1
|
Canup B, Rogers P, Paredes A, Manheng W, Lyn-Cook B, Fahmi T. Investigation of sex-based differences in the immunotoxicity of silver nanoparticles. Nanotoxicology 2024; 18:134-159. [PMID: 38444264 DOI: 10.1080/17435390.2024.2323070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
The growing application of silver nanoparticles (AgNPs) in consumer, healthcare, and industrial products has raised concern over potential health implications due to increasing exposure. The evaluation of the immune response to nanomaterials is one of the key criteria to assess their biocompatibility. There are well-recognized sex-based differences in innate and adaptive immune responses. However, there is limited information available using human models. The aim was to investigate the potential sex-based differences in immune functions after exposure to AgNPs using human peripheral blood mononuclear cells (PBMCs) and plasma from healthy donors. These functions include inflammasome activation, cytokine expression, leukocyte proliferation, chemotaxis, plasma coagulation, and complement activation. AgNPs were characterized by dynamic light scattering and transmission electron microscopy. Inflammasome activation by AgNPs was measured after 6- and 24-hours incubations. AgNPs-induced inflammasome activation was significantly higher in the females, especially for the 6-hour exposure. No sex-based differences were observed for Ag ions controls. Younger donors exhibited significantly more inflammasome activation than older donors after 24-hours exposure. IL-10 was significantly suppressed in males and females after exposure. AgNPs suppressed leukocyte proliferation similarly in males and females. No chemoattractant effects, no alterations in plasma coagulation, or activation of the complement were observed after AgNPs exposure. In conclusion, the results highlight that there are distinct sex-based differences in inflammasome activation after exposure to AgNPs in human PBMCs. The results highlight the importance of considering sex-based differences in inflammasome activation induced by exposure to AgNPs in any future biocompatibility assessment for products containing AgNPs.
Collapse
Affiliation(s)
- Brandon Canup
- Division of Biochemical Toxicology, Office of Research, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Paul Rogers
- Division of Bioinformatics and Biostatistics, Office of Research, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Angel Paredes
- Nanotechnology Core Facility, Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Wimolnut Manheng
- Division of Hematology Oncology Toxicology, Office of Oncologic Diseases, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, Office of Research, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Tariq Fahmi
- Division of Biochemical Toxicology, Office of Research, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
2
|
Devanabanda M, Sana SS, Madduri R, Kim SC, Iravani S, Varma RS, Vadde R. Immunomodulatory effects of copper nanoparticles against mitogen-stimulated rat splenic and thymic lymphocytes. Food Chem Toxicol 2024; 184:114420. [PMID: 38151072 DOI: 10.1016/j.fct.2023.114420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
In the present study, we have evaluated the effects of copper (Cu) nanoparticles (NPs) on the primary B-and T-lymphocytes proliferation, cytokine levels, and bio-distribution through in vitro, in vivo and ex-vivo studies to allow the possible exploitations of CuNPs in biomedical applications. CuNPs were characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). The proliferative response of lymphocytes was studied by 3H-thymidine incorporation assay and lymphocyte viability through trypan blue assay. The bio-distribution of CuNPs into lymphoid organs was examined by using ex-vivo imaging system. Cytokine levels in plasma of control and CuNPs treated animal groups were determined by enzyme-linked immunosorbent assay (ELISA) method along with other biochemical analysis. CuNPs significantly suppressed the proliferation of primary splenic and thymic lymphocytes in a dose dependent manner. Ex-vivo imaging exhibited the distribution of CuNPs in spleen and thymus. Oral administration of CuNPs (2 mg and 10 mg/kg body weight) significantly inhibited the proliferation of splenic and thymic lymphocytes along with lowered cytokines levels (TNF-alpha and IL-2) on comparison with controls. The results indicated the significant inhibition of lymphocytes proliferative response and secretion of cytokines, thus unveiling the immunomodulatory effects of CuNPs.
Collapse
Affiliation(s)
- Mallaiah Devanabanda
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, 516005, India; Cellular Immunology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500042, India
| | - Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Ramanadham Madduri
- Cellular Immunology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500042, India
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, 516005, India.
| |
Collapse
|
3
|
Devanabanda M, Sana SS, Vadde R, Madduri R, Venkatesan R, Eldesoky GE, Kim SC. Ex vivo fluorescence imaging for the identification of rhodamine-labeled bovine serum albumin and chitosan-coated gold and silver nanoparticles. JOURNAL OF BIOPHOTONICS 2023; 16:e202300110. [PMID: 37261437 DOI: 10.1002/jbio.202300110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Therapeutic potential and toxic effects of in vivo administered gold nanoparticles (GNPs) and silver nanoparticles (SNP) depend on distribution in tissues. Rhodamine (Rho) labeled bovine serum albumin (BSA) and chitosan (Chi) were prepared by covalent conjugation and were characterized by fluorescence spectral analysis. GNP and SNP were coated with the labeled conjugates of BSA and chitosan by adsorption. The soluble Rho-BSA or Rho-Chi conjugates, uncoated, and conjugate-coated GNP, and SNP were orally administered into 8-week-old rats. After 24 h, rats were euthanized and the liver, kidney, spleen, and thymus were dissected. The tissues were examined ex vivo using a small animal in vivo imaging system. The liver, kidney, and thymus displayed higher fluorescence due to increased accumulation of Rho-BSA or Rho-Chi conjugate-coated nanoparticles (NPs) in the tissues as compared to the spleen where lower fluorescence was noticed. Tissues obtained from rats that were administered Rho-BSA or Rho-Chi conjugate-coated GNP and SNP showed tenfold higher fluorescence intensity as compared to tissues from rats that were given soluble conjugates or NP alone. The results strongly suggest significant tissue distribution of NP following oral administration.
Collapse
Affiliation(s)
- Mallaiah Devanabanda
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
- Cellular Immunology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Ramanadham Madduri
- Cellular Immunology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Gaber E Eldesoky
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
4
|
Beekman K, Beachkofsky T, Sanik E, Bennett AE. Development of Granulomatous Allergic Contact Dermatitis to Hantavirus DNA Gold Particle Vaccine 14 Years After Administration. Dermatitis 2023; 34:449-450. [PMID: 37158787 DOI: 10.1089/derm.2022.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Kate Beekman
- From the USF Health Morsani College of Medicine, Tampa, Florida, USA
| | - Thomas Beachkofsky
- Dermatology Section, James A. Haley Veterans' Hospital, Tampa, Florida, USA
| | - Eugene Sanik
- Dermatology Section, James A. Haley Veterans' Hospital, Tampa, Florida, USA
| | - Adam E Bennett
- From the USF Health Morsani College of Medicine, Tampa, Florida, USA
- Dermatology Section, James A. Haley Veterans' Hospital, Tampa, Florida, USA
| |
Collapse
|
5
|
Van PN, Qian W, Zhe J, Henry J, Wang M, Liu B, Zhang W, Wang X, Paulus YM. Renally Clearable Ultraminiature Chain-Like Gold Nanoparticle Clusters for Multimodal Molecular Imaging of Choroidal Neovascularization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302069. [PMID: 37285214 PMCID: PMC10509731 DOI: 10.1002/adma.202302069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Currently, available gold nanoparticles (GNPs) typically accumulate in the liver and spleen, leading to concerns for their long-term biosafety. To address this long-standing problem, ultraminiature chain-like gold nanoparticle clusters (GNCs) are developed. Via self-assembly of 7-8 nm GNP monomers, GNCs provide redshifted optical absorption and scattering contrast in the near-infrared window. After disassembly, GNCs turn back to GNPs with a size smaller than the renal glomerular filtration size cutoff, allowing their excretion via urine. A one-month longitudinal study in a rabbit eye model demonstrates that GNCs facilitate multimodal molecular imaging of choroidal neovascularization (CNV) in vivo, non-invasively, with excellent sensitivity and spatial resolution. GNCs targeting αv β3 integrins enhance photoacoustic and optical coherence tomography (OCT) signals from CNV by 25.3-fold and 150%, respectively. With excellent biosafety and biocompatibility demonstrated, GNCs render a first-of-its-kind nanoplatform for biomedical imaging.
Collapse
Affiliation(s)
- Phuc Nguyen Van
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Wei Qian
- IMRA America, Inc., 1044 Woodridge Ave., Ann Arbor, MI 48105, USA
| | - Josh Zhe
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jessica Henry
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Mingyang Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Bing Liu
- IMRA America, Inc., 1044 Woodridge Ave., Ann Arbor, MI 48105, USA
| | - Wei Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
6
|
Porta M, Pumarega J, Gasull M, Aguilar R, Henríquez-Hernández LA, Basagaña X, Zumbado M, Villar-García J, Rius C, Mehta S, Vidal M, Jimenez A, Campi L, Lop J, Pérez Luzardo OL, Dobaño C, Moncunill G. Individual blood concentrations of persistent organic pollutants and chemical elements, and COVID-19: A prospective cohort study in Barcelona. ENVIRONMENTAL RESEARCH 2023; 223:115419. [PMID: 36740154 PMCID: PMC9898057 DOI: 10.1016/j.envres.2023.115419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND There is wide, largely unexplained heterogeneity in immunological and clinical responses to SARS-CoV-2 infection. Numerous environmental chemicals, such as persistent organic pollutants (POPs) and chemical elements (including some metals, essential trace elements, rare earth elements, and minority elements), are immunomodulatory and cause a range of adverse clinical events. There are no prospective studies on the effects of such substances on the incidence of SARS-CoV-2 infection and COVID-19. OBJECTIVE To investigate the influence of blood concentrations of POPs and elements measured several years before the pandemic on the development of SARS-CoV-2 infection and COVID-19 in individuals from the general population. METHODS We conducted a prospective cohort study in 154 individuals from the general population of Barcelona. POPs and elements were measured in blood samples collected in 2016-2017. SARS-CoV-2 infection was detected by rRT-PCR in nasopharyngeal swabs and/or by antibody serology using eighteen isotype-antigen combinations measured in blood samples collected in 2020-2021. We analyzed the associations between concentrations of the contaminants and SARS-CoV-2 infection and development of COVID-19, taking into account personal habits and living conditions during the pandemic. RESULTS Several historically prevalent POPs, as well as arsenic, cadmium, mercury, and zinc, were not associated with COVID-19, nor with SARS-CoV-2 infection. However, DDE (adjusted OR = 5.0 [95% CI: 1.2-21]), lead (3.9 [1.0-15]), thallium (3.4 [1.0-11]), and ruthenium (5.0 [1.8-14]) were associated with COVID-19, as were tantalum, benzo(b)fluoranthene, DDD, and manganese. Thallium (3.8 [1.6-8.9]), and ruthenium (2.9 [1.3-6.7]) were associated with SARS-CoV-2 infection, and so were lead, gold, and (protectively) iron and selenium. We identified mixtures of up to five substances from several chemical groups, with all substances independently associated to the outcomes. CONCLUSIONS Our results provide the first prospective and population-based evidence of an association between individual concentrations of some contaminants and COVID-19 and SARS-CoV-2 infection. POPs and elements may contribute to explain the heterogeneity in the development of SARS-CoV-2 infection and COVID-19 in the general population. If the associations are confirmed as causal, means are available to mitigate the corresponding risks.
Collapse
Affiliation(s)
- Miquel Porta
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| | - José Pumarega
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Magda Gasull
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Ruth Aguilar
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Xavier Basagaña
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; ISGlobal - PSMar - PRBB, Barcelona, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | | | - Cristina Rius
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Agència de Salut Pública de Barcelona, Barcelona, Spain
| | - Sneha Mehta
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; Columbia Mailman School of Public Health, New York, USA
| | - Marta Vidal
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jimenez
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Laura Campi
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Lop
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain
| | - Octavio L Pérez Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Carlota Dobaño
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
7
|
Zhang G, Luo W, Yang W, Li S, Li D, Zeng Y, Li Y. The importance of the
IL
‐1 family of cytokines in nanoimmunosafety and nanotoxicology. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1850. [DOI: 10.1002/wnan.1850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Guofang Zhang
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Wenhe Luo
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Wenjie Yang
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Su Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Dongjie Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Yanqiao Zeng
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| |
Collapse
|
8
|
Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions. Int J Mol Sci 2022; 23:7962. [PMID: 35887304 PMCID: PMC9323783 DOI: 10.3390/ijms23147962] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used in a wide variety of applications and products; however, NPs may affect stress response pathways and interact with proteins in biological systems. This review article will provide an overview of the beneficial and detrimental effects of NPs on stress response pathways with a focus on NP-protein interactions. Depending upon the particular NP, experimental model system, and dose and exposure conditions, the introduction of NPs may have either positive or negative effects. Cellular processes such as the development of oxidative stress, the initiation of the inflammatory response, mitochondrial function, detoxification, and alterations to signaling pathways are all affected by the introduction of NPs. In terms of tissue-specific effects, the local microenvironment can have a profound effect on whether an NP is beneficial or harmful to cells. Interactions of NPs with metal-binding proteins (zinc, copper, iron and calcium) affect both their structure and function. This review will provide insights into the current knowledge of protein-based nanotoxicology and closely examines the targets of specific NPs.
Collapse
Affiliation(s)
- Shana J. Cameron
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - Jessica Sheng
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Farah Hosseinian
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - William G. Willmore
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
9
|
Kus-Liśkiewicz M, Fickers P, Ben Tahar I. Biocompatibility and Cytotoxicity of Gold Nanoparticles: Recent Advances in Methodologies and Regulations. Int J Mol Sci 2021; 22:10952. [PMID: 34681612 PMCID: PMC8536023 DOI: 10.3390/ijms222010952] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advances in the synthesis of metal nanoparticles (MeNPs), and more specifically gold nanoparticles (AuNPs), have led to tremendous expansion of their potential applications in different fields, ranging from healthcare research to microelectronics and food packaging. The properties of functionalised MeNPs can be fine-tuned depending on their final application, and subsequently, these properties can strongly modulate their biological effects. In this review, we will firstly focus on the impact of MeNP characteristics (particularly of gold nanoparticles, AuNPs) such as shape, size, and aggregation on their biological activities. Moreover, we will detail different in vitro and in vivo assays to be performed when cytotoxicity and biocompatibility must be assessed. Due to the complex nature of nanomaterials, conflicting studies have led to different views on their safety, and it is clear that the definition of a standard biosafety label for AuNPs is difficult. In fact, AuNPs' biocompatibility is strongly affected by the nanoparticles' intrinsic characteristics, biological target, and methodology employed to evaluate their toxicity. In the last part of this review, the current legislation and requirements established by regulatory authorities, defining the main guidelines and standards to characterise new nanomaterials, will also be discussed, as this aspect has not been reviewed recently. It is clear that the lack of well-established safety regulations based on reliable, robust, and universal methodologies has hampered the development of MeNP applications in the healthcare field. Henceforth, the international community must make an effort to adopt specific and standard protocols for characterisation of these products.
Collapse
Affiliation(s)
- Małgorzata Kus-Liśkiewicz
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Patrick Fickers
- TERRA Research and Teaching Centre, Microbial Processes and Interactions Laboratory (MiPI), Gembloux Agro-Bio Tech-University of Liège, Avenue de la Faculté 2B, 5030 Gembloux, Belgium; (P.F.); (I.B.T.)
| | - Imen Ben Tahar
- TERRA Research and Teaching Centre, Microbial Processes and Interactions Laboratory (MiPI), Gembloux Agro-Bio Tech-University of Liège, Avenue de la Faculté 2B, 5030 Gembloux, Belgium; (P.F.); (I.B.T.)
| |
Collapse
|
10
|
Damasco JA, Ravi S, Perez JD, Hagaman DE, Melancon MP. Understanding Nanoparticle Toxicity to Direct a Safe-by-Design Approach in Cancer Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2186. [PMID: 33147800 PMCID: PMC7692849 DOI: 10.3390/nano10112186] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Nanomedicine is a rapidly growing field that uses nanomaterials for the diagnosis, treatment and prevention of various diseases, including cancer. Various biocompatible nanoplatforms with diversified capabilities for tumor targeting, imaging, and therapy have materialized to yield individualized therapy. However, due to their unique properties brought about by their small size, safety concerns have emerged as their physicochemical properties can lead to altered pharmacokinetics, with the potential to cross biological barriers. In addition, the intrinsic toxicity of some of the inorganic materials (i.e., heavy metals) and their ability to accumulate and persist in the human body has been a challenge to their translation. Successful clinical translation of these nanoparticles is heavily dependent on their stability, circulation time, access and bioavailability to disease sites, and their safety profile. This review covers preclinical and clinical inorganic-nanoparticle based nanomaterial utilized for cancer imaging and therapeutics. A special emphasis is put on the rational design to develop non-toxic/safe inorganic nanoparticle constructs to increase their viability as translatable nanomedicine for cancer therapies.
Collapse
Affiliation(s)
- Jossana A. Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Saisree Ravi
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Joy D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Daniel E. Hagaman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
- UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Vuković B, Milić M, Dobrošević B, Milić M, Ilić K, Pavičić I, Šerić V, Vrček IV. Surface Stabilization Affects Toxicity of Silver Nanoparticles in Human Peripheral Blood Mononuclear Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1390. [PMID: 32708883 PMCID: PMC7407574 DOI: 10.3390/nano10071390] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Silver nanoparticles (AgNPs) are one of the most investigated metal-based nanomaterials. Their biocidal activity boosted their application in both diagnostic and therapeutic medical systems. It is therefore crucial to provide sound evidences for human-related safety of AgNPs. This study aimed to enhance scientific knowledge with regard to biomedical safety of AgNPs by investigating how their different surface properties affect human immune system. METHODS preparation, characterization and stability evaluation was performed for four differently coated AgNPs encompassing neutral, positive and negative agents used for their surface stabilization. Safety aspects were evaluated by testing interaction of AgNPs with fresh human peripheral blood mononuclear cells (hPBMC) by means of particle cellular uptake and their ability to trigger cell death, apoptosis and DNA damages through induction of oxidative stress and damages of mitochondrial membrane. RESULTS all tested AgNPs altered morphology of freshly isolated hPBMC inducing apoptosis and cell death in a dose- and time-dependent manner. Highest toxicity was observed for positively-charged and protein-coated AgNPs. Cellular uptake of AgNPs was also dose-dependently increased and highest for positively charged AgNPs. Intracellularly, AgNPs induced production of reactive oxygen species (ROS) and damaged mitochondrial membrane. Depending on the dose, all AgNPs exhibited genotoxic potential. CONCLUSIONS this study provides systematic and comprehensive data showing how differently functionalized AgNPs may affect the human immune system. Presented results are a valuable scientific contribution to safety assessment of nanosilver-based blood-contacting medical products.
Collapse
Affiliation(s)
- Barbara Vuković
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (B.V.); (M.M.); (B.D.); (V.Š.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Marija Milić
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (B.V.); (M.M.); (B.D.); (V.Š.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Blaženka Dobrošević
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (B.V.); (M.M.); (B.D.); (V.Š.)
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.M.); (K.I.); (I.P.)
| | - Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.M.); (K.I.); (I.P.)
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.M.); (K.I.); (I.P.)
| | - Vatroslav Šerić
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (B.V.); (M.M.); (B.D.); (V.Š.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.M.); (K.I.); (I.P.)
| |
Collapse
|
12
|
Gan J, Sun J, Chang X, Li W, Li J, Niu S, Kong L, Zhang T, Wu T, Tang M, Xue Y. Biodistribution and organ oxidative damage following 28 days oral administration of nanosilver with/without coating in mice. J Appl Toxicol 2020; 40:815-831. [DOI: 10.1002/jat.3946] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/08/2019] [Accepted: 01/06/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Junying Gan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Jindu Sun
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Xiaoru Chang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Wenhua Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Jiangyan Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public HealthSoutheast University Nanjing People's Republic of China
| |
Collapse
|
13
|
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16:87-124. [PMID: 31195861 PMCID: PMC6649684 DOI: 10.1080/1547691x.2019.1605553] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.
Collapse
Affiliation(s)
- Katherine A Roach
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
- b School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division (RHD) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
14
|
Hannon G, Lysaght J, Liptrott NJ, Prina‐Mello A. Immunotoxicity Considerations for Next Generation Cancer Nanomedicines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900133. [PMID: 31592123 PMCID: PMC6774033 DOI: 10.1002/advs.201900133] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/02/2019] [Indexed: 05/12/2023]
Abstract
Although interest and funding in nanotechnology for oncological applications is thriving, translating these novel therapeutics through the earliest stages of preclinical assessment remains challenging. Upon intravenous administration, nanomaterials interact with constituents of the blood inducing a wide range of associated immunotoxic effects. The literature on the immunological interactions of nanomaterials is vast and complicated. A small change in a particular characteristic of a nanomaterial (e.g., size, shape, or charge) can have a significant effect on its immunological profile in vivo, and poor selection of specific assays for establishing these undesirable effects can overlook this issue until the latest stages of preclinical assessment. This work describes the current literature on unintentional immunological effects associated with promising cancer nanomaterials (liposomes, dendrimers, mesoporous silica, iron oxide, gold, and quantum dots) and puts focus on what is missing in current preclinical evaluations. Opportunities for avoiding or limiting immunotoxicity through efficient preclinical assessment are discussed, with an emphasis placed on current regulatory views and requirements. Careful consideration of these issues will ensure a more efficient preclinical assessment of cancer nanomedicines, enabling a smoother clinical translation with less failures in the future.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
| | - Joanne Lysaght
- Department of SurgeryTTMITrinity College DublinDublin 8Ireland
| | - Neill J. Liptrott
- Department of Molecular and Clinical PharmacologyInstitute of Translational MedicineThe University of LiverpoolLiverpoolL69 3GFUK
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM)TTMITrinity College DublinDublin 8Ireland
- Advanced Materials and Bioengineering Research (AMBER) CentreCRANN InstituteTrinity College DublinDublin 2Ireland
| |
Collapse
|
15
|
Nicholas TP, Kavanagh TJ, Faustman EM, Altemeier WA. The Effects of Gene × Environment Interactions on Silver Nanoparticle Toxicity in the Respiratory System. Chem Res Toxicol 2019; 32:952-968. [PMID: 31124663 DOI: 10.1021/acs.chemrestox.8b00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silver nanoparticles (AgNP) are used in multiple applications but primarily in the manufacturing of antimicrobial products. AgNP toxicity in the respiratory system is well characterized, but few in vitro or in vivo studies have evaluated the effects of interactions between host genetic and acquired factors or gene × environment interactions (G × E) on AgNP toxicity in the respiratory system. The primary goal of this article is to review host genetic and acquired factors identified across in vitro and in vivo studies and prioritize those necessary for defining exposure limits to protect all populations. The impact of these exposures and the work being done to address the current limited protections are also discussed. Future research on G × E effects on AgNP toxicity is warranted and will assist with informing regulatory or recommended exposure limits that enforce special protections for all populations to AgNP exposures in occupational settings.
Collapse
Affiliation(s)
- Tyler P Nicholas
- Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98109 , United States
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98109 , United States
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98109 , United States
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine , University of Washington , Seattle , Washington 98109 , United States
| |
Collapse
|
16
|
Teles M, Reyes-López FE, Fierro-Castro C, Tort L, Soares AMVM, Oliveira M. Modulation of immune genes mRNA levels in mucosal tissues and DNA damage in red blood cells of Sparus aurata by gold nanoparticles. MARINE POLLUTION BULLETIN 2018; 133:428-435. [PMID: 30041332 DOI: 10.1016/j.marpolbul.2018.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/02/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
Gold nanoparticles (AuNP) effects on Sparus aurata were evaluated on skin, gills and intestine by assessing the expression of immune genes and in peripheral blood evaluating genetic damage. Fish were exposed to 0.5 and 50 μg/L AuNP for 96 h. Results showed that exposure to 50 μg/L AuNP induced an upregulation in the expression of innate immune genes in gills (c3, lys, il1β, tnfα, il6, il10 and tgfβ) and intestine (il1β, tnfα and il6). Furthermore, mRNA levels of hsp70 and hsp90 were increased in gills after exposure to 0.5 μg/L AuNP, when compared to 50 μg/L. Present data demonstrated the sensitivity of gills and intestines to AuNP exposure supporting their use in the study of fish responses to other nanoparticles. Genotoxic potential of AuNP was demonstrated by increased DNA strand breaks in red blood cells of fish exposed to AuNP, suggesting that AuNP represent a potential hazard to fish.
Collapse
Affiliation(s)
- M Teles
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - F E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - C Fierro-Castro
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - L Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Orlowski P, Tomaszewska E, Ranoszek-Soliwoda K, Gniadek M, Labedz O, Malewski T, Nowakowska J, Chodaczek G, Celichowski G, Grobelny J, Krzyzowska M. Tannic Acid-Modified Silver and Gold Nanoparticles as Novel Stimulators of Dendritic Cells Activation. Front Immunol 2018; 9:1115. [PMID: 29872440 PMCID: PMC5972285 DOI: 10.3389/fimmu.2018.01115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/03/2018] [Indexed: 01/31/2023] Open
Abstract
Silver nanoparticles (AgNPs) are promising new antimicrobial agents against a wide range of skin and mucosal pathogens. However, their interaction with the immune system is currently not fully understood. Dendritic cells (DCs) are crucial during development of T cell-specific responses against bacterial and viral pathogens. We have previously shown that tannic acid-modified silver nanoparticles (TA-AgNPs) consist of a promising microbicide against HSV-2. The aim of this study was to compare the ability of TA-AgNPs or TA-AuNPs of similar sizes (TA-Ag/AuNPs) to induce DCs maturation and activation in the presence of HSV-2 antigens when used at non-toxic doses. First, we used JAWS II DC line to test toxicity, ultrastructure as well as activation markers (MHC I and II, CD40, CD80, CD86, PD-L1) and cytokine production in the presence of TA-Ag/AuNPs. Preparations of HSV-2 treated with nanoparticles (TA-Ag/AuNPs-HSV-2) were further used to investigate HSV-2 antigen uptake, activation markers, TLR9 expression, and cytokine production. Additionally, we accessed proliferation and activation of HSV-2-specific T cells by DCs treated with TA-AgNP/AuNPs-HSV-2. We found that both TA-AgNPs and TA-AuNPs were efficiently internalized by DCs and induced activated ultrastructure. Although TA-AgNPs were more toxic than TA-AuNPs in corresponding sizes, they were also more potent stimulators of DCs maturation and TLR9 expression. TA-Ag/AuNPs-HSV-2 helped to overcome inhibition of DCs maturation by live or inactivated virus through up-regulation of MHC II and CD86 and down-regulation of CD80 expression. Down-regulation of CD40 expression in HSV-2-infected DCs was reversed when HSV-2 was treated with TA-NPs sized >30 nm. On the other hand, small-sized TA-AgNPs helped to better internalize HSV-2 antigens. HSV-2 treated with both types of NPs stimulated activation of JAWS II and memory CD8+ T cells, while TA-AgNPs treatment induced IFN-γ producing CD4+ and CD8+ T cells. Our study shows that TA-AgNPs or TA-AuNPs are good activators of DCs, albeit their final effect upon maturation and activation may be metal and size dependent. We conclude that TA-Ag/AuNPs consist of a novel class of nano-adjuvants, which can help to overcome virus-induced suppression of DCs activation.
Collapse
Affiliation(s)
- Piotr Orlowski
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | | | | | - Olga Labedz
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Tadeusz Malewski
- Museum and Institute of Zoology, Polish Academy of Science, Warsaw, Poland
| | - Julita Nowakowska
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Jaroslaw Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Malgorzata Krzyzowska
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Wroclaw Research Centrum EIT+, Wroclaw, Poland
| |
Collapse
|
18
|
Sembratowicz I, Ognik K. Evaluation of immunotropic activity of gold nanocolloid in chickens. J Trace Elem Med Biol 2018; 47:98-103. [PMID: 29544813 DOI: 10.1016/j.jtemb.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/26/2018] [Accepted: 02/05/2018] [Indexed: 11/27/2022]
Abstract
Gold nanoparticles (AuNPs) are one of the most examined nanomaterials, but information about their immunogenic potential is still insufficient. Understanding interaction of AuNPs with immune system is essential in designing their safety and possibilities of biomedical applications. An experiment was conducted to determine immunotropic activity of gold nanocolloid (AuNPs) administered orally to chickens depending on dose and duration time. 162 birds were assigned to 9 experimental groups of 18 birds each. The control group (C) did not receive AuNPs. Groups: T10.5, T11.0, T11.5, T12.0, received nano-gold in a rate of 0.5 mg/kg body weight/d, 1.0 mg/kg body weight/d, 1.5 mg/kg body weight/d and 2.0 mg/kg body weight/d in 8-14, 22-28 and 36-42 days of the life. The birds in groups T20.5, T21.0, T21.5, T22.0, received nano-gold in the same doses, but only in 8-10, 22-24 and 36-38 days of life. Phagocytic activity of leukocytes was determined in vitro using Staphylococcus aureus 209P strain, their respiratory burst activity was quantified by nitroblue tetrazolium reduction test. Serum lysozyme content was determined by the turbidimetric method. The Wintrobe method was used to determine the erythrocyte sedimentation rate. Ceruloplasmin in the blood plasma was estimated by the p-phenylenediamine colorimetric method. The level of chicken immunoglobulins: IgA, IgM and IgY and interleukin IL-6 in the blood were determined using ELISA tests. The lowest dose of AuNPs, independently on duration time had no effect on immune parameters of chickens. In all other groups receiving nano-gold for a shorter period (T2), there was an increase in the respiratory burst activity of leukocytes and a drop in lysozyme activity in blood. The higher doses (1.5 and 2.0 mg/kg body weight/d) of the nano-gold administered for the longer time period had a pro-inflammatory effect, as indicated by an increase in the level of interleukin 6 and ceruloplasmin activity as well as the erythrocyte sedimentation rate. They also contributed to an elevation of class IgA and IgY contents in blood. The results of the study revealed that the influence of nano-gold on immune response of chickens were dependent both on dose and duration time. Long lasting administration of higher doses of AuNPs contributed to adverse effect in form of inflammation response. To avoid the development of inflammatory reaction, administered dose of nano-gold should not exceed 1.0 mg/kg body weight/d.
Collapse
Affiliation(s)
- Iwona Sembratowicz
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| |
Collapse
|
19
|
Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018; 130:90-112. [PMID: 30149885 PMCID: PMC6588191 DOI: 10.1016/j.addr.2018.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Humoral and cellular host defense mechanisms including diverse phagocytes, leukocytes, and immune cells have evolved over millions of years to protect the body from microbes and other external and internal threats. These policing forces recognize engineered sub-micron drug delivery systems (DDS) as such a threat, and react accordingly. This leads to impediment of the therapeutic action, extensively studied and discussed in the literature. Here, we focus on side effects of DDS interactions with host defenses. We argue that for nanomedicine to reach its clinical potential, the field must redouble its efforts in understanding the interaction between drug delivery systems and the host defenses, so that we can engineer safer interventions with the greatest potential for clinical success.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Makan Khoshnejad
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Hood
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyal N Patel
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Targeted Therapeutics and Translational Nanomedicine (CT3N), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Bagheri S, Yasemi M, Safaie-Qamsari E, Rashidiani J, Abkar M, Hassani M, Mirhosseini SA, Kooshki H. Using gold nanoparticles in diagnosis and treatment of melanoma cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:462-471. [DOI: 10.1080/21691401.2018.1430585] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Salman Bagheri
- Nano Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Yasemi
- Department of Cell and Molecular Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elmira Safaie-Qamsari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Rashidiani
- Nano Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Abkar
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmoud Hassani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Kooshki
- Nano Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Galbiati V, Cornaghi L, Gianazza E, Potenza MA, Donetti E, Marinovich M, Corsini E. In vitro assessment of silver nanoparticles immunotoxicity. Food Chem Toxicol 2018; 112:363-374. [PMID: 29331734 DOI: 10.1016/j.fct.2017.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022]
Abstract
This study aimed to characterize unwanted immune effects of nanoparticles (NP) using THP-1 cells, human whole blood and enriched peripheral blood monocytes. Commercially available silver NP (AgNP < 100 nm, also confirmed by Single Particle Extinction and Scattering) were used as prototypical NP. Cells were treated with AgNP alone or in combination with classical immune stimuli (i.e. LPS, PHA, PWM) and cytokine assessed; in addition, CD54 and CD86 expression was evaluated in THP-1 cells. AgNP alone induced dose-related IL-8 production in all models, with higher response observed in THP-1 cells, possibly connected to different protein corona formation in bovine versus human serum. AgNP potentiated LPS-induced IL-8 and TNF-α, but not LPS-induced IL-10. AgNP alone induced slight increase in IL-4, and no change in IFN-γ production. While responses to PHA in term of IL-4 and IFN-γ production were not affected, increased PWM-induced IL-4 and IFN-γ production were observed, suggesting potentiation of humoral response. Reduction in PHA-induced IL-10 was observed. Overall, results indicate immunostimulatory effects. THP-1 cells work as well as primary cells, representing a useful and practical alternative, with the awareness that from a physiological point of view the whole blood assay is the one that comes closest to reality.
Collapse
Affiliation(s)
- Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Laura Cornaghi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elisabetta Gianazza
- Gruppo di Studio per la Proteomica e la Struttura delle Proteine, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marco A Potenza
- Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elena Donetti
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
22
|
Gao C, Wang Y, Han F, Yuan Z, Li Q, Shi C, Cao W, Zhou P, Xing X, Li B. Antibacterial activity and osseointegration of silver-coated poly(ether ether ketone) prepared using the polydopamine-assisted deposition technique. J Mater Chem B 2017; 5:9326-9336. [DOI: 10.1039/c7tb02436c] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PEEK-PDA-Ag substrates may be a promising orthopaedic implant material due to the outstanding biocompatibility and antibacterial properties.
Collapse
Affiliation(s)
- Changcheng Gao
- College of Chemistry
- Chemical Engineering and Materials Science
- Orthopaedic Institute
- Soochow University
- Suzhou
| | - Yong Wang
- Department of Orthopedic Surgery
- The Affiliated Yixing Hospital of Jiangsu University
- Wuxi
- China
| | - Fengxuan Han
- College of Chemistry
- Chemical Engineering and Materials Science
- Orthopaedic Institute
- Soochow University
- Suzhou
| | - Zhangqin Yuan
- College of Chemistry
- Chemical Engineering and Materials Science
- Orthopaedic Institute
- Soochow University
- Suzhou
| | - Qiang Li
- College of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Chen Shi
- Department of Materials Science and Engineering
- University of California
- Los Angeles
- USA
| | - Weiwei Cao
- College of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Pinghui Zhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Orthopaedic Institute
- Soochow University
- Suzhou
| | - Xiaodong Xing
- College of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Bin Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Orthopaedic Institute
- Soochow University
- Suzhou
| |
Collapse
|