1
|
Huang J, Wang J. Selective protein degradation through chaperone‑mediated autophagy: Implications for cellular homeostasis and disease (Review). Mol Med Rep 2025; 31:13. [PMID: 39513615 PMCID: PMC11542157 DOI: 10.3892/mmr.2024.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 11/15/2024] Open
Abstract
Cells rely on autophagy for the degradation and recycling of damaged proteins and organelles. Chaperone-mediated autophagy (CMA) is a selective process targeting proteins for degradation through the coordinated function of molecular chaperones and the lysosome‑associated membrane protein‑2A receptor (LAMP2A), pivotal in various cellular processes from signal transduction to the modulation of cellular responses under stress. In the present review, the intricate regulatory mechanisms of CMA were elucidated through multiple signaling pathways such as retinoic acid receptor (RAR)α, AMP‑activated protein kinase (AMPK), p38‑TEEB‑NLRP3, calcium signaling‑NFAT and PI3K/AKT, thereby expanding the current understanding of CMA regulation. A comprehensive exploration of CMA's versatile roles in cellular physiology were further provided, including its involvement in maintaining protein homeostasis, regulating ferroptosis, modulating metabolic diversity and influencing cell cycle and proliferation. Additionally, the impact of CMA on disease progression and therapeutic outcomes were highlighted, encompassing neurodegenerative disorders, cancer and various organ‑specific diseases. Therapeutic strategies targeting CMA, such as drug development and gene therapy were also proposed, providing valuable directions for future clinical research. By integrating recent research findings, the present review aimed to enhance the current understanding of cellular homeostasis processes and emphasize the potential of targeting CMA in therapeutic strategies for diseases marked by CMA dysfunction.
Collapse
Affiliation(s)
- Jiahui Huang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Jiazhen Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|
2
|
Endicott SJ. Chaperone-mediated autophagy as a modulator of aging and longevity. FRONTIERS IN AGING 2024; 5:1509400. [PMID: 39687864 PMCID: PMC11647017 DOI: 10.3389/fragi.2024.1509400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Chaperone-mediated autophagy (CMA) is the lysosomal degradation of individually selected proteins, independent of vesicle fusion. CMA is a central part of the proteostasis network in vertebrate cells. However, CMA is also a negative regulator of anabolism, and it degrades enzymes required for glycolysis, de novo lipogenesis, and translation at the cytoplasmic ribosome. Recently, CMA has gained attention as a possible modulator of rodent aging. Two mechanistic models have been proposed to explain the relationship between CMA and aging in mice. Both of these models are backed by experimental data, and they are not mutually exclusionary. Model 1, the "Longevity Model," states that lifespan-extending interventions that decrease signaling through the INS/IGF1 signaling axis also increase CMA, which degrades (and thereby reduces the abundance of) several proteins that negatively regulate vertebrate lifespan, such as MYC, NLRP3, ACLY, and ACSS2. Therefore, enhanced CMA, in early and midlife, is hypothesized to slow the aging process. Model 2, the "Aging Model," states that changes in lysosomal membrane dynamics with age lead to age-related losses in the essential CMA component LAMP2A, which in turn reduces CMA, contributes to age-related proteostasis collapse, and leads to overaccumulation of proteins that contribute to age-related diseases, such as Alzheimer's disease, Parkinson's disease, cancer, atherosclerosis, and sterile inflammation. The objective of this review paper is to comprehensively describe the data in support of both of these explanatory models, and to discuss the strengths and limitations of each.
Collapse
Affiliation(s)
- S. Joseph Endicott
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, (AIM CoBRE), University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
3
|
Wu J, Xu W, Su Y, Wang GH, Ma JJ. Targeting chaperone-mediated autophagy in neurodegenerative diseases: mechanisms and therapeutic potential. Acta Pharmacol Sin 2024:10.1038/s41401-024-01416-3. [PMID: 39548290 DOI: 10.1038/s41401-024-01416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
The pathological hallmarks of various neurodegenerative diseases including Parkinson's disease and Alzheimer's disease prominently feature the accumulation of misfolded proteins and neuroinflammation. Chaperone-mediated autophagy (CMA) has emerged as a distinct autophagic process that coordinates the lysosomal degradation of specific proteins bearing the pentapeptide motif Lys-Phe-Glu-Arg-Gln (KFERQ), a recognition target for the cytosolic chaperone HSC70. Beyond its role in protein quality control, recent research underscores the intimate interplay between CMA and immune regulation in neurodegeneration. In this review, we illuminate the molecular mechanisms and regulatory pathways governing CMA. We further discuss the potential roles of CMA in maintaining neuronal proteostasis and modulating neuroinflammation mediated by glial cells. Finally, we summarize the recent advancements in CMA modulators, emphasizing the significance of activating CMA for the therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin Wu
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| | - Wan Xu
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Ying Su
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Guang-Hui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Eleuteri S, Wang B, Cutillo G, Zhang Fang TS, Tao K, Qu Y, Yang Q, Wei W, Simon DK. PGC-1α regulation by FBXW7 through a novel mechanism linking chaperone-mediated autophagy and the ubiquitin-proteasome system. FEBS J 2024. [PMID: 39429232 DOI: 10.1111/febs.17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a key regulator of mitochondrial biogenesis and antioxidative defenses, and it may play a critical role in Parkinson's disease (PD). F-box/WD repeat domain-containing protein (FBXW7), an E3 protein ligase, promotes the degradation of substrate proteins through the ubiquitin-proteasome system (UPS) and leads to the clearance of PGC-1α. Here, we elucidate a novel post-translational mechanism for regulating PGC-1α levels in neurons. We show that enhancing chaperone-mediated autophagy (CMA) activity promotes the CMA-mediated degradation of FBXW7 and consequently increases PGC-1α. We confirm the relevance of this pathway in vivo by showing decreased FBXW7 and increased PGC-1α as a result of boosting CMA selectively in dopaminergic (DA) neurons by overexpressing lysosomal-associated membrane protein 2A (LAMP2A) in TH-Cre-LAMP2-loxp conditional mice. We further demonstrate that these mice are protected against MPTP-induced oxidative stress and neurodegeneration. These results highlight a novel regulatory pathway for PGC-1α in DA neurons and suggest targeted increasing of CMA or decreasing FBXW7 in DA neurons as potential neuroprotective strategies in PD.
Collapse
Affiliation(s)
- Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bao Wang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Gianni Cutillo
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tracy Shi Zhang Fang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kai Tao
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Qian Yang
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Carneiro FS, Katashima CK, Dodge JD, Cintra DE, Pauli JR, Da Silva ASR, Ropelle ER. Tissue-specific roles of mitochondrial unfolded protein response during obesity. Obes Rev 2024; 25:e13791. [PMID: 38880974 DOI: 10.1111/obr.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/20/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Obesity is a worldwide multifactorial disease caused by an imbalance in energy metabolism, increasing adiposity, weight gain, and promoting related diseases such as diabetes, cardiovascular diseases, neurodegeneration, and cancer. Recent findings have reported that metabolic stress related to obesity induces a mitochondrial stress response called mitochondrial unfolded protein response (UPRmt), a quality control pathway that occurs in a nuclear DNA-mitochondria crosstalk, causing transduction of chaperones and proteases under stress conditions. The duality of UPRmt signaling, with both beneficial and detrimental effects, acts in different contexts depending on the tissue, cell type, and physiological states, affecting the mitochondrial function and efficiency and the metabolism homeostasis during obesity, which remains not fully clarified. Therefore, this review discusses the most recent findings regarding UPRmt signaling during obesity, bringing an overview of UPRmt across different metabolic tissues.
Collapse
Affiliation(s)
- Fernanda S Carneiro
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Carlos K Katashima
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Joshua D Dodge
- Department of Biology, The University of Texas at Arlington (UTA), Arlington, Texas, USA
| | - Dennys E Cintra
- Laboratory of Nutritional Genomic, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adelino S R Da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
6
|
Pan H, Huang M, Zhu C, Lin S, He L, Shen R, Chen Y, Fang F, Qiu Y, Qin M, Bao P, Tan Y, Xu J, Ding J, Chen S. A novel compound alleviates oxidative stress via PKA/CREB1-mediated DJ-1 upregulation. J Neurochem 2024; 168:3034-3049. [PMID: 38994800 DOI: 10.1111/jnc.16161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024]
Abstract
Oxidative stress is one of the major culprits causing dopaminergic neuron loss in Parkinson's disease (PD). DJ-1 is a protein with multiple actions against oxidative stress, apoptosis, neuroinflammation, etc. DJ-1 expression is decreased in sporadic PD, therefore increasing DJ-1 expression might be beneficial in PD treatment. However, drugs known to upregulate DJ-1 are still lacking. In this study, we identified a novel DJ-1-elevating compound called ChemJ through luciferase assay-based high-throughput compound screening in SH-SY5Y cells and confirmed that ChemJ upregulated DJ-1 in SH-SY5Y cell line and primary cortical neurons. DJ-1 upregulation by ChemJ alleviated MPP+-induced oxidative stress. In exploring the underlying mechanisms, we found that the transcription factor CREB1 bound to DJ-1 promoter and positively regulated its expression under both unstressed and 1-methyl-4-phenylpyridinium-induced oxidative stress conditions and that ChemJ promoted DJ-1 expression via activating PKA/CREB1 pathway in SH-SY5Y cells. Our results demonstrated that ChemJ alleviated the MPP+-induced oxidative stress through a PKA/CREB1-mediated regulation of DJ-1 expression, thus offering a novel and promising avenue for PD treatment.
Collapse
Affiliation(s)
- Hong Pan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China
| | - Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxiang Zhu
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China
| | - Suzhen Lin
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruinan Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimeng Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Fang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghui Qiu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiling Qin
- Institute of Neuroscience and State key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Puhua Bao
- Institute of Neuroscience and State key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Xu
- Institute of Neuroscience and State key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China
| |
Collapse
|
7
|
Tan YL, Al-Masawa ME, Eng SP, Shafiee MN, Law JX, Ng MH. Therapeutic Efficacy of Interferon-Gamma and Hypoxia-Primed Mesenchymal Stromal Cells and Their Extracellular Vesicles: Underlying Mechanisms and Potentials in Clinical Translation. Biomedicines 2024; 12:1369. [PMID: 38927577 PMCID: PMC11201753 DOI: 10.3390/biomedicines12061369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) hold promises for cell therapy and tissue engineering due to their self-renewal and differentiation abilities, along with immunomodulatory properties and trophic factor secretion. Extracellular vesicles (EVs) from MSCs offer similar therapeutic effects. However, MSCs are heterogeneous and lead to variable outcomes. In vitro priming enhances MSC performance, improving immunomodulation, angiogenesis, proliferation, and tissue regeneration. Various stimuli, such as cytokines, growth factors, and oxygen tension, can prime MSCs. Two classical priming methods, interferon-gamma (IFN-γ) and hypoxia, enhance MSC immunomodulation, although standardized protocols are lacking. This review discusses priming protocols, highlighting the most commonly used concentrations and durations, along with mechanisms and in vivo therapeutics effects of primed MSCs and their EVs. The feasibility of up-scaling their production was also discussed. The review concluded that priming with IFN-γ or hypoxia (alone or in combination with other factors) boosted the immunomodulation capability of MSCs and their EVs, primarily via the JAK/STAT and PI3K/AKT and Leptin/JAK/STAT and TGF-β/Smad signalling pathways, respectively. Incorporating priming in MSC and EV production enables translation into cell-based or cell-free therapies for various disorders.
Collapse
Affiliation(s)
- Yu Ling Tan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Sue Ping Eng
- NK Biocell Sdn. Bhd, Unit 1-22A, 1st Floor Pusat Perdagangan Berpadu (United Point), No.10, Jalan Lang Emas, Kuala Lumpur 51200, Malaysia;
| | - Mohamad Nasir Shafiee
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| |
Collapse
|
8
|
Nam Y, Na J, Ma SX, Park H, Park H, Lee E, Kim H, Jang SM, Ko HS, Kim S. DJ-1 protects cell death from a mitochondrial oxidative stress due to GBA1 deficiency. Genes Genomics 2024; 46:519-529. [PMID: 38460098 DOI: 10.1007/s13258-024-01506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/13/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND GBA1 mutations are the most common genetic risk factor for development of Parkinson's disease (PD). The loss of catalytic activity in GBA1, as well as the reduction of the GBA1 protein in certain cellular compartment, may increase disease progression. However, the mechanisms underlying cellular dysfunction caused by GBA1 deficiency are still mostly unknown. OBJECTIVE In this study, we focus on the genetic interaction between GBA1 deficiency and PD-causing genes, such as DJ-1, in mitochondrial dysfunction. METHODS GBA1 knockout (KO) SH-SY5Y cells were used to assess DJ-1 functions against oxidative stress in vitro. The levels of cellular reactive oxygen species were monitored with MitoSOX reagent. The expression of the PARK7 gene was analyzed using the quantitative real-time PCR (qRT-PCR). To understand the mechanism underlying DJ-1 upregulation in GBA1 KO cells, we assess ROS levels, antioxidant protein, and cell viability in GBA1 KO cells with treatment of ROS inhibitor N-acetyl-cysteine or miglustat, which is an inhibitor of glucosylceramide synthase. Dopaminergic degeneration was assessed from Gba1 L444P heterozygous mice mated with Park7 knockout mice. RESULTS We find that DJ-1 is significantly upregulated in GBA1 KO cells. Elevated levels of DJ-1 are attributed to the transcriptional expression of PARK7 mRNA, but not the inhibition of DJ-1 protein degradation. Because DJ-1 expression is highly linked to oxidative stress, we observe cellular reactive oxygen species (ROS) in GBA1 KO cells. Moreover, several antioxidant gene expressions and protein levels are increased in GBA1 KO cells. To this end, GBA1 KO cells are more susceptible to H2O2-induced cell death. Importantly, there is a significant reduction in dopaminergic neurons in the midbrain from Gba1 L444P heterozygous mice mated with Park7 knockout mice, followed by mild motor dysfunction. CONCLUSION Taken together, our results suggest that DJ-1 upregulation due to GBA1 deficiency has a protective role against oxidative stress. It may be supposed that mutations or malfunctions in the DJ-1 protein may have disadvantages in the survival of dopaminergic neurons in the brains of patients harboring GBA1 mutations.
Collapse
Affiliation(s)
- Younwoo Nam
- Department of Biology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jiyeon Na
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Shi-Xun Ma
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Haeun Park
- Department of Biology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hyeonwoo Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Eunmin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hyerynn Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang-Min Jang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Biochemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sangjune Kim
- Department of Biology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
9
|
Wu J, Han Y, Xu H, Sun H, Wang R, Ren H, Wang G. Deficient chaperone-mediated autophagy facilitates LPS-induced microglial activation via regulation of the p300/NF-κB/NLRP3 pathway. SCIENCE ADVANCES 2023; 9:eadi8343. [PMID: 37801503 PMCID: PMC10558133 DOI: 10.1126/sciadv.adi8343] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Neuroinflammation is a pathological change that is involved in the progression of Parkinson's disease. Dysfunction of chaperone-mediated autophagy (CMA) has proinflammatory effects. However, the mechanism by which CMA mediates inflammation and whether CMA affects microglia and microglia-mediated neuronal damage remain to be elucidated. In the present study, we found that LAMP2A, a limiting protein for CMA, was decreased in lipopolysaccharide (LPS)-treated primary microglia. Activation of CMA by the activator CA significantly repressed LPS-induced microglial activation, whereas CMA dysfunction exacerbated microglial activation. We further identified that the protein p300 was a substrate of CMA. Degradation of p300 by CMA reduced p65 acetylation, thereby inhibiting the transcription of proinflammatory factors and the activation of the NLRP3 inflammasome. Furthermore, CA pretreatment inhibited microglia-mediated inflammation and, in turn, attenuated neuronal death in vitro and in vivo. Our findings suggest repressive effects of CMA on microglial activation through the p300-associated NF-κB signaling pathway, thus uncovering a mechanistic link between CMA and neuroinflammation.
Collapse
Affiliation(s)
- Jin Wu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yingying Han
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hao Xu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hongyang Sun
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
- MOE Key Laboratory, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
10
|
Liu Y, Tan L, Tan MS. Chaperone-mediated autophagy in neurodegenerative diseases: mechanisms and therapy. Mol Cell Biochem 2023; 478:2173-2190. [PMID: 36695937 DOI: 10.1007/s11010-022-04640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/09/2022] [Indexed: 01/26/2023]
Abstract
Chaperone-mediated autophagy (CMA) is the selective degradation process of intracellular components by lysosomes, which is required for the degradation of aggregate-prone proteins and contributes to proteostasis maintenance. Proteostasis is essential for normal cell function and survival, and it is determined by the balance of protein synthesis and degradation. Because postmitotic neurons are highly susceptible to proteostasis disruption, CMA is vital for the nervous system. Since Parkinson's disease (PD) was first linked to CMA dysfunction, an increasing number of studies have shown that CMA loss, as seen during aging, occurs in the pathogenetic process of neurodegenerative diseases. Here, we review the molecular mechanisms of CMA, as well as the physiological function and regulation of this autophagy pathway. Following, we highlight its potential role in neurodegenerative diseases, and the latest advances and challenges in targeting CMA in therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Yao R, Shen J. Chaperone-mediated autophagy: Molecular mechanisms, biological functions, and diseases. MedComm (Beijing) 2023; 4:e347. [PMID: 37655052 PMCID: PMC10466100 DOI: 10.1002/mco2.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) is a lysosomal degradation pathway that eliminates substrate proteins through heat-shock cognate protein 70 recognition and lysosome-associated membrane protein type 2A-assisted translocation. It is distinct from macroautophagy and microautophagy. In recent years, the regulatory mechanisms of CMA have been gradually enriched, including the newly discovered NRF2 and p38-TFEB signaling, as positive and negative regulatory pathways of CMA, respectively. Normal CMA activity is involved in the regulation of metabolism, aging, immunity, cell cycle, and other physiological processes, while CMA dysfunction may be involved in the occurrence of neurodegenerative disorders, tumors, intestinal disorders, atherosclerosis, and so on, which provides potential targets for the treatment and prediction of related diseases. This article describes the general process of CMA and its role in physiological activities and summarizes the connection between CMA and macroautophagy. In addition, human diseases that concern the dysfunction or protective role of CMA are discussed. Our review deepens the understanding of the mechanisms and physiological functions of CMA and provides a summary of past CMA research and a vision of future directions.
Collapse
Affiliation(s)
- Ruchen Yao
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of Health, Inflammatory Bowel Disease Research CenterShanghaiChina
- Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of Digestive DiseaseShanghaiChina
| | - Jun Shen
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of Health, Inflammatory Bowel Disease Research CenterShanghaiChina
- Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of Digestive DiseaseShanghaiChina
| |
Collapse
|
12
|
Šetinc M, Zajc Petranović M, Slivšek G, Mijač S, Celinščak Ž, Stojanović Marković A, Bišof V, Peričić Salihović M, Škarić-Jurić T. Genes Involved in DNA Damage Cell Pathways and Health of the Oldest-Old (85+). Genes (Basel) 2023; 14:1806. [PMID: 37761946 PMCID: PMC10530973 DOI: 10.3390/genes14091806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Some sources report a connection of cellular senescence with chronic pathological conditions; however, the association between particular cellular processes and general health is rarely examined. This study aims to test the relationship of general health with DNA damage pathways that play a crucial role in senescence. The association of ten selected SNPs with subjective and objective general health and functional ability indicators has been tested in 314 oldest-old people from Croatia. Multivariate logistic regression was employed to simultaneously test the impact of variables potentially influencing targeted health and functional ability variables. The best model, explaining 37.1% of the variance, has six independent significant predictors of functional ability scores: rs16847897 in TERC, rs533984 in MRE11A, and rs4977756 in CDKN2B, chronic disease count, Mini-Mental State Examination scores, and age at surveying. In conclusion, the examined ten loci involved in DNA damage repair pathways showed a more significant association with self-rated health and functional ability than with the number of disease or prescribed medicaments. The more frequent, longevity-related homozygote (GG) in rs16847897 was associated with all three aspects of self-assessments-health, mobility, and independence-indicating that this TERC locus might have a true impact on the overall vitality of the oldest-old persons.
Collapse
Affiliation(s)
- Maja Šetinc
- Institute for Anthropological Research, 10000 Zagreb, Croatia; (M.Š.); (Ž.C.); (A.S.M.); (M.P.S.); (T.Š.-J.)
| | - Matea Zajc Petranović
- Institute for Anthropological Research, 10000 Zagreb, Croatia; (M.Š.); (Ž.C.); (A.S.M.); (M.P.S.); (T.Š.-J.)
| | - Goran Slivšek
- Faculty of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (G.S.); (S.M.); (V.B.)
| | - Sandra Mijač
- Faculty of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (G.S.); (S.M.); (V.B.)
- Department of Science and Research, Children’s Hospital Srebrnjak, 10000 Zagreb, Croatia
| | - Željka Celinščak
- Institute for Anthropological Research, 10000 Zagreb, Croatia; (M.Š.); (Ž.C.); (A.S.M.); (M.P.S.); (T.Š.-J.)
| | - Anita Stojanović Marković
- Institute for Anthropological Research, 10000 Zagreb, Croatia; (M.Š.); (Ž.C.); (A.S.M.); (M.P.S.); (T.Š.-J.)
| | - Vesna Bišof
- Faculty of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (G.S.); (S.M.); (V.B.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marijana Peričić Salihović
- Institute for Anthropological Research, 10000 Zagreb, Croatia; (M.Š.); (Ž.C.); (A.S.M.); (M.P.S.); (T.Š.-J.)
| | - Tatjana Škarić-Jurić
- Institute for Anthropological Research, 10000 Zagreb, Croatia; (M.Š.); (Ž.C.); (A.S.M.); (M.P.S.); (T.Š.-J.)
| |
Collapse
|
13
|
Watanabe Y, Taguchi K, Tanaka M. Roles of Stress Response in Autophagy Processes and Aging-Related Diseases. Int J Mol Sci 2023; 24:13804. [PMID: 37762105 PMCID: PMC10531041 DOI: 10.3390/ijms241813804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The heat shock factor 1 (HSF1)-mediated stress response pathway and autophagy processes play important roles in the maintenance of proteostasis. Autophagy processes are subdivided into three subtypes: macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy. Recently, molecular chaperones and co-factors were shown to be involved in the selective degradation of substrates by these three autophagy processes. This evidence suggests that autophagy processes are regulated in a coordinated manner by the HSF1-mediated stress response pathway. Recently, various studies have demonstrated that proteostasis pathways including HSF1 and autophagy are implicated in longevity. Furthermore, they serve as therapeutic targets for aging-related diseases such as cancer and neurodegenerative diseases. In the future, these studies will underpin the development of therapies against various diseases.
Collapse
Affiliation(s)
- Yoshihisa Watanabe
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Katsutoshi Taguchi
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 601-0841, Japan; (K.T.); (M.T.)
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 601-0841, Japan; (K.T.); (M.T.)
| |
Collapse
|
14
|
Harraz MM. Selective dopaminergic vulnerability in Parkinson's disease: new insights into the role of DAT. Front Neurosci 2023; 17:1219441. [PMID: 37694119 PMCID: PMC10483232 DOI: 10.3389/fnins.2023.1219441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
One of the hallmarks of Parkinson's disease (PD) is the progressive loss of dopaminergic neurons and associated dopamine depletion. Several mechanisms, previously considered in isolation, have been proposed to contribute to the pathophysiology of dopaminergic degeneration: dopamine oxidation-mediated neurotoxicity, high dopamine transporter (DAT) expression density per neuron, and autophagy-lysosome pathway (ALP) dysfunction. However, the interrelationships among these mechanisms remained unclear. Our recent research bridges this gap, recognizing autophagy as a novel dopamine homeostasis regulator, unifying these concepts. I propose that autophagy modulates dopamine reuptake by selectively degrading DAT. In PD, ALP dysfunction could increase DAT density per neuron, and enhance dopamine reuptake, oxidation, and neurotoxicity, potentially contributing to the progressive loss of dopaminergic neurons. This integrated understanding may provide a more comprehensive view of aspects of PD pathophysiology and opens new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Maged M. Harraz
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Liu S, Xu S, Liu S, Chen H. Importance of DJ-1 in autophagy regulation and disease. Arch Biochem Biophys 2023:109672. [PMID: 37336341 DOI: 10.1016/j.abb.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Autophagy is a highly conserved biological process that has evolved across evolution. It can be activated by various external stimuli including oxidative stress, amino acid starvation, infection, and hypoxia. Autophagy is the primary mechanism for preserving cellular homeostasis and is implicated in the regulation of metabolism, cell differentiation, tolerance to starvation conditions, and resistance to aging. As a multifunctional protein, DJ-1 is commonly expressed in vivo and is associated with a variety of biological processes. Its most widely studied role is its function as an oxidative stress sensor that inhibits the production of excessive reactive oxygen species (ROS) in the mitochondria and subsequently the cellular damage caused by oxidative stress. In recent years, many studies have identified DJ-1 as another important factor regulating autophagy; it regulates autophagy in various ways, most commonly by regulating the oxidative stress response. In particular, DJ-1-regulated autophagy is involved in cancer progression and plays a key role in alleviating neurodegenerative diseases(NDS) and defective reperfusion diseases. It could serve as a potential target for the regulation of autophagy and participate in disease treatment as a meaningful modality. Therefore, exploring DJ-1-regulated autophagy could provide new avenues for future disease treatment.
Collapse
Affiliation(s)
- Shiyi Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China; Second Clinical Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Sheng Xu
- Second Clinical Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Song Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Heping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
16
|
Li B, Bai Y, Yion C, Wang H, Su X, Feng G, Guo M, Peng W, Shen B, Zheng B. Single-Atom Nanocatalytic Therapy for Suppression of Neuroinflammation by Inducing Autophagy of Abnormal Mitochondria. ACS NANO 2023; 17:7511-7529. [PMID: 37018124 DOI: 10.1021/acsnano.2c12614] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Catalysts have achieved efficacy in scavenging reactive oxygen species (ROS) to eliminate neuroinflammation, but it ignores the essential fact of blocking the source of ROS regeneration. Here, we report the single-atom catalysts (SACs) Pt/CeO2, which can effectively catalyze the breakdown of existing ROS and induce mitochondrial membrane potential (Δψm) depolarization by interfering with the α-glycerophosphate shuttle pathway and malate-aspartate shuttle pathway, indirectly triggering the self-clearance of dysfunctional mitochondria and thus eradicating the source of ROS generation. In a therapeutic model of Parkinson's disease (PD), Pt/CeO2 wrapped by neutrophil-like (HL-60) cell membranes and modified by rabies virus glycoprotein (RVG29) effectively crosses the blood-brain barrier (BBB), enters dopaminergic neurons entering the neuroinflammatory region breaking down existing ROS and inducing mitophagy by electrostatic adsorption targeting mitochondria to prevent ROS regeneration after catalyst discharge. This strategy of efficiently eliminating ROS at the lesion and fundamentally blocking the source of ROS production can address both symptoms and root causes and provides a mechanism of explanation and action target for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Yang Bai
- Department of Stomatology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Chan Yion
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Hua Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Su
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Guoqing Feng
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Mingming Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Wenchang Peng
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Boxi Shen
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
- Healthina Academy of Cellular Intelligence Manufacturing & Neurotrauma Repair of Tianjin Economic-Technological Development Area, Healthina Biomedicine (Tianjin) Co. Ltd., No. 286 AnShan West Road, NanKai District, Tianjin 300190, China
| |
Collapse
|
17
|
Yang S, Nie T, She H, Tao K, Lu F, Hu Y, Huang L, Zhu L, Feng D, He D, Qi J, Kukar T, Ma L, Mao Z, Yang Q. Regulation of TFEB nuclear localization by HSP90AA1 promotes autophagy and longevity. Autophagy 2023; 19:822-838. [PMID: 35941759 PMCID: PMC9980472 DOI: 10.1080/15548627.2022.2105561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022] Open
Abstract
TFEB (transcription factor EB) regulates multiple genes involved in the process of macroautophagy/autophagy and plays a critical role in lifespan determination. However, the detailed mechanisms that regulate TFEB activity are not fully clear. In this study, we identified a role for HSP90AA1 in modulating TFEB. HSP90AA1 was phosphorylated by CDK5 at Ser 595 under basal condition. This phosphorylation inhibited HSP90AA1, disrupted its binding to TFEB, and impeded TFEB's nuclear localization and subsequent autophagy induction. Pro-autophagy signaling attenuated CDK5 activity and enhanced TFEB function in an HSP90AA1-dependent manner. Inhibition of HSP90AA1 function or decrease in its expression significantly attenuated TFEB's nuclear localization and transcriptional function following autophagy induction. HSP90AA1-mediated regulation of a TFEB ortholog was involved in the extended lifespan of Caenorhabditis elegans in the absence of its food source bacteria. Collectively, these findings reveal that this regulatory process plays an important role in modulation of TFEB, autophagy, and longevity.Abbreviations : AL: autolysosome; AP: autophagosome; ATG: autophagy related; BafA1: bafilomycin A1; CDK5: cyclin-dependent kinase 5; CDK5R1: cyclin dependent kinase 5 regulatory subunit 1; CR: calorie restriction; FUDR: 5-fluorodeoxyuridine; HSP90AA1: heat shock protein 90 alpha family class A member 1; MAP1LC3: microtubule associated protein 1 light chain 3; NB: novobiocin sodium; SQSTM1: sequestosome 1; TFEB: transcription factor EB; WT: wild type.
Collapse
Affiliation(s)
- Shaosong Yang
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Hua She
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kai Tao
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fangfang Lu
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yiman Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lu Huang
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin Zhu
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dayun Feng
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dan He
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jing Qi
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Long Ma
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
18
|
Extracellular vesicles DJ-1 derived from hypoxia-conditioned hMSCs alleviate cardiac hypertrophy by suppressing mitochondria dysfunction and preventing ATRAP degradation. Pharmacol Res 2023; 187:106607. [PMID: 36509316 DOI: 10.1016/j.phrs.2022.106607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND As a pathological myocardial remodeling process in a variety of cardiovascular diseases, cardiac hypertrophy still has no effective treatment. Human mesenchymal stem cells (hMSCs) derived extracellular vesicles (EVs) has been recognized as a promising treatment strategy for cardiac disease. METHODS In this study, the inhibitory effects on cardiac hypertrophy are compared between normoxia-conditioned hMSC-derived EVs (Nor-EVs) and hypoxia-conditioned hMSC-derived EVs (Hypo-EVs) in neonatal rat cardiomyocytes (NRCMs) after angiotensin II (Ang II) stimulation and in a mouse model of transverse aortic constriction (TAC). RESULTS We demonstrate that Hypo-EVs exert an increased inhibitory effect on cardiac hypertrophy compared with Nor-EVs. Parkinson disease protein 7 (PARK7/DJ-1) is identify as a differential protein between Nor-EVs and Hypo-EVs by quantitative proteomics analysis. Results show that DJ-1, which is rich in Hypo-EVs, alleviates mitochondrial dysfunction and excessive mitochondrial reactive oxygen species (mtROS) production as an antioxidant. Mechanistic studies demonstrate for the first time that DJ-1 may suppress cardiac hypertrophy by inhibiting the activity of proteasome subunit beta type 10 (PSMB10) through a direct physical interaction. This interaction can inhibit angiotensin II type 1 receptor (AT1R)-mediated signaling pathways resulting in cardiac hypertrophy through alleviating ubiquitination degradation of AT1R-associated protein (ATRAP). CONCLUSIONS When taken together, our study suggests that Hypo-EVs have significant potential as a novel therapeutic agent for the treatment of cardiac hypertrophy.
Collapse
|
19
|
Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson's disease and neurodegeneration with brain iron accumulation disorders. Neurobiol Dis 2022; 175:105920. [DOI: 10.1016/j.nbd.2022.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
|
20
|
Qu X, Wen Y, Jiao J, Zhao J, Sun X, Wang F, Gao Y, Tan W, Xia Q, Wu H, Kong X. PARK7 deficiency inhibits fatty acid β-oxidation via PTEN to delay liver regeneration after hepatectomy. Clin Transl Med 2022; 12:e1061. [PMID: 36149763 PMCID: PMC9505755 DOI: 10.1002/ctm2.1061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Background & aims Transient regeneration–associated steatosis (TRAS) is a process of temporary hepatic lipid accumulation and is essential for liver regeneration by providing energy generated from fatty acid β‐oxidation, but the regulatory mechanism underlying TRAS remains unknown. Parkinsonism‐associated deglycase (Park7)/Dj1 is an important regulator involved in various liver diseases. In nonalcoholic fatty liver diseased mice, induced by a high‐fat diet, Park7 deficiency improves hepatic steatosis, but its role in liver regeneration remains unknown Methods Park7 knockout (Park7−/−), hepatocyte‐specific Park7 knockout (Park7△hep) and hepatocyte‐specific Park7‐Pten double knockout mice were subjected to 2/3 partial hepatectomy (PHx) Results Increased PARK7 expression was observed in the regenerating liver of mice at 36 and 48 h after PHx. Park7−/− and Park7△hep mice showed delayed liver regeneration and enhanced TRAS after PHx. PPARa, a key regulator of β‐oxidation, and carnitine palmitoyltransferase 1a (CPT1a), a rate‐limiting enzyme of β‐oxidation, had substantially decreased expression in the regenerating liver of Park7△hep mice. Increased phosphatase and tensin homolog (PTEN) expression was observed in the liver of Park7△hep mice, which might contribute to delayed liver regeneration in these mice because genomic depletion or pharmacological inhibition of PTEN restored the delayed liver regeneration by reversing the downregulation of PPARa and CPT1a and in turn accelerating the utilization of TRAS in the regenerating liver of Park7△hep mice Conclusion Park7/Dj1 is a novel regulator of PTEN‐dependent fatty acid β‐oxidation, and increasing Park7 expression might be a promising strategy to promote liver regeneration.
Collapse
Affiliation(s)
- Xiaoye Qu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yankai Wen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Junzhe Jiao
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehua Sun
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Fang Wang
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Weifeng Tan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| |
Collapse
|
21
|
Chaperone-Mediated Autophagy in Neurodegenerative Diseases: Molecular Mechanisms and Pharmacological Opportunities. Cells 2022; 11:cells11142250. [PMID: 35883693 PMCID: PMC9323300 DOI: 10.3390/cells11142250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) is a protein degradation mechanism through lysosomes. By targeting the KFERQ motif of the substrate, CMA is responsible for the degradation of about 30% of cytosolic proteins, including a series of proteins associated with neurodegenerative diseases (NDs). The fact that decreased activity of CMA is observed in NDs, and ND-associated mutant proteins, including alpha-synuclein and Tau, directly impair CMA activity reveals a possible vicious cycle of CMA impairment and pathogenic protein accumulation in ND development. Given the intrinsic connection between CMA dysfunction and ND, enhancement of CMA has been regarded as a strategy to counteract ND. Indeed, genetic and pharmacological approaches to modulate CMA have been shown to promote the degradation of ND-associated proteins and alleviate ND phenotypes in multiple ND models. This review summarizes the current knowledge on the mechanism of CMA with a focus on its relationship with NDs and discusses the therapeutic potential of CMA modulation for ND.
Collapse
|
22
|
Zhu L, He S, Huang L, Ren D, Nie T, Tao K, Xia L, Lu F, Mao Z, Yang Q. Chaperone-mediated autophagy degrades Keap1 and promotes Nrf2-mediated antioxidative response. Aging Cell 2022; 21:e13616. [PMID: 35535673 PMCID: PMC9197408 DOI: 10.1111/acel.13616] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Accumulation of oxidative stress is highly intertwined with aging process and contributes to aging-related diseases, such as neurodegenerative diseases. Deciphering the molecular machinery that regulates oxidative stress is fundamental to further uncovering the pathogenesis of these diseases. Chaperone-mediated autophagy (CMA), a highly selective lysosome-dependent degradation process, has been proven to be an important maintainer of cellular homeostasis through multiple mechanisms, one of which is the attenuation of oxidative stress. However, the specific mechanisms underlying this antioxidative action of CMA are not fully understood. In this study, we found that CMA directly degrades Kelch-like ECH-associated protein 1 (Keap1), an adaptor of E3 ligase complex that promotes the degradation of nuclear factor erythroid 2-related factor 2 (Nrf2), which is a master transcriptional regulator in antioxidative response. Activated CMA induced by prolonged oxidative stress led to an increase in Nrf2 level by effectively degrading Keap1, contributing to Nrf2 nuclear translocation and the expression of multiple downstream antioxidative genes. Meanwhile, together with previous study showing that Nrf2 can also transcriptionally regulate LAMP2A, the rate-limiting factor of CMA process, we reveal a feed-forward loop between CMA and Nrf2. Our study identifies CMA as a previously unrecognized regulator of Keap1-Nrf2 pathway and reinforces the antioxidative role of CMA.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Experimental SurgeryTangdu HospitalFourth Military Medical UniversityXi’anChina
| | - Shulei He
- Department of Experimental SurgeryTangdu HospitalFourth Military Medical UniversityXi’anChina
| | - Lu Huang
- Department of Experimental SurgeryTangdu HospitalFourth Military Medical UniversityXi’anChina
| | - Dongni Ren
- Department of Experimental SurgeryTangdu HospitalFourth Military Medical UniversityXi’anChina
| | - Tiejian Nie
- Department of Experimental SurgeryTangdu HospitalFourth Military Medical UniversityXi’anChina
| | - Kai Tao
- Department of Experimental SurgeryTangdu HospitalFourth Military Medical UniversityXi’anChina
| | - Li Xia
- Department of Neurosurgery and Institute for Functional Brain DisordersTangdu HospitalFourth Military Medical UniversityXi’anChina
| | - Fangfang Lu
- Department of Experimental SurgeryTangdu HospitalFourth Military Medical UniversityXi’anChina
| | - Zixu Mao
- Departments of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Qian Yang
- Department of Experimental SurgeryTangdu HospitalFourth Military Medical UniversityXi’anChina
| |
Collapse
|
23
|
Chaperone-Mediated Autophagy in Neurodegenerative Diseases and Acute Neurological Insults in the Central Nervous System. Cells 2022; 11:cells11071205. [PMID: 35406769 PMCID: PMC8997510 DOI: 10.3390/cells11071205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an important function that mediates the degradation of intracellular proteins and organelles. Chaperone-mediated autophagy (CMA) degrades selected proteins and has a crucial role in cellular proteostasis under various physiological and pathological conditions. CMA dysfunction leads to the accumulation of toxic protein aggregates in the central nervous system (CNS) and is involved in the pathogenic process of neurodegenerative diseases, including Parkinson’s disease and Alzheimer’s disease. Previous studies have suggested that the activation of CMA to degrade aberrant proteins can provide a neuroprotective effect in the CNS. Recent studies have shown that CMA activity is upregulated in damaged neural tissue following acute neurological insults, such as cerebral infarction, traumatic brain injury, and spinal cord injury. It has been also suggested that various protein degradation mechanisms are important for removing toxic aberrant proteins associated with secondary damage after acute neurological insults in the CNS. Therefore, enhancing the CMA pathway may induce neuroprotective effects not only in neurogenerative diseases but also in acute neurological insults. We herein review current knowledge concerning the biological mechanisms involved in CMA and highlight the role of CMA in neurodegenerative diseases and acute neurological insults. We also discuss the possibility of developing CMA-targeted therapeutic strategies for effective treatments.
Collapse
|
24
|
Fleming A, Bourdenx M, Fujimaki M, Karabiyik C, Krause GJ, Lopez A, Martín-Segura A, Puri C, Scrivo A, Skidmore J, Son SM, Stamatakou E, Wrobel L, Zhu Y, Cuervo AM, Rubinsztein DC. The different autophagy degradation pathways and neurodegeneration. Neuron 2022; 110:935-966. [PMID: 35134347 PMCID: PMC8930707 DOI: 10.1016/j.neuron.2022.01.017] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
The term autophagy encompasses different pathways that route cytoplasmic material to lysosomes for degradation and includes macroautophagy, chaperone-mediated autophagy, and microautophagy. Since these pathways are crucial for degradation of aggregate-prone proteins and dysfunctional organelles such as mitochondria, they help to maintain cellular homeostasis. As post-mitotic neurons cannot dilute unwanted protein and organelle accumulation by cell division, the nervous system is particularly dependent on autophagic pathways. This dependence may be a vulnerability as people age and these processes become less effective in the brain. Here, we will review how the different autophagic pathways may protect against neurodegeneration, giving examples of both polygenic and monogenic diseases. We have considered how autophagy may have roles in normal CNS functions and the relationships between these degradative pathways and different types of programmed cell death. Finally, we will provide an overview of recently described strategies for upregulating autophagic pathways for therapeutic purposes.
Collapse
Affiliation(s)
- Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Mathieu Bourdenx
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Motoki Fujimaki
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Cansu Karabiyik
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Gregory J Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Adrián Martín-Segura
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudia Puri
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John Skidmore
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK
| | - Sung Min Son
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Eleanna Stamatakou
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Lidia Wrobel
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ye Zhu
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
25
|
Kuo SH, Tasset I, Cheng MM, Diaz A, Pan MK, Lieberman OJ, Hutten SJ, Alcalay RN, Kim S, Ximénez-Embún P, Fan L, Kim D, Ko HS, Yacoubian T, Kanter E, Liu L, Tang G, Muñoz J, Sardi SP, Li A, Gan L, Cuervo AM, Sulzer D. Mutant glucocerebrosidase impairs α-synuclein degradation by blockade of chaperone-mediated autophagy. SCIENCE ADVANCES 2022; 8:eabm6393. [PMID: 35138901 DOI: 10.1126/sciadv.abm6393] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The most common genetic risk factors for Parkinson's disease (PD) are a set of heterozygous mutant (MT) alleles of the GBA1 gene that encodes β-glucocerebrosidase (GCase), an enzyme normally trafficked through the ER/Golgi apparatus to the lysosomal lumen. We found that half of the GCase in lysosomes from postmortem human GBA-PD brains was present on the lysosomal surface and that this mislocalization depends on a pentapeptide motif in GCase used to target cytosolic protein for degradation by chaperone-mediated autophagy (CMA). MT GCase at the lysosomal surface inhibits CMA, causing accumulation of CMA substrates including α-synuclein. Single-cell transcriptional analysis and proteomics of brains from GBA-PD patients confirmed reduced CMA activity and proteome changes comparable to those in CMA-deficient mouse brain. Loss of the MT GCase CMA motif rescued primary substantia nigra dopaminergic neurons from MT GCase-induced neuronal death. We conclude that MT GBA1 alleles block CMA function and produce α-synuclein accumulation.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Inmaculada Tasset
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Biochemistry and Molecular Biology, Universidad de Cordoba, Cordoba, Spain
| | - Melody M Cheng
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ming-Kai Pan
- Department of Neurology, Columbia University , New York, NY 10032, USA
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ori J Lieberman
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Samantha J Hutten
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Sangjun Kim
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Neurodegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pilar Ximénez-Embún
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), ProteoRed-ISCIII, Madrid, Spain
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Donghoon Kim
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Neurodegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Han Seok Ko
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Neurodegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Talene Yacoubian
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ellen Kanter
- Departments of Psychiatry and Pharmacology, Columbia University , New York, NY 10032, USA
| | - Ling Liu
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Guomei Tang
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), ProteoRed-ISCIII, Madrid, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | | - Aiqun Li
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Sulzer
- Department of Neurology, Columbia University , New York, NY 10032, USA
- Departments of Psychiatry and Pharmacology, Columbia University , New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
26
|
Le S, Fu X, Pang M, Zhou Y, Yin G, Zhang J, Fan D. The Antioxidative Role of Chaperone-Mediated Autophagy as a Downstream Regulator of Oxidative Stress in Human Diseases. Technol Cancer Res Treat 2022; 21:15330338221114178. [PMID: 36131551 PMCID: PMC9500268 DOI: 10.1177/15330338221114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) plays an important role in regulating a variety of cellular functions by selectively degrading damaged or functional proteins in the cytoplasm. One of the cellular processes in which CMA participates is the oxidative stress response. Oxidative stress regulates CMA activity, while CMA protects cells from oxidative damage by degrading oxidized proteins and preventing the accumulation of excessive reactive oxygen species (ROS). Changes in CMA activity have been found in many human diseases, and oxidative stress is also involved. Therefore, understanding the interaction mechanism of ROS and CMA will provide new targets for disease treatment. In this review, we discuss the role of CMA in combatting oxidative stress during the development of different conditions, such as aging, neurodegeneration, liver diseases, infections, pulmonary disorders, and cancers.
Collapse
Affiliation(s)
- Shuangshuang Le
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Xin Fu
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Maogui Pang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Yao Zhou
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| | - Guoqing Yin
- Department of Oncology, 572481Xianyang Hospital of Yan'an University, Xianyang, China
| | - Jie Zhang
- Department of Oncology, 572481Xianyang Hospital of Yan'an University, Xianyang, China
| | - Daiming Fan
- Guangxi Key Laboratory of Bio-Targeting Theranostics, National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, 74626Guangxi Medical University, Nanning, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, 12644Air Force Military Medical University, Xi'an, China
| |
Collapse
|
27
|
Kaushik S, Tasset I, Arias E, Pampliega O, Wong E, Martinez-Vicente M, Cuervo AM. Autophagy and the hallmarks of aging. Ageing Res Rev 2021; 72:101468. [PMID: 34563704 DOI: 10.1016/j.arr.2021.101468] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
Autophagy, an essential cellular process that mediates degradation of proteins and organelles in lysosomes, has been tightly linked to cellular quality control for its role as part of the proteostasis network. The current interest in identifying the cellular and molecular determinants of aging, has highlighted the important contribution of malfunctioning of autophagy with age to the loss of proteostasis that characterizes all old organisms. However, the diversity of cellular functions of the different types of autophagy and the often reciprocal interactions of autophagy with other determinants of aging, is placing autophagy at the center of the aging process. In this work, we summarize evidence for the contribution of autophagy to health- and lifespan and provide examples of the bidirectional interplay between autophagic pathways and several of the so-called hallmarks of aging. This central role of autophagy in aging, and the dependence on autophagy of many geroprotective interventions, has motivated a search for direct modulators of autophagy that could be used to slow aging and extend healthspan. Here, we review some of those ongoing therapeutic efforts and comment on the potential of targeting autophagy in aging.
Collapse
|
28
|
Gharbi N, Røise D, Førre JE, Edson AJ, Hushagen HA, Tronci V, Frøyset AK, Fladmark KE. Reintroduction of DJ-1 in Müller Cells Inhibits Retinal Degeneration in the DJ-1 Deficient Retina. Antioxidants (Basel) 2021; 10:1862. [PMID: 34942966 PMCID: PMC8698414 DOI: 10.3390/antiox10121862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
The eye is continuously under oxidative stress due to high metabolic activity and reactive oxygen species generated by daily light exposure. The redox-sensitive protein DJ-1 has proven to be essential in order to protect retina and retinal pigment epithelium (RPE) from oxidative-stress-induced degeneration. Here, we analyzed the specific role of Müller cell DJ-1 in the adult zebrafish retina by re-establishing Müller-cell-specific DJ-1 expression in a DJ-1 knockout retina. Loss of DJ-1 resulted in an age-dependent retinal degeneration, including loss of cells in the ganglion cell layer, retinal thinning, photoreceptor disorganization and RPE cell dysfunction. The degenerative phenotype induced by the absence of DJ-1 was inhibited by solely expressing DJ-1 in Müller cells. The protective effect was dependent upon the cysteine-106 residue of DJ-1, which has been shown to be an oxidative sensor of DJ-1. In a label-free proteomics analysis of isolated retinas, we identified proteins differentially expressed after DJ-1 knockout, but with restored levels after Müller cell DJ-1 re-insertion. Our data show that Müller cell DJ-1 has a major role in protecting the retina from age-dependent oxidative stress.
Collapse
Affiliation(s)
- Naouel Gharbi
- Integrative Fish Biology Group (IFB), NORCE Norwegian Research Center AS, N-5020 Bergen, Norway; (N.G.); (V.T.)
| | - Dagne Røise
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| | - Jorunn-Elise Førre
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| | - Amanda J. Edson
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| | - Helena A. Hushagen
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| | - Valentina Tronci
- Integrative Fish Biology Group (IFB), NORCE Norwegian Research Center AS, N-5020 Bergen, Norway; (N.G.); (V.T.)
| | - Ann-Kristin Frøyset
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| | - Kari E. Fladmark
- Department of Biological Science, University of Bergen, N-5020 Bergen, Norway; (D.R.); (J.-E.F.); (A.J.E.); (H.A.H.); (A.-K.F.)
| |
Collapse
|
29
|
Fellner L, Gabassi E, Haybaeck J, Edenhofer F. Autophagy in α-Synucleinopathies-An Overstrained System. Cells 2021; 10:3143. [PMID: 34831366 PMCID: PMC8618716 DOI: 10.3390/cells10113143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Alpha-synucleinopathies comprise progressive neurodegenerative diseases, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). They all exhibit the same pathological hallmark, which is the formation of α-synuclein positive deposits in neuronal or glial cells. The aggregation of α-synuclein in the cell body of neurons, giving rise to the so-called Lewy bodies (LBs), is the major characteristic for PD and DLB, whereas the accumulation of α-synuclein in oligodendroglial cells, so-called glial cytoplasmic inclusions (GCIs), is the hallmark for MSA. The mechanisms involved in the intracytoplasmic inclusion formation in neuronal and oligodendroglial cells are not fully understood to date. A possible mechanism could be an impaired autophagic machinery that cannot cope with the high intracellular amount of α-synuclein. In fact, different studies showed that reduced autophagy is involved in α-synuclein aggregation. Furthermore, altered levels of different autophagy markers were reported in PD, DLB, and MSA brains. To date, the trigger point in disease initiation is not entirely clear; that is, whether autophagy dysfunction alone suffices to increase α-synuclein or whether α-synuclein is the pathogenic driver. In the current review, we discuss the involvement of defective autophagy machinery in the formation of α-synuclein aggregates, propagation of α-synuclein, and the resulting neurodegenerative processes in α-synucleinopathies.
Collapse
Affiliation(s)
- Lisa Fellner
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, 6020 Innsbruck, Austria
| | - Elisa Gabassi
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
30
|
Peng Z, Zhao C, Du X, Yang Y, Li Y, Song Y, Fang B, Zhang Y, Qin X, Zhang Y, Li X, Wang Z, Li X, Liu G. Autophagy Induced by Palmitic Acid Regulates Neutrophil Adhesion Through the Granule-Dependent Degradation of αMβ2 Integrin in Dairy Cows With Fatty Liver. Front Immunol 2021; 12:726829. [PMID: 34691032 PMCID: PMC8529007 DOI: 10.3389/fimmu.2021.726829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022] Open
Abstract
β2 integrins are critical for neutrophil firm adhesion, trans-endothelial migration, and the recruitment to the inflamed tissue. Autophagy is implicated in cell migration and tumor metastasis through facilitating the turnover of β1 integrins; however, whether autophagy is able to control neutrophil migration by promoting the degradation of β2 integrins is unexplored. Here, we show that high blood levels of palmitic acid (PA) strongly triggered neutrophil autophagy activation, leading to adhesion deficiency in dairy cows with fatty liver. The three neutrophil granule subtypes, namely, azurophil granules (AGs), specific granules (SGs), and gelatinase granules (GGs), were engulfed by the autophagosomes for degradation, resulting in an increased vacuolation in fatty liver dairy cow neutrophils. Importantly, the adhesion-associated molecules CD11b and CD18 distributed on AGs, SGs, and GGs were degraded with the three granule subtypes by autophagy. Moreover, FGA, Hsc70, and TRIM21 mediated the degradation of cytosolic oxidized–ubiquitinated CD11b and CD18. Collectively, our results demonstrate that high blood PA triggers neutrophil autophagy-dependent vacuolation and granule-dependent adhesion deficiency, decreasing neutrophil mobility, and impairing the innate immune system of dairy cow with fatty liver. This theory extends the category of autophagy in maintaining granule homeostasis and provides a novel strategy to improve the immune of dairy cows with metabolic disease.
Collapse
Affiliation(s)
- Zhicheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chenxu Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiliang Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuchen Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yunfei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuxiang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Baochen Fang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yuming Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xia Qin
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuanyuan Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhe Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
31
|
Sun RJ, Yin DM, Yuan D, Liu SY, Zhu JJ, Shan NN. Quantitative LC-MS/MS uncovers the regulatory role of autophagy in immune thrombocytopenia. Cancer Cell Int 2021; 21:548. [PMID: 34663331 PMCID: PMC8524881 DOI: 10.1186/s12935-021-02249-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is an autoimmune haemorrhagic disease whose pathogenesis is associated with bone marrow megakaryocyte maturation disorder and destruction of the haematopoietic stem cell microenvironment. METHODS In this study, we report the qualitative and quantitative profiles of the ITP proteome. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was conducted to elucidate the protein profiles of clinical bone marrow mononuclear cell (BMMC) samples from ITP patients and healthy donors (controls). Gene Ontology (GO) and Kyoto Encyclopaedia Genes and Genome (KEGG) pathway analyses were performed to annotate the differentially expressed proteins. A protein-protein interaction (PPI) network was constructed with the BLAST online database. Target proteins associated with autophagy were quantitatively identified by parallel reaction monitoring (PRM) analysis. RESULTS Our approaches showed that the differentially expressed autophagy-related proteins, namely, HSPA8, PARK7, YWHAH, ITGB3 and CSF1R, were changed the most. The protein expression of CSF1R in ITP patients was higher than that in controls, while other autophagy-related proteins were expressed at lower levels in ITP patients than in controls. CONCLUSION Bioinformatics analysis indicated that disruption of the autophagy pathway is a potential pathological mechanism of ITP. These results can provide a new direction for exploring the molecular mechanism of ITP.
Collapse
Affiliation(s)
- Rui-Jie Sun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Dong-Mei Yin
- Department of Blood Transfusion, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Dai Yuan
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China
| | - Shu-Yan Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jing-Jing Zhu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China
| | - Ning-Ning Shan
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China.
| |
Collapse
|
32
|
Gómez-Sintes R, Arias E. Chaperone-mediated autophagy and disease: Implications for cancer and neurodegeneration. Mol Aspects Med 2021; 82:101025. [PMID: 34629183 DOI: 10.1016/j.mam.2021.101025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 02/07/2023]
Abstract
Chaperone-mediated autophagy (CMA) is a proteolytic process whereby selected intracellular proteins are degraded inside lysosomes. Owing to its selectivity, CMA participates in the modulation of specific regulatory proteins, thereby playing an important role in multiple cellular processes. Studies conducted over the last two decades have enabled the molecular characterization of this autophagic pathway and the design of specific experimental models, and have underscored the importance of CMA in a range of physiological processes beyond mere protein quality control. Those findings also indicate that decreases in CMA function with increasing age may contribute to the pathogenesis of age-associated diseases, including neurodegeneration and cancer. In the context of neurological diseases, CMA impairment is thought to contribute to the accumulation of misfolded/aggregated proteins, a process central to the pathogenesis of neurodegenerative diseases. CMA therefore constitutes a potential therapeutic target, as its induction accelerates the clearance of pathogenic proteins, promoting cell survival. More recent evidence has highlighted the important and complex role of CMA in cancer biology. While CMA induction may limit tumor development, experimental evidence also indicates that inhibition of this pathway can attenuate the growth of established tumors and improve the response to cancer therapeutics. Here, we describe and discuss the evidence supporting a role of impaired CMA function in neurodegeneration and cancer, as well as future research directions to evaluate the potential of this pathway as a target for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Raquel Gómez-Sintes
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas CIB-CSIC, 28040, Madrid, Spain; Department of Developmental and Molecular Biology & Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Esperanza Arias
- Department of Medicine, Marion Bessin Liver Research Center & Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
33
|
Xu W, Qi Y, Gao Y, Quan H, Li Q, Zhou H, Huang J. Benzo(a)pyrene exposure in utero exacerbates Parkinson's Disease (PD)-like α-synucleinopathy in A53T human alpha-synuclein transgenic mice. Toxicol Appl Pharmacol 2021; 427:115658. [PMID: 34332006 DOI: 10.1016/j.taap.2021.115658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 02/09/2023]
Abstract
BACKGROUND Previous work indicated that benzo[a]pyrene (B(a)P) exposure in utero might adversely affect neurodevelopment and cause Parkinson's Disease (PD)-like symptoms. However, the effect of utero exposure to B(a)P on PD-like α-synucleinopathy and the mechanism under are unclear. OBJECTIVE The A53T human alpha-synuclein (α-syn) transgenic mice (M83+/-) were used in this study to gain insights into the role of B(a)P exposure in utero in the onset of α-syn pathology and neuronal damage. METHOD Timed-pregnant M83+/- dams were exposed to 1) corn oil (vehicle) or 2) 5 mg/kg bw/d B(a)P or 3) 20 mg/kg bw/d B(a)P at gestational day 10-17 by oral gavage and then the SNCA transcription, α-syn accumulation and aggregation, neuroinflammation and nigral dopaminergic neurodegeneration of 60-day-old pups were evaluated. RESULT SNCA mRNA and α-syn protein expression in the midbrain of 60 days adult mice were found to be remarkably elevated after B(a)P exposure in utero, the protein degradation capacity was injured (in 20 mg/kg dose group) and α-syn aggregation could be observed in the substantia nigra (SN); Enhanced Iba1 expression in the midbrain and microglial activation (in 20 mg/kg dose group) in the SN were also figured out; Besides, dopaminergic neurons in the SN of 60 days adult mice were significantly decreased. CONCLUSIONS Our findings demonstrated that B(a)P exposure in utero could exacerbate α-syn pathology and induce activation of microglia which might further lead to dopaminergic neuronal loss in the SN.
Collapse
Affiliation(s)
- Weixing Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yuze Qi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yanjun Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Huihui Quan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Qingru Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Hui Zhou
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
34
|
Huang M, Chen S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog Neurobiol 2021; 204:102114. [PMID: 34174373 DOI: 10.1016/j.pneurobio.2021.102114] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases (NDs) are one of the major health threats to human characterized by selective and progressive neuronal loss. The mechanisms of NDs are still not fully understood. The study of genetic defects and disease-related proteins offers us a window into the mystery of it, and the extension of knowledge indicates that different NDs share similar features, mechanisms, and even genetic or protein abnormalities. Among these findings, PARK7 and its production DJ-1 protein, which was initially found implicated in PD, have also been found altered in other NDs. PARK7 mutations, altered expression and posttranslational modification (PTM) cause DJ-1 abnormalities, which in turn lead to downstream mechanisms shared by most NDs, such as mitochondrial dysfunction, oxidative stress, protein aggregation, autophagy defects, and so on. The knowledge of DJ-1 derived from PD researches might apply to other NDs in both basic research and clinical application, and might yield novel insights into and alternative approaches for dealing with NDs.
Collapse
Affiliation(s)
- Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China; Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
35
|
Wang X, Chen Q, Dong K, Sun C, Huang Y, Qiang Z, Chen B, Chen M, Feng Y, Meng X. Accurate Monitoring and Multiple Evaluations of Mitophagy by a Versatile Two-Photon Fluorescent Probe. Anal Chem 2021; 93:9200-9208. [PMID: 34152733 DOI: 10.1021/acs.analchem.1c01365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitophagy plays a critical role in regulating and maintaining cellular functions, particularly regulating the quantity and quality of mitochondria. In this research, a multifunctional two-photon fluorescent probe Mito-PV with improved mitochondria-anchored ability was designed. The proposed probe can track the fluctuation of polarity and viscosity in mitochondria simultaneously with two well-distinguished emissions. It can also precisely visualize the change in mitochondrial morphology (including mitochondrial form factor and length). The real-time and accurate monitoring of mitophagy under two-photon excitation was successfully achieved by utilizing probe Mito-PV through supervising the alterations of diverse mitophagy-related parameters (including colocalization coefficient, polarity, viscosity, and mitochondrial morphology). In addition, probe Mito-PV can be applied to evaluate drug bpV(phen) as an effective mitophagy inhibitor. Therefore, our work may provide a more efficient and reliable method for precisely monitoring mitophagy from multiple evaluations.
Collapse
Affiliation(s)
- Xinru Wang
- School of Chemistry and Chemical Engineering & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University & Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, P. R. China
| | - Qi Chen
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University & Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, P. R. China
| | - Kun Dong
- School of Chemistry and Chemical Engineering & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University & Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, P. R. China
| | - Chuan Sun
- School of Chemistry and Chemical Engineering & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University & Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, P. R. China
| | - Yinliang Huang
- School of Chemistry and Chemical Engineering & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University & Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, P. R. China
| | - Zeming Qiang
- Anhui Golden Sun Biochemical Pharmaceuticals Limited Company, Fuyang 236000, P. R. China
| | - Baoqian Chen
- Anhui Golden Sun Biochemical Pharmaceuticals Limited Company, Fuyang 236000, P. R. China
| | - Man Chen
- School of Chemistry and Chemical Engineering & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University & Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, P. R. China
| | - Yan Feng
- School of Chemistry and Chemical Engineering & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University & Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, P. R. China
| | - Xiangming Meng
- School of Chemistry and Chemical Engineering & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University & Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
36
|
Singh K, Chen YC, Hassanzadeh S, Han K, Judy JT, Seifuddin F, Tunc I, Sack MN, Pirooznia M. Network Analysis and Transcriptome Profiling Identify Autophagic and Mitochondrial Dysfunctions in SARS-CoV-2 Infection. Front Genet 2021; 12:599261. [PMID: 33796130 PMCID: PMC8008150 DOI: 10.3389/fgene.2021.599261] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
Analyzing host cells' transcriptional response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection will help delineate biological processes underlying viral pathogenesis. First, analysis of expression profiles of lung cell lines A549 and Calu3 revealed upregulation of antiviral interferon signaling genes in response to all three SARS-CoV-2, MERS-CoV, or influenza A virus (IAV) infections. However, perturbations in expression of genes involved in inflammatory, mitochondrial, and autophagy processes were specifically observed in SARS-CoV-2-infected cells. Next, a validation study in infected human nasopharyngeal samples also revealed perturbations in autophagy and mitochondrial processes. Specifically, mTOR expression, mitochondrial ribosomal, mitochondrial complex I, lysosome acidification, and mitochondrial fission promoting genes were concurrently downregulated in both infected cell lines and human samples. SARS-CoV-2 infection impeded autophagic flux either by upregulating GSK3B in lung cell lines or by downregulating autophagy genes, SNAP29, and lysosome acidification genes in human samples, contributing to increased viral replication. Therefore, drugs targeting lysosome acidification or autophagic flux could be tested as intervention strategies. Finally, age-stratified SARS-CoV-2-positive human data revealed impaired upregulation of chemokines, interferon-stimulated genes, and tripartite motif genes that are critical for antiviral signaling. Together, this analysis has revealed specific aspects of autophagic and mitochondrial function that are uniquely perturbed in SARS-CoV-2-infected host cells.
Collapse
Affiliation(s)
- Komudi Singh
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yun-Ching Chen
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shahin Hassanzadeh
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer T. Judy
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ilker Tunc
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Michael N. Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
37
|
Sequeira D, Baptista PV, Valente R, Piedade MFM, Garcia MH, Morais TS, Fernandes AR. Cu(I) complexes as new antiproliferative agents against sensitive and doxorubicin resistant colorectal cancer cells: synthesis, characterization, and mechanisms of action. Dalton Trans 2021; 50:1845-1865. [PMID: 33470993 DOI: 10.1039/d0dt03566a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer is one of the worst health issues worldwide, representing the second leading cause of death. Current chemotherapeutic drugs face some challenges like the acquired resistance of the tumoral cells and low specificity leading to unwanted side effects. There is an urgent need to develop new compounds that may target resistant cells. The synthesis and characterization of two Cu(i) complexes of general formula [Cu(PP)(LL)][BF4], where PP is a phosphane ligand (triphenylphosphine or 1,2-bis(diphenylphosphano) ethane) and LL = is a heteroaromatic bidentate ligand (4,4'-dimethyl-2,2'-bipyridine and 6,3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine). The new compounds were fully characterized by spectroscopic techniques (NMR, FTIR and UV-vis.), elemental analysis (C, H, N and S) and two structures were determined by single X-ray diffraction studies. The antiproliferative potential of the new Cu(i) complexes were studied in tumor (breast adenocarcinoma, ovarian carcinoma and in colorectal carcinoma sensitive and resistant to doxorubicin) and normal (fibroblasts) cell lines. Complexes 1-4 did not show any antiproliferative potential. Amongst the complexes 5-8, complex 8 shows high cytotoxic potential against colorectal cancer sensitive and resistant to doxorubicin and low cytotoxicity towards healthy cells. We show that complexes 5-8 can cleave pDNA and, in particular, the in vitro pDNA cleavage is due to an oxidative mechanism. This oxidative mechanism corroborates the induction of reactive oxygen species (ROS), that triggers HCT116 cell death via apoptosis, as proved by the increased expression of BAX protein relative to BCL-2 protein and the depolarization of mitochondrial membrane potential, and via autophagy. Additionally, complex 8 can block the cell cycle in the G1 phase, also exhibiting a cytostatic potential. Proteomic analysis confirmed the apoptotic, autophagic and cytostatic potential of complex 8, as well as its ability to produce ROS and cause DNA damage. The interference of the complex in folding and protein synthesis and its ability to cause post-translational modifications was also verified. Finally, it was observed that the complex causes a reduction in cellular metabolism. The results herein demonstrated the potential of Cu(i) complexes in targeting doxorubicin sensitive and resistant cells which is positive and must be further explored using in vivo animal models.
Collapse
Affiliation(s)
- Diogo Sequeira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.
| | - Pedro V Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.
| | - Ruben Valente
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.
| | - M Fátima M Piedade
- DQB-FCUL, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal. and CQE@IST, Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - M Helena Garcia
- DQB-FCUL, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal. and CQE@FCUL, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Tânia S Morais
- DQB-FCUL, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal. and CQE@FCUL, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.
| |
Collapse
|
38
|
Liao Z, Wang B, Liu W, Xu Q, Hou L, Song J, Guo Q, Li N. Dysfunction of chaperone-mediated autophagy in human diseases. Mol Cell Biochem 2021; 476:1439-1454. [PMID: 33389491 DOI: 10.1007/s11010-020-04006-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
Chaperone-mediated autophagy (CMA), one of the degradation pathways of proteins, is highly selective to substrates that have KFERQ-like motif. In this process, the substrate proteins are first recognized by the chaperone protein, heat shock cognate protein 70 (Hsc70), then delivered to lysosomal membrane surface where the single-span lysosomal receptor, lysosome-associated membrane protein type 2A (LAMP2A) can bind to the substrate proteins to form a 700 kDa protein complex that allows them to translocate into the lysosome lumen to be degraded by the hydrolytic enzymes. This degradation pathway mediated by CMA plays an important role in regulating glucose and lipid metabolism, transcription, DNA reparation, cell cycle, cellular response to stress and consequently, regulating many aging-associated human diseases, such as neurodegeneration, cancer and metabolic disorders. In this review, we provide an overview of current research on the functional roles of CMA primarily from a perspective of understanding and treating human diseases and also discuss its potential applications for diseases.
Collapse
Affiliation(s)
- Zhaozhong Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bin Wang
- College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jinlian Song
- Department of Laboratory, The Affiliated Women and Children's Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qingming Guo
- Biotherapy Center, Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
39
|
Nie T, Tao K, Zhu L, Huang L, Hu S, Yang R, Xu P, Mao Z, Yang Q. Chaperone-mediated autophagy controls the turnover of E3 ubiquitin ligase MARCHF5 and regulates mitochondrial dynamics. Autophagy 2020; 17:2923-2938. [PMID: 33970775 PMCID: PMC8526038 DOI: 10.1080/15548627.2020.1848128] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
As a highly dynamic organelle, mitochondria undergo constant fission and fusion to change their morphology and function, coping with various stress conditions. Loss of the balance between fission and fusion leads to impaired mitochondria function, which plays a critical role in the pathogenesis of Parkinson disease (PD). Yet the mechanisms behind mitochondria dynamics regulation remain to be fully illustrated. Chaperone-mediated autophagy (CMA) is a lysosome-dependent process that selectively degrades proteins to maintain cellular proteostasis. In this study, we demonstrated that MARCHF5, an E3 ubiquitin ligase required for mitochondria fission, is a CMA substrate. MARCHF5 interacted with key CMA regulators and was degraded by lysosomes. Severe oxidative stress compromised CMA activity and stabilized MARCHF5, which facilitated DNM1L translocation and led to excessive fission. Increase of CMA activity promoted MARCHF5 turnover, attenuated DNM1L translocation, and reduced mitochondria fragmentation, which alleviated mitochondrial dysfunction under oxidative stress. Furthermore, we showed that conditional expression of LAMP2A, the key CMA regulator, in dopaminergic (DA) neurons helped maintain mitochondria morphology and protected DA neuronal viability in a rodent PD model. Our work uncovers a critical role of CMA in maintaining proper mitochondria dynamics, and loss of this regulatory control may occur in PD and underlie its pathogenic process. Abbreviations: CMA: chaperone-mediated autophagy; DA: dopaminergic; DNM1L: dynamin 1 like; FCCP: carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; HSPA8: heat shock protein family A (Hsp70) member 8; LAMP2A: lysosomal associated membrane protein 2A; MARCHF5: membrane-associated ring-CH-type finger 5; MMP: mitochondria membrane potential; OCR: oxygen consumption rate; 6-OHDA: 6-hydroxydopamine; PD: Parkinson disease; SNc: substantia nigra pars compacta; TEM: transmission electron microscopy; TH: tyrosine hydroxylase; TMRE: tetramethylrhodamine ethyl ester perchlorate; WT: wild type.
Collapse
Affiliation(s)
- Tiejian Nie
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kai Tao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lin Zhu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lu Huang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sijun Hu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruixin Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pingyi Xu
- Department of Neurology, First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China
| | - Zixu Mao
- Departments of Pharmacology and Chemical Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Qian Yang
- Department of Neurology, First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China.,Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
40
|
Wang X, Shen K, Wang J, Liu K, Wu G, Li Y, Luo L, Zheng Z, Hu D. Hypoxic preconditioning combined with curcumin promotes cell survival and mitochondrial quality of bone marrow mesenchymal stem cells, and accelerates cutaneous wound healing via PGC-1α/SIRT3/HIF-1α signaling. Free Radic Biol Med 2020; 159:164-176. [PMID: 32745765 DOI: 10.1016/j.freeradbiomed.2020.07.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
Abstract
Restrained survival and function of relocated bone marrow mesenchymal stem cells (BMSCs) is a major impediment to BMSCs-mediated tissue repair. Accumulating evidences have indicated that hypoxic preconditioning of BMSCs could enhance BMSCs' adaptability after transplantation and thus improve their therapeutic properties. Curcumin, a natural dietary product, is known to exert profound protective effects on various cellular processes. Here we showed that mild hypoxic preconditioning combined with curcumin significantly increased cell survival, enriched more cells in G2/M and S phase, and improved mitochondrial function in BMSCs. Meanwhile, hypoxic preconditioning combined with curcumin altered mitochondrial cristae shape and strongly inhibited mitochondrial cytochrome c release, which consequently suppressed an apoptosis signal as revealed by reduced caspase-3 cleavage in BMSCs. Moreover, hypoxic preconditioning remarkably promoted mitochondrial quality via increasing mitochondrial fusion and elevating the activity of oxidative phosphorylation (OXPHOS) and mitochondrial complex Ⅰ enzyme in BMSCs, which were in accordance with the up-regulated expression of OPA1, PINK1 and Parkin. At the mechanistic level, the destabilization of HIF-1α and the up-regulated expression of PGC-1α and SIRT3 synergistically contributed to the protective effects of hypoxic preconditioning combined with curcumin in BMSCs. The proteasome inhibitor MG132 stabilized HIF-1a expression, but not PGC-1α or SIRT3, and dramatically restrained BMSCs survival under hypoxia combined with curcumin condition. MG132 also increased mitochondrial superoxide and intracellular hydrogen peroxide (H2O2) production and caspase-3 activation in hypoxia combined with curcumin-treated BMSCs. Furthermore, knockdown of SIRT3 and PGC-1α by RNAi both led to caspase-3 activation in BMSCs after hypoxia and curcumin treatment. Notably, SIRT3 RNAi suppressed OXPHOS activity, while PGC-1α RNAi triggered mitochondrial superoxide and intracellular H2O2 production in hypoxia combined with curcumin-treated BMSCs. Finally, we showed that hypoxia combined with curcumin-treated BMSCs accelerated the cutaneous wound healing process in a mice wound model. Overall, this study suggests that hypoxic preconditioning combined with curcumin could serve as an attractive strategy for facilitating BMSCs-mediated tissue repair, and further sheds new light on the rich repertoire of PGC-1α/SIRT3/HIF-1α signaling involved in the regulation of mitochondrial quality and function for cellular adaption to hypoxia.
Collapse
Affiliation(s)
- Xujie Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Jing Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Kaituo Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Gaofeng Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China.
| |
Collapse
|
41
|
Zhao Q, Ning P, Yang X, Shi C, Xu Y, Shen Q, Huang H, Xie D, Chen Y, Xu Y. LRP10 Mutations May Correlate with Sporadic Parkinson's Disease in China. Mol Neurobiol 2020; 58:1212-1216. [PMID: 33118139 DOI: 10.1007/s12035-020-02186-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/22/2020] [Indexed: 02/05/2023]
Abstract
LDL receptor-related protein (LRP) 10 was recently identified as a Parkinson's disease gene through genome-wide linkage and sequencing analysis, but its role in Parkinson's disease in various populations is still unclear. The aim of this study was to determine the frequency and spectrum of LRP10 mutations in a cohort of Parkinson's disease patients from mainland China. All LRP10 exons and their flanking intron regions were screened by direct sequencing in 567 unrelated Parkinson's disease patients and 600 unrelated controls. We detected 29 exonic or splicing variants in 79 patients with Parkinson's disease. Five variants (c.A181C:p.I61L, c.C652T:p.Q218X, c.C833T:p.T278I, c.T1592G:p.I531S, c.T1697C:p.L566P) were predicted to be disease-causing or damaging by multiple in silico tools. Our study provides genetic evidence that LRP10 defects may correlate with sporadic Parkinson's disease.
Collapse
Affiliation(s)
- Quanzhen Zhao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Pingping Ning
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xinglong Yang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Changhe Shi
- Department of Neurology, The first affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Yuming Xu
- Department of Neurology, The first affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Qiuyan Shen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Hongyan Huang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Dan Xie
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yalan Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
42
|
Singh K, Chen YC, Judy JT, Seifuddin F, Tunc I, Pirooznia M. Network Analysis and Transcriptome Profiling Identify Autophagic and Mitochondrial Dysfunctions in SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.13.092536. [PMID: 32511341 PMCID: PMC7241104 DOI: 10.1101/2020.05.13.092536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Analyzing host transcriptional changes in response to SARS-CoV-2 infection will help delineate biological processes underlying viral pathogenesis. Comparison of expression profiles of lung cell lines A549 (infected with either SARS-CoV-2 (with ACE2 expression)) or Influenza A virus (IAV)) and Calu3 (infected with SARS-CoV-2 or MERS-CoV) revealed upregulation of the antiviral interferon signaling in all three viral infections. However, perturbations in inflammatory, mitochondrial, and autophagy processes were specifically observed in SARS-CoV-2 infected cells. Validation of findings from cell line data revealed perturbations in autophagy and mitochondrial processes in the infected human nasopharyngeal samples. Specifically, downregulation of mTOR expression, mitochondrial ribosomal, mitochondrial complex I, and lysosome acidification genes were concurrently observed in both infected cell lines and human datasets. Furthermore, SARS-CoV-2 infection impedes autophagic flux by upregulating GSK3B in lung cell lines, or by downregulating autophagy genes, SNAP29 and lysosome acidification genes in human samples, contributing to increased viral replication. Therefore, drugs targeting lysosome acidification or autophagic flux could be tested as intervention strategies. Additionally, downregulation of MTFP1 (in cell lines) or SOCS6 (in human samples) results in hyperfused mitochondria and impede proper interferon response. Coexpression networks analysis identifies correlated clusters of genes annotated to inflammation and mitochondrial processes that are misregulated in SARS-CoV-2 infected cells. Finally, comparison of age stratified human gene expression data revealed impaired upregulation of chemokines, interferon stimulated and tripartite motif genes that are critical for antiviral signaling. Together, this analysis has revealed specific aspects of autophagic and mitochondrial function that are uniquely perturbed in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Komudi Singh
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yun-Ching Chen
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer T Judy
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ilker Tunc
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
43
|
Ke PY. Mitophagy in the Pathogenesis of Liver Diseases. Cells 2020; 9:cells9040831. [PMID: 32235615 PMCID: PMC7226805 DOI: 10.3390/cells9040831] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a catabolic process involving vacuolar sequestration of intracellular components and their targeting to lysosomes for degradation, thus supporting nutrient recycling and energy regeneration. Accumulating evidence indicates that in addition to being a bulk, nonselective degradation mechanism, autophagy may selectively eliminate damaged mitochondria to promote mitochondrial turnover, a process termed “mitophagy”. Mitophagy sequesters dysfunctional mitochondria via ubiquitination and cargo receptor recognition and has emerged as an important event in the regulation of liver physiology. Recent studies have shown that mitophagy may participate in the pathogenesis of various liver diseases, such as liver injury, liver steatosis/fatty liver disease, hepatocellular carcinoma, viral hepatitis, and hepatic fibrosis. This review summarizes the current knowledge on the molecular regulations and functions of mitophagy in liver physiology and the roles of mitophagy in the development of liver-related diseases. Furthermore, the therapeutic implications of targeting hepatic mitophagy to design a new strategy to cure liver diseases are discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-3-211-8800 (ext. 5115); Fax: +886-3-211-8700
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
44
|
Li Y, Wang J, Li Z, Cheng H, Zhang Z, Luo T, Zhang X, Gao G, Lu H, Li L. Propoxyphene Mediates Oxyhemoglobin-Induced Injury in Rat Cortical Neurons Through Up-Regulation of Active-β-Catenin. Front Pharmacol 2020; 10:1616. [PMID: 32082150 PMCID: PMC7003133 DOI: 10.3389/fphar.2019.01616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022] Open
Abstract
Wnt/β-catenin signaling is involved in various biological processes, including the development of the central nervous system. The dysfunction of mitochondria has been shown to participate in the progress of subarachnoid hemorrhage (SAH). Traumatic subarachnoid hemorrhage (tSAH) is a serious complication in acute craniocerebral trauma. Opioids can activate the canonical Wnt/β-catenin signaling pathway. c-Myc, a downstream protein of Wnt/β-catenin signaling, contributes to the fusion of mitochondria. Here, we investigated the protective roles of Propoxyphene (Pro) against Oxyhemoglobin (OxyHb)-induced primary cultured neuron apoptosis. The data indicated that Pro rescued active-β-catenin from OxyHb-induced decline. Furthermore, Pro attenuated OxyHb-induced apoptosis and fission of mitochondria in primary cortical neurons. However, the protective effects were abrogated under active-β-catenin-deficient conditions. Together, the data presented here showed that Pro, a weak opioid analgesic drug, attenuates OxyHb-induced mitochondria-dependent apoptosis in an active-β-catenin-c-Myc-dependent manner.
Collapse
Affiliation(s)
- Yuqian Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiancai Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhihong Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongyu Cheng
- Department of Ultrasound Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuo Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Tao Luo
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingye Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Huashan Lu
- Department of Emergency, 96605 Military Hospital, Tonghua, China
| | - Lihong Li
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
45
|
Ormeño F, Hormazabal J, Moreno J, Riquelme F, Rios J, Criollo A, Albornoz A, Alfaro IE, Budini M. Chaperone Mediated Autophagy Degrades TDP-43 Protein and Is Affected by TDP-43 Aggregation. Front Mol Neurosci 2020; 13:19. [PMID: 32132902 PMCID: PMC7040037 DOI: 10.3389/fnmol.2020.00019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
TAR DNA binding protein 43 kDa (TDP-43) is a ribonuclear protein regulating many aspects of RNA metabolism. Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD) are fatal neurodegenerative diseases with the presence of TDP-43 aggregates in neuronal cells. Chaperone Mediated Autophagy (CMA) is a lysosomal degradation pathway participating in the proteostasis of several cytosolic proteins including neurodegenerative associated proteins. In addition, protein oligomers or aggregates can affect the status of CMA. In this work, we studied the relationship between CMA and the physiological and pathological forms of TDP-43. First, we found that recombinant TDP-43 was specifically degraded by rat liver’s CMA+ lysosomes and that endogenous TDP-43 is localized in rat brain’s CMA+ lysosomes, indicating that TDP-43 can be a CMA substrate in vivo. Next, by using a previously reported TDP-43 aggregation model, we have shown that wild-type and an aggregate-prone form of TDP-43 are detected in CMA+ lysosomes isolated from cell cultures. In addition, their protein levels increased in cells displaying CMA down-regulation, indicating that these two TDP-43 forms are CMA substrates in vitro. Finally, we observed that the aggregate-prone form of TDP-43 is able to interact with Hsc70, to co-localize with Lamp2A, and to up-regulate the levels of these molecular components of CMA. The latter was followed by an up-regulation of the CMA activity and lysosomal damage. Altogether our data shows that: (i) TDP-43 is a CMA substrate; (ii) CMA can contribute to control the turnover of physiological and pathological forms of TDP-43; and (iii) TDP-43 aggregation can affect CMA performance. Overall, this work contributes to understanding how a dysregulation between CMA and TDP-43 would participate in neuropathological mechanisms associated with TDP-43 aggregation.
Collapse
Affiliation(s)
- Fernando Ormeño
- Dentistry Faculty, Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, University of Chile, Santiago, Chile.,Autophagy Research Center (ARC), University of Chile, Santiago, Chile
| | - Juan Hormazabal
- Lysosome Biology Research Laboratory, Fundación Ciencia y Vida, Santiago, Chile
| | - José Moreno
- Dentistry Faculty, Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, University of Chile, Santiago, Chile
| | - Felipe Riquelme
- Dentistry Faculty, Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, University of Chile, Santiago, Chile
| | - Javiera Rios
- Dentistry Faculty, Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, University of Chile, Santiago, Chile.,Autophagy Research Center (ARC), University of Chile, Santiago, Chile
| | - Alfredo Criollo
- Cellular Biology Laboratory, Dentistry Faculty, Institute in Dentistry Sciences, University of Chile, Santiago, Chile
| | | | - Iván E Alfaro
- Lysosome Biology Research Laboratory, Fundación Ciencia y Vida, Santiago, Chile.,Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Mauricio Budini
- Dentistry Faculty, Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, University of Chile, Santiago, Chile.,Autophagy Research Center (ARC), University of Chile, Santiago, Chile
| |
Collapse
|
46
|
Sharma NK, Stone S, Kumar VP, Biswas S, Aghdam SY, Holmes-Hampton GP, Fam CM, Cox GN, Ghosh SP. Mitochondrial Degeneration and Autophagy Associated With Delayed Effects of Radiation in the Mouse Brain. Front Aging Neurosci 2020; 11:357. [PMID: 31956306 PMCID: PMC6951400 DOI: 10.3389/fnagi.2019.00357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are linked with various radiation responses, including mitophagy, genomic instability, apoptosis, and the bystander effect. Mitochondria play an important role in preserving cellular homeostasis during stress responses, and dysfunction in mitochondrial contributes to aging, carcinogenesis and neurologic diseases. In this study, we have investigated the mitochondrial degeneration and autophagy in the hippocampal region of brains from mice administered with BBT-059, a long-acting interleukin-11 analog, or its formulation buffer 24 h prior to irradiation at different radiation doses collected at 6 and 12 months post-irradiation. The results demonstrated a higher number of degenerating mitochondria in 12 Gy BBT-059 treated mice after 6 months and 11.5 Gy BBT-059 treated mice after 12 months as compared to the age-matched naïve (non-irradiated control animals). Apg5l, Lc3b and Sqstm1 markers were used to analyze the autophagy in the brain, however only the Sqstm1 marker exhibited significantly reduced expression after 12 months in 11.5 Gy BBT-059 treated mice as compared to naïve. Immunohistochemistry (IHC) results of Bcl2 also demonstrated a decrease in expression after 12 months in 11.5 Gy BBT-059 treated mice as compared to other groups. In conclusion, our results demonstrated that higher doses of ionizing radiation (IR) can cause persistent upregulation of mitochondrial degeneration. Reduced levels of Sqstm1 and Bcl2 can lead to intensive autophagy which can lead to degradation of cellular structure.
Collapse
Affiliation(s)
- Neel K Sharma
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Sasha Stone
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Vidya P Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Shukla Biswas
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Saeed Y Aghdam
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | - George N Cox
- Bolder Biotechnology, Inc., Boulder, CO, United States
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
47
|
Liu Y, Zhang Y, Zhu K, Chi S, Wang C, Xie A. Emerging Role of Sirtuin 2 in Parkinson's Disease. Front Aging Neurosci 2020; 11:372. [PMID: 31998119 PMCID: PMC6965030 DOI: 10.3389/fnagi.2019.00372] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD), the main risk factor of which is age, is one of the most common neurodegenerative diseases, thus presenting a substantial burden on the health of affected individuals as well as an economic burden. Sirtuin 2 (SIRT2), a subtype in the family of sirtuins, belongs to class III histone deacetylases (HDACs). It is known that SIRT2 levels increase with aging, and a growing body of evidence has been accumulating, showing that the activity of SIRT2 mediates various processes involved in PD pathogenesis, including aggregation of α-synuclein (α-syn), microtubule function, oxidative stress, inflammation, and autophagy. There have been conflicting reports about the role of SIRT2 in PD, in that some studies indicate its potential to induce the death of dopaminergic (DA) neurons, and that inhibition of SIRT2 may, therefore, have protective effects in PD. Other studies suggest a protective role of SIRT2 in the context of neuronal damage. As current treatments for PD are directed at alleviating symptoms and are very limited, a comprehensive understanding of the enzymology of SIRT2 in PD may be essential for developing novel therapeutic agents for the treatment of this disease. This review article will provide an update on our knowledge of the structure, distribution, and biological characteristics of SIRT2, and highlight its role in the pathogenesis of PD.
Collapse
Affiliation(s)
- Yumei Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingying Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Konghua Zhu
- Department of Neurology, The Eighth People Hospital of Qingdao City, Qingdao, China
| | - Song Chi
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Malik BR, Maddison DC, Smith GA, Peters OM. Autophagic and endo-lysosomal dysfunction in neurodegenerative disease. Mol Brain 2019; 12:100. [PMID: 31783880 PMCID: PMC6884906 DOI: 10.1186/s13041-019-0504-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Due to their post-mitotic state, metabolic demands and often large polarised morphology, the function and survival of neurons is dependent on an efficient cellular waste clearance system both for generation of materials for metabolic processes and removal of toxic components. It is not surprising therefore that deficits in protein clearance can tip the balance between neuronal health and death. Here we discuss how autophagy and lysosome-mediated degradation pathways are disrupted in several neurological disorders. Both genetic and cell biological evidence show the diversity and complexity of vesicular clearance dysregulation in cells, and together may ultimately suggest a unified mechanism for neuronal demise in degenerative conditions. Causative and risk-associated mutations in Alzheimer's disease, Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, Parkinson's disease, Huntington's disease and others have given the field a unique mechanistic insight into protein clearance processes in neurons. Through their broad implication in neurodegenerative diseases, molecules involved in these genetic pathways, in particular those involved in autophagy, are emerging as appealing therapeutic targets for intervention in neurodegeneration.
Collapse
Affiliation(s)
- Bilal R Malik
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Daniel C Maddison
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK
- School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Gaynor A Smith
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK.
- School of Medicine, Cardiff University, Cardiff, Wales, UK.
| | - Owen M Peters
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK.
- School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
49
|
Cerri S, Blandini F. Role of Autophagy in Parkinson's Disease. Curr Med Chem 2019; 26:3702-3718. [PMID: 29484979 DOI: 10.2174/0929867325666180226094351] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
Autophagy is an essential catabolic mechanism that delivers misfolded proteins and damaged organelles to the lysosome for degradation. Autophagy pathways include macroautophagy, chaperone-mediated autophagy and microautophagy, each involving different mechanisms of substrate delivery to lysosome. Defects of these pathways and the resulting accumulation of protein aggregates represent a common pathobiological feature of neurodegenerative disorders such as Alzheimer, Parkinson and Huntington disease. This review provides an overview of the role of autophagy in Parkinson's disease (PD) by summarizing the most relevant genetic and experimental evidence showing how this process can contribute to disease pathogenesis. Given lysosomes take part in the final step of the autophagic process, the role of lysosomal defects in the impairment of autophagy and their impact on disease will also be discussed. A glance on the role of non-neuronal autophagy in the pathogenesis of PD will be included. Moreover, we will examine novel pharmacological targets and therapeutic strategies that, by boosting autophagy, may be theoretically beneficial for PD. Special attention will be focused on natural products, such as phenolic compounds, that are receiving increasing consideration due to their potential efficacy associated with low toxicity. Although many efforts have been made to elucidate autophagic process, the development of new therapeutic interventions requires a deeper understanding of the mechanisms that may lead to autophagy defects in PD and should take into account the multifactorial nature of the disease as well as the phenotypic heterogeneity of PD patients.
Collapse
Affiliation(s)
- Silvia Cerri
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabio Blandini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
50
|
Yang F, Xie HY, Yang LF, Zhang L, Zhang FL, Liu HY, Li DQ, Shao ZM. Stabilization of MORC2 by estrogen and antiestrogens through GPER1- PRKACA-CMA pathway contributes to estrogen-induced proliferation and endocrine resistance of breast cancer cells. Autophagy 2019; 16:1061-1076. [PMID: 32401166 DOI: 10.1080/15548627.2019.1659609] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aberrant activation of estrogen signaling through three ESR (estrogen receptor) subtypes, termed ESR1/ERα, ESR2/ERβ, and GPER1 (G protein-coupled estrogen receptor 1), is implicated in breast cancer pathogenesis and progression. Antiestrogens tamoxifen (TAM) and fulvestrant (FUL) are effective for treatment of ESR1-positive breast tumors, but development of resistance represents a major clinical challenge. However, the molecular mechanisms behind these events remain largely unknown. Here, we report that 17β-estradiol (E2), TAM, and FUL stabilize MORC2 (MORC family CW-type zinc finger 2), an emerging oncoprotein in human cancer, in a GPER1-dependent manner. Mechanistically, GPER1 activates PRKACA (protein kinase cAMP-activated catalytic subunit alpha), which in turn phosphorylates MORC2 at threonine 582 (T582). Phosphorylated MORC2 decreases its interaction with HSPA8 (heat shock protein family A [Hsp70] member 8) and LAMP2A (lysosomal associated membrane protein 2A), two core components of the chaperone-mediated autophagy (CMA) machinery, thus protecting MORC2 from lysosomal degradation by CMA. Functionally, knockdown of MORC2 attenuates E2-induced cell proliferation and enhances cellular sensitivity to TAM and FUL. Moreover, introduction of wild-type MORC2, but not its phosphorylation-lacking mutant (T582A), in MORC2-depleted cells restores resistance to antiestrogens. Clinically, the phosphorylation levels of MORC2 at T582 are elevated in breast tumors from patients undergoing recurrence after TAM treatment. Together, these findings delineate a phosphorylation-dependent mechanism for MORC2 stabilization in response to estrogen and antiestrogens via blocking CMA-mediated lysosomal degradation and uncover a dual role for MORC2 in both estrogen-induced proliferation and resistance to antiestrogen therapies of breast cancer cells. ABBREVIATIONS 4-OHT: 4-hydroxytamoxifen; Baf A1: bafilomycin A1; CMA: chaperone-mediated autophagy; E2: 17β-estradiol; ESR: estrogen receptor; FUL: fulvestrant; GPER1: G protein-coupled estrogen receptor 1; HSPA8: heat shock protein family A (Hsp70) member 8; LAMP2A: lysosomal associated membrane protein 2A; MORC2: MORC family CW-type zinc finger 2; PRKACA: protein kinase cAMP-activated catalytic subunit alpha; TAM: tamoxifen; VCL: vinculin.
Collapse
Affiliation(s)
- Fan Yang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai, China.,Department of Breast Surgery, Shanghai Cancer Center, Shanghai Medical College, Fudan University , Shanghai, China
| | - Hong-Yan Xie
- Cancer Institute, Shanghai Cancer Center, Shanghai Medical College, Fudan University , Shanghai, China.,Department of Oncology, Shanghai Cancer Center, Shanghai Medical College, Fudan University , Shanghai, China
| | - Li-Feng Yang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai, China
| | - Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai, China.,Cancer Institute, Shanghai Cancer Center, Shanghai Medical College, Fudan University , Shanghai, China.,Department of Oncology, Shanghai Cancer Center, Shanghai Medical College, Fudan University , Shanghai, China
| | - Fang-Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai, China.,Cancer Institute, Shanghai Cancer Center, Shanghai Medical College, Fudan University , Shanghai, China.,Department of Oncology, Shanghai Cancer Center, Shanghai Medical College, Fudan University , Shanghai, China
| | - Hong-Yi Liu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai, China.,Department of Breast Surgery, Shanghai Cancer Center, Shanghai Medical College, Fudan University , Shanghai, China.,Cancer Institute, Shanghai Cancer Center, Shanghai Medical College, Fudan University , Shanghai, China.,Department of Oncology, Shanghai Cancer Center, Shanghai Medical College, Fudan University , Shanghai, China.,Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University , Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University , Shanghai, China
| | - Zhi-Ming Shao
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai, China.,Department of Breast Surgery, Shanghai Cancer Center, Shanghai Medical College, Fudan University , Shanghai, China.,Cancer Institute, Shanghai Cancer Center, Shanghai Medical College, Fudan University , Shanghai, China.,Department of Oncology, Shanghai Cancer Center, Shanghai Medical College, Fudan University , Shanghai, China.,Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University , Shanghai, China
| |
Collapse
|