1
|
Yang D, Li P, Dang Y, Zhu S, Shi H, Wu T, Zhang Z, Chen C, Zong Y. Identifying the importance of PCK1 in maintaining ileal epithelial barrier integrity in Crohn's disease. Gene 2024; 931:148872. [PMID: 39159791 DOI: 10.1016/j.gene.2024.148872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Crohn's disease (CD) is marked by disruption of intestinal epithelial barrier, with unclear underlying molecular mechanisms. This study aimed to investigate key genes regulating the intestinal barrier in CD patients. METHODS Differential gene expression analysis and gene set enrichment analysis were conducted to identify potential key genes involved in CD within the GEO database. Single-cell RNA sequencing from ileum samples in GSE134809 of 59,831 inflamed and uninflamed cells from 11 CD patients and microarray data from ileal tissues in GSE69762 (3 controls and 4 CD patients) and GSE75214 (11 controls and 51 CD patients) with GSE179285 (49 uninflamed and 33 inflamed from CD patients) as the validation set. Protein-protein interaction and logistic regression analyses identified key downregulated genes in CD. A key gene was then investigated through immunohistochemistry of ileal tissues from 5 CD patients and in the Caco-2 cell line with RNA interference and treatment with IFN-γ and TNF-α to stimulate inflammation. RESULTS Single-cell RNA-seq identified 33 genes and microarray identified 167 genes with significant downregulation in inflamed CD samples. PCK1 was identified and validated as one of the most promising candidate genes. Reduced PCK1 expression was evident in inflamed ileal tissues. In vitro, knockdown of PCK1 resulted in decreased cell viability, increased apoptosis, and reduced nectin-2 production, while combination of IFN-γ and TNF-α significantly reduced PCK1. CONCLUSIONS PCK1 is downregulated in inflamed ileal tissues of CD patients and may be a key factor in maintaining epithelial integrity during inflammation in Crohn's disease.
Collapse
Affiliation(s)
- Deyi Yang
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Pengchong Li
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yan Dang
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shengtao Zhu
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Haiyun Shi
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ting Wu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zinan Zhang
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Chuyan Chen
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ye Zong
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
2
|
Tang CT, Liu ZD, Wang P, Zeng CY, Chen YX. Lipopolysaccharide-regulated RNF31/NRF2 axis in colonic epithelial cells mediates homeostasis of the intestinal barrier in ulcerative colitis. Cell Signal 2024; 124:111480. [PMID: 39437901 DOI: 10.1016/j.cellsig.2024.111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Although previous studies have shown that the Ring Finger Protein 31 (RNF31) gene confers susceptibility to inflammatory disease and colorectal cancer, the exact function of this protein in ulcerative colitis (UC) has not been determined. METHODS A mouse dextran sulfate sodium (DSS)-induced experimental colitis model was used to study RNF31 and NRF2 in colitis. RNF31 silencing or overexpression in vitro was applied to address the role of RNF31 in colonic mucosal barrier damage. Immunohistochemistry and silico analysis was performed to investigate the expression of RNF31 via taking advantage of UC tissue samples and Gene Expression Omnibus (GEO) data, respectively. The cycloheximide (CHX)-chase experiment and Co-Immunoprecipitation (Co-IP) assays were conducted to explore the association of RNF31 protein with NRF2 and P62. RESULTS RNF31 is highly expressed in UC patients, in inflamed murine colon induced DSS and Lipopolysaccharide (LPS)-treated epithelial cells, while the express of NRF2 was Tabdecreased. RNF31-knockdown mice in the DSS-induced colitis model had a less severe phenotype, which was associated with a more integrated barrier of colon epithelial cells. While depletion of NRF2 in colitis model exacerbated intestinal inflammation. Mechanistically, RNF31 promoted the degradation of NRF2 by regulating its ubiquitination. Upon stimulation by RNF31, NRF2 is K63 ubiquitinated, which is associated with the C871 residue of RNF31. Moreover, downregulated NRF2 mediates inflammation by promoting the secretion of IL1β and IL18, leading to damage of the intestinal barrier. Upon LPS stimulation, the interaction of the PUB domain of RNF31 with the UBA domain of P62 increased, resulting in decreased degradation of the RNF31 protein via autophagy. CONCLUSION Overall, depletion of RNF31 effectively relieves DSS-induced colitis in mice by inhibiting NRF2 degradation, suggesting that RNF31 may be a potential therapy for human ulcerative colitis.
Collapse
Affiliation(s)
- Chao-Tao Tang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Zi-de Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Peng Wang
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chun-Yan Zeng
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Department of Gastroenterology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang 330003, China.
| | - You-Xiang Chen
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
3
|
Uemura I, Takahashi-Suzuki N, Kita F, Satoh T. Establishment of an in-vitro inflammatory bowel disease model using immunological differentiation of Caco-2 cells. MethodsX 2024; 13:102952. [PMID: 39329151 PMCID: PMC11426153 DOI: 10.1016/j.mex.2024.102952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Studies on intestinal cell differentiation, particularly in dextran sodium sulfate (DSS)-induced inflammatory bowel disease (IBD), have predominantly focused on the disruption of intestinal crypts and suppressive effects on the intestinal microbiota; however, repeated administration of DSS is required to induce inflammatory pathology, and there is a lack of observation of early responses and consideration of differentiation stages. Although colonic adenocarcinoma (Caco-2) cells can be used as intestinal cell models, research on these cells in an immature state is limited. We, therefore, investigated the relationship between Caco-2 cell culture duration and immunological differentiation using α-defensin5 (DEFA5) as an indicator of intestinal immunity and differentiation. Changes in protein and gene expression levels in response to DSS were examined at each differentiation stage. Expression of immune- and differentiation-related proteins, including DEFA5 and lysozyme, was evident from Day 8 of culture. Immune responses to DSS varied with the differentiation stage, affecting cell viability and cytokine expression.•Caco-2 cell culture duration correlates with the differentiation stage of Paneth cells.•DSS exposure elicits different effects depending on the differentiation stage.•Our in-vitro model of IBD facilitates the characterization of the cell differentiation process and provides a methodology to help elucidate the causal mechanisms of IBD.
Collapse
Affiliation(s)
- Ippei Uemura
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8585, Japan
| | - Natsuko Takahashi-Suzuki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8585, Japan
| | - Fumiya Kita
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8585, Japan
| | - Takashi Satoh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8585, Japan
| |
Collapse
|
4
|
Lyu J, Zhang H, Wang C, Pan M. New insight in treating autoimmune diseases by targeting autophagy. Autoimmunity 2024; 57:2351872. [PMID: 38739691 DOI: 10.1080/08916934.2024.2351872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Autophagy is a highly conserved biological process in eukaryotes, which degrades cellular misfolded proteins, damaged organelles and invasive pathogens in the lysosome-dependent manner. Autoimmune diseases caused by genetic elements, environments and aberrant immune responses severely impact patients' living quality and even threaten life. Recently, numerous studies have reported autophagy can regulate immune responses, and play an important role in autoimmune diseases. In this review, we summarised the features of autophagy and autophagy-related genes, enumerated some autophagy-related genes involved in autoimmune diseases, and further overviewed how to treat autoimmune diseases through targeting autophagy. Finally, we outlooked the prospect of relieving and curing autoimmune diseases by targeting autophagy pathway.
Collapse
Affiliation(s)
- Jiao Lyu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hongqian Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chaoyang Wang
- The Key Medical Laboratory for Chemical Poison Detection of Henan Province, The Third People's Hospital of Henan Province, Zhengzhou, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Kaden T, Alonso-Román R, Stallhofer J, Gresnigt MS, Hube B, Mosig AS. Leveraging Organ-on-Chip Models to Investigate Host-Microbiota Dynamics and Targeted Therapies for Inflammatory Bowel Disease. Adv Healthc Mater 2024:e2402756. [PMID: 39491534 DOI: 10.1002/adhm.202402756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Indexed: 11/05/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic gastrointestinal disease with drastically increasing incidence rates. Due to its multifactorial etiology, a precise investigation of the pathogenesis is extremely difficult. Although reductionist cell culture models and more complex disease models in animals have clarified the understanding of individual disease mechanisms and contributing factors of IBD in the past, it remains challenging to bridge research and clinical practice. Conventional 2D cell culture models cannot replicate complex host-microbiota interactions and stable long-term microbial culture. Further, extrapolating data from animal models to patients remains challenging due to genetic and environmental diversity leading to differences in immune responses. Human intestine organ-on-chip (OoC) models have emerged as an alternative in vitro model approach to investigate IBD. OoC models not only recapitulate the human intestinal microenvironment more accurately than 2D cultures yet may also be advantageous for the identification of important disease-driving factors and pharmacological interventions targets due to the possibility of emulating different complexities. The predispositions and biological hallmarks of IBD focusing on host-microbiota interactions at the intestinal mucosal barrier are elucidated here. Additionally, the potential of OoCs to explore microbiota-related therapies and personalized medicine for IBD treatment is discussed.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH, 07745, Jena, Germany
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Raquel Alonso-Román
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV, Jena University Hospital, 07747, Jena, Germany
| | - Mark S Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, 07743, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
| |
Collapse
|
6
|
Cheng HJ, Hsu WL, Lin P, Chen YC, Lin TH, Fang SS, Tsai MH, Lin YJ, Wang SP, Chen H, Jan MS, Luo YH. Involvement of autophagy and gut dysbiosis in ambient particulate matter-induced colonic inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117171. [PMID: 39405963 DOI: 10.1016/j.ecoenv.2024.117171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Ambient fine particulate matter (PM2.5), a vital environmental toxicant, not only adversely affects the cardiovascular and respiratory systems but also potentially exhibits an association with intestinal inflammation and colorectal cancer (CRC). The underlying molecular mechanisms of PM2.5 impacts on CRC are still unclear. In this study, we utilized collected ambient PM2.5 and standard reference material SRM2786 to investigate the toxic effects on the colon through in vivo chronic exposure mouse and in vitro cell culture models. We employed a chronic mouse exposure model to clarify the colonic injury and gut microbiome biomarkers. Prolonged exposure to PM2.5 via oropharyngeal aspiration led to a significant rise in colonic epithelial proliferation and reduced colon length in mice. It triggered characteristics indicative of gut microbiota dysbiosis linked to inflammatory bowel disease. The gut microbiome alternations may serve as a biomarker indicating the colonic health impacts of PM2.5 exposure. PM2.5 and SRM2786-induced cytotoxicity manifested as autophagy dysregulation-mediated abnormal proliferation, IL-8 production, p62/SQSTM1 accumulation, and lysosomal membrane damage in human colon cells WiDr and Caco-2. Both PM2.5 and SRM2786 exposures led to the accumulation of p62/SQSTM1 and compromised lysosomal membrane integrity, showing impaired autophagic flux in WiDr and Caco-2 cells. Finally, we examined the correlations between atmospheric PM2.5 data and biomarkers of colonic inflammation in human population. The serum level of IL-8 was significantly correlated with regional anthropogenic pollutants. In conclusion, our findings elucidate that ambient PM2.5 exhibits adverse effects on colon health manifested as inflammation, aberrant proliferation, and gut dysbiosis, potentially mediated through autophagy dysregulation, thereby highlighting the importance of further research on the impact of environmental pollutants on gastrointestinal health.
Collapse
Affiliation(s)
- Hsien-Jen Cheng
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei City 115021, Taiwan
| | - Wei-Lun Hsu
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Tang-Huang Lin
- Center for Space and Remote Sensing Research, National Central University, Taoyuan, Taiwan
| | - Shih-Shuan Fang
- Division of Geriatric Medicine, Department of Community Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Ming-Hsien Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Yen-Ju Lin
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Shuo-Ping Wang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Hsin Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Ming-Shiou Jan
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan; Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yueh-Hsia Luo
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
He Y, Fan Y, Ahmadpoor X, Wang Y, Li ZA, Zhu W, Lin H. Targeting lysosomal quality control as a therapeutic strategy against aging and diseases. Med Res Rev 2024; 44:2472-2509. [PMID: 38711187 DOI: 10.1002/med.22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024]
Abstract
Previously, lysosomes were primarily referred to as the digestive organelles and recycling centers within cells. Recent discoveries have expanded the lysosomal functional scope and revealed their critical roles in nutrient sensing, epigenetic regulation, plasma membrane repair, lipid transport, ion homeostasis, and cellular stress response. Lysosomal dysfunction is also found to be associated with aging and several diseases. Therefore, function of macroautophagy, a lysosome-dependent intracellular degradation system, has been identified as one of the updated twelve hallmarks of aging. In this review, we begin by introducing the concept of lysosomal quality control (LQC), which is a cellular machinery that maintains the number, morphology, and function of lysosomes through different processes such as lysosomal biogenesis, reformation, fission, fusion, turnover, lysophagy, exocytosis, and membrane permeabilization and repair. Next, we summarize the results from studies reporting the association between LQC dysregulation and aging/various disorders. Subsequently, we explore the emerging therapeutic strategies that target distinct aspects of LQC for treating diseases and combatting aging. Lastly, we underscore the existing knowledge gap and propose potential avenues for future research.
Collapse
Affiliation(s)
- Yuchen He
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xenab Ahmadpoor
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Xu W, Chen H, Xiao H. mTORC2: A neglected player in aging regulation. J Cell Physiol 2024; 239:e31363. [PMID: 38982866 DOI: 10.1002/jcp.31363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in various biological processes, through integrating external and internal signals, facilitating gene transcription and protein translation, as well as by regulating mitochondria and autophagy functions. mTOR kinase operates within two distinct protein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which engage separate downstream signaling pathways impacting diverse cellular processes. Although mTORC1 has been extensively studied as a pro-proliferative factor and a pro-aging hub if activated aberrantly, mTORC2 received less attention, particularly regarding its implication in aging regulation. However, recent studies brought increasing evidence or clues for us, which implies the associations of mTORC2 with aging, as the genetic elimination of unique subunits of mTORC2, such as RICTOR, has been shown to alleviate aging progression in comparison to mTORC1 inhibition. In this review, we first summarized the basic characteristics of mTORC2, including its protein architecture and signaling network. We then focused on reviewing the molecular signaling regulation of mTORC2 in cellular senescence and organismal aging, and proposed the multifaceted regulatory characteristics under senescent and nonsenescent contexts. Next, we outlined the research progress of mTOR inhibitors in the field of antiaging and discussed future prospects and challenges. It is our pleasure if this review article could provide meaningful information for our readers and call forth more investigations working on this topic.
Collapse
Affiliation(s)
- Weitong Xu
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Honghan Chen
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Chen X, Su Q, Gong R, Ling X, Xu R, Feng Q, Ke J, Liu M, Kahaerjiang G, Liu Y, Yang Y, Jiang Z, Wu H, Qi Y. LC3-associated phagocytosis and human diseases: Insights from mechanisms to therapeutic potential. FASEB J 2024; 38:e70130. [PMID: 39446073 DOI: 10.1096/fj.202402126r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
LC3-associated phagocytosis (LAP) is a distinct type of autophagy that involves the sequestration of extracellular material by phagocytes. Beyond the removal of dead cells and cellular debris from eukaryotic cells, LAP is also involved in the removal of a variety of pathogens, including bacteria, fungi, and viruses. These events are integral to multiple physiological and pathological processes, such as host defense, inflammation, and tissue homeostasis. Dysregulation of LAP has been associated with the pathogenesis of several human diseases, including infectious diseases, autoimmune diseases, and neurodegenerative diseases. Thus, understanding the molecular mechanisms underlying LAP and its involvement in human diseases may provide new insights into the development of novel therapeutic strategies for these conditions. In this review, we summarize and highlight the current consensus on the role of LAP and its biological functions in disease progression to propose new therapeutic strategies. Further studies are needed to illustrate the precise role of LAP in human disease and to determine new therapeutic targets for LAP-associated pathologies.
Collapse
Affiliation(s)
- Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Ruize Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xing Ling
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Runxiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qijia Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jialiang Ke
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | | | - Yuhang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Bai YY, Tian R, Qian Y, Zhang Q, Zhao CB, Yan YG, Zhang L, Yue SJ, Tang YP. Integrated Small Intestine Microbiota and Serum Metabolomics Reveal the Potential Mechanisms of Wine Steaming in Alleviating Rhubarb-Induced Diarrhea. J Inflamm Res 2024; 17:7851-7868. [PMID: 39494199 PMCID: PMC11531732 DOI: 10.2147/jir.s479654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
Background Long-term use of rhubarb (RH) commonly leads to diarrhea, which can be alleviated by steaming with wine. However, the specific mechanism by which wine steaming alleviates RH-induced diarrhea remains unknown. Objective This study aims to reveal the underlying mechanisms of wine steaming in alleviating RH-induced diarrhea by examining small intestinal flora and serum metabolomics. Methods Major anthraquinone and anthrone components were detected using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Eighty-four ICR mice were randomly divided into control, RH, and RH steamed with wine (PRH) groups and were administered RH and PRH (1, 4, and 8 g/kg, i.g). for 14 consecutive days. Histopathological analysis was performed using hematoxylin-eosin staining. Levels of inflammatory factors and tight junction proteins, zonula occludens-1 (ZO-1) and occludin, in the small intestine were measured. The small intestine content was analyzed using 16S rRNA sequencing, and UPLC-MS was used to analyze endogenous metabolites. Results Levels of major anthraquinone and anthrone components decreased in PRH. Both RH and PRH groups showed varying degrees of loose stools and increased fecal water rates; the RH group exhibited more severe effects. Compared with the control group, RH caused small intestine injuries, increased levels of inflammatory cytokines, downregulated the expression of ZO-1 and occludin, and induced gut microbiota (GM) imbalance. The relative abundance of Lactobacillus decreased, while the relative abundance of Shigella and Streptococcus increased. However, PRH had a milder impact than RH. The glycerophospholipid metabolic pathway was involved in this effect. The levels of inflammatory cytokines and potential metabolites (sn-glycero-3-phosphoethanolamine) were positively correlated with Streptococcus infection, while the levels of ZO-1 and occludin were negatively correlated with Streptococcus infection. GM imbalance and abnormal glycerophospholipid metabolism contributed to impaired intestinal barrier function and inflammatory factor release, which may underlie RH-induced diarrhea, though PRH had a weaker effect. Conclusion PRH alleviated RH-induced diarrhea by recovering GM balance, reducing ZO-1 and occludin expression, and decreasing the release of inflammatory factors. This mechanism may be linked to the reduced anthraquinone content. This study is the first to explore the mechanism of wine steaming in alleviating RH-induced diarrhea through small intestinal flora and serum metabolomics. It provides data to support the broader clinical use of RH and its safer application.
Collapse
Affiliation(s)
- Ya-Ya Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Rui Tian
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Yan Qian
- Suzhou Institute for Drug Control, Suzhou, Jiangsu Province, 215000, People’s Republic of China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Chong-Bo Zhao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Yong-Gang Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, Jiangsu Province, 225300, People’s Republic of China
| | - Shi-Jun Yue
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, People’s Republic of China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
11
|
Hao WR, Cheng CY, Liu JC, Cheng TH. Unraveling autophagy-related pathogenesis in active ulcerative colitis: A bioinformatics approach. World J Clin Cases 2024; 12:6335-6338. [PMID: 39464329 PMCID: PMC11438679 DOI: 10.12998/wjcc.v12.i30.6335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
In this editorial, we provide commentary on the study by Gong et al. In this original research article, Gong et al employed a bioinformatics approach to investigate the involvement of autophagy in active ulcerative colitis (UC). Through differential gene expression analysis, they identified 58 differentially expressed autophagy-related genes in UC patients compared to healthy controls. Notably, HSPA5, CASP1, SERPINA1, CX3CL1, and BAG3, were found to be upregulated in active UC patients, suggesting their significance as core autophagy-related targets. Enrichment analysis unveiled associations with crucial signaling pathways and diseases such as middle cerebral artery occlusion and glomerulonephritis. Moreover, immune cell infiltration analysis revealed notable differences in immune cell composition between UC patients and healthy controls. These findings offer valuable insights into the role of autophagy in UC pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Wen-Rui Hao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11002, Taiwan
| | - Chun-Yao Cheng
- Department of Medical Education, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei 10633, Taiwan
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11002, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung City 404333, Taiwan
| |
Collapse
|
12
|
Gao F, Wu S, Zhang K, Xu Z, Zhang X, Zhu Z, Quan F. Goat Milk Exosomes Ameliorate Ulcerative Colitis in Mice through Modulation of the Intestinal Barrier, Gut Microbiota, and Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23196-23210. [PMID: 39390385 DOI: 10.1021/acs.jafc.4c03212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Goat milk is rich in a variety of nutrients that are important for intestinal health and disease prevention. However, the role of exosomes in goat milk remains to be elucidated. This study investigated for the first time the therapeutic efficacy and molecular underlying mechanisms of mature milk exosomes (M-exo) and goat colostrum exosomes (C-exo) on dextran sodium sulfate-induced ulcerative colitis (UC) in mice. The findings demonstrate that M-exo and C-exo significantly improved physiological indices, suppressed the secretion of proinflammatory cytokines, and diminished oxidative stress and apoptosis in UC mice. Moreover, C-exo and M-exo restored the intestinal barrier function, remodeled the gut microbiota, and improved metabolite composition in the feces of colitis mice. In conclusion, goat milk exosomes ameliorate UC in mice, which provides a basis for the development of functional food applications for the prevention and treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shenghui Wu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kang Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zhiming Xu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xin Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zhengjin Zhu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
13
|
Sheng T, Wang L, Yan S, Wei Q, Geng X, Lan W, Chen Y, Liu Y, Li N. Involvement of gut microbiota recovery and autophagy induction in Youhua Kuijie formula's protection against experimental ulcerative colitis. Exp Anim 2024; 73:357-369. [PMID: 38599877 PMCID: PMC11534492 DOI: 10.1538/expanim.23-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by overactive inflammatory response, impaired intestinal mucosal barrier and disrupted gut microbiota. Youhua Kuijie formula is a classic empirical prescription based on the pathogenesis of UC. The present study was designed to verify the protective effect of Youhua Kuijie formula on DSS-induced UC in mice and uncover the related mechanism. Youhua Kuijie formula were orally administrated to UC mice induced by DSS dissolved in drinking water for ten days. The protective effect of Youhua Kuijie formula was evidenced by reduced pathological symptoms accompanied by palliative inflammatory response and relatively intact intestinal barrier. The data from 16S rRNA gene sequencing and GC-MS untargeted metabolomics indicated that the supplement of Youhua Kuijie formula restructured gut microbiota community structure, and thereby modulated the metabolic profiles in UC mice. The analysis of pathway enrichment analysis suggested the major alterations in metabolic pathway were related to protein digestion and absorption. Besides, the results of the following experiments suggested that Youhua Kuijie formula treatment increased adenosine monophosphate-activated protein kinase (AMPK) activation, decreased mechanistic target of rapamycin (mTOR) phosphorylation, and thereby reversing autophagy deficiency in the intestinal tract of UC mice. Collectively, our results demonstrated that the regulation of AMPK/mTOR was involved in Youhua Kuijie formula administration mediated protective effect on UC.
Collapse
Affiliation(s)
- Tianjiao Sheng
- Graduate school, Liaoning University of Traditional Chinese Medicine, No. 79 Chongshandong Road, Shenyang, Liaoning, 110847, P.R. China
- Department of Traditional Chinese Medicine, General Hospital of Northern Theater Command, No.83 Wenhua Road, Shenyang, Liaoning, 110016, P.R. China
| | - Lei Wang
- Department of anorectum, Hulunbuir Zhong Meng Hospital, No. 58 Xidajie Road, Hulunbuir, 021000, P.R. China
| | - Simeng Yan
- Department of 1st Area of Officers' Ward, General Hospital of Northern Theater Command, No.83 Wenhua Road, Shenyang, Liaoning, 110016, P.R. China
| | - Qiuyu Wei
- Graduate school, Liaoning University of Traditional Chinese Medicine, No. 79 Chongshandong Road, Shenyang, Liaoning, 110847, P.R. China
| | - Xiao Geng
- Department of Traditional Chinese Medicine, General Hospital of Northern Theater Command, No.83 Wenhua Road, Shenyang, Liaoning, 110016, P.R. China
| | - Weiru Lan
- The third department of Anorectal hemorrhoids and Fistula, Liaoning University of Traditional Chinese Medicine Affiliated Third Hospital, No. 35, 11th Wei Road, Shenyang, Liaoning, 110003, P.R. China
| | - Yan Chen
- Graduate school, Liaoning University of Traditional Chinese Medicine, No. 79 Chongshandong Road, Shenyang, Liaoning, 110847, P.R. China
| | - Yuedong Liu
- Graduate school, Liaoning University of Traditional Chinese Medicine, No. 79 Chongshandong Road, Shenyang, Liaoning, 110847, P.R. China
| | - Na Li
- Department of Anorectal Surgery, Xianyang Central Hospital, No. 78 Renmin East Road, Xianyang, Shaanxi, 712000, P.R. China
| |
Collapse
|
14
|
Yang Y, Zhang C, Lin L, Li Q, Wang M, Zhang Y, Yu Y, Hu D, Wang X. Multifunctional MnGA Nanozymes for the Treatment of Ulcerative Colitis by Reducing Intestinal Inflammation and Regulating the Intestinal Flora. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56884-56901. [PMID: 39401179 DOI: 10.1021/acsami.4c14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In ulcerative colitis (UC), the formation of an inflammatory environment is due to the combined effects of excess production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), overproduction of proinflammatory cytokines, and disruption of immune system function. There are many kinds of traditional drugs for the clinical treatment of UC, but long-term drug use can cause toxic side effects and drug resistance and can also reduce patient compliance and other drawbacks. Hence, in light of the clinical challenges associated with UC, including the limitations of existing treatments, intense adverse reactions and the development of resistance to medications, no novel therapeutic agents that offer effective relief and maintain a high level of biosafety are urgently needed. Although many anti-inflammatory nanomedicines have been developed by researchers, the development of efficient and nontoxic nanomedicines is still a major challenge in clinical medicine. Using the natural product gallic acid and the metal compound manganese chloride, a highly effective and nontoxic multifunctional nanoenzyme was developed for the treatment of UC. Nanozymes can effectively eliminate ROS and RNS to reduce the inflammation of intestinal epithelial cells caused by oxidation, facilitate the restoration of the intestinal epithelial barrier through the upregulation of tight junction protein expression, and balance the intestinal microbiota to maintain the stability of the intestinal environment. Using a rodent model designed to mimic UC, we monitored body weight, colon length, the spleen index, and the degree of tissue damage and demonstrated that manganese gallate (MnGA) nanoparticles can reduce intestinal inflammation by clearing ROS and active nitrogen. Intestinal flora sequencing revealed that MnGA nanoparticles could regulate the intestinal flora, promote the growth of beneficial bacteria and decrease the levels of detrimental bacteria within the intestinal tract in a mouse model of UC. Thus, MnGA nanoparticles can maintain the balance of the intestinal flora. This study demonstrated that MnGA nanoparticles are excellent antioxidant and effective anti-inflammatory agents, have good biosafety, and can effectively treat UC.
Collapse
Affiliation(s)
- Yan Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Cong Zhang
- Department of Gastroenterology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Liting Lin
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Qingrong Li
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Min Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yiqun Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yue Yu
- Department of Gastroenterology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Duanmin Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
15
|
Hu CH, Chen Y, Jin TY, Wang Z, Jin B, Liao J, Ding CY, Zhang A, Tang WY, Zhang LX, Xu LY, Ning FM, Liang G, Wei XH, Wang Y. A derivative of tanshinone IIA and salviadione, 15a, inhibits inflammation and alleviates DSS-induced colitis in mice by direct binding and inhibition of RIPK2. Acta Pharmacol Sin 2024:10.1038/s41401-024-01399-1. [PMID: 39443729 DOI: 10.1038/s41401-024-01399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory conditions primarily affecting the gastrointestinal tract. Previous studies established the role of the NF-κB signaling pathway in the development of IBDs, suggesting that anti-inflammatory therapies might offer a viable treatment strategy. Tanshinone IIA and salviadione, both derived from Salviae Miltiorrhizae Radix et Rhizoma, possess anti-inflammatory and anti-oxidative activities. A series of new compounds were synthesized by hybridizing salviadione with tanshinone. Among these compounds, 15a showed beneficial effects in LPS-induced acute lung injury and diabetes-induced renal injury mouse models. The current study explored the therapeutic efficacy of 15a using both acute and chronic colitis models and elucidated the underlying mechanisms. DSS-induced colitis models were established in mice, where acute colitis was treated with compound 15a (5 or 10 mg·kg-1·d-1) for 8 days, while chronic colitis mice received compound 15a (5 or 10 mg·kg-1·d-1, i.g.) during 2.5% DSS administration. The 15a treatment significantly alleviated DSS-induced pathological and inflammatory damages in both acute and chronic colitis mouse models. In mouse intestinal epithelial cell line MODE-K, pretreatment with compound 15a (5 or 10 μM) significantly suppressed LPS + L18-MDP-induced inflammatory responses. The receptor-interacting serine/threonine kinase 2 (RIPK2) was identified as a direct binding target of compound 15a using microarrays and recombinant human proteins. Moreover, 15a could directly bind to and inhibit the phosphorylation of RIPK2, leading to the suppression of the NF-κB and MAPK signaling pathways. Furthermore, LEU153 and VAL32 were identified within the KD domain of RIPK2 as critical amino residues for the binding of 15a. Briefly, the current findings demonstrate that compound 15a holds promise as a therapeutic agent for managing acute and chronic colitis.
Collapse
Affiliation(s)
- Cheng-Hong Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yue Chen
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Tian-Yang Jin
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Zhe Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Bo Jin
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Jing Liao
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Chun-Yong Ding
- Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ao Zhang
- Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei-Yang Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ling-Xi Zhang
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Lei-Yu Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fang-Min Ning
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310051, China
| | - Xiao-Hong Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yi Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
16
|
Salim Abed H, Oghenemaro EF, Kubaev A, Jeddoa ZMA, S R, Sharma S, Vashishth R, Jabir MS, Jawad SF, Zwamel AH. Non-coding RNAs as a Critical Player in the Regulation of Inflammasome in Inflammatory Bowel Diseases; Emphasize on lncRNAs. Cell Biochem Biophys 2024:10.1007/s12013-024-01585-2. [PMID: 39424765 DOI: 10.1007/s12013-024-01585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic disease caused by a dysregulated immune response to host intestinal microflora. A hyperactive inflammatory and immunological response in the gut has been shown to be one of the disease's long-term causes despite the complexity of the clinical pathology of IBD. The innate immune system activator known as human gut inflammasome is thought to be a significant underlying cause of pathology and is closely linked to the development of IBD. It is essential to comprehend the function of inflammasome activation in IBD to treat it effectively. Systemic inflammasome regulation may be a proper therapeutic and clinical strategy to manage IBD symptoms since inflammasomes may have a significant function in IBD. Non-coding RNAs (ncRNAs) are a type of RNA transcript that is incapable of encoding proteins or peptides. In IBD, inflammation develops and worsens as a result of its imbalance. Culminating evidence has been shown that ncRNAs, and particularly long non-coding RNAs (lncRNAs), may play a role in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in IBD. The relationship between IBD and the gut inflammasome, as well as current developments in IBD research and treatment approaches, have been the main topics of this review. We have covered inflammasomes and their constituents, results from in vivo research, inflammasome inhibitors, and advancements in inflammasome-targeted therapeutics for IBD.
Collapse
Affiliation(s)
- Hussein Salim Abed
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Ramadi, Iraq
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria.
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, 140100, Uzbekistan
| | | | - RenukaJyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Karbala, Iraq
| | - Sabrean Farhan Jawad
- Department of Biochemistry, College of Science, Al-Mustaqbal University, 51001, Babil, Iraq
| | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
17
|
Jiang L, Zhang S, Jiang C, Chen H, Huang J, Yang J, Chi H, Wu Q, Yang G. Integrative biomarker discovery and immune profiling for ulcerative colitis: a multi-methodological approach. Sci Rep 2024; 14:24290. [PMID: 39414957 PMCID: PMC11484944 DOI: 10.1038/s41598-024-75797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Background We aimed to pinpoint biomarkers, create a diagnostic model for ulcerative colitis (UC), and delve into its immune features to better understand this autoimmune condition. Methods The sequencing data for both the UC and the control groups were obtained from GEO, including both bulk and single-cell data. Using GSE87466 as training group, we applied differential analysis, WGCNA, PPI, LASSO, RF, and SVM-RFE for biomarker selection. A neural network shaped our diagnostic model, corroborated by GSE92415 as the validation cohort with ROC assessment. Immune cell profiling was conducted using CIBERSORT. Results 53 disease-associated genes were screened. Enrichment analysis highlighted roles in complement cascades and cell adhesion. Eight biomarkers were finally identified through multiple machine learning and PPI: B4GALNT2, PDZK1IP1, FAM195A, REG4, MTMR11, FLJ35024, CD55, and CD44. The diagnostic model had AUCs of 0.984 (training group) and 0.957 (validation group). UC tissues revealed heightened plasma cells, CD8 T cells, and other immune cells. Two unique UC immune patterns emerged, with certain T and NK cells central to immune modulation. Conclusion We identified eight biomarkers of UC by various methods, constructed a diagnostic model through neural networks, and explored the immune complexity of the disease, which contributes to the diagnosis and treatment of UC.
Collapse
Affiliation(s)
- Lai Jiang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
- Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao ln-Depth Cooperation Zone in Hengqin, Zhuhai, 519000, China
| | - Shengke Zhang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Chenglu Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Haiqing Chen
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Jinbang Huang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Jinyan Yang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China.
| | - Qibiao Wu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China.
- Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao ln-Depth Cooperation Zone in Hengqin, Zhuhai, 519000, China.
| | - Guanhu Yang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China.
- Department of Specialty Medicine, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
18
|
Xiao Q, Luo L, Zhu X, Yan Y, Li S, Chen L, Wang X, Zhang J, Liu D, Liu R, Zhong Y. Formononetin alleviates ulcerative colitis via reshaping the balance of M1/M2 macrophage polarization in a gut microbiota-dependent manner. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156153. [PMID: 39423480 DOI: 10.1016/j.phymed.2024.156153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/18/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Ulcerative colitis (UC), a type of inflammatory bowel disease, presents substantial challenges in clinical treatment due to the limitations of current medications. Formononetin (FN), a naturally compound with widespread availability, exhibits anti-inflammatory, antioxidant, and immunomodulatory properties. PURPOSE This study aimed to investigate the efficacy of FN against UC and its potential regulatory mechanism. METHODS Here, dextran sulfate sodium (DSS) was employed to replicate experimental colitis in mice with concomitant FN treatment. The distribution and localisation of CD68 and F4/80 macrophages in colonic tissues were visualized by immunofluorescence, their chemokine and inflammatory cytokine concentrations were determined by ELISA, and macrophages and M1/M2 subpopulations were determined by flow cytometry. Additionally, 16 s rRNA and LC-MS techniques were used to detect the colonic intestinal microbiota and metabolite profiles, respectively. Correlation analyses was performed to clarify the interactions between differential bacteria, metabolites and M1/M2 macrophages, and pseudo sterile mice were constructed by depletion of gut flora with quadruple antibiotics, followed by faecal microbial transplantation to evaluate its effects on colitis and M1/M2 macrophage polarisation. RESULTS FN dose-dependently alleviated clinical symptoms and inflammatory injury in colonic tissues of colitis mice, with its high-dose efficacy comparable to that of 5-ASA. Concurrently, FN not only inhibited inflammatory infiltration of macrophages and their M1/M2 polarisation balance in colitis mice, but also improved the composition of colonic microbiota and metabolite profiles. However, FN lost its protective effects against DSS-induced colitis and failed to restore the equilibrium of M1/M2 macrophage differentiation following intestinal flora depletion through quadruple antibiotic treatment. Importantly, fecal microbiota transplantation from FN-treated mice restored FN's protective effects against DSS-induced colitis and reestablished its regulatory role in M1/M2 macrophage polarization. CONCLUSION Collectively, FN ameliorated UC through modulating the balance of M1/M2 macrophage polarization in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Qiuping Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Key Laboratory of Effective Material Basis of TCM, Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Lin Luo
- College of Acupuncture and Tuina, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xiyan Zhu
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Yuhao Yan
- College of Acupuncture and Tuina, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Shanshan Li
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Liling Chen
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xiaomin Wang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jie Zhang
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Duanyong Liu
- Jiangxi Provincial Engineering Research Center of Development and Evaluation of TCM classic prescriptions, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Nursing, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Key Laboratory of Prevention and Treatment of Immunological and Metabolic Diseases Related to Prescription and Syndrome, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Ronghua Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Key Laboratory of Effective Material Basis of TCM, Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Youbao Zhong
- College of Acupuncture and Tuina, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Key Laboratory of Prevention and Treatment of Immunological and Metabolic Diseases Related to Prescription and Syndrome, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
19
|
Dou J, Wu Y, Hu R, Liu J, Zhang Y, Zhen X, Wu T, Zhang C, Liu Y, Zheng R, Jiang G. Quinoa ameliorates polycystic ovary syndrome via regulating gut microbiota through PI3K/AKT/mTOR pathway and autophagy. Nutr Metab (Lond) 2024; 21:80. [PMID: 39394588 PMCID: PMC11468221 DOI: 10.1186/s12986-024-00855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a unity of endocrine and metabolic disorders, associated with PI3K/AKT/mTOR, autophagy, and gut microbiota. Quinoa is a valuable food source, which contains rich minerals, unsaturated fatty acids, and has a positive modulating effect on metabolic diseases. However, its effects and potential mechanisms on PCOS have not been reported yet. Therefore, the purpose of this study is to investigate the effect of quinoa on PCOS rats by regulating PI3K/AKT/mTOR, autophagy, and gut microbiota. METHODS Ten-week-old female Sprague-Dawley (SD) rats have received letrozole for 24 days for induction of PCOS and subsequently were treated with a quinoa diet for 8 weeks. Vaginal smears were used to analyze the estrous cycle of rats. Hormone and biochemical indexes were analyzed by kit assays and glucometer. The pathological changes of ovary, pancreas, duodenum and colon were observed by HE staining. PI3K, AKT, mTOR and autophagy-related proteins in the ovary and colon were measured by western blot and immunohistochemistry staining. Tight junction proteins in colon were measured by immunohistochemistry staining. 16 s rDNA sequencing was used to detect the changes of intestinal microbiota in rats. Network pharmacology and molecular docking were used to study the possible targets and mechanisms of quinoa on PCOS. Spearman correlation analysis was used to study the relationship between intestinal microbial abundance and hormone levels of PCOS rats at the phylum and genus level. RESULTS Quinoa significantly improved estrous cycle and biochemical parameters of PCOS-like rats, and the pathological state of ovary, pancreas, duodenum and colon tissues. Especially, quinoa significantly regulated the expression of PI3K, AKT, mTOR and autophagy-related proteins in the ovary. Quinoa may repair the intestinal barrier by upregulating the expression of tight junction proteins in the colon, and regulate autophagy-related factors in colon. Additionally, quinoa increased the abundance of Lactobacillu, Bacteroides and Oscillospira, and decreased the Firmicutes/Bacteroidetes ratio and the Blautia, and Prevotella, reversing the dysregulation of the gut microbiota. Correlation analysis showed that there is a strong correlation between gut microbiota with significant changes in abundance and hormone related to PCOS. CONCLUSION Our result indicated that effect of quinoa on PCOS maybe associated with activation of the PI3K/AKT/mTOR signaling pathway, inhibition of autophagy, and regulation of intestinal flora.
Collapse
Affiliation(s)
- Jinfang Dou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanxiang Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rentong Hu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Guangxi, China
| | - Jiaxian Liu
- Beijing Zhongli Biological Technology Co., Ltd, Beijing, China
- Gansu Chunjie Plateau Agricultural Technology Co., Ltd, Wuwei, China
| | - Yuelin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xianjie Zhen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chuyue Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yutong Liu
- Beijing Zhongli Biological Technology Co., Ltd, Beijing, China
- Gansu Chunjie Plateau Agricultural Technology Co., Ltd, Wuwei, China
| | - Ruifang Zheng
- Institute of Materia Medica, Xinjiang Uyghur Autonomous Region, Urumqi, 830004, China.
| | - Guangjian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
20
|
Liu Y, Deng S, Sun L, He H, Zhou Q, Fan H, Yang C, Yang J. Compound sophorae decoction mitigates DSS-induced ulcerative colitis by activating autophagy through PI3K-AKT pathway: A integrative research combining network pharmacology and in vivo animal model validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118885. [PMID: 39369920 DOI: 10.1016/j.jep.2024.118885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound sophora decoction (CSD), a widely used Chinese herbal formula, has been shown to effectively alleviate symptoms ulcerative colitis (UC), including of bloody diarrhea, tenesmus, abdominal pain, and fever. Despite its clinical use, the precise pharmacological mechanisms of CSD remain enigmatic. AIM OF THE STUDY This study aims to investigate the potential efficacy and underlying mechanisms of CSD in the treatment of UC by employing an integrative pharmacology-based approach, molecular docking analysis and experimental validation. MATERIALS AND METHODS In this study, an integrative pharmacology-based approach was employed to predict the primary pathway through which CSD treats UC. The mechanism of CSD was further validated using a DSS-induced UC mouse model. Disease severity was assessed by monitoring stool property, body weight, colon length, and colon histopathology. Colonic pathological changes were examined using hematoxylin and eosin (HE) staining. The concentration of cytokines was measured via ELISA, while key molecules in the PI3K-AKT pathway and autophagy-related markers were evaluated using Western blotting. Autophagy in intestinal epithelial cells was observed using electron microscopy. RESULTS The results demonstrated that CSD alleviated DSS-induced UC by inhibiting the activation of PI3K-AKT pathway, reducing the release of inflammatory cytokines, down-regulating oxidative mediators, and enhancing autophagy. Moreover, the protective effects of CSD were diminished by bpV, a PTEN inhibitor, further supporting the involvement of the PI3K-AKT pathway. CONCLUSIONS The underlying mechanism of CSD's therapeutic effect on UC may involve significant attenuation of DSS-induced intestinal inflammation by promoting autophagy through the inhibition of PI3K-AKT pathway activation.
Collapse
Affiliation(s)
- Yujin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuangjiao Deng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lieqian Sun
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065, China; Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430022, China
| | - Hongxia He
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiaoli Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Yang
- Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430022, China.
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
21
|
Zhao M, Cui Y, Wang F, Wu F, Li C, Liu S, Chen B. Ursolic Acid Regulates Immune Balance, Modulates Gut Microbial Metabolism, and Improves Liver Health in Mice. Int J Mol Sci 2024; 25:10623. [PMID: 39408951 PMCID: PMC11477038 DOI: 10.3390/ijms251910623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Ursolic acid (UA) has demonstrated significant immunomodulatory and hepatoprotective effects; however, the underlying mechanisms remain unclear. This study aims to analyze the impact of UA on the gut microbiome, metabolome, and liver transcriptome, investigate UA's role in maintaining gut immune homeostasis and liver health, and evaluate the potential contributions of gut microbes and their metabolites to these beneficial effects. Our findings indicate that UA enhances immune balance in the jejunum, fortifies intestinal barrier function, and promotes overall gut health. UA modulates the intestinal microbiota and its metabolic processes, notably increasing the abundance of beneficial bacteria such as Odoribacter and Parabacteroides, along with their metabolites, including ornithine and lactucin. Additionally, UA inhibits the expression of interleukin-1 receptor 1 (IL1R1) and calcium (Ca2+) voltage-gated channel auxiliary subunit beta 2 (CACNB2) while enhancing the synthesis pathways of retinol and ascorbic acid, thereby exerting a protective influence on liver function. In summary, UA enhances intestinal immune homeostasis and promotes liver health, with these advantageous effects potentially mediated by beneficial bacteria (Odoribacter and Parabacteroides) and their metabolites (ornithine and lactucin).
Collapse
Affiliation(s)
- Man Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Yali Cui
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071051, China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Chong Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| |
Collapse
|
22
|
Moustafa HAM, Elsakka EGE, Abulsoud AI, Elshaer SS, Rashad AA, El-Dakroury WA, Sallam AAM, Rizk NI, Zaki MB, Gomaa RM, Elesawy AE, Mohammed OA, Abdel Mageed SS, Eleragi AMS, ElBoghdady JA, El-Fayoumi SH, Abdel-Reheim MA, Doghish AS. The miRNA Landscape in Crohn's disease: Implications for novel therapeutic approaches and interactions with Existing therapies. Exp Cell Res 2024; 442:114234. [PMID: 39233267 DOI: 10.1016/j.yexcr.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
MicroRNAs (miRNAs), which are non-coding RNAs consisting of 18-24 nucleotides, play a crucial role in the regulatory pathways of inflammatory diseases. Several recent investigations have examined the potential role of miRNAs in forming Crohn's disease (CD). It has been suggested that miRNAs serve as diagnostics for both fibrosis and inflammation in CD due to their involvement in the mechanisms of CD aggravation and fibrogenesis. More information on CD pathophysiology could be obtained by identifying the miRNAs concerned with CD and their target genes. These findings have prompted several in vitro and in vivo investigations into the putative function of miRNAs in CD treatment. Although there are still many unanswered questions, the growing body of evidence has brought miRNA-based therapy one step closer to clinical practice. This extensive narrative study offers a concise summary of the most current advancements in CD. We go over what is known about the diagnostic and therapeutic benefits of miRNA mimicry and inhibition so far, and we see what additional miRNA family targets could be useful for treating CD-related inflammation and fibrosis.
Collapse
Affiliation(s)
- Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Al-Aliaa M Sallam
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo P.O. Box 11829, Egypt
| | - Ahmed E Elesawy
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jasmine A ElBoghdady
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Shaimaa H El-Fayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | | - Ahmed S Doghish
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
23
|
Salesse L, Duval A, Sauvanet P, Da Silva A, Barnich N, Godfraind C, Dalmasso G, Nguyen HTT. ATG16L1 in myeloid cells limits colorectal tumor growth in ApcMin/+ mice infected with colibactin-producing Escherichia coli via decreasing inflammasome activation. Autophagy 2024; 20:2186-2204. [PMID: 38818900 PMCID: PMC11423662 DOI: 10.1080/15548627.2024.2359770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Escherichia coli strains producing the genotoxin colibactin, designated as CoPEC (colibactin-producing E. coli), have emerged as an important player in the etiology of colorectal cancer (CRC). Here, we investigated the role of macroautophagy/autophagy in myeloid cells, an important component of the tumor microenvironment, in the tumorigenesis of a susceptible mouse model infected with CoPEC. For that, a preclinical mouse model of CRC, the ApcMin/+ mice, with Atg16l1 deficiency specifically in myeloid cells (ApcMin/+/Atg16l1[∆MC]) and the corresponding control mice (ApcMin/+), were infected with a clinical CoPEC strain 11G5 or its isogenic mutant 11G5∆clbQ that does not produce colibactin. We showed that myeloid cell-specific Atg16l1 deficiency led to an increase in the volume of colonic tumors in ApcMin/+ mice under infection with 11G5, but not with 11G5∆clbQ. This was accompanied by increased colonocyte proliferation, enhanced inflammasome activation and IL1B/IL-1β secretion, increased neutrophil number and decreased total T cell and cytotoxic CD8+ T cell numbers in the colonic mucosa and tumors. In bone marrow-derived macrophages (BMDMs), compared to uninfected and 11G5∆clbQ-infected conditions, 11G5 infection increased inflammasome activation and IL1B secretion, and this was further enhanced by autophagy deficiency. These data indicate that ATG16L1 in myeloid cells was necessary to inhibit colonic tumor growth in CoPEC-infected ApcMin/+ mice via inhibiting colibactin-induced inflammasome activation and modulating immune cell response in the tumor microenvironment. Abbreviation: AOM, azoxymethane; APC, APC regulator of WNT signaling pathway; ATG, autophagy related; Atg16l1[∆MC] mice, mice deficient for Atg16l1 specifically in myeloid cells; CASP1, caspase 1; BMDM, bone marrow-derived macrophage; CFU, colony-forming unit; CoPEC, colibactin-producing Escherichia coli; CRC, colorectal cancer; CXCL1/KC, C-X-C motif chemokine ligand 1; ELISA, enzyme-linked immunosorbent assay; IL, interleukin; MC, myeloid cell; MOI, multiplicity of infection; PBS, phosphate-buffered saline; pks, polyketide synthase; qRT-PCR, quantitative real-time reverse-transcription polymerase chain reaction; siRNA, small interfering RNA; TME, tumor microenvironment; TNF/TNF-α, tumor necrosis factor.
Collapse
Affiliation(s)
- Laurène Salesse
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRAE USC 1382, CRNH, Clermont-Ferrand, France
| | - Angéline Duval
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRAE USC 1382, CRNH, Clermont-Ferrand, France
| | - Pierre Sauvanet
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRAE USC 1382, CRNH, Clermont-Ferrand, France
- Department of Digestive and Hepatobiliary Surgery, CHU, Clermont-Ferrand, France
| | - Alison Da Silva
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRAE USC 1382, CRNH, Clermont-Ferrand, France
| | - Nicolas Barnich
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRAE USC 1382, CRNH, Clermont-Ferrand, France
| | - Catherine Godfraind
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRAE USC 1382, CRNH, Clermont-Ferrand, France
- Department of Pathology, CHU Gabriel Montpied, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRAE USC 1382, CRNH, Clermont-Ferrand, France
| | - Hang Thi Thu Nguyen
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRAE USC 1382, CRNH, Clermont-Ferrand, France
| |
Collapse
|
24
|
Lee J, Lee MS, Kim Y. Effects of Green Tea and Java Pepper Mixture on Gut Microbiome and Colonic MicroRNA-221/222 in Mice with Dextran Sulfate Sodium-Induced Colitis. Prev Nutr Food Sci 2024; 29:279-287. [PMID: 39371512 PMCID: PMC11450278 DOI: 10.3746/pnf.2024.29.3.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024] Open
Abstract
In this study, we aimed to investigate the regulatory effects of a green tea and java pepper mixture (GTP) on the gut microbiome and microRNA (miR)-221/222 expression in mice with dextran sulfate sodium (DSS)-induced colitis. Male C57BL/6J mice were divided into four groups: DSS-, DSS+, GTP50, and GTP100. In the GTP50 and GTP100 groups, GTP was orally administered to mice at doses of 50 and 100 mg/kg body weight, respectively, every day for 2 weeks, and colitis was induced in the DSS+, GTP50, and GTP100 groups by adding 3% DSS to their drinking water for 1 week. GTP was found to mitigate the severity of inflammation and the damage to goblet cells caused by DSS-induced colitis. The results showed that compared with the DSS- group, the relative abundance of Bacteroidetes was increased and that of Proteobacteria and Candidatus Melainabacteria was decreased in the GTP100 group. The ratio of Firmicutes to Bacteroidetes was also reduced in the GTP100 group. However, GTP administration did not modulate the microbial diversity. GTP administration upregulated the mRNA and protein levels of occludin and zonula occludens 1. In addition, GTP effectively downregulated the expression of miR-221 and miR-222. Overall, GTP altered the gut microbiota composition and downregulated colonic miR-221/222 expression in mice with DSS-induced colitis.
Collapse
Affiliation(s)
- Jumi Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
25
|
Tao YL, Wang JR, Liu M, Liu YN, Zhang JQ, Zhou YJ, Li SW, Zhu SF. Progress in the study of the correlation between sepsis and intestinal microecology. Front Cell Infect Microbiol 2024; 14:1357178. [PMID: 39391883 PMCID: PMC11464487 DOI: 10.3389/fcimb.2024.1357178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Sepsis, a disease with high incidence, mortality, and treatment costs, has a complex interaction with the gut microbiota. With advances in high-throughput sequencing technology, the relationship between sepsis and intestinal dysbiosis has become a new research focus. However, owing to the intricate interplay between critical illness and clinical interventions, it is challenging to establish a causal relationship between sepsis and intestinal microbiota imbalance. In this review, the correlation between intestinal microecology and sepsis was summarized, and new therapies for sepsis intervention based on microecological target therapy were proposed, and the shortcomings of bacterial selection and application timing in clinical practice were addressed. In conclusion, current studies on metabolomics, genomics and other aspects aimed at continuously discovering potential probiotics are all providing theoretical basis for restoring intestinal flora homeostasis for subsequent treatment of sepsis.
Collapse
Affiliation(s)
- Yan-Lin Tao
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jing-Ran Wang
- Department of Surgery ICU, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Miao Liu
- Department of Respiratory Medicine, Dingzhou People’s Hospital, Dingzhou, Heibei, China
| | - Ya-Nan Liu
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jin-Qiu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yi-Jing Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shu-Fen Zhu
- Physical Examination Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
26
|
Qiu T, Tan L, Yan J, Luo Q. Erbin: an important therapeutic target for blocking tumor metastasis. Front Pharmacol 2024; 15:1474798. [PMID: 39391694 PMCID: PMC11464413 DOI: 10.3389/fphar.2024.1474798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Erbin is an adapter protein that interacts with the v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (ERBB2) in epithelial cells. Erbin plays an important role in various signaling pathways, including cell proliferation, apoptosis, and autophagy. Additionally, Erbin is implicated in the pathogenesis and progression of sepsis and various cancers, including breast cancer, acute myeloid leukemia (AML), hepatocellular carcinoma (HCC), and colorectal cancer (CRC). A recent study shows that loss of Erbin increases the release of acyl-carnitine (Acar) through abolishing interaction with prothrombotic protein endothelial cell-specific adhesion molecule (ESAM), promotes mitochondrial oxidative phosphorylation in B cells, and ultimately suppresses lung metastasis of CRC. Accordingly, Erbin provides us with a new potential treatment for tumor metastasis.
Collapse
Affiliation(s)
- Tingting Qiu
- Department of hematopathology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Liquan Tan
- Department of Nursing, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Jialong Yan
- Institute of Clinical Research, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qunli Luo
- Department of hematopathology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
27
|
Arumugam P, Saha K, Nighot P. Intestinal Epithelial Tight Junction Barrier Regulation by Novel Pathways. Inflamm Bowel Dis 2024:izae232. [PMID: 39321109 DOI: 10.1093/ibd/izae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Indexed: 09/27/2024]
Abstract
Intestinal epithelial tight junctions (TJs), a dynamically regulated barrier structure composed of occludin and claudin family of proteins, mediate the interaction between the host and the external environment by allowing selective paracellular permeability between the luminal and serosal compartments of the intestine. TJs are highly dynamic structures and can undergo constant architectural remodeling in response to various external stimuli. This is mediated by an array of intracellular signaling pathways that alters TJ protein expression and localization. Dysfunctional regulation of TJ components compromising the barrier homeostasis is an important pathogenic factor for pathological conditions including inflammatory bowel disease (IBD). Previous studies have elucidated the significance of TJ barrier integrity and key regulatory mechanisms through various in vitro and in vivo models. In recent years, considerable efforts have been made to understand the crosstalk between various signaling pathways that regulate formation and disassembly of TJs. This review provides a comprehensive view on the novel mechanisms that regulate the TJ barrier and permeability. We discuss the latest evidence on how ion transport, cytoskeleton and extracellular matrix proteins, signaling pathways, and cell survival mechanism of autophagy regulate intestinal TJ barrier function. We also provide a perspective on the context-specific outcomes of the TJ barrier modulation. The knowledge on the diverse TJ barrier regulatory mechanisms will provide further insights on the relevance of the TJ barrier defects and potential target molecules/pathways for IBD.
Collapse
Affiliation(s)
- Priya Arumugam
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Kushal Saha
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
28
|
Lei X, Xu Z, Huang Y, Huang L, Lang J, Qu M, Liu D. Regulation of Mitochondrial Quality Control of Intestinal Stem Cells in Homeostasis and Diseases. Antioxid Redox Signal 2024. [PMID: 39225500 DOI: 10.1089/ars.2023.0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Significance: Intestinal stem cells (ISCs) are crucial for the continuous renewal and regeneration of the small intestinal epithelium. ISC fate decisions are strictly controlled by metabolism. Mitochondria act as the central hubs of energetic metabolism and dynamically remodel their morphology to perform required metabolic functions. Mitochondrial dysfunction is closely associated with a variety of gastrointestinal diseases. Recent Advances: In recent years, several studies have reported that mitochondria are potential therapeutic targets for regulating ISC function to alleviate intestinal diseases. However, how mitochondrial quality control mediates ISCs under physiological conditions and protects against intestinal injury remains to be comprehensively reviewed. Critical Issues: In this review, we summarize the available studies about how mitochondrial metabolism, redox state, dynamics, autophagy, and proteostasis impact ISC proliferation, differentiation, and regeneration, respectively. Future Directions: We propose that remodeling the function of mitochondria in ISCs may be a promising potential future direction for the treatment of intestinal diseases. This review may provide new strategies for therapeutically targeting the mitochondria of ISCs in intestinal diseases.
Collapse
Affiliation(s)
- Xudan Lei
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenni Xu
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yujun Huang
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lingxiao Huang
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyue Qu
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Dengqun Liu
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
29
|
Ma K, Sun L, Jia C, Kui H, Xie J, Zang S, Huang S, Que J, Liu C, Huang J. Potential mechanisms underlying podophyllotoxin-induced cardiotoxicity in male rats: toxicological evidence chain (TEC) concept. Front Pharmacol 2024; 15:1378758. [PMID: 39386032 PMCID: PMC11463157 DOI: 10.3389/fphar.2024.1378758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/31/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Podophyllotoxin (PPT) is a high-content and high-activity compound extracted from the traditional Chinese medicinal plant Dysosma versipellis (DV) which exhibits various biological activities. However, its severe toxicity limits its use. In clinical settings, patients with DV poisoning often experience adverse reactions when taking large doses in a short period. The heart is an important toxic target organ, so it is necessary to conduct 24-h acute cardiac toxicity studies on PPT to understand its underlying toxicity mechanism. Methods Based on the concept of the toxicological evidence chain (TEC), we utilized targeted metabolomic and transcriptomic analyses to reveal the mechanism of the acute cardiotoxicity of PPT. The manifestation of toxicity in Sprague-Dawley rats, including changes in weight and behavior, served as Injury Phenotype Evidence (IPE). To determine Adverse Outcomes Evidence (AOE), the hearts of the rats were evaluated through histopathological examination and by measuring myocardial enzyme and cardiac injury markers levels. Additionally, transcriptome analysis, metabolome analysis, myocardial enzymes, and cardiac injury markers were integrated to obtain Toxic Event Evidence (TEE) using correlation analysis. Results The experiment showed significant epistaxis, hypokinesia, and hunched posture in PPT group rats within 24 h after exposure to 120 mg/kg PPT. It is found that PPT induced cardiac injury in rats within 24 h, as evidenced by increased serum myocardial enzyme levels, elevated concentrations of cardiac injury biomarkers, and altered cardiac cell morphology, all indicating some degree of cardiac toxicity. Transcriptome analysis revealed that primary altered metabolic pathway was arachidonic acid metabolism after PPT exposure. Cyp2e1, Aldob were positively correlated with differential metabolites, while DHA showed positive correlation with differential genes Fmo2 and Timd2, as well as with heart injury markers BNP and Mb. Conclusion This study comprehensively evaluated cardiac toxicity of PPT and initially revealed the mechanism of PPT-induced acute cardiotoxicity, which involved oxidative stress, apoptosis, inflammatory response, and energy metabolism disorder.
Collapse
Affiliation(s)
- Kaiyue Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Sun
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Chunxue Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hongqian Kui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shidan Zang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shixin Huang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jinfeng Que
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanxin Liu
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Shi YJ, Sheng KW, Zhao HN, Liu C, Wang H. Toll-Like Receptor 2 Deficiency Exacerbates Dextran Sodium Sulfate-Induced Intestinal Injury through Marinifilaceae-Dependent Attenuation of Cell Cycle Signaling. FRONT BIOSCI-LANDMRK 2024; 29:338. [PMID: 39344335 DOI: 10.31083/j.fbl2909338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is an intestinal disorder marked by chronic, recurring inflammation, yet its underlying mechanisms have not been fully elucidated. METHODS The current research dealt with examining the biological impacts of toll-like receptor 2 (TLR2) on dextran sulfate sodium (DSS)-triggered inflammation in the intestines of wild-type (WT) and TLR2-knockout (TLR2-KO) colitis mouse models. To elucidate the protective function of TLR2 in DSS-triggered colitis, RNA-sequencing (RNA-Seq) was carried out to compare the global gene expression data in the gut of WT and TLR2-KO mice. Further, 16S rRNA gene sequencing revealed notable variations in gut microbiota composition between WT and TLR2-KO colitis mice. RESULTS It was revealed that TLR2-KO mice exhibited increased susceptibility to DSS-triggered colitis. RNA-Seq results demonstrated that cell cycle pathway-related genes were notably downregulated in TLR2-KO colitis mice (enrichment score = 30, p < 0.001). 16S rRNA gene sequencing revealed that in comparison to the WT colitis mice, the relative abundance of Marinifilacea (p = 0.006), Rikenellacea (p = 0.005), Desulfovibrionaceae (p = 0.045), Tannerellaceae (p = 0.038), Ruminococcaceae (p = 0.003), Clostridia (p = 0.027), and Mycoplasmataceae (p = 0.0009) was significantly increased at the family level in the gut of TLR2-KO colitis mice. In addition, microbiome diversity-transcriptome collaboration analysis highlighted that the relative abundance of Marinifilaceae was negatively linked to the expression of cell cycle signaling-related genes (p values were all less than 0.001). CONCLUSION Based on these findings, we concluded that TLR2-KO exacerbates DSS-triggered intestinal injury by mitigating cell cycle signaling in a Marinifilaceae-dependent manner.
Collapse
Affiliation(s)
- Yun-Jie Shi
- Department of Colorectal Surgery, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, 200433 Shanghai, China
| | - Kai-Wen Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, 200433 Shanghai, China
| | - Hai-Nan Zhao
- Department of Radiology Intervention, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, 200433 Shanghai, China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433 Shanghai, China
| | - Hao Wang
- Department of Colorectal Surgery, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, 200433 Shanghai, China
| |
Collapse
|
31
|
Freisem D, Rodriguez-Alfonso AA, Lawrenz J, Zhou Z, Monecke T, Preising N, Endres S, Wiese S, Ständker L, Kuan SL, Thal DR, Weil T, Niessing D, Barth H, Kirchhoff F, Harms M, Münch J, Sparrer KMJ. A naturally occurring 22-amino acid fragment of human hemoglobin A inhibits autophagy and HIV-1. Cell Mol Life Sci 2024; 81:409. [PMID: 39289189 PMCID: PMC11408460 DOI: 10.1007/s00018-024-05447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Autophagy is an evolutionarily ancient catabolic pathway and has recently emerged as an integral part of the innate immune system. While the core machinery of autophagy is well defined, the physiological regulation of autophagy is less understood. Here, we identify a C-terminal fragment of human hemoglobin A (HBA1, amino acids 111-132) in human bone marrow as a fast-acting non-inflammatory inhibitor of autophagy initiation. It is proteolytically released from full-length HBA1 by cathepsin E, trypsin or pepsin. Biochemical characterization revealed that HBA1(111-132) has an in vitro stability of 52 min in human plasma and adopts a flexible monomeric conformation in solution. Structure-activity relationship studies revealed that the C-terminal 13 amino acids of HBA1(120-132) are sufficient to inhibit autophagy, two charged amino acids (D127, K128) mediate solubility, and two serines (S125, S132) are required for function. Successful viruses like human immunodeficiency virus 1 (HIV-1) evolved strategies to subvert autophagy for virion production. Our results show that HBA1(120-132) reduced virus yields of lab-adapted and primary HIV-1. Summarizing, our data identifies naturally occurring HBA1(111-132) as a physiological, non-inflammatory antagonist of autophagy. Optimized derivatives of HBA1(111-132) may offer perspectives to restrict autophagy-dependent viruses.
Collapse
Affiliation(s)
- Dennis Freisem
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Armando A Rodriguez-Alfonso
- Core Facility Functional Peptidomics, Ulm University, Meyerhofstraße 4, 89081, Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jan Lawrenz
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Zhixuan Zhou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Thomas Monecke
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081, Ulm, Germany
| | - Nico Preising
- Core Facility Functional Peptidomics, Ulm University, Meyerhofstraße 4, 89081, Ulm, Germany
| | - Sascha Endres
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University, Meyerhofstraße 4, 89081, Ulm, Germany
| | - Seah-Ling Kuan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dietmar R Thal
- Laboratory of Neuropathology, Institute of Pathology, Center for Clinical Research at the University of Ulm, 89081, Ulm, Germany
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dierk Niessing
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany.
| |
Collapse
|
32
|
Lv Y, Zhen C, Liu A, Hu Y, Yang G, Xu C, Lou Y, Cheng Q, Luo Y, Yu J, Fang Y, Zhao H, Peng K, Yu Y, Lou J, Chen J, Ni Y. Profiles and interactions of gut microbiome and intestinal microRNAs in pediatric Crohn's disease. mSystems 2024; 9:e0078324. [PMID: 39150251 PMCID: PMC11406922 DOI: 10.1128/msystems.00783-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 08/17/2024] Open
Abstract
Gut dysbiosis is closely related to dysregulated microRNAs (miRNAs) in the intestinal epithelial cells, which plays an important role in the pathogenesis of Crohn's disease (CD). We investigated the relationship between fecal gut microbiome (GM) and intestinal tissue miRNAs in different stages of pediatric CD. Metagenomic analysis and miRNA sequencing were conducted to examine the GM and intestinal miRNA profiles of CD patients before and after clinical induction therapy and the controls. Twenty-seven newly diagnosed, therapy-naïve pediatric patients with active CD and 11 non-inflammatory bowel disease (IBD) controls were recruited in this study. Among CD patients, 11 patients completed induction treatment and reached clinical remission. Both GM and miRNA profiles were significantly changed between CD patients and controls. Seven key bacteria were identified at species level including Defluviitalea raffinosedens, Thermotalea metallivorans, Roseburia intestinalis, Dorea sp. AGR2135, Escherichia coli, Shigella sonnei, and Salmonella enterica, the exact proportions of which were further validated by real-time quantitative PCR analysis. Eight key miRNAs were also identified including hsa-miR-215-5p, hsa-miR-194-5p, hsa-miR-12135, hsa-miR-509-3-5p, hsa-miR-212-5p, hsa-miR-4448, hsa-miR-501-3p, and hsa-miR-503-5p. The functional enrichment analysis of differential miRNAs indicated the significantly altered cyclin protein, cyclin-dependent protein, and cell cycle pathway. The close interactions between seven key bacteria and eight key miRNAs were further investigated by miRNA target prediction. The association between specific miRNA expressions and key gut bacteria at different stages of CD supported their important roles as potential molecular biomarkers. Understanding the relationship between them will help us to explore the molecular mechanisms of CD. IMPORTANCE Since previous studies have focused on the change of the fecal gut microbiome and intestinal tissue miRNA in pediatric Crohn's disease (CD), the relationship between them in different stages is still not clear. This is the first study to explore the gut microbiota and miRNA and their correlations with the Pediatric Crohn's Disease Activity Index (PCDAI). Crohn's Disease Endoscopic Index of Severity (CDEIS), and calprotectin, by applying two omics approach in three different groups (active CD, CD in remission with exclusive enteral nutrition or infliximab induction therapy, and the healthy controls). Both gut microbiome structure and the miRNA profiles were significantly changed in the different stage of CD. Seven key gut microbiome at species and eight key miRNAs were found, and their close interactions were further fully investigated by miRNA target prediction.
Collapse
Affiliation(s)
- Yao Lv
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Changjun Zhen
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ana Liu
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yudie Hu
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Gan Yang
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Cuifang Xu
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yue Lou
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qi Cheng
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Youyou Luo
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jindan Yu
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Youhong Fang
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hong Zhao
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kerong Peng
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yu Yu
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingan Lou
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Chen
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Ni
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
33
|
Cheng H, Yang Y, Hu J, Chen L, Yuan M, Du H, Xu Z, Qiu Z. Cyclic adenosine 3', 5'-monophosphate (cAMP) signaling is a crucial therapeutic target for ulcerative colitis. Life Sci 2024; 353:122901. [PMID: 38997063 DOI: 10.1016/j.lfs.2024.122901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
The pathogenesis of ulcerative colitis (UC), a chronic intestine inflammatory disease primarily affecting adolescents, remains uncertain. Contemporary studies suggest that a confluence of elements, including genetic predispositions, environmental catalysts, dysregulated immune responses, and disturbances in the gut microbiome, are instrumental in the initiation and advancement of UC. Among them, inflammatory activation and mucosal barrier damage caused by abnormal immune regulation are essential links in the development of UC. The impairment of the mucosal barrier is intricately linked to the interplay of various cellular mechanisms, including oxidative stress, autophagy, and programmed cell death. An extensive corpus of research has elucidated that level of cyclic adenosine 3',5'-monophosphate (cAMP) undergo modifications in the midst of inflammation and participate in a diverse array of cellular operations that mitigate inflammation and the impairment of the mucosal barrier. Consequently, a plethora of pharmacological agents are currently under development, with some advancing through clinical trials, and are anticipated to garner approval as novel therapeutics. In summary, cAMP exerts a crucial influence on the onset and progression of UC, with fluctuations in its activity being intimately associated with the severity of the disease's manifestation. Significantly, this review unveils the paramount role of cAMP in the advancement of UC, offering a tactical approach for the clinical management of individuals afflicted with UC.
Collapse
Affiliation(s)
- Haixiang Cheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Yuan Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, People's Republic of China
| | - Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Liang Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Ming Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Hubei Shizhen Laboratory, Wuhan, 430061, People's Republic of China.
| | - Ziqiang Xu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Zhenpeng Qiu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Hubei Shizhen Laboratory, Wuhan, 430061, People's Republic of China; Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China.
| |
Collapse
|
34
|
Chen M, Feng Y, Luo D, Zhang C, Zhou J, Dai H, Lin M, Tong Z. Wuwei Kushen Changrong capsule alleviates DSS-induced colitis in mice via inhibition of NLRP3 inflammasome and STAT3 pathway. Front Pharmacol 2024; 15:1423012. [PMID: 39329121 PMCID: PMC11424895 DOI: 10.3389/fphar.2024.1423012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Purpose Wuwei Kushen Changrong capsule (Composite Sophora Colon-soluble Capsule, CSCC) is a Chinese patent medicine developed to treat ulcerative colitis. Studies highlight CSCC potential efficacy for ulcerative colitis (UC) but unclear mechanism limits its widely treatment for patients. We aimed to investigate the anti-colitis efficacy of CSCC and explore the mechanism by which GPR43 inhibits the NLRP3/STAT3 signaling pathway, thereby mediating the protective effects of CSCC on the intestinal barrier. Methods The protective effects of CSCC were evaluated in a murine ulcerative colitis model induced by 3% DSS. Assessments included body weight, Disease Activity Index (DAI) score, colon length, and histopathological score. Colon tissue, cell function, and immune-inflammatory status were evaluated using immunohistochemistry, immunofluorescence, ELISA, and real-time fluorescence quantitative PCR (RT-PCR). Protein expression levels of relevant pathways and receptors were measured using Western blot. All experiments were repeated. Results CSCC protected mice from DSS-induced colitis by upregulating Gpr43, promoting the expression of ZO-1 and Occludin tight junction proteins. Mechanistically, CSCC inhibits the MEK4/JNK1/STAT3 activation pathway, consequently suppressing the STAT3/NLRP3/IL-1β pathway and inhibiting the production of inflammatory factors such as IL-17A. Conclusion The mechanisms through which CSCC protects against DSS-induced colitis may include upregulating Gpr43, inhibiting the STAT3/NLRP3 pathway, and suppressing inflammation factors like IL-17A. These findings highlight the mechanisms underlying CSCC's anti-colitis effects and suggest its potential as a therapeutic candidate for managing the progression of UC.
Collapse
Affiliation(s)
- Mingjun Chen
- Department of Traditional Chinese Medicine, the Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yang Feng
- Tianjin Beichen Qingguang Community Healthcare Center, Tianjin, China
| | - Dan Luo
- The Third People's hospital of longgang district, Shenzhen, China
| | - Chen Zhang
- Medical School of Chinese PLA, Beijing, China
| | - Jing Zhou
- Department of Oncology, the Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hengheng Dai
- Department of Traditional Chinese Medicine, the Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Mingxiong Lin
- Department of Traditional Chinese Medicine, the Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - ZhanQi Tong
- Department of Traditional Chinese Medicine, the Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
35
|
Ham A, Chang AY, Li H, Bain JM, Goldman JE, Sulzer D, Veenstra-VanderWeele J, Tang G. Impaired macroautophagy confers substantial risk for intellectual disability in children with autism spectrum disorders. Mol Psychiatry 2024:10.1038/s41380-024-02741-z. [PMID: 39237724 DOI: 10.1038/s41380-024-02741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Autism spectrum disorder (ASD) represents a complex of neurological and developmental disabilities characterized by clinical and genetic heterogeneity. While the causes of ASD are still unknown, many ASD risk factors are found to converge on intracellular quality control mechanisms that are essential for cellular homeostasis, including the autophagy-lysosomal degradation pathway. Studies have reported impaired autophagy in ASD human brain and ASD-like synapse pathology and behaviors in mouse models of brain autophagy deficiency, highlighting an essential role for defective autophagy in ASD pathogenesis. To determine whether altered autophagy in the brain may also occur in peripheral cells that might provide useful biomarkers, we assessed activities of autophagy in lympoblasts from ASD and control subjects. We find that lymphoblast autophagy is compromised in a subset of ASD participants due to impaired autophagy induction. Similar changes in autophagy are detected in postmortem human brains from ASD individuals and in brain and peripheral blood mononuclear cells from syndromic ASD mouse models. Remarkably, we find a strong correlation between impaired autophagy and intellectual disability in ASD participants. By depleting the key autophagy gene Atg7 from different brain cells, we provide further evidence that autophagy deficiency causes cognitive impairment in mice. Together, our findings suggest autophagy dysfunction as a convergent mechanism that can be detected in peripheral blood cells from a subset of autistic individuals, and that lymphoblast autophagy may serve as a biomarker to stratify ASD patients for the development of targeted interventions.
Collapse
Affiliation(s)
- Ahrom Ham
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Audrey Yuen Chang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Hongyu Li
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jennifer M Bain
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pharmacology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Guomei Tang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
36
|
Gheonea T, Bogdan M, Meca AD, Rogoveanu I, Oancea C. Recent clinical evidence on nutrition, novel pharmacotherapy, and vaccination in inflammatory bowel diseases. Front Pharmacol 2024; 15:1380878. [PMID: 39308999 PMCID: PMC11413590 DOI: 10.3389/fphar.2024.1380878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Inflammatory bowel diseases (IBD), which enclose Crohn's disease (CD) and ulcerative colitis (UC), are chronic, relapsing inflammatory ailments. Their specific pathogenesis is not completely clarified, the worldwide incidence and prevalence of IBD has been steadily growing, and there is still not a definitive cure. The management of IBD has become more and more targeted, with specific immune mediators identified to be involved in its pathogenesis. Vedolizumab, a humanised monoclonal antibody binding specifically to the α4β7 integrin, is a gut-selective immunosuppressive biologic drug administered for both CD and UC. With the same indications as vedolizumab, ustekinumab is a fully human IgG1κ monoclonal antibody binding with specificity to the shared p40 protein subunit of human cytokines interleukin (IL)-12 and IL-23. Several selective IL-23p19 monoclonal antibodies (risankizumab, mirikizumab, and guselkumab) have also revealed admirable efficacy and safety in IBD patients. Nutrition is a very important environmental factor associated with the onset and progression of IBD, and the Western diet is considered to contribute to the development of IBD. In this narrative review, our aim is to present an overview of the main results from recent clinical studies on IBD regarding diet, new drug treatments, and also vaccination.
Collapse
Affiliation(s)
- Theodora Gheonea
- Center for IBD patients, Faculty of Medicine, University of Medicine and Pharmacy from Craiova, Craiova, Romania
| | - Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy from Craiova, Craiova, Romania
| | - Andreea-Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy from Craiova, Craiova, Romania
| | - Ion Rogoveanu
- Center for IBD patients, Faculty of Medicine, University of Medicine and Pharmacy from Craiova, Craiova, Romania
| | - Carmen Oancea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy from Craiova, Craiova, Romania
| |
Collapse
|
37
|
Zakerska-Banaszak O, Zuraszek-Szymanska J, Eder P, Ladziak K, Slomski R, Skrzypczak-Zielinska M. The Role of Host Genetics and Intestinal Microbiota and Metabolome as a New Insight into IBD Pathogenesis. Int J Mol Sci 2024; 25:9589. [PMID: 39273536 PMCID: PMC11394875 DOI: 10.3390/ijms25179589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an incurable, chronic disorder of the gastrointestinal tract whose incidence increases every year. Scientific research constantly delivers new information about the disease and its multivariate, complex etiology. Nevertheless, full discovery and understanding of the complete mechanism of IBD pathogenesis still pose a significant challenge to today's science. Recent studies have unanimously confirmed the association of gut microbial dysbiosis with IBD and its contribution to the regulation of the inflammatory process. It transpires that the altered composition of pathogenic and commensal bacteria is not only characteristic of disturbed intestinal homeostasis in IBD, but also of viruses, parasites, and fungi, which are active in the intestine. The crucial function of the microbial metabolome in the human body is altered, which causes a wide range of effects on the host, thus providing a basis for the disease. On the other hand, human genomic and functional research has revealed more loci that play an essential role in gut homeostasis regulation, the immune response, and intestinal epithelial function. This review aims to organize and summarize the currently available knowledge concerning the role and interaction of crucial factors associated with IBD pathogenesis, notably, host genetic composition, intestinal microbiota and metabolome, and immune regulation.
Collapse
Affiliation(s)
| | | | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Karolina Ladziak
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Ryszard Slomski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | | |
Collapse
|
38
|
Zhu L, Xu Y, Lei J. Molecular mechanism and potential role of mitophagy in acute pancreatitis. Mol Med 2024; 30:136. [PMID: 39227768 PMCID: PMC11373529 DOI: 10.1186/s10020-024-00903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Acute pancreatitis (AP) is a multifaceted inflammatory disorder stemming from the aberrant activation of trypsin within the pancreas. Despite the contribution of various factors to the pathogenesis of AP, such as trypsin activation, dysregulated increases in cytosolic Ca2+ levels, inflammatory cascade activation, and mitochondrial dysfunction, the precise molecular mechanisms underlying the disease are still not fully understood. Mitophagy, a cellular process that preserves mitochondrial homeostasis under stress, has emerged as a pivotal player in the context of AP. Research suggests that augmenting mitophagy can mitigate pancreatic injury by clearing away malfunctioning mitochondria. Elucidating the role of mitophagy in AP may pave the way for novel therapeutic strategies. This review article aims to synthesize the current research findings on mitophagy in AP and underscore its significance in the clinical management of the disorder.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yunfei Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- Postdoctoral Research Station of Biology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Jian Lei
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
39
|
Qiu P, Chang Y, Chen X, Wang S, Nie H, Hong Y, Zhang M, Wang H, Xiao C, Chen Y, Liu L, Zhao Q. Dihydroartemisinin Modulates Enteric Glial Cell Heterogeneity to Alleviate Colitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403461. [PMID: 38992955 PMCID: PMC11425232 DOI: 10.1002/advs.202403461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Indexed: 07/13/2024]
Abstract
The precise mechanism underlying the therapeutic effects of dihydroartemisinin (DHA) in alleviating colitis remains incompletely understood. A strong correlation existed between the elevation of glial fibrillary acidic protein (GFAP)+/S100 calcium binding protein B (S100β)+ enteric glial cells (EGCs) in inflamed colonic tissues and the disruption of the intestinal epithelial barrier (IEB) and gut vascular barrier (GVB) observed in chronic colitis. DHA demonstrated efficacy in restoring the functionality of the dual gut barrier while concurrently attenuating intestinal inflammation. Mechanistically, DHA inhibited the transformation of GFAP+ EGCs into GFAP+/S100β+ EGCs while promoting the differentiation of GFAP+/S100β+ EGCs back into GFAP+ EGCs. Furthermore, DHA induced apoptosis in GFAP+/S100β+ EGCs by inducing cell cycle arrest at the G0/G1 phase. The initial mechanism is further validated that DHA regulates EGC heterogeneity by improving dysbiosis in colitis. These findings underscore the multifaceted therapeutic potential of DHA in ameliorating colitis by improving dysbiosis, modulating EGC heterogeneity, and preserving gut barrier integrity, thus offering promising avenues for novel therapeutic strategies for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Xiaoyu Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Shaoqi Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Haihang Nie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Yuntian Hong
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Cong Xiao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| |
Collapse
|
40
|
Fu E, Qian M, He N, Yin Y, Liu Y, Han Z, Han Z, Zhao Q, Cao X, Li Z. Biomimetic Supramolecular Assembly with IGF-1C Delivery Ameliorates Inflammatory Bowel Disease (IBD) by Restoring Intestinal Barrier Integrity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403075. [PMID: 39041890 PMCID: PMC11423171 DOI: 10.1002/advs.202403075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/13/2024] [Indexed: 07/24/2024]
Abstract
The management of dysfunctional intestinal epithelium by promoting mucosal healing and modulating the gut microbiota represents a novel therapeutic strategy for inflammatory bowel disease (IBD). As a convenient and well-tolerated method of drug delivery, intrarectal administration may represent a viable alternative to oral administration for the treatment of IBD. Here, a biomimetic supramolecular assembly of hyaluronic acid (HA) and β-cyclodextrin (HA-β-CD) for the delivery of the C domain peptide of insulin-like growth factor-1 (IGF-1C), which gradually releases IGF-1C, is developed. It is identified that the supramolecular assembly of HA-β-CD enhances the stability and prolongs the release of IGF-1C. Furthermore, this biomimetic supramolecular assembly potently inhibits the inflammatory response, thereby restoring intestinal barrier integrity. Following HA-β-CD-IGF-1C administration, 16S rDNA sequencing reveals a significant increase in the abundance of the probiotic Akkermansia, suggesting enhanced intestinal microbiome homeostasis. In conclusion, the findings demonstrate the promise of the HA-based mimicking peptide delivery platform as a therapeutic approach for IBD. This biomimetic supramolecular assembly effectively ameliorates intestinal barrier function and intestinal microbiome homeostasis, suggesting its potential for treating IBD.
Collapse
Affiliation(s)
- Enze Fu
- School of Medicine, Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
| | - Meng Qian
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Yilun Yin
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Yue Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhibo Han
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Jiangxi Engineering Research Center for Stem Cells, Shangrao, 334109, China
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, 300457, China
| | - ZhongChao Han
- Jiangxi Engineering Research Center for Stem Cells, Shangrao, 334109, China
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, 300457, China
| | - Qiang Zhao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaocang Cao
- Department of Hepato-Gastroenterology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300050, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, 450016, China
- National Key Laboratory of Kidney Diseases Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
41
|
Qiu P, Zhou K, Wang Y, Chen X, Xiao C, Li W, Chen Y, Chang Y, Liu J, Zhou F, Wang X, Shang J, Liu L, Qiu Z. Revitalizing gut barrier integrity: role of miR-192-5p in enhancing autophagy via Rictor in enteritis. Am J Physiol Gastrointest Liver Physiol 2024; 327:G317-G332. [PMID: 38954822 DOI: 10.1152/ajpgi.00291.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Intestinal inflammation and compromised barrier function are critical factors in the pathogenesis of gastrointestinal disorders. This study aimed to investigate the role of miR-192-5p in modulating intestinal epithelial barrier (IEB) integrity and its association with autophagy. A DSS-induced colitis model was used to assess the effects of miR-192-5p on intestinal inflammation. In vitro experiments involved cell culture and transient transfection techniques. Various assays, including dual-luciferase reporter gene assays, quantitative real-time PCR, Western blotting, and measurements of transepithelial electrical resistance, were performed to evaluate changes in miR-192-5p expression, Rictor levels, and autophagy flux. Immunofluorescence staining, H&E staining, TEER measurements, and FITC-dextran analysis were also used. Our findings revealed a reduced expression of miR-192-5p in inflamed intestinal tissues, correlating with impaired IEB function. Overexpression of miR-192-5p alleviated TNF-induced IEB dysfunction by targeting Rictor, resulting in enhanced autophagy flux in enterocytes (ECs). Moreover, the therapeutic potential of miR-192-5p was substantiated in colitis mice, wherein increased miR-192-5p expression ameliorated intestinal inflammatory injury by enhancing autophagy flux in ECs through the modulation of Rictor. Our study highlights the therapeutic potential of miR-192-5p in enteritis by demonstrating its role in regulating autophagy and preserving IEB function. Targeting the miR-192-5p/Rictor axis is a promising approach for mitigating gut inflammatory injury and improving barrier integrity in patients with enteritis.NEW & NOTEWORTHY We uncover the pivotal role of miR-192-5p in fortifying intestinal barriers amidst inflammation. Reduced miR-192-5p levels correlated with compromised gut integrity during inflammation. Notably, boosting miR-192-5p reversed gut damage by enhancing autophagy via suppressing Rictor, offering a potential therapeutic strategy for fortifying the intestinal barrier and alleviating inflammation in patients with enteritis.
Collapse
Affiliation(s)
- Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Kezhi Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Youwei Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiaoyu Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Cong Xiao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Wenjie Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiaobing Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jian Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Zhao Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
42
|
He Y, Shen X, Peng H. Effects and Mechanisms of the Xianhecao-Huanglian Drug Pair on Autophagy-Mediated Intervention in Acute Inflammatory Bowel Disease via the JAK2/STAT3 Pathway. Biol Proced Online 2024; 26:27. [PMID: 39187810 PMCID: PMC11346250 DOI: 10.1186/s12575-024-00242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/09/2024] [Indexed: 08/28/2024] Open
Abstract
To explore the effects and mechanisms of the Xianhecao-Huanglian drug pair on autophagy-mediated intervention in acute inflammatory bowel disease (IBD) via the JAK2/STAT3 pathway. The study examined the underlying mechanisms of action of Xianhecao (APL) and Huanglian (CR) using a mouse model of dextran sodium sulfate (DSS)-induced acute inflammatory bowel disease (IBD) and in an in vitro model of IBD induced by lipopolysaccharide (LPS). The assessment of the therapeutic efficacy of the Xianhecao-Huanglian drug combination in a mouse model of IBD caused by DSS included the following parameters: Assessment of weight loss or gain. Measurement of the disease activity index (DAI). Assessment of histological damage. Determination of organ index. Measurement of colon length. Ascertain the levels of inflammatory cytokines in the intestinal tissues and serum of mice. Immunohistochemistry (IHC) for the measurement of tight junction protein concentrations in the colon mucosa, including ZO-1, claudin-1, and occludin. Measurement of mucin levels, specifically Mucin 2 (Muc2). Hematoxylin and eosin (HE) staining for the observation of histopathological alterations in colonic tissues. Examining the effect on goblet cells using periodic acid-Schiff (PAS) labeling. Application of Western blot and immunofluorescence techniques for the detection of autophagy-related markers in colonic tissues and proteins associated with the JAK2/STAT3 pathway. A cell inflammation model of IBD was induced through LPS stimulation, and a serum containing the Xianhecao-Huanglian drug pair (referred to as ACHP-DS) was formulated. Cell viability, anti-proinflammatory cytokines, tight junction proteins, mucins, autophagy-related markers, and the JAK2/STAT3 signaling pathway were assessed. The Xianhecao-Huanglian drug pair significantly ameliorated the symptoms and survival quality of acute IBD mice, reducing the disease activity index score, raising MUC2 secretion and tight junction protein expression to improve the integrity of the intestinal barrier, and preserving goblet cell function; thus, protecting the intestines. It effectively restrained triggering the signaling pathway that involves JAK2 and STAT3, leading to the suppression of inflammation and amelioration of colonic inflammation damage. Additionally, it induced autophagy in mouse colonic tissues.The in vitro experiments demonstrated that the Xianhecao-Huanglian drug combination enhanced the viability of LOVO and NCM460 cells when exposed to LPS stimulation. Furthermore, it suppressed the production of inflammatory cytokines such as IL-6, IL-1β, as well as TNF-α, whilst increasing the production of IL-10, ZO-1, along with MUC2. These effects collectively led to the alleviation of inflammation and the restoration of mucosal integrity. The results were consistent with what was shown in the in vivo trial. Moreover, the medication demonstrated effectiveness in reducing JAK2 along with STAT3 phosphorylation levels in the LPS-induced inflammatory model of IBD cells. The intervention with either the Xianhecao-Huanglian drug combination-containing serum or the JAK2/STAT3 pathway inhibitor AG490 reversed the pro-inflammatory effects and increased autophagy levels in the LPS-stimulated cells. The Xianhecao-Huanglian drug combination modulates the JAK2/STAT3 pathway, leading to the induction of autophagy, which serves as an intervention for IBD.
Collapse
Affiliation(s)
- Yaping He
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Xinling Shen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Haiyan Peng
- The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
43
|
Zou J, Jiang K, Chen Y, Ma Y, Xia C, Ding W, Yao M, Lin Y, Chen Y, Zhao Y, Gao F. Tofacitinib Citrate Coordination-Based Dual-Responsive/Scavenge Nanoplatform Toward Regulate Colonic Inflammatory Microenvironment for Relieving Colitis. Adv Healthc Mater 2024:e2401869. [PMID: 39180276 DOI: 10.1002/adhm.202401869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Indexed: 08/26/2024]
Abstract
Ulcerative colitis is an inflammation of the colon characterized by immune dysregulation and intestinal inflammation. Developing safe oral nanomedicines that suppress intestinal inflammation, while modulating colonic inflammatory microenvironment by scavenging reactive oxygen species (ROS) and hydrogen sulfide (H2S) is crucial for the effective treatment of colitis. Here, the tofacitinib citrate and copper coordination-based nanoparticle (TF-Cu nanoparticle, T-C) to dual-scavenge ROS and H2S by coordination competition is synthesized. Moreover, the coordination of T-C using computer simulation is explored. To enhance the acid stability and inflammatory targeting of T-C, it is encapsulated with hyaluronic acid-modified chitosan, along with a calcium pectinate coating (T-C@HP). Owing to the dual pH/pectinase-responsive characteristics of T-C@HP, the nanoplatform can target inflamed colonic lesions, inhibiting phosphorylated Janus kinase 1. Furthermore, T-C@HP scavenges ROS and H2S, as well as increases NADPH levels, which is investigated by combining biosensor (HyPer7 and iNap1/c) and chemical probes. T-C@HP also alleviates colitis by regulating the colonic inflammatory microenvironment through multiple processes, including the modulation of apoptosis, macrophage polarization, tight junction, mucus layer, and intestinal flora. Complemented by satisfactory anti-inflammatory and biosafety results, this nanoplatform represents a promising, effective, and safe treatment option for colitis patients.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Kun Jiang
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - You Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Ma
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenxing Ding
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Yao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiting Lin
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanzuo Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuzheng Zhao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100050, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng Gao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
44
|
Li A, Liu A, Wang J, Song H, Luo P, Zhan M, Zhou X, Chen L, Zhang L. The prophylaxis functions of Lactobacillus fermentum GLF-217 and Lactobacillus plantarum FLP-215 on ulcerative colitis via modulating gut microbiota of mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5816-5825. [PMID: 38406876 DOI: 10.1002/jsfa.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/09/2023] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND The strong connection between gut microbes and human health has been confirmed by an increasing number of studies. Although probiotics have been found to relieve ulcerative colitis, the mechanism varies by the species involved. In this study, the physiological, immune and pathological factors of mice were measured and shotgun metagenomic sequencing was conducted to investigate the potential mechanisms in preventing ulcerative colitis. RESULTS The results demonstrated that ingestion of Lactobacillus fermentum GLF-217 and Lactobacillus plantarum FLP-215 significantly alleviated ulcerative colitis induced by dextran sulfate sodium (DSS), as evidenced by the increase in body weight, food intake, water intake and colon length as well as the decrease in disease activity index, histopathological score and inflammatory factor. Both strains not only improved intestinal mucosa by increasing mucin-2 and zonula occludens-1, but also improved the immune system response by elevating interleukin-10 levels and decreasing the levels of interleukin-1β, interleukin-6, tumor necrosis factor-α and interferon-γ. Moreover, L. fermentum GLF-217 and L. plantarum FLP-215 play a role in preventing DSS-induced colitis by regulating the structure of gut microbiota and promoting the formation of short-chain fatty acids. CONCLUSIONS This study may provide a reference for the prevention strategy of ulcerative colitis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ao Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| | | | - Jun Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Hainan Song
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| | | | | | | | | | - Lin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
45
|
Huang Y, Wu Q, Li S, Lin X, Yang S, Zhu R, Fu C, Zhang Z. Harnessing nature's pharmacy: investigating natural compounds as novel therapeutics for ulcerative colitis. Front Pharmacol 2024; 15:1394124. [PMID: 39206263 PMCID: PMC11349575 DOI: 10.3389/fphar.2024.1394124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Backgrounds Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease, and UC diagnosis rates continue to rise throughout the globe. The research and development of new drugs for the treatment of UC are urgent, and natural compounds are an important source. However, there is a lack of systematic summarization of natural compounds and their mechanisms for the treatment of UC. Methods We reviewed the literature in the databases below from their inception until July 2023: Web of Science, PubMed, China National Knowledge Infrastructure, and Wanfang Data, to obtain information on the relationship between natural compounds and UC. Results The results showed that 279 natural compounds treat UC through four main mechanisms, including regulating gut microbiota and metabolites (Mechanism I), protecting the intestinal mucosal barrier (Mechanism II), regulating intestinal mucosal immune response (Mechanism III), as well as regulating other mechanisms (Mechanism Ⅳ) such as cellular autophagy modulation and ferroptosis inhibition. Of these, Mechanism III is regulated by all natural compounds. The 279 natural compounds, including 62 terpenoids, 57 alkaloids, 52 flavonoids, 26 phenols, 19 phenylpropanoids, 9 steroids, 9 saponins, 8 quinonoids, 6 vitamins, and 31 others, can effectively ameliorate UC. Of these, terpenoids, alkaloids, and flavonoids have the greatest potential for treating UC. It is noteworthy to highlight that a total of 54 natural compounds exhibit their therapeutic effects by modulating Mechanisms I, II, and III. Conclusion This review serves as a comprehensive resource for the pharmaceutical industry, researchers, and clinicians seeking novel therapeutic approaches to combat UC. Harnessing the therapeutic potential of these natural compounds may significantly contribute to the improvement of the quality of life of patients with UC and promotion of disease-modifying therapies in the future.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuhong Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Zhu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
46
|
Zhang N, Zhai L, Wong RMY, Cui C, Law SW, Chow SKH, Goodman SB, Cheung WH. Harnessing immunomodulation to combat sarcopenia: current insights and possible approaches. Immun Ageing 2024; 21:55. [PMID: 39103919 DOI: 10.1186/s12979-024-00458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Sarcopenia is a complex age-associated syndrome of progressive loss of muscle mass and strength. Although this condition is influenced by many factors, age-related changes in immune function including immune cell dynamics, and chronic inflammation contribute to its progression. The complex interplay between the immune system, gut-muscle axis, and autophagy further underscores their important roles in sarcopenia pathogenesis. Immunomodulation has emerged as a promising strategy to counteract sarcopenia. Traditional management approaches to treat sarcopenia including physical exercise and nutritional supplementation, and the emerging technologies of biophysical stimulation demonstrated the importance of immunomodulation and regulation of macrophages and T cells and reduction of chronic inflammation. Treatments to alleviate low-grade inflammation in older adults by modulating gut microbial composition and diversity further combat sarcopenia. Furthermore, some pharmacological interventions, nano-medicine, and cell therapies targeting muscle, gut microbiota, or autophagy present additional avenues for immunomodulation in sarcopenia. This narrative review explores the immunological underpinnings of sarcopenia, elucidating the relationship between the immune system and muscle during ageing. Additionally, the review discusses new areas such as the gut-muscle axis and autophagy, which bridge immune system function and muscle health. Insights into current and potential approaches for sarcopenia management through modulation of the immune system are provided, along with suggestions for future research directions and therapeutic strategies. We aim to guide further investigation into clinical immunological biomarkers and identify indicators for sarcopenia diagnosis and potential treatment targets to combat this condition. We also aim to draw attention to the importance of considering immunomodulation in the clinical management of sarcopenia.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Liting Zhai
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Can Cui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheung-Wai Law
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
47
|
Di Mattia M, Sallese M, Neri M, Lopetuso LR. Hypoxic Functional Regulation Pathways in the GI Tract: Focus on the HIF-1α and Microbiota's Crosstalk. Inflamm Bowel Dis 2024; 30:1406-1418. [PMID: 38484200 DOI: 10.1093/ibd/izae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 08/02/2024]
Abstract
Hypoxia is an essential gastrointestinal (GI) tract phenomenon that influences both physiologic and pathologic states. Hypoxia-inducible factors (HIFs), the primary drivers of cell adaptation to low-oxygen environments, have been identified as critical regulators of gut homeostasis: directly, through the induction of different proteins linked to intestinal barrier stabilization (ie, adherent proteins, tight junctions, mucins, integrins, intestinal trefoil factor, and adenosine); and indirectly, through the regulation of several immune cell types and the modulation of autophagy and inflammatory processes. Furthermore, hypoxia and HIF-related sensing pathways influence the delicate relationship existing between bacteria and mammalian host cells. In turn, gut commensals establish and maintain the physiologic hypoxia of the GI tract and HIF-α expression. Based on this premise, the goals of this review are to (1) highlight hypoxic molecular pathways in the GI tract, both in physiologic and pathophysiologic settings, such as inflammatory bowel disease; and (2) discuss a potential strategy for ameliorating gut-related disorders, by targeting HIF signaling, which can alleviate inflammatory processes, restore autophagy correct mechanisms, and benefit the host-microbiota equilibrium.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Michele Sallese
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Matteo Neri
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Loris Riccardo Lopetuso
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
48
|
Paidimarri SP, Ayuthu S, Chauhan YD, Bittla P, Mirza AA, Saad MZ, Khan S. Contribution of the Gut Microbiome to the Perpetuation of Inflammation in Crohn's Disease: A Systematic Review. Cureus 2024; 16:e67672. [PMID: 39314611 PMCID: PMC11419584 DOI: 10.7759/cureus.67672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Crohn's disease (CD) is a sub-type of inflammatory bowel disease (IBD) with a characteristic relapsing and remitting inflammation involving the gastrointestinal (GI) tract. Although there are several medications to relieve the symptoms, there is no definite cure for the condition. This paper highlights how CD affects our gut flora, which subsequently leads to the perpetuation of inflammation. This review was conducted according to Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 2020 guidelines using PubMed, ScienceDirect, Multidisciplinary Digital Publishing Institute (MDPI), and Google Scholar as sources for relevant literature. After applying the quality appraisal tools, we finalized 11 articles for the paper. Inflammation seen in CD leads to dysbiosis, where there is a reduction in beneficial microbes such as Faecalibacterium and Roseburia species and an increase in pathogenic microbes such as Escherichia and Proteus species. This difference in gut microbes disrupts barrier function and immune processes in the intestine, contributing to the worsening of inflammation seen in CD. Several studies have been carried out to understand this complex relationship between the gut microbiome (GM) and CD, as it may serve as a potential novel therapeutic alternative, necessary as CD's burden is increasing globally.
Collapse
Affiliation(s)
- Sai Pavitra Paidimarri
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shriya Ayuthu
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Yashkumar D Chauhan
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Parikshit Bittla
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Amna A Mirza
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Moyal Z Saad
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
49
|
Guangliang H, Tao W, Danxin W, Lei L, Ye M. Critical Knowledge Gaps and Future Priorities Regarding the Intestinal Barrier Damage After Traumatic Brain Injury. World Neurosurg 2024; 188:136-149. [PMID: 38789030 DOI: 10.1016/j.wneu.2024.05.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
The analysis aims to provide a comprehensive understanding of the current landscape of research on the Intestinal barrier damage after traumatic brain injury (TBI), elucidate specific mechanisms, and address knowledge gaps to help guide the development of targeted therapeutic interventions and improve outcomes for individuals with TBI. A total of 2756 relevant publications by 13,778 authors affiliated within 3198 institutions in 79 countries were retrieved from the Web of Science. These publications have been indexed by 1139 journals and cited 158, 525 references. The most productive author in this field was Sikiric P, and the University of Pittsburgh was identified as the most influential institution. The United States was found to be the leading country in terms of article output and held a dominant position in this field. The International Journal of Molecular Sciences was identified as a major source of publications in this area. In terms of collaboration, the cooperation between the United States and China was found to be the most extensive among countries, institutions, and authors, indicating a high level of influence in this field. Keyword co-occurrence network analysis revealed several hotspots in this field, including the microbiome-gut-brain axis, endoplasmic reticulum stress, cellular autophagy, ischemia-reperfusion, tight junctions, and intestinal permeability. The analysis of keyword citation bursts suggested that ecological imbalance and gut microbiota may be the forefront of future research. The findings of this study can serve as a reference and guiding perspective for future research in this field.
Collapse
Affiliation(s)
- He Guangliang
- Hainan Vocational of Science and Technology, International School of Nursing, Haikou, China; HeJiang Affiliated Hospital of Southwest Medical University, Department of Respiratory and Critical Care Medicine, Luzhou, China
| | - Wang Tao
- Hainan Medical University, International School of Nursing, Haikou, China; Foshan University, Medical College, Guangdong, China
| | - Wang Danxin
- The First Affiliated Hospital of Hainan Medical University, Nursing Department, Haikou, China
| | - Liu Lei
- The First Affiliated Hospital of Hainan Medical University, Respiratory Medicine Department, Haikou, China
| | - Min Ye
- Hainan Vocational of Science and Technology, International School of Nursing, Haikou, China; Hainan Medical University, International School of Nursing, Haikou, China.
| |
Collapse
|
50
|
Zheng W, Yu W, Hua R, He J, Wu N, Tian S, Huang W, Qin L. Systematic analysis of TREM2 and its carcinogenesis in pancreatic cancer. Transl Cancer Res 2024; 13:3200-3216. [PMID: 39145088 PMCID: PMC11319948 DOI: 10.21037/tcr-24-201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/09/2024] [Indexed: 08/16/2024]
Abstract
Background Triggering receptor expressed on myeloid cells 2 (TREM2), a transmembrane immunoglobulin-superfamily receptor, is expressed primarily on cells such as macrophages and dendritic cells. TREM2 has been shown to be associated with diseases such as neurodegeneration, fatty liver, obesity, and atherosclerosis. Currently, it has become one of the hotspots in oncology research. However, the role of TREM2 in pan-cancer, especially pancreatic cancer, remains unclear. Methods We used the Tumor-immune System Interactions Database (TISIDB) to explore TREM2 expression differences, Tumor Immune Single-cell Hub 2 (TISCH2) to explore TREM2 expression distribution, Tumor IMmune Estimation Resource 2.0 (TIMER 2.0) to explore immune infiltration, cBio Cancer Genomics Portal (cBioPortal) to explore genetic variation, Genomics of Drug Sensitivity in Cancer (GDSC) to explore drug resistance, and Kaplan-Meier plotter database to explore the relationship between TREM2 and prognosis in pancreatic cancer. In addition, we used The Cancer Genome Atlas-pancreatic adenocarcinoma (TCGA-PAAD) and normal pancreas samples from the Genotype-Tissue Expression (GTEx) databases to explore the relationship between TREM2 and lymph node metastasis. We verified the protein level of TREM2 in pancreatic cancer by Human Protein Atlas (HPA) and western blotting and detected the colocalization of TREM2 with malignant cell markers by multiplex immunohistochemistry (mIHC). Finally, we identified the tumor-promoting role of TREM2 in pancreatic cancer via in vitro experiments, such as cell cycle assays, colony formation assays, and transwell migration and invasion assays. Results Our results showed that TREM2 was differentially expressed in various tumors according to different molecular and immune subtypes of pan-cancer. It was found that TREM2 was mainly expressed in monocytes/macrophages. In addition, our study showed that TREM2 expression was closely associated with macrophages in the tumor microenvironment (TME) of pan-cancer. TREM2 was shown to be related to anti-inflammatory and immunosuppressive effects in most cancers. Furthermore, we found that amplification was the main somatic mutation of TREM2 in pan-cancer. Further correlational analysis revealed a significant negative association of TREM2 expression with sensitivity to AZD8186, which is a selective inhibitor of PI3K, but not gemcitabine and paclitaxel. Finally, through the knockdown and overexpression of TREM2, our findings verified that TREM2 on cancer cells promoted the progression of PAAD. Conclusions In conclusion, our comprehensive analysis identified that TREM2 expression level was correlated with the TME and the immunosuppressive effects. In particular, our study indicated that TREM2 was involved in the progression of pancreatic cancer.
Collapse
Affiliation(s)
- Wanting Zheng
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Wangjianfei Yu
- Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Ruheng Hua
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Jun He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Nuwa Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Siyun Tian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Wentao Huang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|