapse
Affiliation(s)
- Jinmo Koo
- Department of Entomology, Gatton-Martin College of Agriculture, University of Kentucky, Lexington, Kentucky, USA
| | - Subba Reddy Palli
- Department of Entomology, Gatton-Martin College of Agriculture, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
8
|
Jiang C, Fu J, Li F, Xia K, Li S, Chang L, Bock R, Zhang J. Plastid engineering with an efficient RNAi delivery system based on bacteriophage MS2 virus-like particles enhances plant resistance to cotton bollworm. MOLECULAR PLANT 2024; 17:987-989. [PMID: 38835168 DOI: 10.1016/j.molp.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/26/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Affiliation(s)
- Chunmei Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei Hongshan Laboratory, Hubei University, Wuhan 430062, China
| | - Jinqiu Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei Hongshan Laboratory, Hubei University, Wuhan 430062, China
| | - Fujun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei Hongshan Laboratory, Hubei University, Wuhan 430062, China
| | - Kai Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei Hongshan Laboratory, Hubei University, Wuhan 430062, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei Hongshan Laboratory, Hubei University, Wuhan 430062, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei Hongshan Laboratory, Hubei University, Wuhan 430062, China.
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei Hongshan Laboratory, Hubei University, Wuhan 430062, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
9
|
Lv Z, Yu S, Zhao Y, Yang Z. Silence of Aminopeptidase N 2 gene reveals the trade-offs for acquiring Cry1Ac resistance in Plutella xylostella. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22131. [PMID: 39016064 DOI: 10.1002/arch.22131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/12/2024] [Accepted: 06/29/2024] [Indexed: 07/18/2024]
Abstract
Bacillus thuringiensis (Bt) is widely used as a biopesticide worldwide. To date, at least eight pest species have been found to be resistant to Bt in the field. As the first pest that was reported having resistance to Bt in the field, considerable research has been done on the mechanisms of Bt resistance in Plutella xylostella. However, whether the acquisition of Bt resistance by P. xylostella comes at a fitness cost is also a valuable question. In this study, Aminopeptidase-N 2 (APN2), a Cry toxin receptor gene of P. xylostella, was knocked down by RNA interference, resulting in improved resistance to Cry1Ac. It was also found that larval mortality of APN2 knockdown P. xylostella was significantly higher than that of the control, while the pupation rate, pupal weight, eclosion rate, fecundity (egg/female), hatchability, and female adult longevity were significantly lower in APN2 knockdown P. xylostella than in the control. These results illustrate that if Cry1Ac resistance was obtained only through the reduction of APN2 expression, P. xylostella would need to incur some fitness costs for it.
Collapse
Affiliation(s)
- Zhuohong Lv
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Shuwen Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yafei Zhao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhongxia Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| |
Collapse
|
10
|
Koo J, Palli SR. StaufenC facilitates utilization of the ERAD pathway to transport dsRNA through the endoplasmic reticulum to the cytosol. Proc Natl Acad Sci U S A 2024; 121:e2322927121. [PMID: 38885386 PMCID: PMC11214074 DOI: 10.1073/pnas.2322927121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
RNA interference (RNAi) is more efficient in coleopteran insects than other insects. StaufenC (StauC), a coleopteran-specific double-stranded RNA (dsRNA)-binding protein, is required for efficient RNAi in coleopterans. We investigated the function of StauC in the intracellular transport of dsRNA into the cytosol, where dsRNA is digested by Dicer enzymes and recruited by Argonauts to RNA-induced silencing complexes. Confocal microscopy and cellular organelle fractionation studies have shown that dsRNA is trafficked through the endoplasmic reticulum (ER) in coleopteran Colorado potato beetle (CPB) cells. StauC is localized to the ER in CPB cells, and StauC-knockdown caused the accumulation of dsRNA in the ER and a decrease in the cytosol, suggesting that StauC plays a key role in the intracellular transport of dsRNA through the ER. Using immunoprecipitation, we showed that StauC is required for dsRNA interaction with ER proteins in the ER-associated protein degradation (ERAD) pathway, and these interactions are required for RNAi in CPB cells. These results suggest that StauC works with the ERAD pathway to transport dsRNA through the ER to the cytosol. This information could be used to develop dsRNA delivery methods aimed at improving RNAi.
Collapse
Affiliation(s)
- Jinmo Koo
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY40546
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY40546
| |
Collapse
|
11
|
Zhang M, Zhang X, Chen T, Liao Y, Yang B, Wang G. RNAi-mediated pest control targeting the Troponin I (wupA) gene in sweet potato weevil, Cylas formicarius. INSECT SCIENCE 2024. [PMID: 38863245 DOI: 10.1111/1744-7917.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
The sweet potato weevil (Cylas formicarius) is a critical pest producing enormous global losses in sweet potato crops. Traditional pest management approaches for sweet potato weevil, primarily using chemical pesticides, causes pollution, food safety issues, and harming natural enemies. While RNA interference (RNAi) is a promising environmentally friendly approach to pest control, its efficacy in controlling the sweet potato weevil has not been extensively studied. In this study, we selected a potential target for controlling C. formicarius, the Troponin I gene (wupA), which is essential for musculature composition and crucial for fundamental life activities. We determined that wupA is abundantly expressed throughout all developmental stages of the sweet potato weevil. We evaluated the efficiency of double-stranded RNAs in silencing the wupA gene via microinjection and oral feeding of sweet potato weevil larvae at different ages. Our findings demonstrate that both approaches significantly reduced the expression of wupA and produced high mortality. Moreover, the 1st instar larvae administered dswupA exhibited significant growth inhibition. We assessed the toxicity of dswupA on the no-target insect silkworm and assessed its safety. Our study indicates that wupA knockdown can inhibit the growth and development of C. formicarius and offer a potential target gene for environmentally friendly control.
Collapse
Affiliation(s)
- Mengjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaxuan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Tingting Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonglin Liao
- Institute of Plant Protection, Guangdong Academy of Agricultural Science, Guangdong Provincial Key Laboratory High Technology for Plant Protection, Guangzhou, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
12
|
Tabara M, Harada M, Kuriyama K, Sakamoto T, Takeda A, Fukuhara T, Tabunoki H. Biochemical characterization of Bombyx mori Dicer-2 that dices double-stranded RNAs into 20-nt small RNA. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22118. [PMID: 38713637 DOI: 10.1002/arch.22118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024]
Abstract
We detected enzymatic activity that generates 20-nucleotide (nt) RNA from double-stranded RNAs (dsRNAs) in crude extracts prepared from various silkworm (Bombyx mori) organs. The result using knocked-down cultured cells indicated that this dicing activity originated from B. mori Dicer-2 (BmDcr2). Biochemical analyses revealed that BmDcr2 preferentially cleaves 5'-phosphorylated dsRNAs at the 20-nt site-counted from the 5'-phosphorylated end-and required ATP and magnesium ions for the dicing reaction. This is the first report of the biochemical characterization of Dicer-2 in lepidopteran insects. This enzymatic property of BmDcr2 in vitro is consistent with the in vivo small interfering RNA profile in virus-infected silkworm cells.
Collapse
Affiliation(s)
- Midori Tabara
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, Shiga, Japan
| | - Mayuko Harada
- Department of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kazunori Kuriyama
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Takuma Sakamoto
- Department of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Atsushi Takeda
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, Shiga, Japan
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Hiroko Tabunoki
- Department of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
13
|
Shu Q, Liu GC, He JW, Hu P, Dong ZW, Zhao RP, Zhang HR, Li XY. RNAi efficiency is enhanced through knockdown of double-stranded RNA-degrading enzymes in butterfly Papilio xuthus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22113. [PMID: 38628056 DOI: 10.1002/arch.22113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
The efficiency of RNA interference (RNAi) has always limited the research on the phenotype innovation of Lepidoptera insects. Previous studies have found that double-stranded RNA-degrading enzyme (dsRNase) is an important factor in RNAi efficiency, but there have been no relevant reports in butterflies (Papilionoidea). Papilio xuthus is one of the important models in butterflies with an extensive experimental application value. To explore the effect of dsRNase in the RNAi efficiency on butterflies, six dsRNase genes (PxdsRNase 1-6) were identified in P. xuthus genome, and their dsRNA-degrading activities were subsequently detected by ex vivo assays. The result shows that the dsRNA-degrading ability of gut content (<1 h) was higher than hemolymph content (>12 h). We then investigated the expression patterns of these PxdsRNase genes during different tissues and developmental stages, and related RNAi experiments were carried out. Our results show that different PxdsRNase genes had different expression levels at different developmental stages and tissues. The expression of PxdsRNase2, PxdsRNase3, and PxdsRNase6 were upregulated significantly through dsGFP injection, and PxdsRNase genes can be silenced effectively by injecting their corresponding dsRNA. RNAi-of-RNAi studies with PxEbony, which acts as a reporter gene, observed that silencing PxdsRNase genes can increase RNAi efficiency significantly. These results confirm that silencing dsRNase genes can improve RNAi efficiency in P. xuthus significantly, providing a reference for the functional study of insects such as butterflies with low RNAi efficiency.
Collapse
Affiliation(s)
- Qian Shu
- Yunnan Agricultural University College of Plant Protection, Kunming, Yunnan, China
| | - Gui-Chun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jin-Wu He
- Key Laboratory of Genetic Evolution & Animal Models, Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ping Hu
- Key Laboratory of Genetic Evolution & Animal Models, Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhi-Wei Dong
- Key Laboratory of Genetic Evolution & Animal Models, Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ruo-Ping Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hong-Rui Zhang
- Yunnan Agricultural University College of Plant Protection, Kunming, Yunnan, China
| | - Xue-Yan Li
- Key Laboratory of Genetic Evolution & Animal Models, Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
14
|
Ortolá B, Daròs JA. RNA Interference in Insects: From a Natural Mechanism of Gene Expression Regulation to a Biotechnological Crop Protection Promise. BIOLOGY 2024; 13:137. [PMID: 38534407 DOI: 10.3390/biology13030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Insect pests rank among the major limiting factors in agricultural production worldwide. In addition to direct effect on crops, some phytophagous insects are efficient vectors for plant disease transmission. Large amounts of conventional insecticides are required to secure food production worldwide, with a high impact on the economy and environment, particularly when beneficial insects are also affected by chemicals that frequently lack the desired specificity. RNA interference (RNAi) is a natural mechanism gene expression regulation and protection against exogenous and endogenous genetic elements present in most eukaryotes, including insects. Molecules of double-stranded RNA (dsRNA) or highly structured RNA are the substrates of cellular enzymes to produce several types of small RNAs (sRNAs), which play a crucial role in targeting sequences for transcriptional or post-transcriptional gene silencing. The relatively simple rules that underlie RNAi regulation, mainly based in Watson-Crick complementarity, have facilitated biotechnological applications based on these cellular mechanisms. This includes the promise of using engineered dsRNA molecules, either endogenously produced in crop plants or exogenously synthesized and applied onto crops, as a new generation of highly specific, sustainable, and environmentally friendly insecticides. Fueled on this expectation, this article reviews current knowledge about the RNAi pathways in insects, and some other applied questions such as production and delivery of recombinant RNA, which are critical to establish RNAi as a reliable technology for insect control in crop plants.
Collapse
Affiliation(s)
- Beltrán Ortolá
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
15
|
Pugsley CE, Isaac RE, Warren NJ, Stacey M, Ferguson CTJ, Cappelle K, Dominguez-Espinosa R, Cayre OJ. Effective delivery and selective insecticidal activity of double-stranded RNA via complexation with diblock copolymer varies with polymer block composition. PEST MANAGEMENT SCIENCE 2024; 80:669-677. [PMID: 37759365 DOI: 10.1002/ps.7793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Chemical insecticides are an important tool to control damaging pest infestations. However, lack of species specificity, the rise of resistance and the demand for biological alternatives with improved ecotoxicity profiles means that chemicals with new modes of action are required. RNA interference (RNAi)-based strategies using double-stranded RNA (dsRNA) as a species-specific bio-insecticide offer an exquisite solution that addresses these issues. Many species, such as the fruit pest Drosophila suzukii, do not exhibit RNAi when dsRNA is orally administered due to degradation by gut nucleases and slow cellular uptake pathways. Thus, delivery vehicles that protect and deliver dsRNA are highly desirable. RESULTS In this work, we demonstrate the complexation of D. suzukii-specific dsRNA for degradation of vha26 mRNA with bespoke diblock copolymers. We study the ex vivo protection of dsRNA against enzymatic degradation by gut enzymes, which demonstrates the efficiency of this system. Flow cytometry then investigates the cellular uptake of Cy3-labelled dsRNA, showing a 10-fold increase in the mean fluorescence intensity of cells treated with polyplexes. The polymer/dsRNA polyplexes induced a significant 87% decrease in the odds of survival of D. suzukii larvae following oral feeding only when formed with a diblock copolymer containing a long neutral block length (1:2 cationic block/neutral block). However, there was no toxicity when fed to the closely related Drosophila melanogaster. CONCLUSION We provide evidence that dsRNA complexation with diblock copolymers is a promising strategy for RNAi-based species-specific pest control, but optimisation of polymer composition is essential for RNAi success. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Charlotte E Pugsley
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - R Elwyn Isaac
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nicholas J Warren
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Martin Stacey
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Calum T J Ferguson
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kaat Cappelle
- Syngenta Ghent Innovation Center, Gent-Zwijnaarde, Belgium
| | | | - Olivier J Cayre
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
16
|
Tang Y, Wu S, He H, Gao Q, Ding W, Xue J, Qiu L, Li Y. The CsmiR1579-CsKr-h1 module mediates rice stem borer development and reproduction: An effective target for transgenic insect-resistant rice. Int J Biol Macromol 2024; 254:127752. [PMID: 38287594 DOI: 10.1016/j.ijbiomac.2023.127752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
The rice stem borer (RSB, Chilo suppressalis) is a significant agricultural pest that mainly depends on chemical control. However, it has grown to varied degrees of pesticide resistance, which poses a severe threat to rice production and emphasizes the need for safer, more efficient alternative pest management strategies. Here, in vitro and in vivo experiments analyses reveal miR-1579 binds to the critical transcription factor Krüppel homologue 1 (Kr-h1) and negatively regulates its expression. Overexpression of miR-1579 in larvae with significantly lower levels of Kr-h1 was associated with a decline in larval growth and survival. Furthermore, in female pupae, miR-1579 overexpression led to abnormalities in ovarian development, suggesting that targeting miR-1579 could be a potential management strategy against C. suppressalis. Therefore, we generated transgenic rice expressing miR-1579 and screened three lines that had a single copy of highly abundant mature miR-1579 transcripts. Expectedly, fed with transgenic miR-1579 rice lines were significantly lower survival rates in larvae and high levels of resistance to damage caused by C. suppressalis infestation. These findings suggest that miRNA-mediated RNAi could provide an effective and species-specific strategy for C. suppressalis control.
Collapse
Affiliation(s)
- Yan Tang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Shuang Wu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Qiao Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Wenbing Ding
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha 410128, China
| | - Jin Xue
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
17
|
Zhou H, Wan F, Jian Y, Guo F, Zhang M, Shi S, Yang L, Li S, Liu Y, Ding W. Chitosan/dsRNA polyplex nanoparticles advance environmental RNA interference efficiency through activating clathrin-dependent endocytosis. Int J Biol Macromol 2023; 253:127021. [PMID: 37741481 DOI: 10.1016/j.ijbiomac.2023.127021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Chitosan, as a promising gene nanocarrier for enhancing RNA interference (RNAi) efficiency, displays tremendous application prospects in addressing dsRNA delivery concerns. However, the molecular mechanism of chitosan/dsRNA polyplex nanoparticles (PNs) for advancing dsRNA delivery efficiency remains largely unknown. Here, chitosan/dsRNA PNs were prepared by an electrostatic attraction method. The results showed that the chitosan/dsRNA PNs significantly advance stability, and cellular uptake efficiency of dsRNA, and RNAi efficiency. RNA-Seq and qPCR assays further revealed that chitosan/dsRNA PNs upregulated the key clathrin heavy chain (CHC) gene for activating clathrin-dependent endocytosis (CDE) pathway. Additionally, inhibition of CDE hindered the robust RNAi responses of chitosan/dsRNA PNs using an inhibitor (chlorpromazine) and an RNAi-of-RNAi strategy. Ultimately, microscale thermophoresis assay confirmed that chitosan/dsRNA PNs directly bound to CHC protein, which was a core component in CDE, to advance RNAi efficiency. To our knowledge, our findings firstly illuminate the molecular mechanism how chitosan nanoparticles-based RNAi deliver dsRNA for enhancing RNAi efficiency. Above mechanism will advance the extensive utilization of nanocarrier-based RNAi in pest management and gene delivery.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Fenglin Wan
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Yufan Jian
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Miao Zhang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Shiyao Shi
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Liang Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Shili Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Ying Liu
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
18
|
Liu X, Liao W, Wu Z, Pei Y, Wei Z, Lu M. Binding Properties of Odorant-Binding Protein 7 to Host Volatiles in Larvae of Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20671-20679. [PMID: 38103022 DOI: 10.1021/acs.jafc.3c06833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The chemosensory system is crucial during the growth and development of the moths. Spodoptera frugiperda (Lepidoptera: Noctuidae) is one of the most destructive insect pests. However, there is little functional research on odorant-binding proteins (OBPs) in the larval stage of S. frugiperda. Here, we obtained SfruOBP7 from transcriptomics and conducted the sequence analysis. We used quantitative real-time PCR to explore the expression profiles of SfruOBP7. The function identification showed that SfruOBP7 has a binding ability to 18 plant volatiles. Further molecular docking and site-directed mutant assay revealed that Lys45 and Phe110 were the key binding sites for SfruOBP7 interacting with linalool. In the behavior assays, linalool could attract the larvae, and dsOBP7-treated larvae lost their attraction to linalool. Our results help to reveal the essential molecular mechanism of the olfactory perception in the larvae and design an attractant based on the host volatiles.
Collapse
Affiliation(s)
- XiaoLong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wang Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - ZheRan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - YiWen Pei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - ZhiQiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
19
|
Zhu Y, Kong L, Wang X, Xu J, Qian X, Yang Y, Xu Z, Zhu KY. Rolling circle transcription: A new system to produce RNA microspheres for improving RNAi efficiency in an agriculturally important lepidopteran pest (Mythimna separate). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105680. [PMID: 38072537 DOI: 10.1016/j.pestbp.2023.105680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023]
Abstract
We applied a new RNA interference (RNAi) system using rolling circle transcription (RCT) technology to generate RNA microspheres (RMS) for targeting two key chitin synthetic pathway genes [chitin synthase A (CHSA), chitin synthase B (CHSB)] in the larvae of the oriental armyworm (Mythimna separate), a RNAi-unsusceptible agriculturally important lepidopteran pest. Feeding the third-instar larvae with the RMS-CHSA- or RMS-CHSB-treated corn leaf discs suppressed the expression of CHSA by 81.7% or CHSB by 88.1%, respectively, at 72 h. The silencing of CHSA consequently affected the larval development, including the reduced body weight (54.0%) and length (41.3%), as evaluated on the 7th day, and caused significant larval mortalities (51.1%) as evaluated on the 14th day. Similar results were obtained with the larvae fed RMS-CHSB. We also compared RNAi efficiencies among different strategies: 1) two multi-target RMS [i.e., RMS-(CHSA + CHSB), RMS-CHSA + RMS-CHSB], and 2) multi-target RMS and single-target RMS (i.e., either RMS-CHSA or RMS-CHSB) and found no significant differences in RNAi efficiency. By using Cy3-labeled RMS, we confirmed that RMS can be rapidly internalized into Sf9 cells (<6 h). The rapid cellular uptake of RMS accompanied with significant RNAi efficiency through larval feeding suggests that the RCT-based RNAi system can be readily applied to study the gene functions and further developed as bio-pesticides for insect pest management. Additionally, our new RNAi system takes the advantage of the microRNA (miRNA)-mediated RNAi pathway using miRNA duplexes generated in vivo from the RMS by the target insect. The system can be used for RNAi in a wide range of insect species, including lepidopteran insects which often exhibit extremely low RNAi efficiency using other RNAi approaches.
Collapse
Affiliation(s)
- Yutong Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Linghao Kong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinqian Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiazheng Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA
| |
Collapse
|
20
|
Dalaisón-Fuentes LI, Pascual A, Crespo M, Andrada NL, Welchen E, Catalano MI. Knockdown of double-stranded RNases (dsRNases) enhances oral RNA interference (RNAi) in the corn leafhopper, Dalbulus maidis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105618. [PMID: 37945254 DOI: 10.1016/j.pestbp.2023.105618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 11/12/2023]
Abstract
The leafhopper Dalbulus maidis is a harmful pest that causes severe damage to corn crops. Conventional chemical pesticides have negative environmental impacts, emphasizing the need for alternative solutions. RNA interference (RNAi) is a more specific and environmentally friendly method for controlling pests and reducing the negative impacts of current pest management practices. Previous studies have shown that orally administered double-stranded RNA (dsRNA) is less effective than injection protocols in silencing genes. This study focuses on identifying and understanding the role of double-stranded ribonucleases (dsRNases) in limiting the efficiency of oral RNAi in D. maidis. Three dsRNases were identified and characterized, with Dmai-dsRNase-2 being highly expressed in the midgut and salivary glands. An ex vivo degradation assay revealed significant nuclease activity, resulting in high instability of dsRNA when exposed to tissue homogenates. Silencing Dmai-dsRNase-2 improved the insects' response to the dsRNA targeting the gene of interest, providing evidence of dsRNases involvement in oral RNAi efficiency. Therefore, administering both dsRNase-specific and target gene-specific-dsRNAs simultaneously is a promising approach to increase the efficiency of oral RNAi and should be considered in future control strategies.
Collapse
Affiliation(s)
- Lucía I Dalaisón-Fuentes
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina
| | - Agustina Pascual
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina.
| | - Mariana Crespo
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina
| | - Nicolás L Andrada
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María I Catalano
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina
| |
Collapse
|
21
|
McLoughlin NM, Albers MA, Collado Camps E, Paulus J, Ran YA, Neubacher S, Hennig S, Brock R, Grossmann TN. Environment-Responsive Peptide Dimers Bind and Stabilize Double-Stranded RNA. Angew Chem Int Ed Engl 2023; 62:e202308028. [PMID: 37603459 DOI: 10.1002/anie.202308028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Double-stranded RNAs (dsRNA) possess immense potential for biomedical applications. However, their therapeutic utility is limited by low stability and poor cellular uptake. Different strategies have been explored to enhance the stability of dsRNA, including the incorporation of modified nucleotides, and the use of diverse carrier systems. Nevertheless, these have not resulted in a broadly applicable approach thereby preventing the wide-spread application of dsRNA for therapeutic purposes. Herein, we report the design of dimeric stapled peptides based on the RNA-binding protein TAV2b. These dimers are obtained via disulfide formation and mimic the natural TAV2b assembly. They bind and stabilize dsRNA in the presence of serum, protecting it from degradation. In addition, peptide binding also promotes cellular uptake of dsRNA. Importantly, peptide dimers monomerize under reducing conditions which results in a loss of RNA binding. These findings highlight the potential of peptide-based RNA binders for the stabilization and protection of dsRNA, representing an appealing strategy towards the environment-triggered release of RNA. This can broaden the applicability of dsRNA, such as short interfering RNAs (siRNA), for therapeutic applications.
Collapse
Affiliation(s)
- Niall M McLoughlin
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Marvin A Albers
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Estel Collado Camps
- Department of Medical BioSciences, Radboud University, Nijmegen Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Jannik Paulus
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Youri A Ran
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Incircular B.V., De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Radboud University, Nijmegen Medical Center, 6525 GA, Nijmegen, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, 293, Bahrain
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Palli SR. RNAi turns 25:contributions and challenges in insect science. FRONTIERS IN INSECT SCIENCE 2023; 3:1209478. [PMID: 38469536 PMCID: PMC10926446 DOI: 10.3389/finsc.2023.1209478] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/26/2023] [Indexed: 03/13/2024]
Abstract
Since its discovery in 1998, RNA interference (RNAi), a Nobel prize-winning technology, made significant contributions to advances in biology because of its ability to mediate the knockdown of specific target genes. RNAi applications in medicine and agriculture have been explored with mixed success. The past 25 years of research on RNAi resulted in advances in our understanding of the mechanisms of its action, target specificity, and differential efficiency among animals and plants. RNAi played a major role in advances in insect biology. Did RNAi technology fully meet insect pest and disease vector management expectations? This review will discuss recent advances in the mechanisms of RNAi and its contributions to insect science. The remaining challenges, including delivery to the target site, differential efficiency, potential resistance development and possible solutions for the widespread use of this technology in insect management.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
23
|
Li BJ, Wang KK, Yu Y, Wei JQ, Zhu J, Wang JL, Lin F, Xu HH. PxRdl2 dsRNA increased the insecticidal activities of GABAR-targeting compounds against Plutella xylostella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105548. [PMID: 37666591 DOI: 10.1016/j.pestbp.2023.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 09/06/2023]
Abstract
The utilization of RNA interference (RNAi) for pest management has garnered global interest. The bioassay results suggested the knockout of the PxRdl2 gene significantly increased the insecticidal activities of the γ-aminobutyric acid receptor (GABAR)-targeting compounds (fipronil, two pyrazoloquinazolines, and two isoxazolines), thereby presenting a viable target gene for RNAi-mediated pest control. Consequently, we suggest enhancing the insecticidal activities of GABAR-targeting compounds by knockdown the transcript level of PxRdl2. Furthermore, PxRdl2 dsRNA was expressed in HT115 Escherichia coli to reduce costs and protect dsRNA against degradation. In comparison to in vitro synthesized dsRNA, the recombinant bacteria (ds-B) exhibited superior interference efficiency and greater stability when exposed to UV irradiation. Collectively, our results provide a strategy for insecticide spray that combines synergistically with insecticidal activities by suppressing PxRdl2 using ds-B and may be beneficial for reducing the usage of insecticide and slowing pest resistance.
Collapse
Affiliation(s)
- Ben-Jie Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Kun-Kun Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Ye Yu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Jia-Qi Wei
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Jian Zhu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Jia-Li Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Fei Lin
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China.
| | - Han-Hong Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Sandal S, Singh S, Bansal G, Kaur R, Mogilicherla K, Pandher S, Roy A, Kaur G, Rathore P, Kalia A. Nanoparticle-Shielded dsRNA Delivery for Enhancing RNAi Efficiency in Cotton Spotted Bollworm Earias vittella (Lepidoptera: Nolidae). Int J Mol Sci 2023; 24:ijms24119161. [PMID: 37298113 DOI: 10.3390/ijms24119161] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
The spotted bollworm Earias vittella (Lepidoptera: Nolidae) is a polyphagous pest with enormous economic significance, primarily affecting cotton and okra. However, the lack of gene sequence information on this pest has a significant constraint on molecular investigations and the formulation of superior pest management strategies. An RNA-seq-based transcriptome study was conducted to alleviate such limitations, and de novo assembly was performed to obtain transcript sequences of this pest. Reference gene identification across E. vittella developmental stages and RNAi treatments were conducted using its sequence information, which resulted in identifying transcription elongation factor (TEF), V-type proton ATPase (V-ATPase), and Glyceraldehyde -3-phosphate dehydrogenase (GAPDH) as the most suitable reference genes for normalization in RT-qPCR-based gene expression studies. The present study also identified important developmental, RNAi pathway, and RNAi target genes and performed life-stage developmental expression analysis using RT-qPCR to select the optimal targets for RNAi. We found that naked dsRNA degradation in the E. vittella hemolymph is the primary reason for poor RNAi. A total of six genes including Juvenile hormone methyl transferase (JHAMT), Chitin synthase (CHS), Aminopeptidase (AMN), Cadherin (CAD), Alpha-amylase (AMY), and V-type proton ATPase (V-ATPase) were selected and knocked down significantly with three different nanoparticles encapsulated dsRNA conjugates, i.e., Chitosan-dsRNA, carbon quantum dots-dsRNA (CQD-dsRNA), and Lipofectamine-dsRNA conjugate. These results demonstrate that feeding nanoparticle-shielded dsRNA silences target genes and suggests that nanoparticle-based RNAi can efficiently manage this pest.
Collapse
Affiliation(s)
- Shelja Sandal
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
- Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 140072, Punjab, India
| | - Satnam Singh
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Gulshan Bansal
- Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 140072, Punjab, India
| | - Ramandeep Kaur
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha, Czech Republic
| | - Suneet Pandher
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha, Czech Republic
| | - Gurmeet Kaur
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Pankaj Rathore
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| |
Collapse
|
25
|
An B, Zhang Y, Yan B, Cai J. RNA interference of PHB1 enhances virulence of Vip3Aa to Sf9 cells and Spodoptera frugiperda larvae. PEST MANAGEMENT SCIENCE 2023. [PMID: 36964944 DOI: 10.1002/ps.7469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In our previous work, we demonstrated that prohibitin 2 (PHB2) on the membrane of Sf9 cells was a receptor for Vip3Aa, and PHB2 in mitochondria contributed to the mitochondrial stability to reduce Vip3Aa toxicity. Prohibitin 1 (PHB1), another prohibitin family member, forms heterodimers with PHB2 to maintain the structure and stability of mitochondria. To explore whether PHB1 impacts the action process of Vip3Aa, we examined the correlation between PHB1 and Vip3Aa virulence. RESULTS We revealed that PHB1 did not colocalize with Vip3Aa in Sf9 cells. The pulldown and CoIP experiments confirmed that PHB1 interacted with neither Vip3Aa nor scavenger receptor-C (another Vip3Aa receptor). Downregulating phb1 expression in Sf9 cells did not affect the internalization of Vip3Aa but increased Vip3Aa toxicity. Further exploration revealed that the decrease of phb1 expression affected mitochondrial function, leading to increased ROS levels and mitochondrial membrane permeability and decreased mitochondrial membrane potential. The increase of mitochondrial cytochrome c release, caspase-3 activity and genomic DNA fragmentation implied that the apoptotic process was also affected. Finally, we applied RNAi to inhibit phb1 expression in Spodoptera frugiperda larvae. As a result, it significantly increased Vip3Aa virulence. CONCLUSION We found that PHB1 was not a receptor for Vip3Aa but played an essential role in mitochondria. The downregulation of phb1 expression in Sf9 cells caused instability of mitochondria, and the cells were more prone to apoptosis when challenged with Vip3Aa. The combined use of Vip3Aa and phb1 RNAi showed a synergistic effect against S. frugiperda larvae. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoju An
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yizhuo Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Colllege of Life Science, Nankai University, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
26
|
Bi F, Yu D, Wei Z, Wei H, Ren H, Wang Y, Ren D, Hua Z, Huang B, Yang G. Core-Shell Polymeric Nanostructures with Intracellular ATP-Fueled dsRNA Delivery toward Genetic Control of Insect Pests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2762-2772. [PMID: 36745409 DOI: 10.1021/acs.jafc.2c05737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transgenic RNA interference (RNAi) represents a burgeoning and promising alternative avenue to manage plant diseases and insect pests in plants. Nonviral nanostructured dsRNA carriers have been demonstrated to possess great potential to facilitate the application of RNAi. However, it remains a critical challenge to achieve the targeted and effective release of dsRNA into the pest cells, limiting the efficiency of the biological control of pests and diseases in practical applications. In this study, we designed and constructed a new type of core-shell polymeric nanostructure (CSPN) with controllable structure, eco-friendliness, and good biocompatibility, on which dsRNA can be efficiently loaded. Once loaded into CSPNs, the dsRNA can be effectively prevented from nonsense degradation by enzymes before entering cells, and it shows targeted and image-guided release triggered by intracellular ATP, which significantly increases the efficiency of gene transfection. Significantly, the in vivo study of the typical lepidoptera silkworm after oral feeding demonstrates the potential of dsCHT10 in CSPNs for a much better knockdown efficiency than that of naked dsCHT10. This innovation enables the nanotechnology developed for the disease microenvironment-triggered release of therapeutic genes for application in sustainable crop protection.
Collapse
Affiliation(s)
- Feihu Bi
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Deshui Yu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zengming Wei
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Hanchen Wei
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Hui Ren
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Dalong Ren
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
27
|
Adeyinka OS, Nasir IA, Tabassum B. Host-induced silencing of the CpCHI gene resulted in developmental abnormalities and mortality in maize stem borer (Chilo partellus). PLoS One 2023; 18:e0280963. [PMID: 36745624 PMCID: PMC9901779 DOI: 10.1371/journal.pone.0280963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/11/2023] [Indexed: 02/07/2023] Open
Abstract
RNAi-based insecticides for crop protection have witnessed rapid improvement over the years. However, their potential to efficiently control maize stem borer (Chilo partellus) pests has remained underexplored. In this study, double-stranded C. partellus chitinase (dsCHI) toxicity was investigated in C. partellus larvae. Furthermore, we developed transgenic maize lines expressing dsRNA targeted against C. partellus chitinase transcripts and performed detached leaf insect feeding bioassays. Our results revealed that C. partellus chitinase transcript expression was significantly downregulated by 57% and 82% in the larvae. Larvae exhibited various phenotypic distortion levels across developmental stages, and 53% mortality occurred in transgenic fed larvae compared to those fed on nontransgenic leaves. In conclusion, we have identified the C. partellus chitinase gene as a potential target for RNAi-mediated control and demonstrated that oral delivery via bacteria and plant-mediated delivery are viable means of achieving C. partellus RNAi-mediated control.
Collapse
Affiliation(s)
- Olawale Samuel Adeyinka
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Department of Chemistry, Physics and Atmospheric Sciences Jackson state University, Jackson, MS, United States of America
- * E-mail:
| | - Idrees Ahmad Nasir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Bushra Tabassum
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
28
|
Koo J, Palli SR. dsRNase1 contribution to dsRNA degradation activity in the Sf9 cells conditioned medium. FRONTIERS IN INSECT SCIENCE 2023; 3:1118775. [PMID: 38469530 PMCID: PMC10926405 DOI: 10.3389/finsc.2023.1118775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/10/2023] [Indexed: 03/13/2024]
Abstract
RNA interference (RNAi) is inefficient in lepidopteran insects, including Spodoptera frugiperda. RNase activity in the lumen and hemocoel is known to contribute to low RNAi efficiency in these insects. Conditioned medium from Sf9 cells developed from ovaries of S. frugiperda shows high dsRNA degradation activity. But the enzymes responsible for this activity have not been identified. The nuclease genes that are highly expressed in Sf9 cells, REase, RNaseT2, and dsRNase1, were identified. Knockdown of dsRNase1 in Sf9 cells resulted in a reduction of dsRNA degradation activity in the Sf9 cells conditioned medium. Knockdown of dsRNase1 also increased RNAi efficiency in Sf9 cells. The results from these studies identified a major player in dsRNA degradation activity in the Sf9 cells conditioned medium. We also describe an efficient system that can be used to identify other genes responsible for dsRNA degradation and RNAi efficiency in Sf9 cells.
Collapse
Affiliation(s)
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
29
|
Bulgarella M, Baty JW, McGruddy R, Lester PJ. Gene silencing for invasive paper wasp management: Synthesized dsRNA can modify gene expression but did not affect mortality. PLoS One 2023; 18:e0279983. [PMID: 36595511 PMCID: PMC9810182 DOI: 10.1371/journal.pone.0279983] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Invasive paper wasps such as Polistes dominula are a major pest and problem for biodiversity around the globe. Safe and highly targeted methods for the control of these and other social wasp populations are needed. We attempted to identify potentially-lethal gene targets that could be used on adult paper wasps in a gene silencing or RNA interference (RNAi) approach. Double-stranded RNA (dsRNA) was designed to target genes for which silencing has proven lethal in other insects. dsRNA was provided either orally to foragers or directly injected into the wasps. We also provided the dsRNA unprotected or protected from degradation by gut nucleases in two different forms (lipofectamine and carbon quantum dots). The effects of oral delivery of 22 different gene targets to forager wasps was evaluated. The expression of five different genes was successfully reduced following dsRNA ingestion or injection. These gene targets included the FACT complex subunit spt16 (DRE4) and RNA-binding protein fusilli (FUSILLI), both of which have been previously shown to have potential as lethal targets for pest control in other insects. However, we found no evidence of significant increases in adult wasp mortality following ingestion or injection of dsRNA for these genes when compared with control treatments in our experiments. The methods we used to protect the dsRNA from digestive degradation altered gene expression but similarly did not influence wasp mortality. Our results indicate that while many of the same gene targets can be silenced and induce mortality in other insects, dsRNA and RNAi approaches may not be useful for paper wasp control.
Collapse
Affiliation(s)
- Mariana Bulgarella
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- * E-mail:
| | - James W. Baty
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Rose McGruddy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Philip J. Lester
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
30
|
Chen L, Tian Z, Hu J, Wang XY, Wang MQ, Lu W, Wang XP, Zheng XL. Molecular Characterization and Expression Patterns of Two Pheromone-Binding Proteins from the Diurnal Moth Phauda flammans (Walker) (Lepidoptera: Zygaenoidea: Phaudidae). Int J Mol Sci 2022; 24:ijms24010385. [PMID: 36613830 PMCID: PMC9820377 DOI: 10.3390/ijms24010385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Sex pheromone-binding proteins (PBPs) play an important role in sex pheromone recognition in Lepidoptera. However, the mechanisms of chemical communication mediating the response to sex pheromones remain unclear in the diurnal moths of the superfamily Zygaenoidea. In this study, Phauda flammans (Walker) (Lepidoptera: Zygaenoidea: Phaudidae) was used as a model insect to explore the molecular mechanism of sex pheromone perception in the superfamily Zygaenoidea. Two novel pheromone-binding proteins (PflaPBP1 and PflaPBP2) from P. flammans were identified. The two pheromone-binding proteins were predominantly expressed in the antennae of P. flammans male and female moths, in which PflaPBP1 had stronger binding affinity to the female sex pheromones Z-9-hexadecenal and (Z, Z, Z)-9, 12, 15-octadecatrienal, PflaPBP2 had stronger binding affinity only for (Z, Z, Z)-9, 12, 15-octadecatrienal, and no apparent binding affinity to Z-9-hexadecenal. The molecular docking results indicated that Ile 170 and Leu 169 are predicted to be important in the binding of the sex pheromone to PflaPBP1 and PflaPBP2. We concluded that PflaPBP1 and PflaPBP2 may be responsible for the recognition of two sex pheromone components and may function differently in female and male P. flammans. These results provide a foundation for the development of pest control by exploring sex pheromone blocking agents and the application of sex pheromones and their analogs for insect pests in the superfamily Zygaenoidea.
Collapse
Affiliation(s)
- Lian Chen
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Xianning Academy of Agricultural Sciences, Xianning 437000, China
| | - Zhong Tian
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Hu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Man-Qun Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: or ; Tel.: +86-0771-3235-612
| |
Collapse
|
31
|
Gao L, Wang Y, Abbas M, Zhang T, Ma E, Merzendorfer H, Zhu KY, Zhang J. Both LmDicer-1 and two LmDicer-2s participate in siRNA-mediated RNAi pathway and contribute to high gene silencing efficiency in Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103865. [PMID: 36336194 DOI: 10.1016/j.ibmb.2022.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/29/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Dicers belong to a class of large RNase III multidomain ribonucleases and are central components of the RNA interference (RNAi) pathways. In insects, Dicer-2 has been known to cleave long double-stranded RNA (dsRNA) in small interfering RNA (siRNA)-mediated-RNAi pathway. However, Dicer-1 is responsible for cleaving precursor microRNAs (pre28 miRNAs) in miRNA-mediated RNAi pathway. In this study, we identified one LmDicer-1 and two LmDicer-2 (LmDicer-2a and LmDicer-2b) genes in Locusta migratoria. The RNAi of RNAi assay showed that knockdown of each of the Dicer genes reduced RNAi efficiency against a target gene (Lmβ-Tubulin), suggesting that all these genes participated in the siRNA-mediated RNAi pathway. Sequence analyses of the siRNAs generated from dsLmβ-Tubulin after silencing each LmDicer gene showed no significant difference in the pattern of siRNAs mapped to dsLmβ-Tubulin. This result indicated that all the three LmDicers are capable of generating siRNAs from the dsRNA. We then generated recombinant proteins consisting of different domains using Escherichia coli expression system and incubated each recombinant protein with dsLmβ-Tubulin. We found that the recombinant Dicer proteins successfully cleaved dsLmβ-Tubulin. However, LmDicer-2a-R lacking dsRBD domain lost activity, suggesting that dsRBD domain is critical for Dicer function. Furthermore, overexpression of these proteins in Drosophila S2 cells improved RNAi efficiency. Our siRNA affinity chromatography and LC-MS/MS analysis identified LmDicer-2a, LmDicer-2b, LmR2D2, LmAgo2a, LmAgo1, LmStaufen and LmTARBP2 as constituents of RNA-induced silencing complex. Taken together, these data show that both LmDicer-1 and two LmDicer-2s all participate in siRNA-mediated RNAi pathway and likely contribute to high RNAi efficiency in L. migratoria.
Collapse
Affiliation(s)
- Lu Gao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Yanli Wang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Mureed Abbas
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Tingting Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | | | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS, 66506, USA.
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
32
|
He L, Huang Y, Tang X. RNAi-based pest control: Production, application and the fate of dsRNA. Front Bioeng Biotechnol 2022; 10:1080576. [PMID: 36524052 PMCID: PMC9744970 DOI: 10.3389/fbioe.2022.1080576] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 10/21/2023] Open
Abstract
The limitations of conventional pesticides have raised the demand for innovative and sustainable solutions for plant protection. RNA Interference (RNAi) triggered by dsRNA has evolved as a promising strategy to control insects in a species-specific manner. In this context, we review the methods for mass production of dsRNA, the approaches of exogenous application of dsRNA in the field, and the fate of dsRNA after application. Additionally, we describe the opportunities and challenges of using nanoparticles as dsRNA carriers to control insects. Furthermore, we provide future directions to improve pest management efficiency by utilizing the synergistic effects of multiple target genes. Meanwhile, the establishment of a standardized framework for assessment and regulatory consensus is critical to the commercialization of RNA pesticides.
Collapse
Affiliation(s)
- Li He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Yanna Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Xueming Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| |
Collapse
|
33
|
HDAC3 Knockdown Dysregulates Juvenile Hormone and Apoptosis-Related Genes in Helicoverpa armigera. Int J Mol Sci 2022; 23:ijms232314820. [PMID: 36499148 PMCID: PMC9740019 DOI: 10.3390/ijms232314820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Insect development requires genes to be expressed in strict spatiotemporal order. The dynamic regulation of genes involved in insect development is partly orchestrated by the histone acetylation-deacetylation via histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although histone deacetylase 3 (HDAC3) is required for mice during early embryonic development, its functions in Helicoverpa armigera (H. armigera) and its potential to be used as a target of insecticides remain unclear. We treated H. armigera with HDAC3 siRNA and RGFP966, a specific inhibitor, examining how the HDAC3 loss-of-function affects growth and development. HDAC3 siRNA and RGFP966 treatment increased mortality at each growth stage and altered metamorphosis, hampering pupation and causing abnormal wing development, reduced egg production, and reduced hatching rate. We believe that the misregulation of key hormone-related genes leads to abnormal pupa development in HDAC3 knockout insects. RNA-seq analysis identified 2788 differentially expressed genes (≥two-fold change; p ≤ 0.05) between siHDAC3- and siNC-treated larvae. Krüppel homolog 1 (Kr-h1), was differentially expressed in HDAC3 knockdown larvae. Pathway-enrichment analysis revealed the significant enrichment of genes involved in the Hippo, MAPK, and Wnt signaling pathways following HDAC3 knockdown. Histone H3K9 acetylation was increased in H. armigera after siHDAC3 treatment. In conclusion, HDAC3 knockdown dysregulated juvenile hormone (JH)-related and apoptosis-related genes in H. armigera. The results showed that the HDAC3 gene is a potential target for fighting H. armigera.
Collapse
|
34
|
Chen D, Yan R, Xu Z, Qian J, Yu Y, Zhu S, Wu H, Zhu G, Chen M. Silencing of dre4 Contributes to Mortality of Phyllotreta striolata. INSECTS 2022; 13:insects13111072. [PMID: 36421975 PMCID: PMC9696999 DOI: 10.3390/insects13111072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 06/01/2023]
Abstract
The striped flea beetle, Phyllotreta striolata, is one of the most destructive pests of Cruciferae crops worldwide. RNA interference (RNAi) is a promising alternative strategy for pest biological control, which overcomes the weakness of synthetic insecticides, such as pest resistance, food safety problems and toxicity to non-target insects. The homolog of Spt16/FACT, dre4 plays a critical role in the process of gene transcription, DNA repair, and DNA replication; however, the effects of dre4 silencing in P. striolata remain elusive. In this study, we cloned and characterized the full-length dre4 from P. striolata and silenced Psdre4 through microinjection and oral delivery; it was found that the silencing of dre4 contributed to the high mortality of P. striolata in both bioassays. Moreover, 1166 differentially regulated genes were identified after Psdre4 interference by RNA-seq analysis, which might have been responsible for the lethality. The GO analysis indicated that the differentially regulated genes were classified into three GO functional categories, including biological process, cellular component, and molecular function. The KEGG analysis revealed that these differentially regulated genes are related to apoptosis, autophagy, steroid hormone biosynthesis, cytochrome P450 and other signaling pathways. Our results suggest that Psdre4 is a fatal RNAi target and has significant potential for the development of RNA pesticides for P. striolata management.
Collapse
Affiliation(s)
- Dongping Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310030, China
| | - Ru Yan
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310030, China
| | - Zhanyi Xu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310030, China
| | - Jiali Qian
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310030, China
| | - Yinfang Yu
- Research and Development Center, NeoAgro Co., Ltd., Hangzhou 310022, China
| | - Shunshun Zhu
- Research and Development Center, NeoAgro Co., Ltd., Hangzhou 310022, China
| | - Huiming Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310030, China
| | - Mengli Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
35
|
Hough J, Howard JD, Brown S, Portwood DE, Kilby PM, Dickman MJ. Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides. Front Bioeng Biotechnol 2022; 10:980592. [PMID: 36299286 PMCID: PMC9588923 DOI: 10.3389/fbioe.2022.980592] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 01/09/2023] Open
Abstract
Current crop pest control strategies rely on insecticidal and fungicidal sprays, plant genetic resistance, transgenes and agricultural practices. However, many insects, plant viruses, and fungi have no current means of control or have developed resistance against traditional pesticides. dsRNA is emerging as a novel sustainable method of plant protection as an alternative to traditional chemical pesticides. The successful commercialisation of dsRNA based biocontrols for effective pest management strategies requires the economical production of large quantities of dsRNA combined with suitable delivery methods to ensure RNAi efficacy against the target pest. A number of methods exist for the production and delivery of dsRNA based biocontrols and here we review alternative methods currently employed and emerging new approaches for their production. Additionally, we highlight potential challenges that will need to be addressed prior to widespread adoption of dsRNA biocontrols as novel sustainable alternatives to traditional chemical pesticides.
Collapse
Affiliation(s)
- James Hough
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| | - John D. Howard
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| | - Stephen Brown
- Sheffield RNAi Screening Facility, School of Biosciences, University of Sheffield, Sheffield, United Kingtom
| | - David E. Portwood
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Peter M. Kilby
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Mark J. Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| |
Collapse
|
36
|
Kebede M, Fite T. RNA interference (RNAi) applications to the management of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae): Its current trends and future prospects. Front Mol Biosci 2022; 9:944774. [PMID: 36158573 PMCID: PMC9490220 DOI: 10.3389/fmolb.2022.944774] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) is among the invasive insect pests that damages maize and sorghum, the high-priority crops in newly colonized agro-ecologies, including African contexts. Owing to the increasing infestation of the pest and the limitations of current conventional methods for its management, there is a call for discovering advanced pest management approaches. RNA interference (RNAi) is an emerging molecular tool showing flexible potential for the management of S. frugiperda. We conducted a search of the recent application of RNAi literature using Google Scholar and Mendeley to find advanced papers on S. frugiperda management using RNAi molecular tools that led to growth inhibition, developmental aberrations, reduced fecundity, and mortality, mainly by disruption of normal biological processes of the pest. Although efforts have been made to accelerate the utility of RNAi, many factors limit the efficiency of RNAi to achieve successful control over S. frugiperda. Owing to RNAi’s potential bioactivity and economic and ecological acceptability, continued research efforts should focus on improving its broad applicability, including field conditions. Screening and identification of key target genes should be a priority task to achieve effective and sustainable management of this insect via RNAi. In addition, a clear understanding of the present status of RNAi utilization in S. frugiperda management is of paramount importance to improve its efficiency. Therefore, in this review, we highlight the biology of S. frugiperda and the RNAi mechanism as a foundation for the molecular management of the pest. Then, we discuss the current knowledge of the RNAi approach in S. frugiperda management and the factors affecting the efficiency of RNAi application. Finally, the prospects for RNAi-based insect pest management are highlighted for future research to achieve effective management of S. frugiperda.
Collapse
|
37
|
Hoang T, Foquet B, Rana S, Little DW, Woller DA, Sword GA, Song H. Development of RNAi Methods for the Mormon Cricket, Anabrus simplex (Orthoptera: Tettigoniidae). INSECTS 2022; 13:739. [PMID: 36005364 PMCID: PMC9409436 DOI: 10.3390/insects13080739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Mormon crickets are a major rangeland pest in the western United States and are currently managed by targeted applications of non-specific chemical insecticides, which can potentially have negative effects on the environment. In this study, we took the first steps toward developing RNAi methods for Mormon crickets as a potential alternative to traditional broad-spectrum insecticides. To design an effective RNAi-based insecticide, we first generated a de novo transcriptome for the Mormon cricket and developed dsRNAs that could silence the expression of seven housekeeping genes. We then characterized the RNAi efficiencies and time-course of knockdown using these dsRNAs, and assessed their ability to induce mortality. We have demonstrated that it is possible to elicit RNAi responses in the Mormon cricket by injection, but knockdown efficiencies and the time course of RNAi response varied according to target genes and tissue types. We also show that one of the reasons for the poor knockdown efficiencies could be the presence of dsRNA-degrading enzymes in the hemolymph. RNAi silencing is possible in Mormon cricket, but more work needs to be done before it can be effectively used as a population management method.
Collapse
Affiliation(s)
- Toan Hoang
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Bert Foquet
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Department of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Seema Rana
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Drew W. Little
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Derek A. Woller
- USDA-APHIS-PPQ-Science & Technology-Insect Management and Molecular Diagnostics Laboratory (Phoenix Station), Phoenix, AZ 85040, USA
| | - Gregory A. Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
38
|
Howard JD, Beghyn M, Dewulf N, De Vos Y, Philips A, Portwood D, Kilby PM, Oliver D, Maddelein W, Brown S, Dickman MJ. Chemically-modified dsRNA induces RNAi effects in insects in vitro and in vivo: A potential new tool for improving RNA-based plant protection. J Biol Chem 2022; 298:102311. [PMID: 35921898 PMCID: PMC9478931 DOI: 10.1016/j.jbc.2022.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/28/2022] Open
Abstract
Global agriculture loses over $100 billion of produce annually to crop pests such as insects. Many of these crop pests either are not currently controlled by artificial means or have developed resistance against chemical pesticides. Long dsRNAs are capable of inducing RNAi in insects and are emerging as novel, highly selective alternatives for sustainable insect management strategies. However, there are significant challenges associated with RNAi efficacy in insects. In this study, we synthesized a range of chemically modified long dsRNAs in an approach to improve nuclease resistance and RNAi efficacy in insects. Our results showed that dsRNAs containing phosphorothioate modifications demonstrated increased resistance to southern green stink bug saliva nucleases. Phosphorothioate-modified and 2′-fluoro-modified dsRNA also demonstrated increased resistance to degradation by soil nucleases and increased RNAi efficacy in Drosophila melanogaster cell cultures. In live insects, we found chemically modified long dsRNAs successfully resulted in mortality in both stink bug and corn rootworm. These results provide further mechanistic insight into the dependence of RNAi efficacy on nucleotide modifications in the sense or antisense strand of the dsRNA in insects and demonstrate for the first time that RNAi can successfully be triggered by chemically modified long dsRNAs in insect cells or live insects.
Collapse
Affiliation(s)
- John D Howard
- Department of Chemical & Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | | | | | - Yves De Vos
- Syngenta, Ghent Innovation Center, Ghent, Belgium
| | | | - David Portwood
- Syngenta, Jealott's Hill International Research Centre, Bracknell, United Kingdom
| | - Peter M Kilby
- Syngenta, Jealott's Hill International Research Centre, Bracknell, United Kingdom
| | | | | | - Stephen Brown
- Sheffield RNAi Screening Facility, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Mark J Dickman
- Department of Chemical & Biological Engineering, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
39
|
Dhandapani RK, Gurusamy D, Palli SR. Protamine-Lipid-dsRNA Nanoparticles Improve RNAi Efficiency in the Fall Armyworm, Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6634-6643. [PMID: 35612305 DOI: 10.1021/acs.jafc.2c00901] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing safe and effective double-stranded RNA (dsRNA) delivery systems remains a major challenge for gene silencing, especially in lepidopteran insects. This study evaluated the protamine sulfate (PS)/lipid/dsRNA nanoparticle (NP) delivery system for RNA interference (RNAi) in cells and larvae of the fall armyworm (FAW), Spodoptera frugiperda, a major worldwide pest. A highly efficient gene delivery formulation was prepared using a cationic biopolymer, PS, and a cationic lipid, Cellfectin (CF), complexed with dsRNA. The NPs were prepared by a two-step self-assembly method. The formation of NPs was revealed by dynamic light scattering and transmission electron microscopy. The formation of CF/dsRNA/PS NPs was spherical in shape and size, ranging from 20 to 100 nm with a positive charge (+23.3 mV). Interestingly, prepared CF/dsRNA/PS NPs could protect dsRNA (95%) from nuclease degradation and thus significantly improve the stability of dsRNA. Formulations prepared by combining EGFP DNA with CF/PS increased transfection efficiency in Sf9 cells compared to PS/EGFP and CF/EGFP NPs. Also, the PS/CF/dsRNA NPs enhanced the endosomal escape for the intracellular delivery of dsRNA. The gene knockdown efficiency was assessed in Sf9 Luciferase (Luc) stable cells after a 72 h incubation with CF/dsRNA/PS, PS/dsRNA, CF/dsRNA, or naked dsRNA. Knockdown of the Luc gene was detected in CF/dsRNA/PS (76%) and PS/dsRNA (42.4%) not CF/dsRNA (19.5%) and naked dsRNA (10.3%) in Sf9 Luc cells. Moreover, CF/dsIAP/PS (25 μg of dsRNA targeting the inhibitor of apoptosis, IAP, gene of FAW) NPs showed knockdown of the IAP gene (39.5%) and mortality (55%) in FAW larvae. These results highlight the potential application of PS/lipid/dsRNA NPs for RNA-mediated control of insect pests.
Collapse
Affiliation(s)
| | - Dhandapani Gurusamy
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| |
Collapse
|
40
|
Fu J, Xu S, Lu H, Li F, Li S, Chang L, Heckel DG, Bock R, Zhang J. Resistance to RNA interference by plant-derived double-stranded RNAs but not plant-derived short interfering RNAs in Helicoverpa armigera. PLANT, CELL & ENVIRONMENT 2022; 45:1930-1941. [PMID: 35312082 DOI: 10.1111/pce.14314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Plant-mediated RNA interference (RNAi) has emerged as a promising technology for pest control through expression of double-stranded RNAs (dsRNAs) targeted against essential insect genes. However, little is known about the underlying molecular mechanisms and whether long dsRNA or short interfering RNAs (siRNAs) are the effective triggers of the RNAi response. Here we generated transplastomic and nuclear transgenic tobacco plants expressing dsRNA against the Helicoverpa armigera ATPaseH gene. We showed that expression of long dsRNA of HaATPaseH was at least three orders of magnitude higher in transplastomic plants than in transgenic plants. HaATPaseH-derived siRNAs are absent from transplastomic plants, while they are abundant in transgenic plants. Feeding transgenic plants to H. armigera larvae reduced gene expression of HaATPaseH and delayed growth. Surprisingly, no effect of transplastomic plants on insect growth was observed, despite efficient dsRNA expression in plastids. Furthermore, we found that dsRNA ingested by H. armigera feeding on transplastomic plants was rapidly degraded in the intestinal fluid. In contrast, siRNAs are relatively stable in the digestive system. These results suggest that plant-derived siRNAs may be more effective triggers of RNAi in Lepidoptera than dsRNAs, which will aid the optimization of the strategies for plant-mediated RNAi to pest control.
Collapse
Affiliation(s)
- Jinqiu Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Shijing Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Huan Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Fanchi Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - David G Heckel
- Department of Entomology, Max-Planck-Institut für Chemische Ökologie, Jena, Germany
| | - Ralph Bock
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- Department III, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
41
|
Zhang X, Fan Z, Wang Q, Kong X, Liu F, Fang J, Zhang S, Zhang Z. RNAi Efficiency through dsRNA Injection Is Enhanced by Knockdown of dsRNA Nucleases in the Fall Webworm, Hyphantria cunea (Lepidoptera: Arctiidae). Int J Mol Sci 2022; 23:ijms23116182. [PMID: 35682860 PMCID: PMC9181381 DOI: 10.3390/ijms23116182] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
RNA interference (RNAi) technology is a promising approach used in pest control. The efficiency of RNAi varies considerably among different insect species, and growing evidence suggests that degradation of double-stranded RNA (dsRNA) prior to uptake is an important factor that limits RNAi efficiency in insects. Our recent work on fall webworm (Hyphantria cunea), an important invasive pest in China, showed a relatively low silencing efficiency of RNAi through dsRNA injection, which is considered the most feasible dsRNA delivery method for inducing RNAi, and the factors involved in the mechanism remain unknown. Herein, we first detected the dsRNA-degrading activity in the hemolymph and gut content of H. cunea in ex vivo assays and observed rapid degradation of dsRNA, especially in the hemolymph, which was complete within only 10 min. To determine whether dsRNA degradation could contribute to the low effectiveness of RNAi in H. cunea, four dsRNA nuclease (dsRNase) genes, HcdsRNase1, HcdsRNase2, HcdsRNase3, and HcdsRNase4, were identified by homology searching against the H. cunea transcriptome database, and their transcript levels were subsequently investigated in different tissues, developmental stages, and after dsRNA injection. Our results show that HcdsRNases are highly expressed mainly in gut tissues and hemolymph, and the expression of HcdsRNase3 and HcdsRNase4 were significantly upregulated by dsGFP induction. RNAi-of-RNAi studies, using HcCht5 as a reporter gene, demonstrated that silencing HcdsRNase3 and HcdsRNase4 significantly increases RNAi efficacy via dsHcCht5 injection, and co-silencing these two HcdsRNase genes results in a more significant improvement in efficacy. These results confirm that the RNAi efficacy in H. cunea through dsRNA injection is certainly impaired by dsRNase activity, and that blocking HcdsRNases could potentially improve RNAi, providing a reference for related studies on insects where RNAi has low efficiency.
Collapse
|
42
|
Yao Y, Lin DJ, Cai XY, Wang R, Hou YM, Hu CH, Gao SJ, Wang JD. Multiple dsRNases Involved in Exogenous dsRNA Degradation of Fall Armyworm Spodoptera frugiperda. Front Physiol 2022; 13:850022. [PMID: 35600298 PMCID: PMC9117646 DOI: 10.3389/fphys.2022.850022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
RNAi is regarded as a promising technology for pest control. However, not all insects are sensitive to RNAi. Studies have confirmed that insect dsRNases are one of key factors affecting RNAi efficiency. In the current study, we identified four genes coding for dsRNases from the Spodoptera frugiperda genome. Spatial and temporal expression analysis showed that those dsRNases were highly expressed in the midgut and old larvae. Then a delivery method was applied for inducing efficient RNAi based on dsRNA encapsulated by liposome. Furthermore, we assessed degradation efficiency by incubation with dsRNA with gut juice or hemocoel to characterize potential roles of different SfdsRNases after suppression of SfdsRNase. The result showed that interferenced with any sfdsRNase reduced the degradation of exogenous dsRNA in midgut, interfered with sfdsRNase1 and sfdsRNase3 slowed down the degradation of exogenous dsRNA in hemolymph. Our data suggest the evolutionary expansion and multiple high activity dsRNase genes would take part in the RNAi obstinate in S. frugiperda, besides we also provide an efficient RNAi method for better use of RNAi in S. frugiperda.
Collapse
Affiliation(s)
- Yang Yao
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Dong-Jiang Lin
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Xiang-Yun Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministry of Education, College of Plant Protection, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry, Beijing, China
- *Correspondence: Ran Wang, ; Jin-Da Wang,
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministry of Education, College of Plant Protection, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Chao-Hua Hu
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - San-Ji Gao
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Jin-Da Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
- *Correspondence: Ran Wang, ; Jin-Da Wang,
| |
Collapse
|
43
|
McKenna KZ, Nijhout HF. The development of shape. Modular control of growth in the lepidopteran forewing. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:170-180. [PMID: 34710273 DOI: 10.1002/jez.b.23101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/08/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022]
Abstract
The mechanisms by which tissues and organs achieve their final size and shape during development are largely unknown. Although we have learned much about the mechanisms that control growth, little is known about how those play out to achieve a structure's specific final size and shape. The wings of insects are attractive systems for the study of the control of morphogenesis, because they are perfectly flat and two-dimensional, composed of two closely appressed cellular monolayers in which morphogenetic processes can be easily visualized. The wings of Lepidoptera arise from imaginal disks whose structure is always perfectly congruent with that of the adult wing, so that it is possible to fate-map corresponding positions on the larval disk to those of the adult wing. Here we show that the forewing imaginal disks of Junonia coenia are subdivided into four domains, with characteristic patterns of expression of known patterning genes Spalt (Sal), Engrailed (En), and Cubitus interruptus (Ci). We show that DNA and protein synthesis, as well as mitoses, are spatially patterned in a domain-specific way. Knockdown of Sal and En using produced domain-specific reductions in the shape of the forewing. Knockdown of signaling pathways involved in the regulation of growth likewise altered the shape of the forewing in a domain-specific way. Our results reveal a multi-level regulation of forewing shape involving hormones and growth-regulating genes.
Collapse
|
44
|
Verdonckt TW, Vanden Broeck J. Methods for the Cost-Effective Production of Bacteria-Derived Double-Stranded RNA for in vitro Knockdown Studies. Front Physiol 2022; 13:836106. [PMID: 35492592 PMCID: PMC9043282 DOI: 10.3389/fphys.2022.836106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
RNA interference (RNAi) is a highly conserved pathway for the post-transcriptional regulation of gene expression. It has become a crucial tool in life science research, with promising potential for pest-management applications. To induce an RNAi response, long double-stranded RNA (dsRNA) sequences specific to the target gene must be delivered to the cells. This dsRNA substrate is then processed to small RNA (sRNA) fragments that direct the silencing response. A major obstacle to applying this technique is the need to produce sufficiently large amounts of dsRNA in a very cost-effective manner. To overcome this issue, much attention has been given to the development and optimization of biological production systems. One such system is the E. coli HT115 strain transformed with the L4440 vector. While its effectiveness at inducing knockdowns in animals through feeding of the bacteria has been demonstrated, there is only limited knowledge on the applicability of bacteria-derived dsRNA for in vitro experiments. In this paper, we describe and compare methods for the economical (43.2 €/mg) and large-scale (mg range) production of high-quality dsRNA from the HT115 bacterial system. We transformed the bacteria with constructs targeting the Helicoverpa-specific gene Dicer2 and, as a non-endogenous control, the Green Fluorescent Protein gene (GFP). First, we compared the total RNA extraction yields of four cell-lysis treatments: heating, lysozyme digestion, sonication, and a control protocol. Second, we assessed the quality and purity of these extracted dsRNAs. Third, we compared methods for the further purification of dsRNAs from crude RNA extracts. Finally, we demonstrated the efficiency of the produced dsRNAs at inducing knockdowns in a lepidopteran cell line. The insights and results from this paper will empower researchers to conduct otherwise prohibitively expensive knockdown studies, and greatly reduce the production times of routinely or large-scale utilized dsRNA substrates.
Collapse
|
45
|
McGraw E, Roberts JD, Kunte N, Westerfield M, Streety X, Held D, Avila LA. Insight into Cellular Uptake and Transcytosis of Peptide Nanoparticles in Spodoptera frugiperda Cells and Isolated Midgut. ACS OMEGA 2022; 7:10933-10943. [PMID: 35415340 PMCID: PMC8991906 DOI: 10.1021/acsomega.1c06638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Silencing genes in insects by introducing double-stranded RNA (dsRNA) in the diet holds promise as a new pest management method. It has been demonstrated that nanoparticles (NPs) can potentiate dsRNA silencing effects by promoting cellular internalization and protecting dsRNA against early degradation. However, many mysteries of how NPs and dsRNA are internalized by gut epithelial cells and, subsequently, transported across the midgut epithelium remain to be unraveled. The sole purpose of the current study is to investigate the role of endocytosis and transcytosis in the transport of branched amphipathic peptide nanocapsules (BAPCs) associated with dsRNA through midgut epithelium cells. Spodoptera frugiperda midguts and the epithelial cell line Sf9, derived from S. frugiperda, were used to study transcytosis and endocytosis, respectively. Results suggest that clathrin-mediated endocytosis and macropinocytosis are largely responsible for cellular uptake, and once within the midgut, transcytosis is involved in shuttling BAPCs-dsRNA from the lumen to the hemolymph. In addition, BAPCs were not found to be toxic to Sf9 cells or generate damaging reactive species once internalized.
Collapse
Affiliation(s)
- Erin McGraw
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Jonathan D. Roberts
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Nitish Kunte
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Matthew Westerfield
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Xavier Streety
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - David Held
- Department
of Entomology and Plant Pathology, Auburn
University, Auburn, Alabama 36849-5412, United States
| | - L. Adriana Avila
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| |
Collapse
|
46
|
Fan Y, Song H, Abbas M, Wang Y, Liu X, Li T, Ma E, Zhu KY, Zhang J. The stability and sequence cleavage preference of dsRNA are key factors differentiating RNAi efficiency between migratory locust and Asian corn borer. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103738. [PMID: 35134534 DOI: 10.1016/j.ibmb.2022.103738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
We compared the stability of double-stranded RNA (dsRNA) in each of two body fluids (hemolymph, midgut fluid) and in each of two tissues (integument, midgut), and the uptake of dsRNA in each of two cultured tissues (integument, midgut) between the migratory locust (Locusta migratoria) and the Asian corn borer (Ostrinia furnacalis). We further compared the abundance of putative small interfering RNAs (siRNAs) generated from each of two dsRNAs (dsβ-actin, dsEf1α) and the preference of dsRNA cleavages between the two insect species. Our studies showed a rapid degradation of dsRNA in the midgut fluids of both insect species and in O. furnacalis hemolymph. However, dsRNA remained reasonably stable in L. migratoria hemolymph. When nuclease degradation of dsRNA in cultured tissues was inhibited, dsRNA uptake was not significantly different between the two species. We further showed that the silencing efficiency against target genes was consistent with the abundance of putative siRNAs processed from the dsRNA. In addition, O. furnacalis showed a strong preference in cleaving dsRNA when the nucleotide G was in the position of "1" at 5'-end whereas L. migratoria showed broad spectrum in cleavage sites to generate siRNA. Taken together, our study revealed that silencing efficiency of a target gene by RNAi was directly related to the dsRNA degradation by nucleases and the abundance of siRNAs generated from the dsRNA.
Collapse
Affiliation(s)
- Yunhe Fan
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Huifang Song
- Faculty of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, 046000, China
| | - Mureed Abbas
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China; Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yanli Wang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xiaojian Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Tao Li
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS, 66506, USA.
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
47
|
Plastid Transformation of Micro-Tom Tomato with a Hemipteran Double-Stranded RNA Results in RNA Interference in Multiple Insect Species. Int J Mol Sci 2022; 23:ijms23073918. [PMID: 35409279 PMCID: PMC8999928 DOI: 10.3390/ijms23073918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
Plant-mediated RNA interference (RNAi) holds great promise for insect pest control, as plants can be transformed to produce double-stranded RNA (dsRNA) to selectively down-regulate insect genes essential for survival. For optimum potency, dsRNA can be produced in plant plastids, enabling the accumulation of unprocessed dsRNAs. However, the relative effectiveness of this strategy in inducing an RNAi response in insects using different feeding mechanisms is understudied. To investigate this, we first tested an in vitro-synthesized 189 bp dsRNA matching a highly conserved region of the v-ATPaseA gene from cotton mealybug (Phenacoccus solenopsis) on three insect species from two different orders that use leaf-chewing, lacerate-and-flush, or sap-sucking mechanisms to feed, and showed that the dsRNA significantly down-regulated the target gene. We then developed transplastomic Micro-tom tomato plants to produce the dsRNA in plant plastids and showed that the dsRNA is produced in leaf, flower, green fruit, red fruit, and roots, with the highest dsRNA levels found in the leaf. The plastid-produced dsRNA induced a significant gene down-regulation in insects using leaf-chewing and lacerate-and-flush feeding mechanisms, while sap-sucking insects were unaffected. Our results suggest that plastid-produced dsRNA can be used to control leaf-chewing and lacerate-and-flush feeding insects, but may not be useful for sap-sucking insects.
Collapse
|
48
|
Shi X, Liu X, Cooper AM, Silver K, Merzendorfer H, Zhu KY, Zhang J. Vacuolar (H + )-ATPase subunit c is essential for the survival and systemic RNA interference response in Locusta migratoria. PEST MANAGEMENT SCIENCE 2022; 78:1555-1566. [PMID: 34981606 DOI: 10.1002/ps.6774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Vacuolar (H+ )-ATPase (V-ATPase) is a multi-subunit enzyme that hydrolyzes adenosine triphosphate (ATP) to transport protons across a cellular membrane, and it plays an important role in numerous biological processes, including in growth, development and immune responses. The c subunit of V-ATPase is a highly conserved subunit of the rotatory proteolipid ring that is required for binding and transporting protons. To date, there are only a few published reports on V-ATPase-c functions in insects. RESULTS We identified and characterized the V-ATPase-c gene in Locusta migratoria, one of the most destructive agricultural insect pests in the world. LmV-ATPase-c was predominately expressed in Malpighian tubules of nymphs, followed by the hindgut and ovary, while the other tissues showed relatively low expression levels. Silencing of LmV-ATPase-c caused severe molting defects in nymphs and a high mortality rate of > 90%. Histological staining and microscopic examination of sections from the abdominal cuticle revealed the absence of newly formed cuticle in nymphs that were injected with dsLmV-ATPase-c. In addition, silencing of LmV-ATPase-c transcript levels significantly impaired RNA interference (RNAi) efficiency of a reporter gene. By quantifying double-stranded RNA (dsRNA) amounts by quantitative polymerase chain reaction (PCR), we found that RNAi against LmV-ATPase-c provoked a dramatic accumulation of dsRNA in the endosomes of epidermal and midgut cells of Locusta migratoria. CONCLUSION Our results indicate that LmV-ATPase-c is indispensable for the formation of new cuticle during the molting process and has pivotal functions in dsRNA escape from endosomes. LmV-ATPase-c might be a valuable target for developing new strategies for insect pest management. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuekai Shi
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Sciences, Shanxi University, Taiyuan, China
| | - Xiaojian Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | | | - Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | | | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
49
|
Zhang BZ, Hu GL, Lu LY, Chen XL, Gao XW. Silencing of CYP6AS160 in Solenopsis invicta Buren by RNA interference enhances worker susceptibility to fipronil. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:171-178. [PMID: 34365981 DOI: 10.1017/s0007485321000651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cytochrome P450 monooxygenases play a key role in pest resistance to insecticides by detoxification. Four new P450 genes, CYP6AS160, CYP6AS161, CYP4AB73 and CYP4G232 were identified from Solenopsis invicta. CYP6AS160 was highly expressed in the abdomen and its expression could be induced significantly with exposure to fipronil, whereas CYP4AB73 was not highly expressed in the abdomen and its expression could not be significantly induced following exposure to fipronil. Expression levels of CYP6AS160 and CYP4AB73 in workers were significantly higher than that in queens. RNA interference-mediated gene silencing by feeding on double-stranded RNA (dsRNA) found that the levels of this transcript decreased (by maximum to 64.6%) when they fed on CYP6AS160-specific dsRNA. Workers fed dsCYP6AS160 had significantly higher mortality after 24 h of exposure to fipronil compared to controls. Workers fed dsCYP6AS160 had reduced total P450 activity of microsomal preparations toward model substrates p-nitroanisole. However, the knockdown of a non-overexpressed P450 gene, CYP4AB73 did not lead to an increase of mortality or a decrease of total P450 activity. The knockdown effects of CYP6AS160 on worker susceptibility to fipronil, combined with our other findings, indicate that CYP6AS160 is responsible for detoxification of fipronil. Feeding insects dsRNA may be a general strategy to trigger RNA interference and may find applications in entomological research and in the control of insect pests in the field.
Collapse
Affiliation(s)
- Bai-Zhong Zhang
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang453003, P.R. China
- Department of Entomology, China Agricultural University, Beijing100193, P.R. China
| | - Gui-Lei Hu
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang453003, P.R. China
| | - Liu-Yang Lu
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang453003, P.R. China
| | - Xi-Ling Chen
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang453003, P.R. China
| | - Xi-Wu Gao
- Department of Entomology, China Agricultural University, Beijing100193, P.R. China
| |
Collapse
|
50
|
Schvartzman C, Fresia P, Murchio S, Mujica MV, Dalla-Rizza M. RNAi in Piezodorus guildinii (Hemiptera: Pentatomidae): Transcriptome Assembly for the Development of Pest Control Strategies. FRONTIERS IN PLANT SCIENCE 2022; 13:804839. [PMID: 35432425 PMCID: PMC9011191 DOI: 10.3389/fpls.2022.804839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Red-banded stink bug Piezodorus guildinii (P. guildinii) has been described as the most damaging stink bug regarding soybean crops, leading to seed injury, low germination percentages, and foliar retention, at low population densities. In recent years, RNA interference (RNAi), a conserved eukaryote silencing mechanism has been explored to develop species-selective pesticides. In this work, we evaluated RNAi in P. guildinii to develop new pest-control strategies. For this, we assembled and annotated a P. guildinii transcriptome from a pool of all developmental stages. Analysis of this transcriptome led to the identification of 56 genes related to the silencing process encompassing siRNA, miRNA, and piRNA pathways. To evaluate the functionality of RNAi machinery, P. guildinii adults were injected with 28 ng/mg of body weight of double stranded RNA (dsRNA) targeting vATPase A. A mortality of 35 and 51.6% was observed after 7 and 14 days, respectively, and a downregulation of vATPase A gene of 84% 72 h post-injection. In addition, Dicer-2 and Argonaute-2 genes, core RNAi proteins, were upregulated 1.8-fold 48 h after injection. These findings showed for the first time that RNAi is functional in P. guildinii and the silencing of essential genes has a significant effect in adult viability. Taken together, the work reported here shows that RNAi could be an interesting approach for the development of red-banded stink bug control strategies.
Collapse
Affiliation(s)
- Claudia Schvartzman
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| | - Pablo Fresia
- Unidad Mixta Pasteur + INIA (UMPI), Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sara Murchio
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| | - María Valentina Mujica
- Unidad de Protección Vegetal, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| | - Marco Dalla-Rizza
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| |
Collapse
|