1
|
Liu H, Liang J, Wang X, Xiong W, Zhang L, Dai X, Wang X, Wang X, Xu Y, Liu Y. ALKBH5 promotes autophagy and progression by mediating m6A methylation of lncRNA UBOX5-AS1 in endometriosis. Am J Physiol Cell Physiol 2025; 328:C639-C656. [PMID: 39761976 DOI: 10.1152/ajpcell.00790.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025]
Abstract
Long noncoding RNA (lncRNA) and N6-methyladenosine (m6A) methylation modification have recently been suggested as potential functional modulators in ovarian endometriosis, however, the function and mechanism of m6A-modified lncRNA in ovarian endometriosis remain poorly understood. In this study, we demonstrated that lncRNA UBOX5-AS1 expression was significantly elevated in ovarian endometriosis tissue and primary ectopic endometrial stromal cells. The expression of lncRNA UBOX5-AS1, which has m6A modifications, was highly positively correlated with demethylase Alk B homologous protein 5 (ALKBH5) expression and autophagy. Functional studies revealed that increased ALKBH5 and lncRNA UBOX5-AS1 expression promoted cell autophagy, proliferation, and invasion in endometriosis in vitro. LncRNA UBOX5-AS1 mediates ALKBH5-regulated autophagy, proliferation, and invasion. ALKBH5-mediated autophagy facilitates cell proliferation, migration, and invasion. In vivo, the knockdown of ALKBH5 inhibited endometriotic lesion growth. Mechanistically, we observed that ALKBH5 mediated the m6A demethylation of lncRNA UBOX5-AS1 and promoted its expression. Thus, our findings highlight that ALKBH5/lncRNA UBOX5-AS1 might serve as potential targets for ovarian endometriosis therapy in the future.NEW & NOTEWORTHY In the present study, we investigated the role and potential molecular mechanism of long noncoding RNA (lncRNA) UBOX5-AS1 in ovarian endometriosis progression. Combined with the aforementioned, we proposed the hypothesis that lncRNA UBOX5-AS1 regulated by Alk B homologous protein 5 (ALKBH5)-mediated N6-methyladenosine (m6A) modification contributes to the progression of ovarian endometriosis progression.
Collapse
Affiliation(s)
- Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaoli Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xin Dai
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Xiuping Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiwen Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Ying Xu
- Department of Reproductive Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
2
|
He X, Zhao X, Wang H. LPI-GPR55 promotes endothelial cell activation and inhibits autophagy through inducing LINC01235 expression. Ann Med 2024; 56:2407525. [PMID: 39316662 PMCID: PMC11423533 DOI: 10.1080/07853890.2024.2407525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
INTRODUCTION Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid accumulation, inflammation and apoptosis of the arterial wall. This study evaluated the effects of lysophosphatidylinositol (LPI) on endothelial cells activation and autophagy in AS. METHODS qRT-PCR and Western blotting were done to verify the expression of ICAM1, GPR55 and SOD2. RNA-Seq was performed and screened for the different expressions of long noncoding RNAs (lncRNAs), combining bioinformatics analysis to elucidate the mechanism by which lncRNA functions. RESULTS qRT-PCR and Western blotting results showed that LPI increased GPR55 and ICAM1 expression. RNA-Seq analysis and qRT-PCR results showed that LPI increased the expression of LINC01235, LINC00520 and LINC01963; LINC01235 was the most obvious. Mechanistically, bioinformatic analysis demonstrated that LINC01235 inhibited autophagy through sponging miR-224-3p. And miRNA-224-3p targeted RABEP1. CONCLUSIONS LPI promoted endothelial cell activation. LPI induced the expression of LINC01235 and LINC01235 inhibited autophagy through miR-224-3p/RABEP1. Collectively, this study first reveals the function of LINC01235, which may serve as a potential therapeutic target in AS.
Collapse
Affiliation(s)
- Xiaoying He
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Xin Zhao
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital, Taiyuan, China
| | | |
Collapse
|
3
|
Xing ZY, Liu W, Xing RJ, Chen JF, Xiong J. Integrated analysis ceRNA network of autophagy-related gene RNF144B in steroid-induced necrosis of the femoral head. Sci Rep 2024; 14:28737. [PMID: 39567703 PMCID: PMC11579326 DOI: 10.1038/s41598-024-79923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
This study aimed to investigate the regulatory mechanisms that influenced autophagy in Steroid-induced necrosis of the femoral head (SONFH) by constructing a competing endogenous RNA (ceRNA) network. Blood sample data from the SONFH patients were obtained from the Gene Expression Omnibus (GEO) database under the accession number GSE123568. Autophagy-related genes were identified from the Human Autophagy Database (HADb). Differential analysis and weighted gene co-expression network analysis (WGCNA) were performed on the GSE123568 dataset to screen for core genes and validation was performed with the validation set. Based on the GEO dataset (GSE74089), we performed differential lncRNA analysis. Meanwhile, we utilized three databases, namely miRDB, TargetScan, and StarBase, to predict the miRNAs of target genes and corresponding lncRNAs. Cytoscape software was used to construct and visualize the ceRNA networks. We also employed reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to quantify their expression levels. A total of 1692 differentially expressed genes (DEGs) were identified in the GSE123568 dataset. By intersecting with the HADb database, 47 autophagy-related genes were identified from these DEGs. Furthermore, we found the significant correlation between RNF144B and 37 autophagy genes. Importantly, we established a regulatory axis involving TUG1, hsa-miR-31-5p, and RNF144B., and both TUG1 and RNF144B were upregulated, while hsa-miR-31-5p was downregulated in the SONFH cell model. A TUG1-hsa-miR-31-5p-RNF144B axis was related to autophagy genes, which potentially provided insights into the RNA interactions triggering autophagy in SONFH.
Collapse
Affiliation(s)
- Zeng-Ying Xing
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Haikou, 570311, Hainan Province, China
| | - Wei Liu
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Haikou, 570311, Hainan Province, China
| | - Ri-Jin Xing
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Haikou, 570311, Hainan Province, China
| | - Jian-Fei Chen
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Haikou, 570311, Hainan Province, China
| | - Jun Xiong
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
4
|
Mobasher MA, Shabana MA, Germoush MO, Abuzinadah NY, Abd-Elhameed A, Baioumy SA, ElKot MA, Esawy MM. LncRNA LYPLAL1, miR-204-5p, and SIRT1: novel signatures for risk assessment of diabetic macrovascular complications. Sci Rep 2024; 14:24154. [PMID: 39406930 PMCID: PMC11480381 DOI: 10.1038/s41598-024-75543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Long-term, uncontrolled diabetes mellitus can lead to micro- and macrovascular problems. The protective function of lncRNA LYPLAL1 is to reduce endothelium cell inflammation by upregulating sirtuin 1 (SIRT1) and reducing microRNA (miR)-204-5p. This work attempted to examine the lncRNA LYPLAL1/miR-204-5p/SIRT1 molecules as diagnostic biomarkers for diabetic MVC and to assess their clinical correlations. The study enrolled 32 controls, 32 patients with diabetes alone, and 32 patients with diabetic MVC. RT-qPCR, or quantitative real-time PCR, was utilized to determine the expression levels of lncRNA and miR. SIRT1 was measured by ELISA. When comparing cases with MVC to those without MVC, the lncRNA LYPLAL1 and SIRT1 values were significantly lower. Conversely, patients with MVC had significantly higher miR-204-5p levels than those without MVC. The LncRNA LYPLAL1 performed best in terms of detecting MVC. It attained 90.6% specificity and 96.9% sensitivity. A combination of three markers (lncRNA LYPLAL1, miR-204-5p, and SIRT1) yielded the best accuracy at 98.4%. LYPLAL1 expression appeared to be an independent MVC predictor. Adjusted OR for LYPLAL1 expression was 405 (95% CI: 1.4-1200) (p = 0.039). When we compared cases with MVC to those without MVC, the lncRNA LYPLAL1 and SIRT1 values were significantly lower. Patients with MVC had significantly higher miR-204-5p levels than those without MVC. LYPLAL1 LncRNA demonstrated the best performance characteristics. LncRNA LYPLAL1 expression is an independent predictor of MVC.
Collapse
Affiliation(s)
- Maysa A Mobasher
- Department of Pathology, Biochemistry Division, College of Medicine, Jouf University, 72388, Sakaka, Saudi Arabia.
| | - Marwa A Shabana
- Clinical Pathology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, Sakakah, Saudi Arabia
| | - Najlaa Yousef Abuzinadah
- Department of biological science, College of Science, University of Jeddah, 23714, Jeddah, Saudi Arabia
| | - Amir Abd-Elhameed
- Internal Medicine Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Shereen A Baioumy
- Microbiology and Immunology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Moataz A ElKot
- Cardiology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa M Esawy
- Clinical Pathology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Luo H, Chong H, Wang Y, Gao Y, Xie W, Wang D. Screening lncRNAs essential for cardiomyocyte proliferation by integrative profiling of lncRNAs and mRNAs associated with heart development. Exp Cell Res 2024; 442:114277. [PMID: 39383929 DOI: 10.1016/j.yexcr.2024.114277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND The proliferation potential of mammalian cardiomyocytes declines markedly shortly after birth. Both long non-coding RNAs (lncRNAs) and mRNAs demonstrate altered expression patterns during cardiac development. However, the role of lncRNAs in the cell cycle arrest of cardiomyocytes remains inadequately understood. METHOD The expression pattern of lncRNAs and mRNAs was analyzed in mouse hearts exhibiting varying regenerative potentials on postnatal days (P) 1, 7, and 28. Weighted correlation network analysis (WGCNA) was employed to elucidate the co-expression relationship between lncRNAs and mRNAs. Protein-protein interaction (PPI) network was built using the STRING database, and hub lncRNAs were identified by CytoHubba. Molecular Complex Detection (MCODE) was used to screen core modules of the PPI network in Cytoscape. Upstream lncRNAs and miRNAs which may regulate mRNAs were predicted using miRTarBase and AnnoLnc2, respectively. Myocardial infarction (MI) was induced by ligation of the left anterior descending coronary artery. RESULTS Compared with the P1 heart, 618 mRNAs and 414 lncRNAs displayed. transcriptional changes in the P7 heart, while 2358 mRNAs and 1290 lncRNAs showed from P7 to P28. Gene Ontology (GO) analysis revealed that module 1 in the both comparisons was enriched in the mitotic cell cycle process. 2810408I11Rik and 2010110K18Rik were identified as hub lncRNAs and their effects on the proliferation of cardiomyocytes were verified in vitro. Additionally, four lncRNA-miRNA-mRNA regulatory axes were predicted to explain the mechanism by which 2810408I11Rik and 2010110K18Rik regulate cardiomyocyte proliferation. Notably, the overexpression of 2810408I11Rik enhances cardiomyocyte proliferation and heart regeneration in the adult heart following MI. CONCLUSION This study systematically analyzed the landscape of lncRNAs and mRNAs at P1, P7, and P28. These findings may enhance our understanding of the framework for heart development and could have significant implications for heart regeneration.
Collapse
Affiliation(s)
- Hanqing Luo
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hoshun Chong
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yapeng Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, China
| | - Yaxuan Gao
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei Xie
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dongjin Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Liang J, Xie J, He J, Li Y, Wei D, Zhou R, Wei G, Liu X, Chen Q, Li D. Inhibiting lncRNA NEAT1 Increases Glioblastoma Response to TMZ by Reducing Connexin 43 Expression. Cancer Rep (Hoboken) 2024; 7:e70031. [PMID: 39453684 PMCID: PMC11505515 DOI: 10.1002/cnr2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/13/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVES Glioblastoma multiforme (GBM) is considered the most assailant subtype of gliomas, presenting a formidable obstacle because of its inherent resistance to temozolomide (TMZ). This study aimed to characterize the function of lncRNA NEAT1 in facilitating the advancement of gliomas. METHODS The expression level of NEAT1 in glioma tissues and cells was detected by qRT-PCR. RNA interference experiment, cell proliferation assay, FITC/PI detection assay, immunoblotting, bioinformatics prediction, a double luciferase reporter gene assay, RNA immunoprecipitation (RIP) assay, SLDT assay and correlation analysis of clinical samples were performed to explore the regulatory effects of NEAT1, miR-454-3p and Cx43 and their role in malignant progression of GBM. The role of NEAT1 in vivo was investigated by an intracranial tumor formation experiment in mice. RESULTS The results showed that recurring gliomas displayed elevated levels of NEAT1 compared to primary gliomas. The suppression of NEAT1 led to a restoration of sensitivity in GBM cells to TMZ. NEAT1 functioned as a competitive endogenous RNA against miR-454-3p. Connexin 43 was identified as a miR-454-3p target. NEAT1 was found to regulate gap junctional intercellular communication by modulating Connexin 43, thereby impacting the response of GBM cells to TMZ chemotherapy. Downregulation of NEAT1 resulted in enhanced chemosensitivity to TMZ and extended the survival of mice. CONCLUSIONS Overall, these results indicated that the NEAT1/miR-454-3p/Connexin 43 pathway influences GBM cell response to TMZ and could offer a potential new strategy for treating GBM.
Collapse
Affiliation(s)
- Jinxing Liang
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
- Pharmaceutical CollegeGuangxi Medical UniversityNanningChina
| | - Jia‐xiu Xie
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Junhui He
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Yi Li
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Dongmei Wei
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Rongfei Zhou
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
- Pharmaceutical CollegeGuangxi Medical UniversityNanningChina
| | - Guining Wei
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Xuehua Liu
- Department of CardiologySir Run Run Hospital of Nanjing Medical UniversityNanjingChina
| | - Qiudan Chen
- Department of Clinical Laboratory, Central Laboratory, Jing'an District Center Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Dongmei Li
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesGuangxi Normal UniversityGuilinChina
| |
Collapse
|
7
|
Zhou X, Zhang C, Yu H, Feng Z, Bai X, Mei Y, Li L, Li X, Gou X, Deng Y. The MEF2A/SNHG16/miR-425-5p/NOTCH2 axis induces gemcitabine resistance by inhibiting ferroptosis in the starving bladder tumor microenvironment. Cell Signal 2024; 122:111337. [PMID: 39121977 DOI: 10.1016/j.cellsig.2024.111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Gemcitabine resistance is one of the leading causes of bladder cancer (BCa) recurrence and progression. The dysregulation of ferroptosis is involved in this process; however, the underlying mechanisms remain unclear. In the current study, we found a prominent increase in long non-coding RNA (lncRNA) small nucleolar RNA host gene 16 (SNHG16) in tumor samples, which was related to advanced tumor grade and poor prognosis. SNHG16 is overexpressed in the starving tumor microenvironment (STME) and induces gemcitabine resistance by inhibiting ferroptosis in BCa. SNHG16 knockdown promotes ferroptosis and increases chemosensitivity to gemcitabine. Mechanistically, the transcription factor MEF2A was markedly upregulated in the STME, facilitating SNHG16 expression. SNHG16 acts as a competing endogenous RNA that sponges miR-425-5p and promotes NOTCH2 expression. SNHG16/miR-425-5p/NOTCH2 is demonstrated, for the first time, to suppress ferroptosis by inducing SLC7A11 and GPX4 expression in vitro and in vivo. Upregulation of miR-425-5p reverses NOTCH2-mediated inhibition of ferroptosis, thereby mitigating gemcitabine resistance. In conclusion, these findings reveal that the STME-activated MEF2A/SNHG16/miR-425-5p/NOTCH2 axis induces gemcitabine resistance by inhibiting ferroptosis and implicate SNHG16 as a potential therapeutic target for chemoresistance.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Amino Acid Transport System y+/metabolism
- Amino Acid Transport System y+/genetics
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Ferroptosis/drug effects
- Ferroptosis/genetics
- Gemcitabine
- Gene Expression Regulation, Neoplastic/drug effects
- MEF2 Transcription Factors/metabolism
- MEF2 Transcription Factors/genetics
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
- Receptor, Notch2/metabolism
- Receptor, Notch2/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Tumor Microenvironment
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/pathology
- Urinary Bladder Neoplasms/drug therapy
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Chunlin Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Haitao Yu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Zhenwei Feng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xuesong Bai
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Yuhua Mei
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Li Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xinyuan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yuanzhong Deng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Xu Q, Wen X, Huang C, Lin Z, Xu Z, Sun C, Li L, Zhang S, Song S, Lou J, Hou Z, Chen Y, Li X, Chen L. RRFERV stabilizes TEAD1 expression to mediate nasopharyngeal cancer radiation resistance rendering tumor cells vulnerable to ferroptosis. Int J Surg 2024; 111:01279778-990000000-01974. [PMID: 39352125 PMCID: PMC11745583 DOI: 10.1097/js9.0000000000002099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/18/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) regulate various essential biological processes, including cell proliferation, differentiation, apoptosis, migration, and invasion. However, in nasopharyngeal carcinoma (NPC), the clinical significance and mechanisms of lncRNAs in malignant progression are unknown. METHODS RNA sequencing and bioinformatic analysis were used to determine the potential function of RRFERV (radiation-resistant but ferroptosis vulnerable), and its biological effects were investigated using in vitro and in vivo experiments. Western blotting, quantitative real-time reverse transcription PCR, RNA immunoprecipitation (RIP) assays, and flow cytometry detected RRFERV expression. Ferroptosis and lipid peroxidation were added to evaluate the relationship between it and radiotherapy resistance. RESULTS LncRNA-RRFERV was both highly expressed in NPC tissues and radiation-resistant cells. RRFERV is associated with poor clinical outcomes of NPC patients and stabilizes TEAD1 by competitive binding with microRNA-615-5p and microRNA-1293. RRFERV-TEAD1 signaling axis leads to malignant progression and radiotherapy resistance of NPC. Furthermore, we observed that NPC radiotherapy resistance cells exist in a fragile oxidative stress equilibrium, which makes them more sensitive to ferroptosis inducers. Surprisingly, we found that RRFERV-TEAD1 signaling axis also plays a key role in mediating the lipid peroxidation levels of NPC radiotherapy resistance cells through transcriptional activation of ACSL4/TFRC. CONCLUSIONS RRFERV serves as an independent prognostic factor in NPC. During the malignant progression of NPC caused by high expression of RRFERV, ferroptosis can be induced to effectively kill cancer cells and reverse the radiotherapy resistance of NPC cells, suggesting a potential treatment approach for recurrent and refractory NPC.
Collapse
Affiliation(s)
- Qingqing Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co, Guangzhou, China
| | - Xin Wen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chenglong Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co, Guangzhou, China
| | - Zaishan Lin
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co, Guangzhou, China
| | - Zhen Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co, Guangzhou, China
| | - Ciming Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co, Guangzhou, China
| | - Li Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co, Guangzhou, China
| | - Suixian Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co, Guangzhou, China
| | - Shuanghong Song
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co, Guangzhou, China
| | - Jiahao Lou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co, Guangzhou, China
| | - Zan Hou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co, Guangzhou, China
| | - Yuanyuan Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co, Guangzhou, China
| | - Xuan Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co, Guangzhou, China
| | - Lei Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co, Guangzhou, China
| |
Collapse
|
9
|
Wang G, Yao Y, Xie J, Wen C. Long noncoding RNA ZFAS1 exerts a suppressive impact on ferroptosis by modulating the miR-150/AIFM2 axis in hepatocellular carcinoma cells. Heliyon 2024; 10:e37225. [PMID: 39296014 PMCID: PMC11409106 DOI: 10.1016/j.heliyon.2024.e37225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
ZNFX1 Antisense RNA 1 (ZFAS1) act as an oncogenic long noncoding RNA in multiple types of cancer. Ferroptosis is an iron-dependent cell death characterized by excessive iron accumulation and lipid peroxidation. However, to date, the functional role and mechanism of ZFAS1 in ferroptosis in hepatocellular carcinoma (HCC) remains largely unknown. The present study revealed that ZFAS1 was upregulated in HCC and upregulation of ZFAS1 indicated poor clinical outcome of HCC patients. Loss- and gain-of-function experiments demonstrated that knockdown of ZFAS1 inhibited HCC cell proliferation and induced ferroptosis, while overexpression of ZFAS1 exerted opposite effects. ZFAS1 enhanced cell proliferation via suppression of ferroptotic death. Mechanistically, ZFAS1 interacted with miR-150 and decreased its expression. AIFM2, the critical ferroptosis protector, was a direct target of ZFAS1/miR-150. ZFAS1 accelerated HCC proliferation and inhibited ferroptosis by the regulation of the miR-150/AIFM2 axis. These discoveries intimate an essential part of ZFAS1/miR-150/AIFM2 in governing HCC ferroptosis, which may provide a promising therapeutic strategy for HCC patients.
Collapse
Affiliation(s)
- Guangsheng Wang
- Department of Gastrointestinal surgery, The First Clinical Medical College of China Three Gorges University, China
| | - Yongshan Yao
- Department of Emergency surgery, The First Clinical Medical College of China Three Gorges University, China
| | - Jiasheng Xie
- Department of General surgery, Xiling Community Health Service Center, Xiling District, Yichang City, China
| | - Caihong Wen
- Department of Medical oncology, The First Clinical Medical College of China Three Gorges University, China
| |
Collapse
|
10
|
Lin H, Yao T, Ding H, Chu J, Yuan D, Ping F, Chen F, Liu X. Identification and functional characterization of differentially expressed circRNAs in high glucose treated endothelial cells: Construction of circRNA-miRNA-mRNA network. Heliyon 2024; 10:e37028. [PMID: 39281534 PMCID: PMC11399645 DOI: 10.1016/j.heliyon.2024.e37028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
Background Endothelial dysfunction is a complication of diabetes mellitus (DM), characterized by impaired endothelial function in both microvessels and macrovessels, closely linked to atherosclerosis (AS). Endothelial dysfunction, characterized by impaired endothelial cell (EC) function, is a pivotal factor in AS and DM. Circular RNAs (circRNAs) are endogenous non-coding RNAs that can act as competing endogenous RNAs (ceRNAs) and regulate gene expression. However, the role of circRNAs in ECs dysfunction and AS under high glucose (HG) condition remains elusive. Methods We performed high-throughput sequencing to identify differentially expressed (DE) circRNAs in human umbilical vein endothelial cells (HUVEC) exposed to HG, one risk factors of endothelial dysfunction and AS. We then validated eight candidate circRNAs by qRT-PCR and functional analysis, directing our attention to hsa_circ_0122319. Moreover, microarray analysis identified the differential expression profiles of miRNAs and mRNAs regulated by hsa_circ_0122319. Subsequently, the construction of the ceRNAs network employed bioinformatic analysis and Cytoscape software. Furthermore, the role of the PI3K-Akt signaling pathway in regulating ceRNAs was evaluated. Results We detected 917 DE circRNAs in HG treated HUVEC. The parental genes of these circRNAs were enriched in cell cycle, cellular senescence and endocytosis related pathways. The differential expression of hsa_circ_0122319 was confirmed to be most obvious at the cellular level and in clinical samples by qPCR experiments. After overexpression of hsa_circ_0122319, 49 DE miRNAs and 459 DE mRNAs were identified using microarray analysis. Subsequently, a ceRNAs network was constructed, comprising hsa_circ_0122319, 8 miRNAs, and 41 mRNAs. Conclusion In summary, our study delves into the role of circRNAs in endothelial dysfunction associated with DM and AS. Through high-throughput sequencing and validation, we identified hsa_circ_0122319 as a pivotal regulator of ECs function under HG conditions. It also showed that hsa_circ_0123319 has the potential to serve as a biomarker for DM and its vascular complications, and provides new evidence for future exploration of the intricate molecular mechanisms of endothelial dysfunction in the progression of DM and AS.
Collapse
Affiliation(s)
- Hao Lin
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Tongqing Yao
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Haoran Ding
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Jiapeng Chu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Deqiang Yuan
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Fan Ping
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Fei Chen
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Xuebo Liu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| |
Collapse
|
11
|
Wei J, Zhang M, Wang X, Yang K, Xiao Q, Zhu X, Pan X. Role of cardiolipin in regulating and treating atherosclerotic cardiovascular diseases. Eur J Pharmacol 2024; 979:176853. [PMID: 39067567 DOI: 10.1016/j.ejphar.2024.176853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Cardiovascular diseases, mainly caused by atherosclerosis, are the leading causes of morbidity and mortality worldwide. Despite the discrepancies in clinical manifestations between different abnormalities, atherosclerosis shares similar pathophysiological processes, such as mitochondrial dysfunction. Cardiolipin (CL) is a conserved mitochondria-specific lipid that contributes to the cristae structure of the inner mitochondrial membrane (IMM). Alterations in the CL, including oxidative modification, reduced quantity, and abnormal localization, contribute to the onset and progression of atherosclerosis. In this review, we summarize the knowledge that CL is involved in the pathogenesis of atherosclerosis. On the one hand, CL and its oxidative modification promote the progression of atherosclerosis via several mechanisms, including oxidative stress, apoptosis, and inflammation in response to stress. On the other hand, CL externalizes to the outer mitochondrial membrane (OMM) and acts as the pivotal "eat-me" signal in mitophagy, removing dysfunctional mitochondria and safeguarding against the progression of atherosclerosis. Given the imbalance between proatherogenic and antiatherogenic effects, we provide our understanding of the roles of the CL and its oxidative modification in atherosclerotic cardiovascular diseases, in addition to potential therapeutic strategies aimed at restoring the CL. Briefly, CL is far more than a structural IMM lipid; broader significances of the evolutionarily conserved lipid need to be explored.
Collapse
Affiliation(s)
- Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
12
|
Biros E, Vangaveti V, Malabu U. Vildagliptin promotes diabetic foot ulcer healing through autophagy modulation. Diabetol Metab Syndr 2024; 16:204. [PMID: 39175083 PMCID: PMC11340129 DOI: 10.1186/s13098-024-01444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
The study aimed to investigate the molecular mechanisms underlying the effects of Vildagliptin on the healing of diabetic foot ulcers (DFUs). The research compared patients who received 12 weeks of Vildagliptin treatment to those who did not. Various molecular markers associated with wound healing were measured. Wound fluid samples were collected from DFUs using a filter paper absorption technique, and total RNA was extracted for quantitative real-time PCR (qPCR). The results showed that the autophagy marker NUP62 was significantly downregulated in the Vildagliptin group at week 12 compared to baseline (median expression 0.57 vs. 1.28; P = 0.0234). No significant change was observed in the placebo group (median expression 1.61 vs. 1.48; P = 0.9102). Both groups showed substantial downregulation of RIPK3, a necroptosis marker, at week 12 compared to their respective baselines. In addition to its effects on blood sugar levels, Vildagliptin may promote DFU healing by reducing autophagy in patients with diabetes.
Collapse
Affiliation(s)
- Erik Biros
- Translational Research in Endocrinology and Diabetes, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia.
- Townsville University Hospital, Townsville, Australia.
| | - Venkat Vangaveti
- Translational Research in Endocrinology and Diabetes, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia
- Townsville University Hospital, Townsville, Australia
| | - Usman Malabu
- Translational Research in Endocrinology and Diabetes, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia
- Department of Diabetes and Endocrinology, Townsville University Hospital, Townsville, Australia
| |
Collapse
|
13
|
Xie D, Yang K, Xu Y, Li Y, Liu C, Dong Y, Chi J, Yin X. N6-methyladenosine demethylase fat mass and obesity-associated protein suppresses hyperglycemia-induced endothelial cell injury by inhibiting reactive oxygen species formation via autophagy promotion. J Diabetes Complications 2024; 38:108801. [PMID: 38935979 DOI: 10.1016/j.jdiacomp.2024.108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Hyperglycemia-induced endothelial cell injury is one of the main causes of diabetic vasculopathy. Fat mass and obesity-associated protein (FTO) was the first RNA N6-methyladenosine (m6A) demethylase identified; it participates in the pathogenesis of diabetes. However, the role of FTO in hyperglycemia-induced vascular endothelial cell injury remains unclear. MATERIALS AND METHODS The effects of FTO on cellular m6A, autophagy, oxidative stress, proliferation, and cytotoxicity were explored in human umbilical vein endothelial cells (HUVECs) treated with high glucose (33.3 mmol/mL) after overexpression or pharmacological inhibition of FTO. MeRIP-qPCR and RNA stability assays were used to explore the molecular mechanisms by which FTO regulates autophagy. RESULTS High glucose treatment increased m6A levels and reduced FTO protein expression in HUVECs. Wild-type overexpression of FTO markedly inhibited reactive oxygen species generation by promoting autophagy, increasing endothelial cell proliferation, and decreasing the cytotoxicity of high glucose concentrations. The pharmacological inhibition of FTO showed the opposite results. Mechanistically, we identified Unc-51-like kinase 1 (ULK1), a gene responsible for autophagosome formation, as a downstream target of FTO-mediated m6A modification. FTO overexpression demethylated ULK1 mRNA and inhibited its degradation in an m6A-YTHDF2-dependent manner, leading to autophagy activation. CONCLUSIONS Our study demonstrates the functional importance of FTO-mediated m6A modification in alleviating endothelial cell injury under high glucose conditions and indicates that FTO may be a novel therapeutic target for diabetic vascular complications.
Collapse
Affiliation(s)
- Di Xie
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Kelaier Yang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, China
| | - Yang Xu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunnan Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanghong Dong
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinyu Chi
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Xinhua Yin
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Cardiology, Shenzhen University General Hospital, Shenzhen, China.
| |
Collapse
|
14
|
Tapia A, Liu X, Malhi NK, Yuan D, Chen M, Southerland KW, Luo Y, Chen ZB. Role of long noncoding RNAs in diabetes-associated peripheral arterial disease. Cardiovasc Diabetol 2024; 23:274. [PMID: 39049097 PMCID: PMC11271017 DOI: 10.1186/s12933-024-02327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that heightens the risks of many vascular complications, including peripheral arterial disease (PAD). Various types of cells, including but not limited to endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and macrophages (MΦs), play crucial roles in the pathogenesis of DM-PAD. Long non-coding RNAs (lncRNAs) are epigenetic regulators that play important roles in cellular function, and their dysregulation in DM can contribute to PAD. This review focuses on the developing field of lncRNAs and their emerging roles in linking DM and PAD. We review the studies investigating the role of lncRNAs in crucial cellular processes contributing to DM-PAD, including those in ECs, VSMCs, and MΦ. By examining the intricate molecular landscape governed by lncRNAs in these relevant cell types, we hope to shed light on the roles of lncRNAs in EC dysfunction, inflammatory responses, and vascular remodeling contributing to DM-PAD. Additionally, we provide an overview of the research approach and methodologies, from identifying disease-relevant lncRNAs to characterizing their molecular and cellular functions in the context of DM-PAD. We also discuss the potential of leveraging lncRNAs in the diagnosis and therapeutics for DM-PAD. Collectively, this review provides a summary of lncRNA-regulated cell functions contributing to DM-PAD and highlights the translational potential of leveraging lncRNA biology to tackle this increasingly prevalent and complex disease.
Collapse
Affiliation(s)
- Alonso Tapia
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Xuejing Liu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Naseeb Kaur Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Muxi Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Kevin W Southerland
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA.
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
15
|
Lai X, Wang M, Zhang Z, Chen S, Tan X, Liu W, Liang H, Li L, Shao L. ZNPs reduce epidermal mechanical strain resistance by promoting desmosomal cadherin endocytosis via mTORC1-TFEB-BLOC1S3 axis. J Nanobiotechnology 2024; 22:312. [PMID: 38840221 PMCID: PMC11151536 DOI: 10.1186/s12951-024-02519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Zinc oxide nanoparticles (ZNPs) are widely used in sunscreens and nanomedicines, and it was recently confirmed that ZNPs can penetrate stratum corneum into deep epidermis. Therefore, it is necessary to determine the impact of ZNPs on epidermis. In this study, ZNPs were applied to mouse skin at a relatively low concentration for one week. As a result, desmosomes in epidermal tissues were depolymerized, epidermal mechanical strain resistance was reduced, and the levels of desmosomal cadherins were decreased in cell membrane lysates and increased in cytoplasmic lysates. This finding suggested that ZNPs promote desmosomal cadherin endocytosis, which causes desmosome depolymerization. In further studies, ZNPs were proved to decrease mammalian target of rapamycin complex 1 (mTORC1) activity, activate transcription factor EB (TFEB), upregulate biogenesis of lysosome-related organelle complex 1 subunit 3 (BLOC1S3) and consequently promote desmosomal cadherin endocytosis. In addition, the key role of mTORC1 in ZNP-induced decrease in mechanical strain resistance was determined both in vitro and in vivo. It can be concluded that ZNPs reduce epidermal mechanical strain resistance by promoting desmosomal cadherin endocytosis via the mTORC1-TFEB-BLOC1S3 axis. This study helps elucidate the biological effects of ZNPs and suggests that ZNPs increase the risk of epidermal fragmentation.
Collapse
Affiliation(s)
- Xuan Lai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Menglei Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Suya Chen
- Hospital of Stomatology, Guanghua school of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiner Tan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Wenjing Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Huimin Liang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Li Li
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Chen J, Li L, Feng Y, Zhao Y, Sun F, Zhou X, Yiqi D, Li Z, Kong F, Kong X. MKLN1-AS promotes pancreatic cancer progression as a crucial downstream mediator of HIF-1α through miR-185-5p/TEAD1 pathway. Cell Biol Toxicol 2024; 40:30. [PMID: 38740637 PMCID: PMC11090931 DOI: 10.1007/s10565-024-09863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/25/2024] [Indexed: 05/16/2024]
Abstract
In pancreatic ductal adenocarcinomas (PDAC), profound hypoxia plays key roles in regulating cancer cell behavior, including proliferation, migration, and resistance to therapies. The initial part of this research highlights the important role played by long noncoding RNA (lncRNA) MKLN1-AS, which is controlled by hypoxia-inducible factor-1 alpha (HIF-1α), in the progression of PDAC. Human samples of PDAC showed a notable increase in MKLN1-AS expression, which was linked to a worse outcome. Forced expression of MKLN1-AS greatly reduced the inhibitory impact on the growth and spread of PDAC cells caused by HIF-1α depletion. Experiments on mechanisms showed that HIF-1α influences the expression of MKLN1-AS by directly attaching to a hypoxia response element in the promoter region of MKLN1-AS.MKLN1-AS acts as a competitive endogenous RNA (ceRNA) by binding to miR-185-5p, resulting in the regulation of TEAD1 expression and promoting cell proliferation, migration, and tumor growth. TEAD1 subsequently enhances the development of PDAC. Our study results suggest that MKLN1-AS could serve as a promising target for treatment and a valuable indicator for predicting outcomes in PDAC. PDAC is associated with low oxygen levels, and the long non-coding RNA MKLN1-AS interacts with TEAD1 in this context.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Disease Progression
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Nuclear Proteins/metabolism
- Nuclear Proteins/genetics
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction/genetics
- TEA Domain Transcription Factors/metabolism
- Transcription Factors/metabolism
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Jiayu Chen
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
- National key laboratory of Immunity and inflammation, Naval Medical University, Shanghai, 200433, China
| | - Lei Li
- Digestive Endoscopy Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yongpu Feng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yating Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- National key laboratory of Immunity and inflammation, Naval Medical University, Shanghai, 200433, China
| | - Fengyuan Sun
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
- National key laboratory of Immunity and inflammation, Naval Medical University, Shanghai, 200433, China
| | - Xianzhu Zhou
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Du Yiqi
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Fanyang Kong
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China.
| | - Xiangyu Kong
- National key laboratory of Immunity and inflammation, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
17
|
Xu H, Yang H, Wang Z, Tang Q, Cao X, Chen C, Dong Y, Xu Z, Lv D, Rong Y, Chen M, Tang B, Deng W, Zhu J, Hu Z. Epidermal Stem Cell Derived Exosomes Alleviate Excessive Autophagy Induced Endothelial Cell Apoptosis by Delivering miR200b-3p to Diabetic Wounds. J Invest Dermatol 2024; 144:1134-1147.e2. [PMID: 37838331 DOI: 10.1016/j.jid.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 10/16/2023]
Abstract
The dysfunction of endothelial cells caused by hyperglycemia is observed as a decrease in neovascularization in diabetic wound healing. Studies have found that epidermal stem cells (EpiSCs) can promote the angiogenesis of full-thickness wounds. To further explain the therapeutic effect of EpiSCs, EpiSC-derived exosomes (EpiSC-EXOs) are considered the main substance contributing to stem cell effectivity. In our study, EpiSCs and EpiSC-EXOs were supplied to the dorsal wounds of db/db mice. Results showed that EpiSCs could colonize in the wound area and both EpiSCs and EpiSC-EXOs could accelerate diabetic wound healing by promoting angiogenesis. In vitro, persistent high glucose led to the malfunction and apoptosis of endothelial cells. The apoptosis induced by high glucose is due to excessive autophagy and was alleviated by EpiSC-EXOs. RNA sequencing of EpiSC-EXOs showed that miR200b-3p was enriched in EpiSC-EXOs and alleviated the apoptosis of endothelial cells. Synapse defective rho GTPase homolog 1 was identified the target of miR200b-3p and affected the phosphorylation of ERK to regulate intracellular autophagy and apoptosis. Furthermore, animal experiments validated the angiogenic effect of miR200b-3p. Collectively, our results verified the effect of EpiSC-EXOs on apoptosis caused by hyperglycemia in endothelial cells through the miR200b-3p/synapse defective rho GTPase homolog 1 /RAS/ERK/autophagy pathway, providing a theoretical basis for EpiSC in treating diabetic wounds.
Collapse
Affiliation(s)
- Hailin Xu
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Hao Yang
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Zhiyong Wang
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Qizhi Tang
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated Nanhai Hospital of Traditional Chinese Medicine of Jinan University, Foshan, China
| | - Xiaoling Cao
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Chufen Chen
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Yunxian Dong
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Zhongye Xu
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Dongming Lv
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Yanchao Rong
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Miao Chen
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated Nanhai Hospital of Traditional Chinese Medicine of Jinan University, Foshan, China
| | - Bing Tang
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jiayuan Zhu
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China
| | - Zhicheng Hu
- First Affiliated Hospital of Sun Yat-sen University, Burn department, Guangzhou, China.
| |
Collapse
|
18
|
Zhao C, Ma G, Tao S, Wang M, Chen Z, Fang Y, Shi W. Qi-Ju-Di-Huang-Pill delays the progression of diabetic retinopathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117751. [PMID: 38216102 DOI: 10.1016/j.jep.2024.117751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qi-Ju-Di-Huang-Pill (QJDH pill) is a Chinese decoction. Although it is commonly used to treat eye conditions, such as diabetic retinopathy (DR), its exact mechanism of action is unknown. AIM OF THE STUDY To investigate the specific mechanism by which QJDH pill slows the progression of diabetic retinopathy (DR) based on animal and cellular experiments. MATERIAL AND METHODS The major components of QJDH pill were characterized by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLCMS/MS). C57BL/6J mice were randomly divided into five groups as follows: normal group (control group), model group (STZ group), low-dosage QJDH pill group (QJDH-L group), medium-dosage QJDH pill group (QJDH-M group) and high-dosage QJDH pill group (QJDH-H group). Changes in water intake, urination, food intake, and body mass were monitored weekly, while changes in blood glucose were monitored monthly. Fluorescein fundus angiography (FFA), optical coherence tomography angiography (OCTA), and optical coherence tomography (OCT) were utilized to analyze the changes in fundus imaging indications. Hematoxylin & eosin (H&E) and transmission electron microscopy (TEM) were employed to examine histopathologic and ultrastructural changes in retina. The levels of interleukin-6 (IL-6), interleukin-17 (IL-17), tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor (VEGF) in peripheral blood were detected using Enzyme-linked immunosorbent assay (ELISA). The mouse retina apoptotic cells were labeled with green fluorescence via terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (Tunel). The protein levels of Bcl-2-Associated X (Bax), B cell lymphoma 2 (Bcl-2), Caspase-3, PI3K, phosphorylated PI3K (p-PI3K), protein kinase B (AKT) and phosphorylated AKT (p-AKT) were quantified by Western blot (WB). The retinal pigment epithelium (RPE) cells were cultured and classified into five groups as follows: normal glucose group (NG group), high glucose group (HG group), high glucose + QJDH pill group (HG + QJDH group), high glucose + inhibitor group (HG + LY294002 group), and high glucose + inhibitor + QJDH pill group (HG + LY294002 + QJDH group). Cell viability and apoptosis were detected via Cell Counting Kit-8 (CCK8) and then analyzed by flow cytometry. RESULTS In vivo experiments revealed that the QJDH pill effectively reduced blood glucose, symptoms of increased water intake, elevated urination, increased food intake and decreased body mass in DR mice. QJDH pill also slowed the development of a series of fundus imaging signs, such as retinal microangiomas, tortuous dilatation of blood vessels, decreased vascular density, and thinning of retinal thickness, downregulated IL-6, IL-17, TNF-α, and VEGF levels in peripheral blood, and inhibited retinal cell apoptosis by activating the PI3K/AKT signaling pathway. Moreover, in vitro experiments showed that high glucose environment inhibited RPE cell viability and activated RPE cell apoptosis pathway. In contrast, lyophilized powder of QJDH pill increased RPE cell viability, protected RPE cells from high glucose-induced damage, and decreased apoptosis of RPE cells by activating the pi3k pathway. CONCLUSION QJDH pill induces hypoglycemic, anti-inflammatory effects, anti-VEGF and anti-retinal cell apoptosis by activating PI3K/AKT signaling pathway, and thus can protect the retina and slow the DR progression.
Collapse
Affiliation(s)
- Chunlin Zhao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Guangcheng Ma
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Sihan Tao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Mingyue Wang
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Zhuolin Chen
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Yiming Fang
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Wei Shi
- Department of Ophthalmology, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
19
|
Yang DR, Wang MY, Zhang CL, Wang Y. Endothelial dysfunction in vascular complications of diabetes: a comprehensive review of mechanisms and implications. Front Endocrinol (Lausanne) 2024; 15:1359255. [PMID: 38645427 PMCID: PMC11026568 DOI: 10.3389/fendo.2024.1359255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
Diabetic vascular complications are prevalent and severe among diabetic patients, profoundly affecting both their quality of life and long-term prospects. These complications can be classified into macrovascular and microvascular complications. Under the impact of risk factors such as elevated blood glucose, blood pressure, and cholesterol lipids, the vascular endothelium undergoes endothelial dysfunction, characterized by increased inflammation and oxidative stress, decreased NO biosynthesis, endothelial-mesenchymal transition, senescence, and even cell death. These processes will ultimately lead to macrovascular and microvascular diseases, with macrovascular diseases mainly characterized by atherosclerosis (AS) and microvascular diseases mainly characterized by thickening of the basement membrane. It further indicates a primary contributor to the elevated morbidity and mortality observed in individuals with diabetes. In this review, we will delve into the intricate mechanisms that drive endothelial dysfunction during diabetes progression and its associated vascular complications. Furthermore, we will outline various pharmacotherapies targeting diabetic endothelial dysfunction in the hope of accelerating effective therapeutic drug discovery for early control of diabetes and its vascular complications.
Collapse
Affiliation(s)
- Dong-Rong Yang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Meng-Yan Wang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Yu Wang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Kamisah Y, Che Hassan HH. Role of Trimetazidine in Ameliorating Endothelial Dysfunction: A Review. Pharmaceuticals (Basel) 2024; 17:464. [PMID: 38675424 PMCID: PMC11054808 DOI: 10.3390/ph17040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Endothelial dysfunction is a hallmark of cardiovascular diseases, contributing to impaired vasodilation, altered hemodynamics, and atherosclerosis progression. Trimetazidine, traditionally used for angina pectoris, exhibits diverse therapeutic effects on endothelial dysfunction. This review aims to elucidate the mechanisms underlying trimetazidine's actions and its potential as a therapeutic agent for endothelial dysfunction and associated cardiovascular disorders. Trimetazidine enhances vasodilation and hemodynamic function by modulating endothelial nitric oxide synthase activity, nitric oxide production, and endothelin-1. It also ameliorates metabolic parameters, including reducing blood glucose, mitigating oxidative stress, and dampening inflammation. Additionally, trimetazidine exerts antiatherosclerotic effects by inhibiting plaque formation and promoting its stability. Moreover, it regulates apoptosis and angiogenesis, fostering endothelial cell survival and neovascularization. Understanding trimetazidine's multifaceted mechanisms underscores its potential as a therapeutic agent for endothelial dysfunction and associated cardiovascular disorders, warranting further investigation for clinical translation.
Collapse
Affiliation(s)
- Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Hamat H. Che Hassan
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
21
|
Li G, Hou N, Liu H, Li J, Deng H, Lan H, Xiong S. Dapagliflozin alleviates high glucose-induced injury of endothelial cells via inducing autophagy. Clin Exp Pharmacol Physiol 2024; 51:e13846. [PMID: 38382536 DOI: 10.1111/1440-1681.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Hyperglycaemia is a key factor in the progression of diabetes complications. Dapagliflozin (DAPA), a new type of hypoglycaemic agent, has been shown to play an important role in anti-apoptotic, anti-inflammatory and antioxidant activities. Previous studies have demonstrated an endothelial protective effect of DAPA, but the underlying mechanism was still unclear. Autophagy is a homeostatic cellular mechanism that circulates unfolded proteins and damaged organelles through lysosomal dependent degradation. In this study, we aimed to investigate whether DAPA plays a protective role against high glucose (HG)-induced endothelial injury through regulating autophagy. The results showed that DAPA treatment resulted in increased cell viability. Additionally, DAPA treatment decreased interleukin (IL)-1β, IL-6, and tumour necrosis factor-α levels in endothelial cells subjected to HG conditions. We observed that HG inhibited autophagy, and DAPA increased the autophagy level by inhibiting the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway. Chloroquine reversed all of these beneficial effects as an autophagy inhibitor. In summary, the endothelial protective effect of DAPA in HG can be attributed in part to its role in activating of autophagy via the AKT/mTOR signalling pathway. Therefore, suggesting that the activation of autophagy by DAPA may be a novel target for the treatment of HG-induced endothelial cell injury.
Collapse
Affiliation(s)
- Gen Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ningxin Hou
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Huagang Liu
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jun Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hongwen Lan
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
22
|
Liu Q, Zhang Y, Han B, Wang M, Hu H, Ning J, Hu W, Chen M, Pang Y, Chen Y, Bao L, Niu Y, Zhang R. circRNAs deregulation in exosomes derived from BEAS-2B cells is associated with vascular stiffness induced by PM 2.5. J Environ Sci (China) 2024; 137:527-539. [PMID: 37980036 DOI: 10.1016/j.jes.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 11/20/2023]
Abstract
As an environmental pollutant, ambient fine particulate matter (PM2.5) was linked to cardiovascular diseases. The molecular mechanisms underlying PM2.5-induced extrapulmonary disease has not been elucidated clearly. In this study the ambient PM2.5 exposure mice model we established was to explore adverse effects of vessel and potential mechanisms. Long-term PM2.5 exposure caused reduced lung function and vascular stiffness in mice. And chronic PM2.5 induced migration and epithelial-mesenchymal transition (EMT) phenotype in BEAS-2B cells. After PM2.5 treatment, the circRNAs and mRNAs levels of exosomes released by BEAS-2B cells were detected by competing endogenous RNA (ceRNA) array, which contained 1664 differentially expressed circRNAs (DE-circRNAs) and 308 differentially expressed mRNAs (DE-mRNAs). By bioinformatics analysis on host genes of DE-circRNAs, vascular diseases and some pathways related to vascular diseases including focal adhesion, tight junction and adherens junction were enriched. Then, ceRNA network was constructed, and DE-mRNAs in ceRNA network were conducted functional enrichment analysis by Ingenuity Pathway Analysis, which indicated that hsa_circ_0012627, hsa_circ_0053261 and hsa_circ_0052810 were related to vascular endothelial dysfunction. Furthermore, it was verified experimentally that ExoPM2.5 could induce endothelial dysfunction by increased endothelial permeability and decreased relaxation in vitro. In present study, we investigated in-depth knowledge into the molecule events related to PM2.5 toxicity and pathogenesis of vascular diseases.
Collapse
Affiliation(s)
- Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yaling Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Bin Han
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China; State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengruo Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaifang Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Wentao Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Meiyu Chen
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Lei Bao
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
23
|
Lu H, Xu D, Zhao L, Ruan H, Wang A, Hu J, Xiao M, Lu W. Exploring the regulatory role of Linc00893 in asthenozoospermia: Insights into sperm motility and SSC viability. Mol Med Rep 2024; 29:20. [PMID: 38099337 PMCID: PMC10784737 DOI: 10.3892/mmr.2023.13143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The role of long intergenic noncoding RNA 00893 (Linc00893) in asthenozoospermia (AS) and its impact on sperm motility remains unclear The present study explored the effect of Linc00893 on AS, specifically its effect on sperm motility and its relationship with spermatogonial stem cell (SSC) vitality and myosin heavy chain 9 (MYH9) protein expression. Linc00893 expression was analyzed in semen samples using reverse transcription‑quantitative PCR, revealing a significant downregulation in samples from individuals with AS compared with those from healthy subjects. This downregulation was found to be negatively correlated with parameters of sperm motility. To further understand the role of Linc00893, small interfering RNA was used to knockdown its expression in SSCs. This knockdown led to a marked decrease in cell vitality and an increase in apoptosis. Notably, Linc00893 knockdown was shown to inhibit MYH9 expression by competitively binding with microRNA‑107, a finding verified by dual‑luciferase reporter and RNA immunoprecipitation assays. Furthermore, using the GSE160749 dataset from the Gene Expression Omnibus database, it was revealed that MYH9 protein expression was downregulated in AS samples. Subsequently, lentiviral vectors were constructed to induce overexpression of MYH9, which in turn reduced SSC apoptosis and counteracted the apoptosis triggered by Linc00893 knockdown. In conclusion, the present study identified the role of Linc00893 in AS, particularly its regulatory impact on sperm motility, SSC vitality and MYH9 expression. These findings may provide information on the potential regulatory mechanisms in AS development, and identify Linc00893 and MYH9 as possible targets for diagnosing and treating AS‑related disorders.
Collapse
Affiliation(s)
- Hui Lu
- Reproductive Medical Center, Hainan Women and Children's Medical Center, Haikou, Hainan 570206, P.R. China
| | - Dongchuan Xu
- Department of Emergency Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Liqiang Zhao
- Reproductive Medical Center, Hainan Women and Children's Medical Center, Haikou, Hainan 570206, P.R. China
| | - Hailing Ruan
- Reproductive Medical Center, Hainan Women and Children's Medical Center, Haikou, Hainan 570206, P.R. China
| | - Anguo Wang
- Reproductive Medical Center, Hainan Women and Children's Medical Center, Haikou, Hainan 570206, P.R. China
| | - Jiajia Hu
- Reproductive Medical Center, Hainan Women and Children's Medical Center, Haikou, Hainan 570206, P.R. China
| | - Meifang Xiao
- Reproductive Medical Center, Hainan Women and Children's Medical Center, Haikou, Hainan 570206, P.R. China
| | - Weiying Lu
- Reproductive Medical Center, Hainan Women and Children's Medical Center, Haikou, Hainan 570206, P.R. China
| |
Collapse
|
24
|
Yang C, Xie Z, Liu H, Wang X, Zhang Z, Du L, Xie C. Efficacy and mechanism of Shenqi Compound in inhibiting diabetic vascular calcification. Mol Med 2023; 29:168. [PMID: 38093172 PMCID: PMC10720156 DOI: 10.1186/s10020-023-00767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Shenqi Compound (SQC) has been used in clinic for several decades in the prevention and treatment of diabetes and its complications. But this is merely a heritage of experience. The primary aim of this study is to scientifically validate the therapeutic effects of SQC on diabetic vascular calcification (DVC) in an animal model and, simultaneously, uncover its potential underlying mechanisms. METHOD Spontaneous diabetic rat- Goto Kakizaki (GK) rats were selected for rat modeling. We meticulously designed three distinct groups: a control group, a model group, and an SQC treatment group to rigorously evaluate the influence of SQC. Utilizing a comprehensive approach that encompassed methods such as pathological staining, western blot analysis, qRT-PCR, and RNA sequencing, we thoroughly investigated the therapeutic advantages and the underlying mechanistic pathways associated with SQC in the treatment of DVC. RESULT The findings from this investigation have unveiled the extraordinary efficacy of SQC treatment in significantly mitigating DVC. The underlying mechanisms driving this effect encompass multifaceted facets, including the restoration of aberrant glucose and lipid metabolism, the prevention of phenotypic transformation of vascular smooth muscle cells (VSMCs) into osteogenic-like states, the subsequent inhibition of cell apoptosis, the modulation of inflammation responses, the remodeling of the extracellular matrix (ECM), and the activation of the Hippo-YAP signaling pathway. Collectively, these mechanisms lead to the dissolution of deposited calcium salts, ultimately achieving the desired inhibition of DVC. CONCLUSION Our study has provided compelling and robust evidence of the remarkable efficacy of SQC treatment in significantly reducing DVC. This reduction is attributed to a multifaceted interplay of mechanisms, each playing a crucial role in the observed therapeutic effects. Notably, our findings illuminate prospective directions for further research and potential clinical applications in the field of cardiovascular health.
Collapse
Affiliation(s)
- Chan Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| | - Ziyan Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Hanyu Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Xueru Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Zehua Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Lian Du
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
25
|
Lai TC, Lee CW, Hsu MH, Chen YC, Lin SR, Lin SW, Lee TL, Lin SY, Hsu SH, Tsai JS, Chen YL. Nanocurcumin Reduces High Glucose and Particulate Matter-Induced Endothelial Inflammation: Mitochondrial Function and Involvement of miR-221/222. Int J Nanomedicine 2023; 18:7379-7402. [PMID: 38084125 PMCID: PMC10710795 DOI: 10.2147/ijn.s433658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose Particulate matter (PM) 2.5, harmful air pollutants, and diabetes are associated with high morbidity and mortality from cardiovascular disease (CVD). However, the molecular mechanisms underlying the combined effects of PM and diabetes on CVD remain unclear. Methods Endothelial cells (ECs) treated with high glucose (HG) and PM mimic hyperglycemia and air pollutant exposure in CVD. Endothelial inflammation was evaluated by Western blot and immunofluorescence of ICAM-1 expression and monocyte adhesion. The mechanisms underlying endothelial inflammation were elucidated through MitoSOX Red analysis, JC-1 staining, MitoTracker analysis, and Western blot analysis of mitochondrial fission-related, autophagy-related, and mitophagy-related proteins. Furthermore. nanocurcumin (NCur) pretreatment was used to test if it has a protective effect. Results ECs under co-exposure to HG and PM increased ICAM-1 expression and monocyte adhesion, whereas NCur pretreatment attenuated these changes and improved endothelial inflammation. PM exposure increased mitochondrial ROS levels, worsened mitochondrial membrane potential, promoted mitochondrial fission, induced mitophagy, and aggravated inflammation in HG-treated ECs, while NCur reversed these changes. Also, HG and PM-induced endothelial inflammation is through the JNK signaling pathway and miR-221/222 specifically targeting ICAM-1 and BNIP3. PM exposure also aggravated mitochondrial ROS levels, mitochondrial fission, mitophagy, and endothelial inflammation in STZ-induced hyperglycemic mice, whereas NCur attenuated these changes. Conclusion This study elucidated the mechanisms underlying HG and PM-induced endothelial inflammation in vitro and in vivo. HG and PM treatment increased mitochondrial ROS, mitochondrial fission, and mitophagy in ECs, whereas NCur reversed these conditions. In addition, miR-221/222 plays a role in the amelioration of endothelial inflammation through targeting Bnip3 and ICAM-1, and NCur pretreatment can modulate miR-221/222 levels. Therefore, NCur may be a promising approach to intervene in diabetes and air pollution-induced CVD.
Collapse
Affiliation(s)
- Tsai-Chun Lai
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan, Republic of China
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan, Republic of China
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan, Republic of China
| | - Mei-Hsiang Hsu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, Republic of China
| | - Shu-Rung Lin
- Department of Bioscience Technology, College of Science, Chung-Yuan Christian University, Taoyuan, Taiwan, Republic of China
- Center for Nanotechnology and Center for Biomedical Technology, Chung-Yuan Christian University, Taoyuan, Taiwan, Republic of China
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Tzu-Lin Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Shu-Hao Hsu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jaw-Shiun Tsai
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
- Center for Complementary and Integrated Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
26
|
Saadh MJ, Almoyad MAA, Arellano MTC, Maaliw RR, Castillo-Acobo RY, Jalal SS, Gandla K, Obaid M, Abdulwahed AJ, Ibrahem AA, Sârbu I, Juyal A, Lakshmaiya N, Akhavan-Sigari R. Long non-coding RNAs: controversial roles in drug resistance of solid tumors mediated by autophagy. Cancer Chemother Pharmacol 2023; 92:439-453. [PMID: 37768333 DOI: 10.1007/s00280-023-04582-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023]
Abstract
Current genome-wide studies have indicated that a great number of long non-coding RNAs (lncRNAs) are transcribed from the human genome and appeared as crucial regulators in a variety of cellular processes. Many studies have displayed a significant function of lncRNAs in the regulation of autophagy. Autophagy is a macromolecular procedure in cells in which intracellular substrates and damaged organelles are broken down and recycled to relieve cell stress resulting from nutritional deprivation, irradiation, hypoxia, and cytotoxic agents. Autophagy can be a double-edged sword and play either a protective or a damaging role in cells depending on its activation status and other cellular situations, and its dysregulation is related to tumorigenesis in various solid tumors. Autophagy induced by various therapies has been shown as a unique mechanism of resistance to anti-cancer drugs. Growing evidence is showing the important role of lncRNAs in modulating drug resistance via the regulation of autophagy in a variety of cancers. The role of lncRNAs in drug resistance of cancers is controversial; they may promote or suppress drug resistance via either activation or inhibition of autophagy. Mechanisms by which lncRNAs regulate autophagy to affect drug resistance are different, mainly mediated by the negative regulation of micro RNAs. In this review, we summarize recent studies that investigated the role of lncRNAs/autophagy axis in drug resistance of different types of solid tumors.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, 11831, Jordan
| | | | | | - Renato R Maaliw
- College of Engineering, Southern Luzon State University, Lucban, Quezon, Philippines
| | | | - Sarah Salah Jalal
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, University of Chaitanya, Hanamkonda, India
| | | | | | - Azher A Ibrahem
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115, Iași, Romania.
| | - Ashima Juyal
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
27
|
Liu F, Wang Y, Huang D, Sun Y. LncRNA HOTAIR regulates the PI3K/AKT pathway via the miR-126-3p/PIK3R2 axis to participate in synovial angiogenesis in rheumatoid arthritis. Immun Inflamm Dis 2023; 11:e1064. [PMID: 37904709 PMCID: PMC10604569 DOI: 10.1002/iid3.1064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The abnormal expression of long noncoding RNA (LncRNA) HOTAIR has been associated with synovial angiogenesis in rheumatoid arthritis (RA). The aim of this study is to investigate whether LncRNA HOTAIR plays a role in synovial angiogenesis in RA by regulating the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway through the miR-126-3p/PIK3R2 axis. METHODS In this study, we conducted in vitro experiments by designing overexpression plasmids and small interfering RNAs targeting LncRNA HOTAIR and then transfected them into rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS). We then co-cultured the RA-FLS with human umbilical vein endothelial cells (HUVEC) to establish a RA-FLS-induced HUVEC model. We investigated the effects of LncRNA HOTAIR on the proliferation, migration, lumen forming ability of HUVEC, as well as the expression of synovial endothelial cell markers, angiogenic factors, and the PI3K/AKT pathway. To validate the interactions between LncRNA HOTAIR, miR-126-3p, and PIK3R2, we used bioinformatics and luciferase reporter experiments. We also employed real-time fluorescence quantitative, Western blotanalysis, and immunofluorescence techniques to analyze the target genes and proteins. RESULTS The expression of LncRNA HOTAIR was upregulated in HUVEC induced by RA-FLS. The overexpression of LncRNA HOTAIR significantly increased the expression of vascular endothelial growth factor, basic fibroblast growth factor, CD34, and CD105 in HUVEC, promoting their proliferation, migration, and lumen formation. At the same time, the overexpression of LncRNA HOTAIR inhibited the expression of miR-126-3p, promoted the expression of PIK3R2, activated the PI3K/AKT pathway, and promoted the expression of PI3K, AKT and phosphorylated-AKT, while the silence of LncRNA HOTAIR reversed these expressions. Bioinformatics and double luciferase reporter gene experiments confirmed the targeting relationship among LncRNA HOTAIR, miR-126-3p, and PIK3R2. Finally, the rescue experiments showed that PI3K agonists could reverse the inhibitory effect of silent LncRNA HOTAIR on HUVEC. CONCLUSION LncRNA HOTAIR has the potential to activate the PI3K/AKT pathway, likely through the regulatory axis involving miR-126-3p/PIK3R2, consequently contributing to synovial angiogenesis in RA.
Collapse
Affiliation(s)
- Feifei Liu
- Graduate SchoolAnhui University of Traditional Chinese MedicineHefeiAnhuiChina
| | - Yuan Wang
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
| | - Dan Huang
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
| | - Yanqiu Sun
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
| |
Collapse
|
28
|
Su Z, Hu B, Li J, Zeng Z, Chen H, Guo Y, Mao Y, Cao W. Paeoniflorin inhibits colorectal cancer cell stemness through the miR-3194-5p/catenin beta-interacting protein 1 axis. Kaohsiung J Med Sci 2023; 39:1011-1021. [PMID: 37530655 DOI: 10.1002/kjm2.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Paeoniflorin (PF) is a natural plant ingredient with remarkable antitumor effects. Herein, we investigated the biological effects and mechanism of PF in colorectal cancer (CRC) cell stemness. The messenger RNA (mRNA) and protein expressions were assessed using quantitative real-time polymerase chain reaction and western blot. The viability, proliferation, and migration and invasion of CRC cells were evaluated using cell counting kit-8, clone-formation, and transwell migration and invasion assays, respectively. The sphere-formation capacity was determined using the sphere-formation assay. A dual-luciferase reporter gene assay was employed to analyze the interaction between miR-3194-5p and catenin beta-interacting protein 1 (CTNNBIP1). The viability, migration, invasion, epithelial-mesenchymal transition, and stemness of CRC cells were repressed by PF. MiR-3194-5p was upregulated in CRC tissues and cells. MiR-3194-5p knockdown suppressed CRC cell stemness, while miR-3194-5p overexpression had the opposite effect. In addition, the inhibition of CRC cell stemness caused by PF was eliminated by miR-3194-5p overexpression. CTNNBIP1 functioned as the target of miR-3194-5p, whose knockdown abrogated the repression of CRC cell stemness and Wnt/β-catenin signaling activation by PF.PF regulated the miR-3194-5p/CTNNBIP1/Wnt/β-catenin axis to repress CRC cell stemness.
Collapse
Affiliation(s)
- Zhao Su
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Beier Hu
- Tumor Hematology Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Li
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhichun Zeng
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hu Chen
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuhang Guo
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yun Mao
- Tumor Hematology Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wen Cao
- Tumor Hematology Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
29
|
Scimeca M, Rovella V, Palumbo V, Scioli MP, Bonfiglio R, Tor Centre, Melino G, Piacentini M, Frati L, Agostini M, Candi E, Mauriello A. Programmed Cell Death Pathways in Cholangiocarcinoma: Opportunities for Targeted Therapy. Cancers (Basel) 2023; 15:3638. [PMID: 37509299 PMCID: PMC10377326 DOI: 10.3390/cancers15143638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cholangiocarcinoma is a highly aggressive cancer arising from the bile ducts. The limited effectiveness of conventional therapies has prompted the search for new approaches to target this disease. Recent evidence suggests that distinct programmed cell death mechanisms, namely, apoptosis, ferroptosis, pyroptosis and necroptosis, play a critical role in the development and progression of cholangiocarcinoma. This review aims to summarize the current knowledge on the role of programmed cell death in cholangiocarcinoma and its potential implications for the development of novel therapies. Several studies have shown that the dysregulation of apoptotic signaling pathways contributes to cholangiocarcinoma tumorigenesis and resistance to treatment. Similarly, ferroptosis, pyroptosis and necroptosis, which are pro-inflammatory forms of cell death, have been implicated in promoting immune cell recruitment and activation, thus enhancing the antitumor immune response. Moreover, recent studies have suggested that targeting cell death pathways could sensitize cholangiocarcinoma cells to chemotherapy and immunotherapy. In conclusion, programmed cell death represents a relevant molecular mechanism of pathogenesis in cholangiocarcinoma, and further research is needed to fully elucidate the underlying details and possibly identify therapeutic strategies.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luigi Frati
- Institute Pasteur Italy-Cenci Bolognetti Foundation, Via Regina Elena 291, 00161 Rome, Italy
- IRCCS Neuromed S.p.A., Via Atinense 18, 86077 Pozzilli, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
30
|
Zhang F, Wei L, Wang L, Wang T, Xie Z, Luo H, Li F, Zhang J, Dong W, Liu G, Kang Q, Zhu X, Peng W. FAR591 promotes the pathogenesis and progression of SONFH by regulating Fos expression to mediate the apoptosis of bone microvascular endothelial cells. Bone Res 2023; 11:27. [PMID: 37217464 PMCID: PMC10203311 DOI: 10.1038/s41413-023-00259-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 05/24/2023] Open
Abstract
The specific pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH) is still not fully understood, and there is currently no effective early cure. Understanding the role and mechanism of long noncoding RNAs (lncRNAs) in the pathogenesis of SONFH will help reveal the pathogenesis of SONFH and provide new targets for its early prevention and treatment. In this study, we first confirmed that glucocorticoid (GC)-induced apoptosis of bone microvascular endothelial cells (BMECs) is a pre-event in the pathogenesis and progression of SONFH. Then, we identified a new lncRNA in BMECs via lncRNA/mRNA microarray, termed Fos-associated lincRNA ENSRNOT00000088059.1 (FAR591). FAR591 is highly expressed during GC-induced BMEC apoptosis and femoral head necrosis. Knockout of FAR591 effectively blocked the GC-induced apoptosis of BMECs, which then alleviated the damage of GCs to the femoral head microcirculation and inhibited the pathogenesis and progression of SONFH. In contrast, overexpression of FAR591 significantly promoted the GC-induced apoptosis of BMECs, which then aggravated the damage of GCs to the femoral head microcirculation and promoted the pathogenesis and progression of SONFH. Mechanistically, GCs activate the glucocorticoid receptor, which translocates to the nucleus and directly acts on the FAR591 gene promoter to induce FAR591 gene overexpression. Subsequently, FAR591 binds to the Fos gene promoter (-245∼-51) to form a stable RNA:DNA triplet structure and then recruits TATA-box binding protein associated factor 15 and RNA polymerase II to promote Fos expression through transcriptional activation. Fos activates the mitochondrial apoptotic pathway by regulating the expression of Bcl-2 interacting mediator of cell death (Bim) and P53 upregulated modulator of apoptosis (Puma) to mediate GC-induced apoptosis of BMECs, which leads to femoral head microcirculation dysfunction and femoral head necrosis. In conclusion, these results confirm the mechanistic link between lncRNAs and the pathogenesis of SONFH, which helps reveal the pathogenesis of SONFH and provides a new target for the early prevention and treatment of SONFH.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Lei Wei
- Department of Orthopedics, Rhode Island Hospital, Brown University, Providence, Rhode Island, 02903, USA
| | - Lei Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tao Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Zhihong Xie
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Hong Luo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Fanchao Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Jian Zhang
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Wentao Dong
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Gang Liu
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Wuxun Peng
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
31
|
Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci 2023; 24:ijms24097910. [PMID: 37175617 PMCID: PMC10178362 DOI: 10.3390/ijms24097910] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Recent advances have greatly improved our understanding of the molecular mechanisms behind atherosclerosis pathogenesis. However, there is still a need to systematize this data from a general pathology perspective, particularly with regard to atherogenesis patterns in the context of both canonical and non-classical inflammation types. In this review, we analyze various typical phenomena and outcomes of cellular pro-inflammatory stress in atherosclerosis, as well as the role of endothelial dysfunction in local and systemic manifestations of low-grade inflammation. We also present the features of immune mechanisms in the development of productive inflammation in stable and unstable plaques, along with their similarities and differences compared to canonical inflammation. There are numerous factors that act as inducers of the inflammatory process in atherosclerosis, including vascular endothelium aging, metabolic dysfunctions, autoimmune, and in some cases, infectious damage factors. Life-critical complications of atherosclerosis, such as cardiogenic shock and severe strokes, are associated with the development of acute systemic hyperinflammation. Additionally, critical atherosclerotic ischemia of the lower extremities induces paracoagulation and the development of chronic systemic inflammation. Conversely, sepsis, other critical conditions, and severe systemic chronic diseases contribute to atherogenesis. In summary, atherosclerosis can be characterized as an independent form of inflammation, sharing similarities but also having fundamental differences from low-grade inflammation and various variants of canonical inflammation (classic vasculitis).
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
32
|
Guo C, Zhang J, Wang J, Su L, Ning X, Guo Y, Han J, Ma N. Vascular endothelial cell-derived exosomal miR-1246 facilitates posterior capsule opacification development by targeting GSK-3β in diabetes mellitus. Exp Eye Res 2023; 231:109463. [PMID: 37044287 DOI: 10.1016/j.exer.2023.109463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Posterior capsule opacification (PCO) is a serious complication after cataract surgery. Diabetes could increase the occurrence of PCO, but the mechanism is still unclear. The purpose of this study is to investigate the role of small extracellular vesicles (sEVs) derived from diabetic aqueous humor in PCO process. Intraoperatively-derived aqueous humor sEVs from patients with diabetic related cataract (DRC) promoted the epithelial-mesenchymal transition (EMT) and metastasis of human lens epithelial cells (LECs). Via mouse PCO surgical model and DiI labeled fluorescence detection of sEVs, the sEVs derived from vascular endothelium were discovered directly contacting with LECs. Furthermore, we demonstrated that high-glucose-cultured human umbilical vein endothelial cells (HUVEC) -derived sEVs facilitated EMT process of HLE-B3 using co-culture model in vitro. MiRNA-seq data and GEO datasets analysis revealed that miR-1246 was essential in EMT process with diabetes. The miR-1246 was highly expressed in diabetic aqueous humor sEVs and high-glucose-treated vascular-endothelial-cell-derived sEVs. Moreover, miR-1246 promoted the metastasis and EMT process of HLE-B3 cells by directly targeting GSK-3β. Inhibiting miR-1246 could negatively regulated EMT. This finding might serve as a potential therapy for diabetic PCO.
Collapse
Affiliation(s)
- Chenjun Guo
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jie Zhang
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jue Wang
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Liping Su
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Xiaona Ning
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yong Guo
- Xi'an Purui Eye Hospital, Xi'an, 710068, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Nan Ma
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
33
|
Yang C, Liu H, Peng X, Li X, Rao G, Xie Z, Yang Q, Du L, Xie C. Key circRNAs, lncRNAs, and mRNAs of ShenQi Compound in Protecting Vascular Endothelial Cells From High Glucose Identified by Whole Transcriptome Sequencing. J Cardiovasc Pharmacol 2023; 81:300-316. [PMID: 36701487 PMCID: PMC10079301 DOI: 10.1097/fjc.0000000000001403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
ABSTRACT Vascular endothelial cells, which make up the inner wall of blood arteries, are susceptible to damage from oxidative stress and apoptosis caused by hyperglycemia. According to certain reports, noncoding RNAs are involved in controlling oxidative stress and apoptosis. ShenQi Compound (SQC), a traditional herbal remedy, has been successfully treating diabetic vascular disease in China for more than 20 years. Although it is well established that SQC protects the vascular endothelium, the molecular mechanism remains unknown. Goto-Kakizaki rats, spontaneous type II diabetes rats, that consistently consume a high-fat diet were chosen as model animals. Six groups (control group, model group, metformin group, and 7.2 g/kg/d SQC group, 14.4 g/kg/d SQC group, and 28.8 g/kg/d SQC group) were included in this work, 15 rats each group. The approach of administration was gavage, and the same volume (5.0 mL/kg/d) was given in each group, once a day, 12 weeks. The thoracic aortas were removed after the rats were sacrificed. Oxidative reduction profile in thoracic aorta, histopathological observation of thoracic aorta, endothelial cell apoptosis in thoracic aorta, whole transcriptome sequencing, bioinformatic analyses, and qRT-PCR were conducted. As a result, SQC prevented the oxidative stress and apoptosis induced by a high glucose concentration. Under hyperglycemia condition, noncoding RNAs, including 1 downregulated novel circRNA (circRNA.3121), 3 downregulated lncRNAs (Skil.cSep08, Shawso.aSep08-unspliced, and MSTRG.164.2), and 1 upregulated mRNA (Pcdh17), were clearly reverse regulated by SQC. SQC plays a role in protecting vascular endothelial cells from high glucose mainly by mediating ncRNA to inhibit cell apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Chan Yang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Sichuan, Chengdu, China
| | - Xi Peng
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Xinqiong Li
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Guocheng Rao
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Ziyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Sichuan, Chengdu, China
| | - Qiangfei Yang
- Jianyang City People's Hospital, Sichuan, China; and
| | - Lian Du
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Sichuan, Chengdu, China
| |
Collapse
|
34
|
Chen Y, Wu X, Chen X, Guo D, Ma W, Guo Y, Xu K, Ma S, Yuan Y, Zhu Q. LncRNA TGFB2-OT1 Promotes Progression and Angiogenesis in Hepatocellular Carcinoma by Dephosphorylating β-Catenin. J Hepatocell Carcinoma 2023; 10:429-446. [PMID: 36941998 PMCID: PMC10024539 DOI: 10.2147/jhc.s404008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) was the sixth most prevalent cancer worldwide. Long non-coding RNA TGFB2-OT1 has been proven to mediate inflammation and autophagy in vascular endothelial cells. However, its function in HCC is still unknown. Methods We analyzed the relationship between TGFB2-OT1 expression and the clinicopathological features of 202 HCC patients. RT-qPCR was used to analyze the TGFB2-OT1 expression in HCC cell lines and tissues. In vitro and in vivo assays were conducted to verify the effect of TGFB2-OT1 on the phenotype of HCC. RNA pull-down assays were applied to reveal the proteins binding to the TGFB2-OT1. Western-blot assays were conducted to analyze the protein expression in HCC cell lines. Results TGFB2-OT1 was found to be highly expressed in HCC samples and hepatoma cells. TGFB2-OT1 expression was significantly associated with age (P = 0.001), cirrhosis (P = 0.003), tumor size (P < 0.001), tumor encapsulation (P = 0.029), tumor protruding from the liver surface (P = 0.040), and alpha fetoprotein (AFP, P < 0.001) levels. TGFB2-OT1 promoted proliferation, migration, invasion, and angiogenesis in HCC cells, both in vitro and in vivo. TGFB2-OT1 binds to β-catenin and competitively impaired the binding of β-catenin to GSK3β, thus suppressing the phosphorylation of β-catenin at Ser33, Ser37, and Thr41. Conclusion TGFB2-OT1 is overexpressed in HCC and predicts the poor prognosis of HCC patients. TGFB2-OT1 impedes the phosphorylation of β-catenin and acts as an alternative activator of the Wnt/β-catenin pathway to promote the progression and angiogenesis of HCC.
Collapse
Affiliation(s)
- Yiran Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
| | - Xiaoling Wu
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
| | - Deliang Guo
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
| | - Weijie Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
| | - Yonghua Guo
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
| | - Kequan Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
| | - Shuxian Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Qian Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
| |
Collapse
|
35
|
Sun Y, Liu B, Xiao B, Jiang X, Xiang J, Xie J, Hu X. Metabolism-related lncRNAs signature to predict the prognosis of colon adenocarcinoma. Cancer Med 2023; 12:5994-6008. [PMID: 36366731 PMCID: PMC10028123 DOI: 10.1002/cam4.5412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cell metabolism and long noncoding RNA (lncRNA) played crucial roles in cancer development. However, their association in colon adenocarcinoma (COAD) remains unclear. METHODS The COAD gene expression data and corresponding clinical data were retrieved from The Cancer Genome Atlas (TCGA) database. Differential expression of metabolic genes and lncRNA were identified by comparing tumor and normal colon tissues. Pearson correlation analysis was performed to identify metabolism-associated lncRNA. COAD patients were divided into training cohort and validation cohort by randomization. Then, a univariate Cox regression analysis was introduced to evaluate the correlations between metabolism-related lncRNAs and overall survival (OS) of the patients in the training cohort. The least absolute shrinkage and selection operator (LASSO) method was introduced to determine and establish a prognostic prediction model. Subsequently, survival analysis, receiver operating characteristic (ROC) curve analysis, and Cox regression analysis were generated to estimate the prognostic role of the LncRNA risk score in training, validation, and entire cohorts. RESULTS We identified 152 differentially expressed metabolism-associated lncRNAs (MRLncRNAs). A prognostic prediction model involving four metabolism-related lncRNAs were established using LASSO. In each cohort, COAD patients in the high-risk group had worse OS compared to those in the low-risk group. The ROC analyses demonstrated that the lncRNA signature performed well in predicting OS. Uni- and multivariate analysis indicated that the lncRNA signature as an independent prognostic factor. Furthermore, a correlation analysis demonstrated that LINC01138 was the most closely lncRNA related to metabolic genes. In vitro assays demonstrated that LINC01138 affects tumor progression in COAD. CONCLUSIONS In summary, we established a metabolism-associated lncRNAs model to predict the prognosis in COAD patients.
Collapse
Affiliation(s)
- Yimin Sun
- Surgery Department of GastrointestinalThe First Affiliated Hospital of Yangtze UniversityJingzhouHubeiPeople's Republic of China
| | - Bingyan Liu
- Surgery Department of GastrointestinalThe First Affiliated Hospital of Yangtze UniversityJingzhouHubeiPeople's Republic of China
| | - BaoLai Xiao
- Surgery Department of GastrointestinalThe First Affiliated Hospital of Yangtze UniversityJingzhouHubeiPeople's Republic of China
| | - XueFeng Jiang
- Surgery Department of GastrointestinalThe First Affiliated Hospital of Yangtze UniversityJingzhouHubeiPeople's Republic of China
| | - Jin‐Jian Xiang
- Surgery Department of GastrointestinalThe First Affiliated Hospital of Yangtze UniversityJingzhouHubeiPeople's Republic of China
| | - Jianping Xie
- Surgery Department of GastrointestinalThe First Affiliated Hospital of Yangtze UniversityJingzhouHubeiPeople's Republic of China
| | - Xiao‐Miao Hu
- Surgery Department of GastrointestinalThe First Affiliated Hospital of Yangtze UniversityJingzhouHubeiPeople's Republic of China
| |
Collapse
|
36
|
Wu Y, Huang C, Shi T, Li J. Deficiency of NLR family member NLRC5 alleviates alcohol induced hepatic injury and steatosis by enhancing autophagy of hepatocytes. Toxicol Appl Pharmacol 2023; 461:116406. [PMID: 36708882 DOI: 10.1016/j.taap.2023.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Steatosis is regarded as an early response of the liver to excessive alcohol consumption, which ultimately results in alcoholic liver disease (ALD). Hepatocytes are the primary drivers of the pathological process known as hepatic damage and steatosis, which is characterized by significant fat accumulation and an abundance of fat vacuoles. NLRs, a family member of pattern recognition receptors, have recently been found to be crucial in liver disorders. In this study, we examined the possible impact of NLRC5, the largest NLR family member, on alcohol-induced fatty liver development using a gene knock-out mouse model. The mouse liver was severely damaged and developed steatosis as a result of chronic and excessive ethanol use, and this damage was prevented by the lack of NLRC5. Additionally, NLRC5 deletion reversed ethanol's ability to increase the serum concentrations of TG, T-CHO, ALT, and AST. Absence of NLRC5 reduced ethanol-stimulated aberrant expression of the vital regulators of lipid synthesis and metabolism, SREBP-1c, FAS and PPAR-α. Furthermore, loss- and gain-of-function research indicated that NLRC5 might affect the autophagy pathway in alcohol-induced hepatic steatosis progression. The functional role of NLRC5 in ALD is obviously impacted by the autophagy inducer rapamycin as well as the autophagy inhibitor 3-MA. Our research showed that NLRC5 was involved in ethanol-induced injury and steatosis of the liver, and may be considered a suitable therapeutic target for treating ALD.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Tianlu Shi
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
37
|
Feng Y, Lu J, Peng X, Ge Y, Zhang R, Li H. Long noncoding RNA uc007nnj.1 mediates neuronal death induced by retinal ischemia/reperfusion in mice via the miR-155-5p/Tle4 axis. Mol Med 2023; 29:9. [PMID: 36653745 PMCID: PMC9850566 DOI: 10.1186/s10020-022-00591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Retinal ganglion cells (RGCs) apoptosis is a vital manifestation of retinal ischemia/reperfusion (I/R) injury, yet the underlying mechanisms are not well understood. The contribution of long noncoding RNAs (lncRNAs) to this cellular process is currently being explored. Based on a lncRNA chip assay, we aimed to investigate the role of lncRNA uc007nnj.1 in the pathological process of ischemia-induced RGCs apoptosis. METHODS Hank's balanced salt solution containing 10 µM antimycin A and 2 µM calcium ionophore for 2 h to construct an ischemic model in RGCs, and elevation of intraocular pressure to 120 mm Hg for 1 h was used to construct a mouse model of retinal I/R injury. RESULTS In this study, lncRNA uc007nnj.1 was highly upregulated in response to I/R injury in RGCs and mouse retinas. In addition, lncRNA uc007nnj.1 knockdown reduced retinal neuronal cell apoptosis in vitro and in vivo and significantly improved retinal function. DISCUSSION Mechanistically, the results demonstrated that lncRNA uc007nnj.1 acts as ceRNA competitively binding miR-155-5p, thereby enhancing the expression levels of Tle4, thus aggravating ischemia-related apoptosis in RGCs. CONCLUSIONS Finally, our study identifies the lncRNA uc007nnj.1/miR-155-5p/Tle4 axis as a potential target for the prevention of I/R-induced retinal neuronal death.
Collapse
Affiliation(s)
- Yuqing Feng
- grid.452708.c0000 0004 1803 0208Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China ,grid.452708.c0000 0004 1803 0208Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan China
| | - Jinfang Lu
- grid.452708.c0000 0004 1803 0208Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China ,grid.452708.c0000 0004 1803 0208Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan China
| | - Xujun Peng
- grid.452708.c0000 0004 1803 0208Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China ,grid.452708.c0000 0004 1803 0208Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan China
| | - Yanni Ge
- grid.452708.c0000 0004 1803 0208Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China ,grid.452708.c0000 0004 1803 0208Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan China
| | - Ran Zhang
- grid.452708.c0000 0004 1803 0208Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China ,grid.452708.c0000 0004 1803 0208Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan China
| | - Huiling Li
- grid.452708.c0000 0004 1803 0208Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China ,grid.452708.c0000 0004 1803 0208Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan China
| |
Collapse
|
38
|
Chen X, Wei C, Huang L, Syrigos K, Li Y, Li P. Non-coding RNAs regulate mitochondrial dynamics in the development of gastric cancer. Front Mol Biosci 2023; 10:1107651. [PMID: 36714260 PMCID: PMC9877238 DOI: 10.3389/fmolb.2023.1107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Gastric cancer (GC) is a malignant cancer that reduces life expectancy worldwide. Although treatment strategies have improved, patients with GC still have poor prognoses. Hence, it is necessary to understand the molecular mechanisms of GC and to find new therapeutic targets. Mitochondrial dynamics and mitochondrial dysfunction are associated with cancer cell growth and progression. Numerous studies have reported that non-coding RNAs (ncRNAs) can participate in the occurrence and development of GC by regulating mitochondrial dynamics. Elucidating the crosstalk between ncRNAs and mitochondria would be helpful in preventing and treating GC. Herein, we review and summarize the functions of oncogenes and tumor suppressors in suppressing ncRNAs and regulating mitochondrial dynamics in GC tumor growth, proliferation, invasion and metastasis. This review provides new insights into the pathogenesis of and intervention for GC.
Collapse
Affiliation(s)
- Xiatian Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chuang Wei
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Liting Huang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,School of Basic Medicine, Qingdao University, Qingdao, China
| | | | - Yuzhen Li
- Basic Medical Department, Graduate School, Chinese PLA General Hospital, Beijing, China,*Correspondence: Yuzhen Li, ; Peifeng Li,
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,*Correspondence: Yuzhen Li, ; Peifeng Li,
| |
Collapse
|
39
|
Ren H, Han W, Wang S, Zhao B, Miao J, Lin Z. A novel sulfur dioxide probe inhibits high glucose-induced endothelial cell senescence. Front Physiol 2022; 13:979986. [PMID: 36589455 PMCID: PMC9800602 DOI: 10.3389/fphys.2022.979986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Sulfur dioxide (SO2) is an important gas signal molecule produced in the cardiovascular system, so it has an important regulatory effect on human umbilical vascular endothelial cells (HUVECs). Studies have shown that high glucose (HG) has become the main cause of endothelial dysfunction and aging. However, the mechanism by which SO2 regulates the senescence of vascular endothelial cells induced by HG has not yet been clarified, so it is necessary to find effective tools to elucidate the effect of SO2 on senescence of HUVECs. In this paper, we identified a novel sulfur dioxide probe (2-(4-(dimethylamino)styryl)-1,1,3-trimethyl-1H-benzo [e]indol-3-ium, DLC) that inhibited the senescence of HUVECs. Our results suggested that DLC facilitated lipid droplets (LDs) translocation to lysosomes and triggered upregulation of LAMP1 protein levels by targeting LDs. Further study elucidated that DLC inhibited HG-induced HUVECs senescence by promoting the decomposition of LDs and protecting the proton channel of V-ATPase on lysosomes. In conclusion, our study revealed the regulatory effect of lipid droplet-targeted sulfur dioxide probes DLC on HG-induced HUVECs senescence. At the same time, it provided the new experimental evidence for elucidating the regulatory mechanism of intracellular gas signaling molecule sulfur dioxide on vascular endothelial fate.
Collapse
Affiliation(s)
- Hui Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - WenWen Han
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Shuo Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - BaoXiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - JunYing Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China,*Correspondence: JunYing Miao, ; ZhaoMin Lin,
| | - ZhaoMin Lin
- Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China,*Correspondence: JunYing Miao, ; ZhaoMin Lin,
| |
Collapse
|
40
|
Guo M, Chen S, Lao J, Liang J, Chen H, Tong J, Huang Y, Jia D, Li Q. 3BDO Alleviates Seizures and Improves Cognitive Function by Regulating Autophagy in Pentylenetetrazol (PTZ)-Kindled Epileptic Mice Model. Neurochem Res 2022; 47:3777-3791. [PMID: 36243819 DOI: 10.1007/s11064-022-03778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 12/13/2022]
Abstract
3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3 H)-one (3BDO) is a mTOR agonist that inhibits autophagy. The main purpose of this study is to investigate the effects of 3BDO on seizure and cognitive function by autophagy regulation in pentylenetetrazol (PTZ)-kindled epileptic mice model. The PTZ-kindled epileptic mice model was used in study. The behavioral changes and electroencephalogram (EEG) of the mice in each group were observed. The cognitive functions were tested by Morris water maze test. The loss of hippocampal neurons was detected by hematoxylin-eosin (HE) staining and immunofluorescence analysis. Immunohistochemistry, western blot and q-PCR were employed to detect the expression of autophagy-related proteins and mTOR in the hippocampus and cortex. Less seizures, increased hippocampal neurons and reduced astrocytes of hippocampus were observed in the 3BDO-treated epileptic mice than in the PTZ-kindled epileptic mice. Morris water maze test results showed that 3BDO significantly improved the cognitive function of the PTZ-kindled epileptic mice. Western blot analyses and q-PCR revealed that 3BDO inhibited the expression of LC3, Beclin-1, Atg5, Atg7 and p-ULK1/ULK1, but increased that of p-mTOR/mTOR, p-P70S6K/P70S6K in the hippocampus and temporal lobe cortex of epileptic mice. Immunohistochemistry and immunofluorescence also showed 3BDO inhibited the LC3 expression and increased the mTOR expression in the hippocampus of epileptic mice. In addition, the autophagy activator EN6 reversed the decrease in the 3BDO-induced autophagy and aggravated the seizures and cognitive dysfunction in the epileptic mice. 3BDO regulates autophagy by activating the mTOR signaling pathway in PTZ-kindled epileptic mice model, thereby alleviating hippocampus neuronal loss and astrocytes proliferation, reducing seizures and effectively improving cognitive function. Therefore, 3BDO may have potential value in the treatment of epilepsy.
Collapse
Affiliation(s)
- Meiwen Guo
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Shuang Chen
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jitong Lao
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiantang Liang
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Hao Chen
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Jingyi Tong
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | | | - Dandan Jia
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China.
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.
| | - Qifu Li
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China.
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.
| |
Collapse
|
41
|
Lei S, Cao W, Zeng Z, Zhang Z, Jin B, Tian Q, Wu Y, Zhang T, Li D, Hu C, Lan J, Zhang J, Chen T. JUND/linc00976 promotes cholangiocarcinoma progression and metastasis, inhibits ferroptosis by regulating the miR-3202/GPX4 axis. Cell Death Dis 2022; 13:967. [PMID: 36400758 PMCID: PMC9674662 DOI: 10.1038/s41419-022-05412-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a novel class of noncoding RNAs that have emerged as critical regulators and biomarkers in various cancers. Nevertheless, the expression profile and mechanistic function of lncRNAs in cholangiocarcinoma (CCA) remain unclear. Herein, we examined the expression levels of linc00976 in clinical specimens and cell lines using reverse transcription-quantitative PCR. In total, 50 patients with CCA were enrolled to analyze the correlation between linc00976 expression and clinical characteristics of CCA. Loss- and gain-of-function experiments were performed to investigate the biological effects of linc00976 on proliferation, ferroptosis, migration, and invasion of CCA cells in vitro and in vivo. In situ hybridization, RNA immunoprecipitation, bioinformatic databases, RNA pull-down assay, a dual-luciferase reporter assay, mRNA sequencing, chromatin immunoprecipitation-PCR, and rescue experiments were performed to elucidate the underlying mechanisms of linc00976-induced competitive endogenous RNA regulatory networks. We characterized a novel and abundant lncRNA, linc00976, that functions as a pro-oncogenic regulator of CCA progression. Compared with normal controls, linc00976 was dramatically upregulated in CCA tissue samples and cell lines. Patients with CCA exhibiting high linc00976 expression had a highly advanced clinical stage, substantial lymph node metastasis, and poor overall survival. Knockdown of linc00976 significantly repressed proliferation and metastasis and promoted ferroptosis of CCA cells both in vitro and in vivo, whereas linc00976 overexpression exerted the opposite effect. Mechanistically, linc00976 competitively interacted with miR-3202 to upregulate GPX4 expression, thus contributing to the malignant biological behavior of CCA cells. Moreover, we demonstrated that JUND specifically interacts with the linc00976 promoter and activates linc00976 transcription. Accordingly, JUND promotes linc00976 transcription, and linc00976 plays a crucial role in accelerating CCA tumorigenesis and metastasis and inhibiting ferroptosis by modulating the miR-3202/GPX4 axis. These findings suggest that targeting linc00976 may afford a promising therapeutic strategy for patients with CCA.
Collapse
Affiliation(s)
- Shan Lei
- grid.413458.f0000 0000 9330 9891Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550009 Guizhou China ,grid.413458.f0000 0000 9330 9891Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, 550009 Guizhou China
| | - Wenpeng Cao
- grid.413458.f0000 0000 9330 9891Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009 Guizhou China
| | - Zhirui Zeng
- grid.413458.f0000 0000 9330 9891Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550009 Guizhou China ,grid.413458.f0000 0000 9330 9891Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, 550009 Guizhou China
| | - Zhixue Zhang
- grid.413458.f0000 0000 9330 9891Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550009 Guizhou China ,grid.413458.f0000 0000 9330 9891Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, 550009 Guizhou China
| | - Bangming Jin
- grid.413458.f0000 0000 9330 9891Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550009 Guizhou China ,grid.413458.f0000 0000 9330 9891Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, 550009 Guizhou China
| | - Qianting Tian
- grid.413458.f0000 0000 9330 9891Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, 550009 Guizhou China
| | - Yingming Wu
- grid.413458.f0000 0000 9330 9891Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550009 Guizhou China ,grid.413458.f0000 0000 9330 9891Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, 550009 Guizhou China
| | - Tuo Zhang
- grid.413458.f0000 0000 9330 9891Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550009 Guizhou China ,grid.413458.f0000 0000 9330 9891Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, 550009 Guizhou China
| | - Dahuan Li
- grid.413458.f0000 0000 9330 9891Digestive Endoscopy Center, the Affiliated of Guizhou Medical University, Guiyang, 550009 Guizhou China
| | - Chujiao Hu
- grid.413458.f0000 0000 9330 9891State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550009 Guizhou China
| | - Jinzhi Lan
- grid.413458.f0000 0000 9330 9891Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, 550009 Guizhou China
| | - Jinjuan Zhang
- grid.413458.f0000 0000 9330 9891Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, 550009 Guizhou China ,grid.413458.f0000 0000 9330 9891The Functional Science laboratory, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550009 Guizhou China
| | - Tengxiang Chen
- grid.413458.f0000 0000 9330 9891Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550009 Guizhou China ,grid.413458.f0000 0000 9330 9891Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, 550009 Guizhou China
| |
Collapse
|
42
|
Tian R, Deng A, Pang X, Chen Y, Gao Y, Liu H, Hu Z. VR-10 polypeptide interacts with CD36 to induce cell apoptosis and autophagy in choroid-retinal endothelial cells: Identification of VR-10 as putative novel therapeutic agent for choroid neovascularization (CNV) treatment. Peptides 2022; 157:170868. [PMID: 36067926 DOI: 10.1016/j.peptides.2022.170868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Choroid neovascularization (CNV) is important adverse pathological changes that contributes to the aggravation of hypoxic-ischemic eye diseases, and our preliminary work evidences that the thrombospondin-1 (TSP-1) synthetic polypeptide VR-10 may be the candidate therapeutic agent for the treatment of CNV, but its detailed effects and molecular mechanisms are not fully delineated. In this study, the CNV models in BN rats were established by using the laser photocoagulation method, which were further subjected to VR-10 peptide treatment. The RNA-seq and bioinformatics analysis suggested that VR-10 peptide significantly altered the expression patterns of genes in the rat ocular tissues, and the changed genes were especially enriched in the CD36-associated signal pathways. Next, by performing the Real-Time qPCR and Western Blot analysis, we expectedly found that VR-10 upregulated the anti-angiogenesis biomarker (PEDF) and downregulated pro-angiogenesis biomarkers (VEGF, HIF-1 and IL-17) in rat tissues. In addition, we evidenced that VR-10 downregulated CDK2, CDK4, CDK6, Cyclin D1 and Cyclin D2 to induce cell cycle arrest, upregulated cleaved Caspase-3, Bax and downregulated Bcl-2 to promote cell apoptosis, and increased LC3B-II/I ratio and facilitate p62 degradation to promote cell autophagy in RF/6A cells, which were all reversed by knocking down CD36. Moreover, VR-10 upregulated PEDF, and decreased the expression levels of VEGF, HIF-1 and IL-17 to block angiogenesis of RF/6A cells in a CD36-dependent manner. Taken together, VR-10 peptide interacts with its receptor CD36 to regulate the biological functions of RF/6A cells, and these data suggest that VR-10 peptide may be the putative therapeutic drug for the treatment of CNV in clinic.
Collapse
Affiliation(s)
- Run Tian
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Qingnian Road No. 176, Kunming, Yunnan, China.
| | - Aiping Deng
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Qingnian Road No. 176, Kunming, Yunnan, China.
| | - Xiaocong Pang
- Institute of Clinical Pharmacology, Peking University, Xueyuan Street No. 38, Haidian District, Beijing, China.
| | - Yunli Chen
- Department of Ophthalmology, Lijiang People's Hospital, Fuhui Road No. 526, Gucheng District, Lijiang, Yunnan, China.
| | - Yufei Gao
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Qingnian Road No. 176, Kunming, Yunnan, China.
| | - Hai Liu
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Qingnian Road No. 176, Kunming, Yunnan, China.
| | - Zhulin Hu
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Qingnian Road No. 176, Kunming, Yunnan, China.
| |
Collapse
|
43
|
Chemerin-Induced Down-Regulation of Placenta-Derived Exosomal miR-140-3p and miR-574-3p Promotes Umbilical Vein Endothelial Cells Proliferation, Migration, and Tube Formation in Gestational Diabetes Mellitus. Cells 2022; 11:cells11213457. [PMID: 36359855 PMCID: PMC9655594 DOI: 10.3390/cells11213457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Gestational diabetes mellitus (GDM) leads to poor pregnancy outcomes and fetoplacental endothelial dysfunction; however, the underlying mechanisms remain unknown. This study aimed to investigate the effect of placenta-derived exosomal miRNAs on fetoplacental endothelial dysfunction in GDM, as well as to further explore the role of chemerin to this end. Placenta-derived exosomal miR-140-3p and miR-574-3p expression (next-generation sequencing, quantitative real-time PCR), its interactions with cell function (Cell Counting Kit-8, Transwell, tube formation assay), chemerin interactions (Western blotting), and placental inflammation (immunofluorescence staining, enzyme-linked immunosorbent assay) were investigated. Placenta-derived exosomal miR-140-3p and miR-574-3p were downregulated in GDM. Additionally, miR-140-3p and miR-574-3p inhibited the proliferation, migration, and tube formation ability of umbilical vein endothelial cells by targeting vascular endothelial growth factor. Interestingly, miR-140-3p and miR-574-3p expression levels were negatively correlated with chemerin, which induced placental inflammation through the recruitment of macrophage cells and release of IL-18 and IL-1β. These findings indicate that chemerin reduces placenta-derived exosomal miR-140-3p and miR-574-3p levels by inducing placental inflammation, thereby promoting the proliferation, migration, and tube formation of umbilical vein endothelial cells in GDM, providing a novel perspective on the underlying pathogenesis and therapeutic targets for GDM and its offspring complications.
Collapse
|
44
|
A novel ceRNA regulatory network involving the long noncoding NEAT1, miRNA-466f-3p and its mRNA target in osteoblast autophagy and osteoporosis. J Mol Med (Berl) 2022; 100:1629-1646. [PMID: 36169673 DOI: 10.1007/s00109-022-02255-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022]
Abstract
Osteoporosis (OP) is a systemic metabolic disorder characterized by a reduction in bone tissue volume. LncRNAs have been reported to act as regulators of several human diseases. Specifically, lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) is involved in proliferation, differentiation and apoptosis in osteoclasts and bone marrow mesenchymal stem cells and regulates the occurrence and development of OP. However, the relationship between NEAT1 and osteoblast autophagy and its mechanism are still unclear. Western blotting of LC3 and P62 was used to evaluate the effect of fluid shear stress (FSS) on autophagy in MC3T3-E1 osteoblasts. Total transcriptome sequencing and bioinformatics analyses were performed on osteoblasts loaded with and without FSS. qPCR was performed to examine the expression of NEAT1 in OP bone tissues and osteoblasts. The RNA-FISH was performed to study the localization of lncRNA NEAT1 and miR-466f-3p in MC3T3-E1 osteoblasts. In vitro, western blotting, transmission electron microscopy (TEM), immunofluorescence (IF) staining and qPCR were performed to verify the biological functions of NEAT1, miR-466f-3p and HK2. Subsequently, we conducted bioinformatics analysis and dual luciferase reporter assays to identify the relationships among NEAT1, miR-466f-3p and HK2. Additionally, rescue assays were conducted on osteoblasts to clarify the regulatory network of the NEAT1/miR-466f-3p/HK2 signalling pathway. In vivo, the OVX mouse model was used to investigate the effects of si-NEAT1 on autophagy in OP mice. The distal femur and serum were collected for further micro-CT analysis, blood biochemistry, and haematoxylin-eosin and Alizarin red staining (ARS). Immunohistochemistry (IHC) was performed to assess the protein expression of LC3 and HK2. NEAT1 expression was upregulated in OP tissues and osteoblast lines exposed to FSS. Knockdown of NEAT1 inhibited autophagy in vitro and in vivo. Further studies demonstrated that NEAT1 positively regulated HK2 expression via its competing endogenous RNA effects on miR-466f-3p. Moreover, we found the NEAT1/miR-466f-3p/HK2 axis regulated autophagy in osteoblasts. Knocking down NEAT1 inhibited autophagy in osteoblasts via the miR-466f-3p/HK2 signalling pathway, which may provide new ideas for novel molecular therapeutic targets of postmenopausal OP. KEY MESSAGES: • Fluid shear stress (FSS) can promote autophagy of osteoblast and performed transcriptome sequencing. • NEAT1 is overexpressed in osteoporosis and could regulate osteoblast cells autophagy. • Knockdown of lncRNA NEAT1 inhibited osteoblast cells autophagy by sponging miRNA-466f-3p and targeting HK2 in osteoporosis.
Collapse
|
45
|
Zhang Y, Zhou XA, Liu C, Shen Q, Wu Y. Vitamin B6 Inhibits High Glucose-Induced Islet β Cell Apoptosis by Upregulating Autophagy. Metabolites 2022; 12:1048. [PMID: 36355132 PMCID: PMC9695582 DOI: 10.3390/metabo12111048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/27/2023] Open
Abstract
Vitamin B6 may alleviate diabetes by regulating insulin secretion and increasing insulin sensitivity, but its mechanism remains to be explored. In this study, vitamin B6-mediated autophagy and high glucose-induced apoptosis were tested to investigate the mechanism by which vitamin B6 regulates insulin release. The results showed that 20 mM glucose increased the apoptosis rate from 10.39% to 22.44%. Vitamin B6 reduced the apoptosis rate of RIN-m5F cells from 22.44% to 11.31%. Our data also showed that the vitamin B6 content in processed eggs was decreased and that the hydrothermal process did not affect the bioactivity of vitamin B6. Vitamin B6 increased the number of autophagosomes and the ratio of autophagosome marker protein microtubule associated protein 1 light chain 3 beta to microtubule associated protein 1 light chain 3 alpha (LC3-II/LC3-I). It also decreased the amount of sequetosome 1 (SQSTM1/p62) and inhibited the phosphorylation of p70 ribosomal protein S6 kinase (p70S6K) under normal and high glucose stress. Another study showed that vitamin B6 inhibited the apoptosis rate, whereas the autophagy inhibitor 3-methyladenine (3-MA) blocked the protective effect of vitamin B6 against apoptosis induced by high glucose. The hydrothermal process decreased the vitamin B6 content in eggs but had no effect on the cytoprotective function of vitamin B6 in RIN-m5f cells. In conclusion, we demonstrated that vitamin B6-mediated autophagy protected RIN-m5f cells from high glucose-induced apoptosis might via the mTOR-dependent pathway. Our data also suggest that low temperatures and short-term hydrothermal processes are beneficial for dietary eggs.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Xi-an Zhou
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Chuxin Liu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Qingwu Shen
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Yanyang Wu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha 410128, China
| |
Collapse
|
46
|
Cong L, Bai Y, Guo Z. The crosstalk among autophagy, apoptosis, and pyroptosis in cardiovascular disease. Front Cardiovasc Med 2022; 9:997469. [PMID: 36386383 PMCID: PMC9650365 DOI: 10.3389/fcvm.2022.997469] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/10/2022] [Indexed: 08/02/2023] Open
Abstract
In recent years, the mechanism of cell death has become a hotspot in research on the pathogenesis and treatment of cardiovascular disease (CVD). Different cell death modes, including autophagy, apoptosis, and pyroptosis, are mosaic with each other and collaboratively regulate the process of CVD. This review summarizes the interaction and crosstalk of key pathways or proteins which play a critical role in the entire process of CVD and explores the specific mechanisms. Furthermore, this paper assesses the interrelationships among these three cell deaths and reviews how they regulate the pathogenesis of CVD. By understanding how these three cell death modes go together we can learn about the pathogenesis of CVD, which will enable us to identify new targets for preventing, controlling, and treating CVD. It will not only reduce mortality but also improve the quality of life.
Collapse
Affiliation(s)
- Lin Cong
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
| | - Yunpeng Bai
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Zhigang Guo
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| |
Collapse
|
47
|
Xu L, Ma W, Jin Y, Sun X, Chen N, Zhu X, Luo J, Li C, Zhao K, Zheng Y, Yu D. N, N-dimethylformamide exposure induced liver abnormal mitophagy by targeting miR-92a-1-5p-BNIP3L pathway in vivo and vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156218. [PMID: 35623527 DOI: 10.1016/j.scitotenv.2022.156218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
N, N-dimethylformamide (DMF) is a widely existing harmful environmental pollutant from industrial emission which can threat human health for both occupational and general populations. Epidemiological and experimental studies have indicated liver as the primary target organ of DMF. However, the molecular mechanism under DMF-induced hepatoxicity remains unclear. In the present study, we identified that DMF could induce abnormal autophagy flux in cells. We also showed that DMF-induced mitochondrial dysfunction and lethal mitophagy which further leads to autophagic cell death. Next, miRNA microarray analysis identified miR-92a-1-5p as the most down-regulated miRNA upon DMF exposure. Mechanistically, miR-92a-1-5p regulated mitochondrial function and mitophagy by targeting mitochondrial protein BNIP3L. Exogenous miR-92a-1-5p significantly attenuated DMF-induced mitochondrial dysfunction and mitophagy in vitro and in vivo. Our study highlights the mechanistic link between miRNAs and mitophagy under environmental stress, which provided a new clue for the mitochondrial epigenetics mechanism on environmental toxicant-induced hepatoxicity.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
48
|
Downregulation of the Long Noncoding RNA IALNCR Targeting MAPK8/JNK1 Promotes Apoptosis and Antagonizes Bovine Viral Diarrhea Virus Replication in Host Cells. J Virol 2022; 96:e0111322. [PMID: 35993735 PMCID: PMC9472605 DOI: 10.1128/jvi.01113-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the causative agent of the bovine viral diarrhea-mucosal disease, which is a leading cause of economic losses in the cattle industry worldwide. To date, many underlying mechanisms involved in BVDV-host interactions remain unclear, especially the functions of long noncoding RNAs (lncRNAs). In our previous study, the lncRNA expression profiles of BVDV-infected Madin-Darby bovine kidney (MDBK) cells were obtained by RNA-seq, and a significantly downregulated lncRNA IALNCR targeting MAPK8/JNK1 (a key regulatory factor of apoptosis) was identified through the lncRNA-mRNA coexpression network analysis. In this study, the function of IALNCR in regulating apoptosis to affect BVDV replication was further explored. Our results showed that BVDV infection-induced downregulation of the lncRNA IALNCR in the host cells could suppress the expression of MAPK8/JNK1 at both the mRNA and protein levels, thereby indirectly promoting the activation of caspase-3, leading to cell-autonomous apoptosis to antagonize BVDV replication. This was further confirmed by the small interfering RNA (siRNA)-mediated knockdown of the lncRNA IALNCR. However, the overexpression of the lncRNA IALNCR inhibited apoptosis and promoted BVDV replication. In conclusion, our findings demonstrated that the lncRNA IALNCR plays an important role in regulating host antiviral innate immunity against BVDV infection. IMPORTANCE Bovine viral diarrhea-mucosal disease caused by BVDV is an important viral disease in cattle, causing severe economic losses to the cattle industry worldwide. The molecular mechanisms of BVDV-host interactions are complex. To date, most studies focused only on how BVDV escapes host innate immunity. By contrast, how the host cell regulates anti-BVDV innate immune responses is rarely reported. In this study, a significantly downregulated lncRNA, with a potential function of inhibiting apoptosis (inhibiting apoptosis long noncoding RNA, IALNCR), was obtained from the lncRNA expression profiles of BVDV-infected cells and was experimentally evaluated for its function in regulating apoptosis and affecting BVDV replication. We demonstrated that downregulation of BVDV infection-induced lncRNA IALNCR displayed antiviral function by positively regulating the MAPK8/JNK1 pathway to promote cell apoptosis. Our data provided evidence that host lncRNAs regulate the innate immune response to BVDV infection.
Collapse
|
49
|
Yang L, Cheng X, Shi W, Li H, Zhang Q, Huang S, Huang X, Wen S, Gan J, Liao Z, Sun J, Liang J, Ouyang Y, He M. Vasorin Deletion in C57BL/6J Mice Induces Hepatocyte Autophagy through Glycogen-Mediated mTOR Regulation. Nutrients 2022; 14:nu14173600. [PMID: 36079859 PMCID: PMC9460126 DOI: 10.3390/nu14173600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 01/18/2023] Open
Abstract
Abnormal vasorin (Vasn) expression occurs in multiple diseases, particularly liver cancers. Vasn knockout (KO) in mice causes malnutrition, a shortened life span, and decreased physiological functions. However, the causes and underlying mechanisms remain unknown. Here, we established Vasn KO C57BL/6J mice by using the CRISPR/Cas9 system. The animals were weighed, and histology, immunohistochemistry, electronic microscopy, and liver function tests were used to examine any change in the livers. Autophagy markers were detected by Western blotting. MicroRNA (miRNA) sequencing was performed on liver samples and analyses to study the signaling pathway altered by Vasn KO. Significant reductions in mice body and liver weight, accompanied by abnormal liver function, liver injury, and reduced glycogen accumulation in hepatocytes, were observed in the Vasn KO mice. The deficiency of Vasn also significantly increased the number of autophagosomes and the expression of LC3A/B-II/I but decreased SQSTM1/p62 levels in hepatocytes, suggesting aberrant activation of autophagy. Vasn deficiency inhibited glycogen-mediated mammalian target of rapamycin (mTOR) phosphorylation and activated Unc-51-like kinase 1 (ULK1) signaling, suggesting that Vasn deletion upregulates hepatocyte autophagy through the mTOR-ULK1 signaling pathway as a possible cause of diminished life span and health. Our results indicate that Vasn is required for the homeostasis of liver glycogen metabolism upstream of hepatocyte autophagy, suggesting research values for regulating Vasn in pathways related to liver physiology and functions. Overall, this study provides new insight into the role of Vasn in liver functionality.
Collapse
Affiliation(s)
- Lichao Yang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Xiaojing Cheng
- School of Public Health, Guangxi Medical University, Nanning 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Wei Shi
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Hui Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qi Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Shiping Huang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Sha Wen
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Ji Gan
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Zhouxiang Liao
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Jinning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
- Correspondence: (Y.O.); (M.H.); Tel.: +86-771-5629860 (M.H.)
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning 530021, China
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning 530021, China
- Correspondence: (Y.O.); (M.H.); Tel.: +86-771-5629860 (M.H.)
| |
Collapse
|
50
|
Zhao J, Zhao Z, Hou W, Jiang Y, Liu G, Ren X, Liu K, Liu H, Chen K, Huang H. Quantitative Proteomics Explore the Potential Targets and Action Mechanisms of Hydroxychloroquine. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165175. [PMID: 36014414 PMCID: PMC9416215 DOI: 10.3390/molecules27165175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022]
Abstract
Hydroxychloroquine (HCQ) is an autophagy inhibitor that has been used for the treatment of many diseases, such as malaria, rheumatoid arthritis, systemic lupus erythematosus, and cancer. Despite the therapeutic advances in these diseases, the underlying mechanisms have not been well determined and hinder the rational use of this drug in the future. Here, we explored the possible mechanisms and identified the potential binding targets of HCQ by performing quantitative proteomics and thermal proteome profiling on MIA PaCa-2 cells. This study revealed that HCQ may exert its functions by targeting some autophagy-related proteins such as ribosyldihydronicotinamide dehydrogenase (NQO2) and transport protein Sec23A (SEC23A), or regulating the expression of galectin-8 (LGALS8), mitogen-activated protein kinase 8 (MAPK8), and so on. Furthermore, HCQ may prevent the progression of pancreatic cancer by regulating the expression of nesprin-2 (SYNE2), protein-S-isoprenylcysteine O-methyltransferase (ICMT), and cotranscriptional regulator FAM172A (FAM172A). Together, these findings not only identified potential binding targets for HCQ but also revealed the non-canonical mechanisms of HCQ that may contribute to pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jingxiang Zhao
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiqiang Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wanting Hou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yue Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Guobin Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuelian Ren
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kun Liu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Hong Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixian Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (K.C.); (H.H.)
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (K.C.); (H.H.)
| |
Collapse
|