1
|
Liao M, Long X, Chen Y, An J, Huang W, Xu X, Fan Y. PARP9 exacerbates apoptosis and neuroinflammation via the PI3K pathway in the thalamus and hippocampus and cognitive decline after cortical infarction. J Neuroinflammation 2025; 22:43. [PMID: 39980030 PMCID: PMC11844078 DOI: 10.1186/s12974-025-03374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Cerebral infarction induces substantial neuronal apoptosis and neuroinflammation in the ipsilateral nonischemic thalamus and hippocampus, with a critical correlation to post-stroke cognitive impairment. Poly (ADP-ribose) polymerase 9 (PARP9) has been implicated in apoptosis and inflammation across various diseases, while its role in remote brain damage after cerebral infarction remains unclear. This study aims to investigate the role of PARP9 in mediating neuronal apoptosis and neuroinflammation in remote brain regions after distal middle cerebral artery occlusion (dMCAO) and explore its contribution to secondary brain damage and cognitive decline. METHODS Seventy-four hypertensive rats were randomly assigned to either the sham-operated group or the dMCAO group. The dMCAO group was further subdivided into PARP9 knockdown and overexpression subgroups, with their respective control groups, modulated by adeno-associated viruses (AAV) carrying siScramble, siPARP9, Scramble, or PARP9. Within the PARP9 knockdown subgroup, rats were further treated with either a phosphoinositide 3-kinase (PI3K) inhibitor,2-(4-morpholinyl)-8-phenyl-chromone (LY294002), or vehicle. Spatial learning and memory deficits were evaluated using the Morris water maze test. Secondary neuronal apoptosis and neuroinflammation were quantified 7 days post-dMCAO using Nissl staining, immunofluorescence, immunohistochemistry, TUNEL, and Western blot analysis. RESULTS PARP9 expression was significantly upregulated in the ipsilateral thalamus and hippocampus after dMCAO, correlating with neuronal apoptosis and neuroinflammation. PARP9 was localized in both neurons and microglia. PARP9 knockdown reduced neuronal apoptosis, neuroinflammation, and microglial activation in the ipsilateral thalamus and hippocampus, and meanwhile improved the cognitive function. In contrast, PARP9 overexpression exacerbated these outcomes. Mechanistically, PARP9 knockdown activated the PI3K pathway, and inhibition of this pathway with LY294002 partially reversed the effects, reinstating neuronal apoptosis, neuroinflammation, and cognitive deficits. CONCLUSIONS Our findings demonstrate that PARP9 aggravates neural damage and cognitive decline after cerebral infarction by promoting neuronal apoptosis and neuroinflammation, partly via the PI3K pathway.
Collapse
Affiliation(s)
- Mengshi Liao
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Neurology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Xiya Long
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yicong Chen
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiaqi An
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weixian Huang
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiangming Xu
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuhua Fan
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
2
|
Yu X, Yang T, Wu D, Xu C, Li Z, Sun A, Gao S, Li H, Fan Z, Huang R. PARP14 inhibits microglial activation via NNT to alleviate depressive-like behaviors in mice. Brain Behav Immun 2025; 126:235-246. [PMID: 39978699 DOI: 10.1016/j.bbi.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Microglial inflammation has been implicated in the pathophysiology of major depressive disorder; however, the underlying biological mechanisms remain inadequately understood. Consequently, we conducted a screening of the Poly ADP-ribose (PAR) polymerase (PARP) family expression in the hippocampus of chronic unpredictable stress (CUS) mouse models and investigated the specific role of PARP14 in microglial inflammation and its association with depression. Here, this study demonstrated the elevated PARP14 expression in the hippocampus of CUS mice. The knockdown of PARP14 in the hippocampus did not mitigate depressive-like behaviors in mice, whereas overexpression of PARP14 significantly mitigated these behaviors. Furthermore, PARP14 was abundant in microglia, and microglial-targeted PARP14 overexpression significantly alleviated depressive-behaviors in CUS, reduced microglial activation, and inhibited the central inflammatory responses. Mechanistically, PARP14 positively regulated nicotinamide nucleotide transhydrogenase (NNT) expression in microglia, and the inflammatory response of microglia induced by PARP14 knockdown was suppressed through NNT overexpression. Additionally, deficiency in NNT led to an accumulation of reactive oxygen species (ROS) and subsequent microglial inflammation, which was effectively inhibited by the ROS inhibitor N-Acetylcysteine. These findings suggest that PARP14 alleviates depressive-like behaviors in mice by inhibiting microglial activation via NTT-mediated clearance of ROS.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Tingting Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Di Wu
- Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Chenxue Xu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhuoran Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Ao Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Shulei Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Heng Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Fan
- Deparment of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Rongrong Huang
- Deparment of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
3
|
Xu A, Yuan K, Xue S, Lu W, Wu X, Liu W, Xue Q, Liu L, Hu J, Guo L, Zhang Y, Hu X, Chun Wong GT, Lu L, Huang C. Laminin-dystroglycan mediated ferroptosis in hemorrhagic shock and reperfusion induced-cognitive impairment through AMPK/Nrf2. Free Radic Biol Med 2025; 230:1-16. [PMID: 39864758 DOI: 10.1016/j.freeradbiomed.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/01/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Hemorrhagic shock and reperfusion (HSR) is the main cause of death following trauma. Cognitive impairment may persist after successful resuscitation from hemorrhagic shock, but the mechanisms remain elusive. This study demonstrated the presence of ferroptosis in an in vitro model of oxygen-glucose deprivation and reoxygenation (OGD/R) in HT22 neurons, and also in a murine model of HSR using 3-month-old C57BL/6 mice. The ferroptosis induced by OGD/R was characterized by transmission electron microscopy, the localization of FTH1 and TFR1 in HT22 cells. However, neuronal ferroptosis was prevented by suppressing AMPK through siRNA transfection or AMPK inhibitor pretreatment (compound C) in vitro. There was a consistent increase in Nrf2 with ROS accumulation, iron deposition, and lipid peroxidation in the hippocampal neurons and tissues. Nrf2 knockdown or overexpression significantly modulated OGD/R induced-ferroptosis. Activating ferroptosis by erastin (a ferroptosis inducer) or inhibiting it by ferrostatin-1 (a ferroptosis inhibitor) respectively enhanced or mitigated cognitive deficits as well as the ferroptosis-related changes induced by HSR. In addition to the improved cognition, single-nucleus transcriptome analysis of ipsilateral hippocampi from Nrf2-/- mice demonstrated the broad decrease of ferroptosis in neuronal cell clusters. LAMA2 and DAG1 were dominantly elevated and co-localized in the hippocampal CA3 region of Nrf2-/- mice by fluorescence in situ hybridization. The activation of astrocytes was significantly attenuated after Nrf2 knockout, associated with the increases of laminin-dystroglycan during astrocyte-neuron crosstalk. Thus, data from this study proposes a novel explanation, namely laminin-dystroglycan interactions during astrocytes-neurons crosstalk stimulating AMPK and Nrf2 induced neuronal ferroptosis, for the development of cognitive impairment after HSR.
Collapse
Affiliation(s)
- Aoxue Xu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Song Xue
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Wenping Lu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Xiaoli Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Wei Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Qi Xue
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Lulu Liu
- Department of Anesthesiology, Tongzhou Maternal and Child Health Hospital of Beijing, Beijing, China
| | - Jia Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Liyuan Guo
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Xianwen Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.
| | - Chunxia Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
4
|
Guan Y, Pan L, Niu D, Li X, Li S, Cheng G, Zeng Z, Yue R, Yao J, Zhang G, Sun C, Yang H. Mailuo Shutong pills inhibit neuroinflammation by regulating glucose metabolism disorders to protect mice from cerebral ischemia-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118621. [PMID: 39053718 DOI: 10.1016/j.jep.2024.118621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mailuo Shutong Pill (MLST), a traditional Chinese medicine (TCM), has been widely used for clearing heat and detoxifying, eliminating stasis and dredging meridians, dispelling dampness and diminishing swelling. Earlier study found that MLST could improve cerebral ischemic-reperfusion injury, however, the potential mechanism has not been well evaluated. AIM OF STUDY In this study, a well established and widely used mice model of middle cerebral artery occlusion/reperfusion (MCAO/R) was preformed to evaluate the protective function of MLST on cerebral ischemic-reperfusion injury and further discuss the potential pharmacological mechanisms. MATERIALS AND METHODS Chemical profiling of MLST was analyzed based on Ultra-high-performance liquid chromatography electrospray ionization orbitrap tandem mass spectrometry. ICR mice were challenged by MCAO/R surgery. The protective effect of MLST on MCAO/R injury was evaluated by neurological deficit score, cerebral infarct rate, brain water content, H&E and nissl staining. The blood-brain barrier (BBB) integrity was detected by Evans blue staining. The potential pharmacological mechanism of MLST in treating MCAO/R injury was further elucidated by the methods of proteomics, central carbon targeted metabolomics, as well as Western blot. Immunohistochemistry was used to detect the microglia infiltration, enzyme linked immunosorbent assay (ELISA) kit was explored to evaluate the content of IL-1β, TNF-α and IL-6 in brain tissue, and Western blot was used to detect proteins expression in brain tissue. RESULTS A total of 76 chemical compounds have been determined in MLST. MLST effectively protected mice from MCAO/R injury, which was confirmed by lower neurological deficit score, cerebral infarct rate, brain water content and nissl body loss, and improved brain pathology. Meanwhile, MLST upregulated the expression of ZO-1, Occludin and Claudin 5 by downregulating the ratio of TIMP1/MMP9 to suppress the entrance of Evans blue to brain tissue, indicating that MLST maintained the integrity of BBB. Further studies indicated that MLST inhibited the inflammatory level of brain tissue by inhibiting microglia infiltration and downregulating NLRP3 inflammasome signaling pathway. The results of proteomics, Western blot, and central carbon targeted metabolomics confirmed that MLST regulated Glycolysis/Gluconogenesis, Pyruvate metabolism and TCA cycle in brain tissue of mice with MCAO/R. CONCLUSION MLST inhibits neuroinflammation by regulating glucose metabolism disorders to interfere with immune metabolism reprogramming and inhibit the NLRP3 inflammasome signaling pathway, and finally improve cerebral ischemia-reperfusion injury. This study confirms that MLST is a potential drug for treating Cerebral ischemic stroke.
Collapse
Affiliation(s)
- Yongxia Guan
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Lihong Pan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Dejun Niu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Xin Li
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Shirong Li
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Guoliang Cheng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Zhen Zeng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Rujing Yue
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Guimin Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China; College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China.
| | - Hongjun Yang
- Changchun University of Chinese Medicine, Changchun, 130117, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Liu Y, Liu Q, Shang H, Li J, Chai H, Wang K, Guo Z, Luo T, Liu S, Liu Y, Wang X, Zhang H, Wu C, Song SJ, Yang J. Potential application of natural compounds in ischaemic stroke: Focusing on the mechanisms underlying "lysosomocentric" dysfunction of the autophagy-lysosomal pathway. Pharmacol Ther 2024; 263:108721. [PMID: 39284368 DOI: 10.1016/j.pharmthera.2024.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Ischaemic stroke (IS) is the second leading cause of death and a major cause of disability worldwide. Currently, the clinical management of IS still depends on restoring blood flow via pharmacological thrombolysis or mechanical thrombectomy, with accompanying disadvantages of narrow therapeutic time window and risk of haemorrhagic transformation. Thus, novel pathophysiological mechanisms and targeted therapeutic candidates are urgently needed. The autophagy-lysosomal pathway (ALP), as a dynamic cellular lysosome-based degradative process, has been comprehensively studied in recent decades, including its upstream regulatory mechanisms and its role in mediating neuronal fate after IS. Importantly, increasing evidence has shown that IS can lead to lysosomal dysfunction, such as lysosomal membrane permeabilization, impaired lysosomal acidity, lysosomal storage disorder, and dysfunctional lysosomal ion homeostasis, which are involved in the IS-mediated defects in ALP function. There is tightly regulated crosstalk between transcription factor EB (TFEB), mammalian target of rapamycin (mTOR) and lysosomal function, but their relationship remains to be systematically summarized. Notably, a growing body of evidence emphasizes the benefits of naturally derived compounds in the treatment of IS via modulation of ALP function. However, little is known about the roles of natural compounds as modulators of lysosomes in the treatment of IS. Therefore, in this context, we provide an overview of the current understanding of the mechanisms underlying IS-mediated ALP dysfunction, from a lysosomal perspective. We also provide an update on the effect of natural compounds on IS, according to their chemical structural types, in different experimental stroke models, cerebral regions and cell types, with a primary focus on lysosomes and autophagy initiation. This review aims to highlight the therapeutic potential of natural compounds that target lysosomal and ALP function for IS treatment.
Collapse
Affiliation(s)
- Yueyang Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hanxiao Shang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jichong Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - He Chai
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kaixuan Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhenkun Guo
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tianyu Luo
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shiqi Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yan Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xuemei Wang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hangyi Zhang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chunfu Wu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Jingyu Yang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
6
|
Wang Y, Bai Y, Cai Y, Zhang Y, Shen L, Xi W, Zhou Z, Xu L, Liu X, Han B, Yao H. Circular RNA SCMH1 suppresses KMO expression to inhibit mitophagy and promote functional recovery following stroke. Theranostics 2024; 14:7292-7308. [PMID: 39659575 PMCID: PMC11626939 DOI: 10.7150/thno.99323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/29/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: Metabolic dysfunction is one of the key pathological events after ischemic stroke. Disruption of cerebral blood flow impairs oxygen and energy substrate delivery, leading to mitochondrial oxidative phosphorylation dysfunction and cellular bioenergetic stress. Investigating the effects of circSCMH1, a brain repair-related circular RNA, on metabolism may identify novel therapeutic targets for stroke treatment. Methods: CircSCMH1 was encapsulated into brain-targeting extracellular vesicles (EVs) mediated by rabies virus glycoprotein (RVG). Using a mouse model of photothrombotic (PT) stroke, we employed metabolomics and transcriptomics, combined with western blotting and behavioral experiments, to identify the metabolic targets regulated in RVG-circSCMH1-EV-treated mice. Additionally, immunofluorescence staining, chromatin immunoprecipitation (ChIP), pull-down, and western blotting were utilized to elucidate the underlying mechanisms. Results: The targeted delivery of circSCMH1 via RVG-EVs was found to promote post-stroke brain repair by enhancing mitochondrial fusion and inhibiting mitophagy through suppression of kynurenine 3-monooxygenase (KMO) expression. Mechanistically, circSCMH1 exerted its inhibitory effect on KMO expression by binding to the transcription activator STAT5B, thereby impeding its nuclear translocation. Conclusions: Our study reveals a novel mechanism by which circSCMH1 downregulates KMO expression, thereby enhancing mitochondrial fusion and inhibiting mitophagy, ultimately facilitating post-stroke brain repair. These findings shed new light on the role of circSCMH1 in promoting stroke recovery and underscore its potential as a therapeutic target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Ying Bai
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Yang Cai
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Yuan Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Ling Shen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Wen Xi
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Zhongqiu Zhou
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Lian Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Xue Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Bing Han
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Honghong Yao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Deng Z, Long D, Li C, Liu H, Li W, Zhong Y, Mo X, Li R, Yang Z, Kang Y, Mao G. IRF1-mediated upregulation of PARP12 promotes cartilage degradation by inhibiting PINK1/Parkin dependent mitophagy through ISG15 attenuating ubiquitylation and SUMOylation of MFN1/2. Bone Res 2024; 12:63. [PMID: 39465252 PMCID: PMC11514270 DOI: 10.1038/s41413-024-00363-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/02/2024] [Accepted: 08/09/2024] [Indexed: 10/29/2024] Open
Abstract
Osteoarthritis (OA) is an age-related cartilage-degenerating joint disease. Mitochondrial dysfunction has been reported to promote the development of OA. Poly (ADP-ribose) polymerase family member 12 (PARP12) is a key regulator of mitochondrial function, protein translation, and inflammation. However, the role of PARP12 in OA-based cartilage degradation and the underlying mechanisms are relatively unknown. Here, we first demonstrated that PARP12 inhibits mitophagy and promotes OA progression in human OA cartilage and a monosodium iodoacetate-induced rat OA model. Using mass spectrometry and co-immunoprecipitation assay, PARP12 was shown to interact with ISG15, upregulate mitofusin 1 and 2 (MFN1/2) ISGylation, which downregulated MFN1/2 ubiquitination and SUMOylation, thereby inhibiting PINK1/Parkin-dependent chondrocyte mitophagy and promoting cartilage degradation. Moreover, inflammatory cytokine-induced interferon regulatory factor 1 (IRF1) activation was required for the upregulation of PARP12 expression, and it directly bound to the PARP12 promoter to activate transcription. XAV-939 inhibited PARP12 expression and suppressed OA pathogenesis in vitro and in vivo. Clinically, PARP12 can be used to predict the severity of OA; thus, it represents a new target for the study of mitophagy and OA progression. In brief, the IRF1-mediated upregulation of PARP12 promoted cartilage degradation by inhibiting PINK1/Parkin-dependent mitophagy via ISG15-based attenuation of MFN1/2 ubiquitylation and SUMOylation. Our data provide new insights into the molecular mechanisms underlying PARP12-based regulation of mitophagy and can facilitate the development of therapeutic strategies for the treatment of OA.
Collapse
Affiliation(s)
- Zengfa Deng
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Dianbo Long
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Changzhao Li
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Hailong Liu
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Wei Li
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yanlin Zhong
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaolin Mo
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ruiyun Li
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zibo Yang
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Yan Kang
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Guping Mao
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
8
|
Zhao Q, Chen L, Zhang X, Yang H, Li Y, Li P. β-elemene promotes microglial M2-like polarization against ischemic stroke via AKT/mTOR signaling axis-mediated autophagy. Chin Med 2024; 19:86. [PMID: 38879549 PMCID: PMC11179363 DOI: 10.1186/s13020-024-00946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/14/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Resident microglia- and peripheric macrophage-mediated neuroinflammation plays a predominant role in the occurrence and development of ischemic stroke. Microglia undergo polarization to M1/M2-like phenotype under stress stimulation, which mediates intracellular inflammatory response. β-elemene is a natural sesquiterpene and possesses potent anti-inflammatory activity. This study aimed to investigate the anti-inflammatory efficacy and mechanism of β-elemene in ischemic stroke from the perspective of balancing microglia M1/M2-like polarization. METHODS The middle cerebral artery occlusion (MCAO) model and photothrombotic stroke model were established to explore the regulation effect of β-elemene on the cerebral ischemic injury. The LPS and IFN-γ stimulated BV-2 cells were used to demonstrate the anti-inflammatory effects and potential mechanism of β-elemene regulating M1/M2-like polarization in vitro. RESULTS In C57BL/6 J mice subjected to MCAO model and photothrombotic stroke model, β-elemene attenuated neurological deficit, reduced the infarction volume and neuroinflammation, thus improving ischemic stroke injury. β-elemene promoted the phenotype transformation of microglia from M1-like to M2-like, which prevented neurons from oxygen and glucose deprivation/reoxygenation (OGD/R) injury by inhibiting inflammatory factor release, thereby reducing neuronal apoptosis. Mechanically, β-elemene prevented the activation of TLR4/NF-κΒ and MAPK signaling pathway and increased AKT/mTOR mediated-autophagy, thereby promoting M2-like polarization of microglia. CONCLUSIONS These results indicated that β-elemene improved cerebral ischemic injury and promoted the transformation of microglia phenotype from M1-like to M2-like, at least in part, through AKT/mTOR-mediated autophagy. This study demonstrated that β-elemene might serve as a promising drug for alleviating ischemic stroke injury.
Collapse
Affiliation(s)
- Qiong Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China
| | - Lu Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China
| | - Xin Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China.
| |
Collapse
|
9
|
Shui X, Chen J, Fu Z, Zhu H, Tao H, Li Z. Microglia in Ischemic Stroke: Pathogenesis Insights and Therapeutic Challenges. J Inflamm Res 2024; 17:3335-3352. [PMID: 38800598 PMCID: PMC11128258 DOI: 10.2147/jir.s461795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Ischemic stroke is the most common type of stroke, which is the main cause of death and disability on a global scale. As the primary immune cells in the brain that are crucial for preserving homeostasis of the central nervous system microenvironment, microglia have been found to exhibit dual or even multiple effects at different stages of ischemic stroke. The anti-inflammatory polarization of microglia and release of neurotrophic factors may provide benefits by promoting neurological recovery at the lesion in the early phase after ischemic stroke. However, the pro-inflammatory polarization of microglia and secretion of inflammatory factors in the later phase of injury may exacerbate the ischemic lesion, suggesting the therapeutic potential of modulating the balance of microglial polarization to predispose them to anti-inflammatory transformation in ischemic stroke. Microglia-mediated signaling crosstalk with other cells may also be key to improving functional outcomes following ischemic stroke. Thus, this review provides an overview of microglial functions and responses under physiological and ischemic stroke conditions, including microglial activation, polarization, and interactions with other cells. We focus on approaches that promote anti-inflammatory polarization of microglia, inhibit microglial activation, and enhance beneficial cell-to-cell interactions. These targets may hold promise for the creation of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xinyao Shui
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jingsong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Ziyue Fu
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Haoyue Zhu
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Hualin Tao
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
10
|
Wang H, Ma J, Li X, Peng Y, Wang M. FDA compound library screening Baicalin upregulates TREM2 for the treatment of cerebral ischemia-reperfusion injury. Eur J Pharmacol 2024; 969:176427. [PMID: 38428662 DOI: 10.1016/j.ejphar.2024.176427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Acute ischemic stroke (AIS) is a leading cause of global incidence and mortality rates. Oxidative stress and inflammation are key factors in the pathogenesis of AIS neuroinjury. Therefore, it is necessary to develop drugs that target neuroinflammation and oxidative stress in AIS. The Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), primarily expressed on microglial cell membranes, plays a critical role in reducing inflammation and oxidative stress in AIS. In this study, we employed a high-throughput screening (HTS) strategy to evaluate 2625 compounds from the (Food and Drug Administration) FDA library in vitro to identify compounds that upregulate the TREM2 receptor on microglia. Through this screening, we identified Baicalin as a potential drug for AIS treatment. Baicalin, a flavonoid compound extracted and isolated from the root of Scutellaria baicalensis, demonstrated promising results. Next, we established an in vivo mouse model of cerebral ischemia-reperfusion injury (MCAO/R) and an in vitro microglia cell of oxygen-glucose deprivation reperfusion (OGD/R) to investigate the role of Baicalin in inflammation injury, oxidative stress, and neuronal apoptosis. Our results showed that baicalin effectively inhibited microglia activation, reactive oxygen species (ROS) production, and inflammatory responses in vitro. Additionally, baicalin suppressed neuronal cell apoptosis. In the in vivo experiments, baicalin not only improved neurological functional deficits and reduced infarct volume but also inhibited microglia activation and inflammatory responses. Overall, our findings demonstrate the efficacy of Baicalin in treating MCAO/R by upregulating TREM2 to reduce inflammatory responses and inhibit neuronal apoptosis.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Biomedical Research Center of Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Jialiang Ma
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Biomedical Research Center of Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Xiaoling Li
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Biomedical Research Center of Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yanhui Peng
- Department of Neurology, The Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi 830000, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Biomedical Research Center of Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
11
|
Liu Z, Xie Q, Zhao X, Tan Y, Wang W, Cao Y, Wei X, Mu G, Zhang H, Zhou S, Wang X, Cao Y, Li X, Chen S, Cao D, Cui Y, Xiang Q. The Pharmacogenetic Variability Associated with the Pharmacokinetics and Pharmacodynamics of Rivaroxaban in Healthy Chinese Subjects: A National Multicenter Exploratory Study. Clin Ther 2024; 46:313-321. [PMID: 38553322 DOI: 10.1016/j.clinthera.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE This study aimed to explore the pharmacogenetic variability associated with the pharmacokinetics (PK) and pharmacodynamics (PD) of rivaroxaban in healthy Chinese subjects. METHODS This was a multicenter study that included 304 healthy adults aged 18 to 45 years with unknown genotypes. All participants were administered a single dose of rivaroxaban at 10 mg, 15 mg, or 20 mg. PK and PD parameters were measured, and exome-wide association analysis was conducted. FINDINGS Sixteen SNPs located on 11 genes influenced the AUC0-t. Among these, the 3 most influential genes were MiR516A2, PARP14, and MIR618. Thirty-six SNPs from 28 genes were associated with the PD of rivaroxaban. The 3 most influential genes were PKNOX2, BRD3, and APOL4 for anti-Xa activity, and GRIP2, PLCE1, and MLX for diluted prothrombin time (dPT). Among them, BRD3 played an important role in both the PK and PD of rivaroxaban. Anti-Xa activity (ng/mL) differed significantly among subjects with BRD3 rs467387: 145.1 ± 55.5 versus 139.9 ± 65.1 versus 164.0 ± 68.6 for GG, GA, and AA carriers, respectively (P = 0.0002). IMPLICATIONS This study found that that the regulation of the BRD3 gene might affect the PK and PD of rivaroxaban, suggesting that it should be studied as a new pharmacologic target. The correlation between this gene locus and clinical outcomes has yet to be verified in patients undergoing clinical treatment.
Collapse
Affiliation(s)
- Zhiyan Liu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China; Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Qiufen Xie
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China; Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Xia Zhao
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Yunlong Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Wenping Wang
- Department of GCP Center, Affiliated Hospital of Liaoning University of TCM, Shenyang City, Liaoning Province, China
| | - Yu Cao
- Office of Drug Clinical Trial Management, Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, China
| | - Xiaohua Wei
- Clinical Trial Research Center, Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Guangyan Mu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Hanxu Zhang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Ying Cao
- Department of GCP Center, Affiliated Hospital of Liaoning University of TCM, Shenyang City, Liaoning Province, China
| | - Xin Li
- Office of Drug Clinical Trial Management, Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, China
| | - Song Chen
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Duanwen Cao
- Clinical Trial Research Center, Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
12
|
Sun B, Luo J, Li Z, Chen D, Wang Q, Si W. Muscone alleviates neuronal injury via increasing stress granules formation and reducing apoptosis in acute ischemic stroke. Exp Neurol 2024; 373:114678. [PMID: 38185313 DOI: 10.1016/j.expneurol.2024.114678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
As the main bioactive component of musk, muscone has been reported to have marked protective effects in treating acute ischemic stroke (AIS). However, the specific anti-stroke mechanism of muscone still needs further research. In the current investigation, the PC12 cells OGD/R and the rat transient MCAO/R models were utilized as the AIS models. Serum hepatic and renal functional indexes (ALT, AST, BUN, and Cr) and cell viability were determined to select the appropriate muscone concentrations for in vitro and in vivo experiments. TTC, Hematoxylin and eosin (H&E), and Live/Dead staining were utilized to evaluate the protective effects of muscone in injured tissues and cells. Western blotting analysis, TUNEL staining, propidium iodide, and annexin V staining were applied to detect the anti-apoptotic effect of muscone. Double-label immunofluorescence staining of T-cell intracellular antigen-1 (TIA1) and Ras-GAP SH3 domain-binding protein 1 (G3BP1) was performed to observe whether muscone regulated the SG formation level. Molecular docking, TIA1 silencing and TIA1 overexpression experiments were employed to investigate the molecular mechanism underlying the regulation of SG formation by muscone. The 2, 3, 5-Triphenyl-tetrazolium chloride (TTC) staining and live/dead staining showed the AIS injury level of MCAO/R rat and the OGD/R PC12 cells were attenuated by muscone administration. The muscone significantly minimized the apoptosis rate in MCAO/R rats and OGD/R PC12 cells following flow cytometry analysis, western blotting analysis, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The double-label immunofluorescence staining data revealed that muscone promoted the SG formation level in OGD/R PC12 cells and the cortex MCAO/R rats. The results of molecular docking, TIA1 silencing and TIA1 overexpression experiments revealed that muscone could bind to TIA1 protein and regulate its expression level, thereby promoting the formation of stress granules and exerting a protective effect against AIS injury. This study indicated that the significant protective effect of muscone in reducing apoptosis levels might be via promoting SG formation under AIS conditions. This study further explores the therapeutic effect and anti-apoptosis mechanism of muscone in AIS, which may provide a potential candidate drug for the clinical treatment of AIS injury.
Collapse
Affiliation(s)
- Bin Sun
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Jing Luo
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Zhen Li
- Department of Neurology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, PR China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Qizhang Wang
- Department of Neurology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, PR China
| | - Wenwen Si
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China.
| |
Collapse
|
13
|
Wu X, Liu H, Hu Q, Wang J, Zhang S, Cui W, Shi Y, Bai H, Zhou J, Han L, Li L, Wu Y, Luo J, Wang T, Guo C, Wang Q, Ge S, Qu Y. Astrocyte-Derived Extracellular Vesicular miR-143-3p Dampens Autophagic Degradation of Endothelial Adhesion Molecules and Promotes Neutrophil Transendothelial Migration after Acute Brain Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305339. [PMID: 38044319 PMCID: PMC10837358 DOI: 10.1002/advs.202305339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Pivotal roles of extracellular vesicles (EVs) in the pathogenesis of central nervous system (CNS) disorders including acute brain injury are increasingly acknowledged. Through the analysis of EVs packaged miRNAs in plasma samples from patients with intracerebral hemorrhage (ICH), it is discovered that the level of EVs packaged miR-143-3p (EVs-miR-143-3p) correlates closely with perihematomal edema and neurological outcomes. Further study reveals that, upon ICH, EVs-miR-143-3p is robustly secreted by astrocytes and can shuttle into brain microvascular endothelial cells (BMECs). Heightened levels of miR-143-3p in BMECs induce the up-regulated expression of cell adhesion molecules (CAMs) that bind to circulating neutrophils and facilitate their transendothelial cell migration (TEM) into brain. Mechanism-wise, miR-143-3p directly targets ATP6V1A, resulting in impaired lysosomal hydrolysis ability and reduced autophagic degradation of CAMs. Importantly, a VCAM-1-targeting EVs system to selectively deliver miR-143-3p inhibitor to pathological BMECs is created, which shows satisfactory therapeutic effects in both ICH and traumatic brain injury (TBI) mouse models. In conclusion, the study highlights the causal role of EVs-miR-143-3p in BMECs' dysfunction in acute brain injury and demonstrates a proof of concept that engineered EVs can be devised as a potentially applicable nucleotide drug delivery system for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Xun Wu
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Haixiao Liu
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Qing Hu
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Jin Wang
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Shenghao Zhang
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Wenxing Cui
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Yingwu Shi
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Hao Bai
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Jinpeng Zhou
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Liying Han
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Leiyang Li
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Yang Wu
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebei050000China
| | - Jianing Luo
- Department of NeurosurgeryWest Theater General HospitalChengduSichuan610083China
| | - Tinghao Wang
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Chengxuan Guo
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Qiang Wang
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Shunnan Ge
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Yan Qu
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| |
Collapse
|
14
|
Meng W, Ye H, Ma Z, Liu L, Zhang T, Han Q, Xiang Z, Xia Y, Ke Y, Guan X, Shi Q, Ataullakhanov FI, Panteleev M. Perfluorocarbon Nanoparticles Incorporating Ginkgolide B: Artificial O 2 Carriers with Antioxidant Activity and Antithrombotic Effect. ChemMedChem 2024; 19:e202300312. [PMID: 37970644 DOI: 10.1002/cmdc.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/20/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
Ischemic stroke primarily leads to insufficient oxygen delivery in ischemic area. Prompt reperfusion treatment for restoration of oxygen is clinically suggested but mediates more surging reactive oxygen species (ROS) generation and oxidative damage, known as ischemia-reperfusion injury (IRI). Therefore, the regulation of oxygen content is a critical point to prevent cerebral ischemia induced pathological responses and simultaneously alleviate IRI triggered by the sudden oxygen restoration. In this work, we constructed a perfluorocarbon (PFC)-based artificial oxygen nanocarrier (PFTBA-L@GB), using an ultrasound-assisted emulsification method, alleviates the intracerebral hypoxic state in ischemia stage and IRI after reperfusion. The high oxygen solubility of PFC allows high oxygen efficacy. Furthermore, PFC has the adhesion affinity to platelets and prevents the overactivation of platelet. The encapsulated payload, ginkgolide B (GB) exerts its anti-thrombosis by antagonism on platelet activating factor and antioxidant effect by upregulation of antioxidant molecular pathway. The versatility of the present strategy provides a practical approach to build a simple, safe, and relatively effective oxygen delivery agent to alleviate hypoxia, promote intracerebral oxygenation, anti-inflammatory, reduce intracerebral oxidative stress damage and thrombosis and caused by stroke.
Collapse
Affiliation(s)
- Wei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongbo Ye
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Tianci Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yue Ke
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fazly I Ataullakhanov
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow, 119991, Russia
| | - Mikhail Panteleev
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| |
Collapse
|
15
|
Gao X, Su G, Chai M, Shen M, Hu Z, Chen W, Gao J, Li R, Ma T, An Y, Zhang Z. Research progress on mechanisms of ischemic stroke: Regulatory pathways involving Microglia. Neurochem Int 2024; 172:105656. [PMID: 38081419 DOI: 10.1016/j.neuint.2023.105656] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Microglia, as the intrinsic immune cells in the brain, are activated following ischemic stroke. Activated microglia participate in the pathological processes after stroke through polarization, autophagy, phagocytosis, pyroptosis, ferroptosis, apoptosis, and necrosis, thereby influencing the injury and repair following stroke. It has been established that polarized M1 and M2 microglia exhibit pro-inflammatory and anti-inflammatory effects, respectively. Autophagy and phagocytosis in microglia following ischemia are dynamic processes, where moderate levels promote cell survival, while excessive responses may exacerbate neurofunctional deficits following stroke. Additionally, pyroptosis and ferroptosis in microglia after ischemic stroke contribute to the release of harmful cytokines, further aggravating the damage to brain tissue due to ischemia. This article discusses the different functional states of microglia in ischemic stroke research, highlighting current research trends and gaps, and provides insights and guidance for further study of ischemic stroke.
Collapse
Affiliation(s)
- Xin Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Miao Chai
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Minghui Shen
- Medical Laboratories, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Zhenzhen Hu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Wei Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Juan Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Ruixin Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Tianfei Ma
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Yang An
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
16
|
Wei X, Zhang T, Ma C, Zhang M, Jin L, Ma X, Zhang Z. TRIM27 ameliorates ischemic stroke by regulating NLRP3 inflammasome-mediated pyroptosis via the Akt/Nrf2/HO-1 signaling. Exp Neurol 2024; 371:114599. [PMID: 37914066 DOI: 10.1016/j.expneurol.2023.114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Tripartite motif-containing 27 (TRIM27) is a member of TRIM family that exerts a protective effect against cardiac and hepatic ischemia/reperfusion (I/R) injury; however, little is known about its role in ischemic stroke. In our experiment, mice were intracerebroventricular injected with recombinant lentiviruses carrying TRIM27 or empty vector, and then they were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) 2 weeks after the injection. Mouse microglial BV-2 cells were infected with lentiviruses carrying TRIM27 or empty vector before exposure to oxygen-glucose deprivation/reoxygenation (OGD/R). TRIM27's role was assessed in vivo and in vitro. TRIM27 overexpression reduced infarct size, improved neurological function, inhibited activation of NLRP3 inflammasome, and activated the Akt/Nrf2/HO-1 pathway in mice subjected to MCAO/R. Furthermore, TRIM27 overexpression suppressed activation of NLRP3 inflammasome and activated this signaling pathway in OGD/R-exposed microglial cells. GSK690693 or ML385 treatment partially reversed the effect of TRIM27 overexpression in vitro. These findings indicate that TRIM27 overexpression ameliorates ischemic stroke by regulating NLRP3 inflammasome and Akt/Nrf2/HO-1 signaling. This study provides a novel target for treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xinya Wei
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianqi Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chi Ma
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Minxue Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liwei Jin
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Ma
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Zhuobo Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
17
|
Zhou H, Yan L, Huang H, Li X, Xia Q, Zheng L, Shao B, Gao Q, Sun N, Shi J. Tat-NTS peptide protects neurons against cerebral ischemia-reperfusion injury via ANXA1 SUMOylation in microglia. Theranostics 2023; 13:5561-5583. [PMID: 37908731 PMCID: PMC10614677 DOI: 10.7150/thno.85390] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
Rationale: Recent studies indicate that microglial activation and the resulting inflammatory response could be potential targets of adjuvant therapy for ischemic stroke. Many studies have emphasized a well-established function of Annexin-A1 (ANXA1) in the immune system, including the regulation of microglial activation. Nevertheless, few therapeutic interventions targeting ANXA1 in microglia for ischemic stroke have been conducted. In the present study, Tat-NTS, a small peptide developed to prevent ANXA1 from entering the nucleus, was utilized. We discovered the underlying mechanism that Tat-NTS peptide targets microglial ANXA1 to protect against ischemic brain injury. Methods: Preclinical studies of ischemic stroke were performed using an oxygen-glucose deprivation and reperfusion (OGD/R) cell model in vitro and the middle cerebral artery occlusion (MCAO) animal model of ischemic stroke in vivo. Confocal imaging and 3D reconstruction analyses for detecting the protein expression and subcellular localization of microglia in vivo. Co-immunoprecipitation (Co-IP), immunoblotting, ELISA, quantitative real-time PCR (qRT-PCR), Luciferase reporter assay for determining the precise molecular mechanism. Measurement on the cytotoxicity of Tat-NTS peptide for microglia was assessed by CCK-8 and LDH assay. TUNEL staining was used to detect the microglia conditioned medium-mediated neuronal apoptosis. Adeno-associated viruses (AAVs) were injected into the cerebral cortex, striatum and hippocampal CA1 region of adult male Cx3cr1-Cre mice, to further verify the neurofunctional outcome and mechanism of Tat-NTS peptide by TTC staining, the modified Neurological Severity Score (mNSS) test, the open field test (OFT), the novel object recognition task (NORT), the Morris water maze (MWM) test, the long-term potentiation (LTP) and the Transmission electron microscopy (TEM). Results: It was observed that administration of Tat-NTS led to a shift of subcellular localization of ANXA1 in microglia from the nucleus to the cytoplasm in response to ischemic injury. Notably, this shift was accompanied by an increase in ANXA1 SUMOylation in microglia and a transformation of microglia towards an anti-inflammatory phenotype. We confirmed that Tat-NTS-induced ANXA1 SUMOylation in microglia mediated IKKα degradation via NBR1-dependent selective autophagy, then blocking the activation of the NF-κB pathway. As a result, the expression and release of the pro-inflammatory factors IL-1β and TNF-α were reduced in both in vitro and in vivo experiments. Furthermore, we found that Tat-NTS peptide's protective effect on microglia relieved ischemic neuron apoptosis. Finally, we demonstrated that Tat-NTS peptide administration, through induction of ANXA1 SUMOylation in microglia, reduced infarct volume, improved neurological function and facilitated behavioral recovery in MCAO mice. Conclusions: Our study provides evidence for a novel mechanism of Tat-NTS peptide in regulating microglial ANXA1 function and its substantial neuroprotective effect on neurons with ischemic injuries. These findings suggest that Tat-NTS peptides have a high potential for clinical application and may be a promising therapeutic candidate for treating cerebral ischemia.
Collapse
Affiliation(s)
- Huijuan Zhou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, China
| | - Lulu Yan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, China
| | - Hezhou Huang
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xing Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qian Xia
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lu Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Bin Shao
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, China
| | - Qian Gao
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, China
| | - Ning Sun
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, China
| | - Jing Shi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, China
| |
Collapse
|
18
|
Xu AH, Yang Y, Shao Y, Jiang MY, Sun YX. Poly(ADP-ribose) polymerase family member 14 promotes functional recovery after spinal cord injury through regulating microglia M1/M2 polarization via STAT1/6 pathway. Neural Regen Res 2023; 18:1809-1817. [PMID: 36751810 PMCID: PMC10154507 DOI: 10.4103/1673-5374.357909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Poly(ADP-ribose)polymerase family member 14 (PARP14), which is an intracellular mono(ADP-ribosyl) transferase, has been reported to promote post-stroke functional recovery, but its role in spinal cord injury (SCI) remains unclear. To investigate this, a T10 spinal cord contusion model was established in C57BL/6 mice, and immediately after the injury PARP14 shRNA-carrying lentivirus was injected 1 mm from the injury site to silence PARP14 expression. We found that PARP14 was up-regulated in the injured spinal cord and that lentivirus-mediated downregulation of PARP14 aggravated functional impairment after injury, accompanied by obvious neuronal apoptosis, severe neuroinflammation, and slight bone loss. Furthermore, PARP14 levels were elevated in microglia after SCI, PARP14 knockdown activated microglia in the spinal cord and promoted a shift from M2-polarized microglia (anti-inflammatory phenotype) to M1-polarized microglia (pro-inflammatory phenotype) that may have been mediated by the signal transducers and activators of transcription (STAT) 1/6 pathway. Next, microglia M1 and M2 polarization were induced in vitro using lipopolysaccharide/interferon-γ and interleukin-4, respectively. The results showed that PARP14 knockdown promoted microglia M1 polarization, accompanied by activation of the STAT1 pathway. In addition, PARP14 overexpression made microglia more prone to M2 polarization and further activated the STAT6 pathway. In conclusion, these findings suggest that PARP14 may improve functional recovery after SCI by regulating the phenotypic transformation of microglia via the STAT1/6 pathway.
Collapse
Affiliation(s)
- Ai-Hua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yang Yang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yang Shao
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Man-Yu Jiang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yong-Xin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
19
|
Xiong Y, Fu Y, Li Z, Zheng Y, Cui M, Zhang C, Huang XY, Jian Y, Chen BH. Laquinimod Inhibits Microglial Activation, Astrogliosis, BBB Damage, and Infarction and Improves Neurological Damage after Ischemic Stroke. ACS Chem Neurosci 2023. [PMID: 37161270 DOI: 10.1021/acschemneuro.2c00740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Glial activation is involved in neuroinflammation and blood-brain barrier (BBB) damage, which plays a key role in ischemic stroke-induced neuronal damage; therefore, regulating glial activation is an important way to inhibit ischemic brain injury. Effects of laquinimod (LAQ) include inhibiting axonal damage and neuroinflammation in multiple neuronal injury diseases. However, whether laquinimod can exert neuroprotective effects after ischemic stroke remains unknown. In this study, we investigated the effect of LAQ on glial activation, BBB damage, and neuronal damage in an ischemic stroke model. Adult ICR mice were used to create a photothrombotic stroke (PT) model. LAQ was administered orally at 30 min after ischemic injury. Neurobehavioral tests, Evans Blue, immunofluorescence, TUNEL, Nissl staining, and western blot were performed to evaluate the neurofunctional outcome. Quantification of immunofluorescence was evaluated by unbiased stereology. LAQ post-treatment significantly reduced infarction and improved forepaw function at 5 days after PT. Interestingly, LAQ treatment significantly promoted anti-inflammatory microglial activation. Moreover, LAQ treatment reduced astrocyte activation, glial scar formation, and BBB breakdown in ischemic brains. Therefore, this study demonstrated that LAQ post-treatment restricted microglial polarization, astrogliosis, and glial scar and improved BBB damage and behavioral function. LAQ may serve as a novel target to develop new therapeutic agents for ischemic stroke.
Collapse
Affiliation(s)
- Ye Xiong
- The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yanqiong Fu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Zhuoli Li
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yu Zheng
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Maiyin Cui
- Department of Rehabilitation and Traditional Chinese Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang, P. R. China
| | - Chan Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Xin Yi Huang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yong Jian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, P. R. China
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
20
|
Li JY, Zheng ZX, Liu L, Du O, Yu NW, Zou Y, Seong SY, Du JR. Neuroprotective effect of alpha-kinase 1 knockdown against cerebral ischemia through inhibition of the NF-κB pathway and neuroinflammation. Int Immunopharmacol 2022; 113:109330. [PMID: 36274483 DOI: 10.1016/j.intimp.2022.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
21
|
Chen S, Huang X. Cytosolic lipolysis in non-adipose tissues: energy provision and beyond. FEBS J 2022; 289:7385-7398. [PMID: 34407292 DOI: 10.1111/febs.16161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/18/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Cytosolic lipolysis is a well-defined biochemical process that plays important roles in the mobilization of stored neutral lipids. Lipid turnover, regulated by cytosolic lipolysis, has been extensively studied in adipose tissue, liver, and muscle. The storage and utilization of neutral lipids is a basic function of most, if not all, tissues and cells. In this review, we focus on the functions of cytosolic lipolysis mainly in non-adipose tissues and in several physiological processes, including cancer, longevity, and pathogen infection. The mechanisms underlying the impact of cytosolic lipolysis on these events will be discussed. Detailed understanding of cytosolic lipolysis in both adipose and non-adipose tissues will have implications for future clinical translation.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Peng L, Hu G, Yao Q, Wu J, He Z, Law BYK, Hu G, Zhou X, Du J, Wu A, Yu L. Microglia autophagy in ischemic stroke: A double-edged sword. Front Immunol 2022; 13:1013311. [PMID: 36466850 PMCID: PMC9708732 DOI: 10.3389/fimmu.2022.1013311] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/25/2022] [Indexed: 08/14/2023] Open
Abstract
Ischemic stroke (IS) is one of the major types of cerebrovascular diseases causing neurological morbidity and mortality worldwide. In the pathophysiological process of IS, microglia play a beneficial role in tissue repair. However, it could also cause cellular damage, consequently leading to cell death. Inflammation is characterized by the activation of microglia, and increasing evidence showed that autophagy interacts with inflammation through regulating correlative mediators and signaling pathways. In this paper, we summarized the beneficial and harmful effects of microglia in IS. In addition, we discussed the interplay between microglia autophagy and ischemic inflammation, as along with its application in the treatment of IS. We believe this could help to provide the theoretical references for further study into IS and treatments in the future.
Collapse
Affiliation(s)
- Li Peng
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medicine Imaging, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Guangqiang Hu
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Qianfang Yao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ziyang He
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Guishan Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Junrong Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medicine Imaging, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
23
|
Chen M, Zhang H, Chu YH, Tang Y, Pang XW, Qin C, Tian DS. Microglial autophagy in cerebrovascular diseases. Front Aging Neurosci 2022; 14:1023679. [PMID: 36275005 PMCID: PMC9582432 DOI: 10.3389/fnagi.2022.1023679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Microglia are considered core regulators for monitoring homeostasis in the brain and primary responders to central nervous system (CNS) injuries. Autophagy affects the innate immune functions of microglia. Recently some evidence suggests that microglial autophagy is closely associated with brain function in both ischemic stroke and hemorrhagic stroke. Herein, we will discuss the interaction between autophagy and other biological processes in microglia under physiological and pathological conditions and highlight the interaction between microglial metabolism and autophagy. In the end, we focus on the effect of microglial autophagy in cerebrovascular diseases.
Collapse
|
24
|
Wang Y, Leak RK, Cao G. Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front Cell Neurosci 2022; 16:980722. [PMID: 36052339 PMCID: PMC9426757 DOI: 10.3389/fncel.2022.980722] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke remains a major cause of long-term disability and mortality worldwide. The immune system plays an important role in determining the condition of the brain following stroke. As the resident innate immune cells of the central nervous system, microglia are the primary responders in a defense network covering the entire brain parenchyma, and exert various functions depending on dynamic communications with neurons, astrocytes, and other neighboring cells under both physiological or pathological conditions. Microglia activation and polarization is crucial for brain damage and repair following ischemic stroke, and is considered a double-edged sword for neurological recovery. Microglia can exist in pro-inflammatory states and promote secondary brain damage, but they can also secrete anti-inflammatory cytokines and neurotrophic factors and facilitate recovery following stroke. In this review, we focus on the role and mechanisms of microglia-mediated neuroinflammation and neuroplasticity after ischemia and relevant potential microglia-based interventions for stroke therapy.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Guodong Cao Yuan Wang
| | - Rehana K. Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- *Correspondence: Guodong Cao Yuan Wang
| |
Collapse
|
25
|
Li YC, Li Y, Zhang YN, Zhao Q, Zhang PL, Sun MR, Liu BL, Yang H, Li P. Muscone and (+)-Borneol Cooperatively Strengthen CREB Induction of Claudin 5 in IL-1 β-Induced Endothelium Injury. Antioxidants (Basel) 2022; 11:antiox11081455. [PMID: 35892657 PMCID: PMC9394259 DOI: 10.3390/antiox11081455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/21/2022] Open
Abstract
Claudin 5 is one of the major proteins of tight junctions and is responsible for cerebrovascular integrity and BBB function. Muscone and (+)-borneol is the major ingredient of moschus and borneolum, respectively, with antioxidative and anti-inflammatory activities. This study investigated whether muscone and (+)-borneol combination protected claudin 5 by targeting ROS-mediated IL-1β accumulation. Muscone and (+)-borneol reduced cerebral infarct volume and cerebrovascular leakage with claudin 5 protection in mice after stroke, largely due to inhibiting ROS accumulation and inflammatory infiltrate of microglia. Muscone reduced ROS and then blocked the CaN/Erk1/2 pathway to decrease IL-1β release, while (+)-borneol removed mitochondrial ROS and attenuated the SDH/Hif-1α pathway to inhibit IL-1β transcription, thereby jointly reducing IL-1β production. Accumulated IL-1β disrupted cAMP/CREB activation and attenuated transcriptional regulation of claudin 5. Muscone and (+)-borneol combination cooperatively protected BBB function by blocking IL-1β-mediated cAMP/CREB/claudin 5 cascades. Mutation of Ser133 site of CREB or knockdown of claudin 5 weakened the effects of muscone and (+)-borneol on upregulation of TEER value and downregulation of FITC-dextran permeability, suggesting that targeting CREB/claudin 5 was an important strategy to protect vascular integrity. This study provided ideas for the studies of synergistic protection against ischemic brain injury about the active ingredients of traditional Chinese medicines (TCMs).
Collapse
Affiliation(s)
| | - Yi Li
- Correspondence: (Y.L.); (P.L.); Tel./Fax: +86-25-8327-1379 (P.L.)
| | | | | | | | | | | | | | - Ping Li
- Correspondence: (Y.L.); (P.L.); Tel./Fax: +86-25-8327-1379 (P.L.)
| |
Collapse
|
26
|
Li Q, Zhang X, Li S, Li W, Teng Y, Zhou Y, Xiong H. Carnosol alleviates sevoflurane-induced cognitive dysfunction by mediating NF-κB pathway in aged rats. Drug Dev Res 2022; 83:1342-1350. [PMID: 35781309 DOI: 10.1002/ddr.21963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/06/2022] [Accepted: 06/07/2022] [Indexed: 11/11/2022]
Abstract
Postoperative Cognitive Dysfunction (POCD) is a neurological disorder of unconsciousness due to cognitive regression after surgical anesthesia. However, the specific mechanism has not yet been clarified. Sevoflurane (SEV) is one of the most commonly used anesthetics in clinical practice, and how SEV mediates the generation of POCD is unclear. Carnosol, a natural ingredient, has been reported to have various beneficial effects such as anti-inflammatory, immune enhancement, and so forth, but how it ameliorates SEV-mediated neurotoxicity remains unclear. This study aimed to induce a POCD model in aged rats by SEV and to elucidate how Carnosol ameliorated SEV-mediated neurotoxicity. The effects of Carnosol on the expression of inflammatory factors in rat hippocampus mediated by SEV were determined by enzyme-linked immunoassay and polymerase chain reaction experiments; the effects of Carnosol on the expressions of Iba-1 and glial fibrillary acidic protein after SEV-mediated activation of rat microglia were clarified by immunofluorescence and Western blotting (WB); The effects of Carnosol on SEV-mediated neuronal apoptosis were studied by terminal deoxynucleotidyl transferase dUTP nick end labeling and WB; the specific signaling pathways regulated by Carnosol were elucidated by WB. The results showed that Carnosol can improve the cognitive dysfunction and reduce neuroinflammation in aged rats induced by SEV; Carnosol can reduce the activation of microglia and inhibit neuronal apoptosis in aged rats induced by SEV; Carnosol can phosphorylate p65 and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha regulates the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Carnosol can attenuate SEV-induced neuroinflammation, prevent microglial activation and inhibit neuronal apoptosis by modulating the NF-κB pathway.
Collapse
Affiliation(s)
- Qing Li
- Department of Anesthesiology, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Xianjie Zhang
- Department of Anesthesiology, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Siyuan Li
- Department of Anesthesia and Comfort Health Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Wen Li
- Department of Anesthesiology, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Yunpeng Teng
- Department of Anesthesia and Comfort Health Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Yukai Zhou
- Department of Anesthesiology, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Hongfei Xiong
- Department of Anesthesia and Comfort Health Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
HU K, GAO Y, CHU S, CHEN N. Review of the effects and Mechanisms of microglial autophagy in ischemic stroke. Int Immunopharmacol 2022; 108:108761. [DOI: 10.1016/j.intimp.2022.108761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 12/30/2022]
|
28
|
Identification of Serum Metabolomics Characteristics in Patients with Stable Angina Pectoris Using UHPLC-QE-MS. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3900828. [PMID: 35615438 PMCID: PMC9126663 DOI: 10.1155/2022/3900828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022]
Abstract
Background Stable angina pectoris (SAP) is one of the main types of coronary heart disease (CHD). To improve treatment outcomes, more effective biomarkers are needed. Currently, studies on the metabolic characteristics of SAP are lacking. Here, we explored the serum metabolomic profile of SAP and identified potential biomarkers and related pathways to assist the clinical diagnosis and treatment of SAP. Method Thirty patients with SAP patients and 30 healthy controls (CON) without stenosis were selected for this study. All patients underwent coronary angiography. The metabolites of the two groups' serum samples were investigated using UHPLC-QE-MS. Changes in serum metabolic profile were evaluated using multivariate statistical analysis and pathway analysis. Result OPLS-DA analysis identified significant differences in the serum metabolic profiles between patients with SAP and CON. Twenty-five differential metabolites were identified between patients from SAP and CON groups, including choline, creatine, L-arginine, beta-guanidinopropionic acid, isopalmitic acid, xanthine, LysoPC (18 : 1), and LysoPC (20 : 3). Pathway analysis found that these differential metabolites were involved in energy metabolism, oxidative stress, purine metabolism, and other metabolic pathways. Conclusion By comparing the serum metabolic profiles of SAP patients with a control group, we identified 25 potential biomarkers that could improve the clinical diagnosis and treatment of SAP.
Collapse
|
29
|
Mao R, Zong N, Hu Y, Chen Y, Xu Y. Neuronal Death Mechanisms and Therapeutic Strategy in Ischemic Stroke. Neurosci Bull 2022; 38:1229-1247. [PMID: 35513682 PMCID: PMC9554175 DOI: 10.1007/s12264-022-00859-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke caused by intracranial vascular occlusion has become increasingly prevalent with considerable mortality and disability, which gravely burdens the global economy. Current relatively effective clinical treatments are limited to intravenous alteplase and thrombectomy. Even so, patients still benefit little due to the short therapeutic window and the risk of ischemia/reperfusion injury. It is therefore urgent to figure out the neuronal death mechanisms following ischemic stroke in order to develop new neuroprotective strategies. Regarding the pathogenesis, multiple pathological events trigger the activation of cell death pathways. Particular attention should be devoted to excitotoxicity, oxidative stress, and inflammatory responses. Thus, in this article, we first review the principal mechanisms underlying neuronal death mediated by these significant events, such as intrinsic and extrinsic apoptosis, ferroptosis, parthanatos, pyroptosis, necroptosis, and autophagic cell death. Then, we further discuss the possibility of interventions targeting these pathological events and summarize the present pharmacological achievements.
Collapse
Affiliation(s)
- Rui Mao
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Ningning Zong
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yujie Hu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Ying Chen
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, China.
- Nanjing Neurology Clinic Medical Center, Nanjing, 210008, China.
| |
Collapse
|
30
|
Sarre C, Contreras-Lopez R, Nernpermpisooth N, Barrere C, Bahraoui S, Terraza C, Tejedor G, Vincent A, Luz-Crawford P, Kongpol K, Kumphune S, Piot C, Nargeot J, Jorgensen C, Djouad F, Barrere-Lemaire S. PPARβ/δ priming enhances the anti-apoptotic and therapeutic properties of mesenchymal stromal cells in myocardial ischemia-reperfusion injury. Stem Cell Res Ther 2022; 13:167. [PMID: 35461240 PMCID: PMC9034535 DOI: 10.1186/s13287-022-02840-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mesenchymal Stromal Cells (MSC) have been widely used for their therapeutic properties in many clinical applications including myocardial infarction. Despite promising preclinical results and evidences of safety and efficacy in phases I/ II, inconsistencies in phase III trials have been reported. In a previous study, we have shown using MSC derived from the bone marrow of PPARβ/δ (Peroxisome proliferator-activated receptors β/δ) knockout mice that the acute cardioprotective properties of MSC during the first hour of reperfusion are PPARβ/δ-dependent but not related to the anti-inflammatory effect of MSC. However, the role of the modulation of PPARβ/δ expression on MSC cardioprotective and anti-apoptotic properties has never been investigated. OBJECTIVES The aim of this study was to investigate the role of PPARβ/δ modulation (inhibition or activation) in MSC therapeutic properties in vitro and ex vivo in an experimental model of myocardial infarction. METHODS AND RESULTS Naïve MSC and MSC pharmacologically activated or inhibited for PPARβ/δ were challenged with H2O2. Through specific DNA fragmentation quantification and qRT-PCR experiments, we evidenced in vitro an increased resistance to oxidative stress in MSC pre-treated by the PPARβ/δ agonist GW0742 versus naïve MSC. In addition, PPARβ/δ-priming allowed to reveal the anti-apoptotic effect of MSC on cardiomyocytes and endothelial cells in vitro. When injected during reperfusion, in an ex vivo heart model of myocardial infarction, 3.75 × 105 PPARβ/δ-primed MSC/heart provided the same cardioprotective efficiency than 7.5 × 105 naïve MSC, identified as the optimal dose in our experimental model. This enhanced short-term cardioprotective effect was associated with an increase in both anti-apoptotic effects and the number of MSC detected in the left ventricular wall at 1 h of reperfusion. By contrast, PPARβ/δ inhibition in MSC before their administration in post-ischemic hearts during reperfusion decreased their cardioprotective effects. CONCLUSION Altogether these results revealed that PPARβ/δ-primed MSC exhibit an increased resistance to oxidative stress and enhanced anti-apoptotic properties on cardiac cells in vitro. PPARβ/δ-priming appears as an innovative strategy to enhance the cardioprotective effects of MSC and to decrease the therapeutic injected doses. These results could be of major interest to improve MSC efficacy for the cardioprotection of injured myocardium in AMI patients.
Collapse
Affiliation(s)
- Charlotte Sarre
- IGF, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 5, France.,IRMB, Univ Montpellier, INSERM, Montpellier, France
| | - Rafael Contreras-Lopez
- IGF, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 5, France.,IRMB, Univ Montpellier, INSERM, Montpellier, France
| | - Nitirut Nernpermpisooth
- IBRU, Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Christian Barrere
- IGF, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 5, France
| | | | | | | | - Anne Vincent
- IGF, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 5, France
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Kantapich Kongpol
- IGF, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 5, France.,IBRU, Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Sarawut Kumphune
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Christophe Piot
- IGF, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 5, France.,Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joel Nargeot
- IGF, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 5, France
| | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,CHU Montpellier, 34295, Montpellier, France
| | - Farida Djouad
- IRMB, Univ Montpellier, INSERM, Montpellier, France.
| | - Stéphanie Barrere-Lemaire
- IGF, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 5, France.
| |
Collapse
|
31
|
Luo S, Xu H, Yang L, Gong X, Shen J, Chen X, Wu Z. Quantitative proteomics analysis of human vitreous in rhegmatogenous retinal detachment associated with choroidal detachment by data-independent acquisition mass spectrometry. Mol Cell Biochem 2022; 477:1849-1863. [PMID: 35332395 DOI: 10.1007/s11010-022-04409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The prognosis of rhegmatogenous retinal detachment (RRD) with choroidal detachment (RRDCD) is often poor and complicated. This study focused on the identification of the characteristic proteins and signal pathways associated with the etiology of RRDCD and to provide guidance for diagnosis and treatment of RRDCD. In this study, vitreous humor samples were obtained from 16 RRDCD patients, 14 with RRD, 12 with idiopathic epiretinal macular membrane (IEMM), and 5 healthy controls from donated corpse eyes. Data-independent acquisition mass spectrometry and bioinformatics analysis were employed to identify differentially expressed proteins (DEPs). In the vitreous humor, 14,842 peptides were identified. Patients with RRDCD had 249 DEPs (93 upregulated and 156 downregulated), with 89 in patients with RRD and 61 in patients with IEMM. Enrichment analysis of the GO and Kyoto Encyclopedia of Genes and Genomes DEP databases indicated functional clusters related to inflammation and immunity, protein degradation and absorption, cell adhesion molecules (CAMs), the hedgehog signaling pathway, and lipid metabolism. Weighted gene co-expression network analysis showed that DEPs with positive co-expression of RRDCD participated in immune-related pathways led by the complement and coagulation cascade, whereas DEPs with negative co-expression of RRDCD participated in protein degradation and absorption, CAMs, and the hedgehog signaling pathway. In summary, our study provides important clues and the theoretical basis for exploring the pathogenesis, progression, and prognosis of ocular fundus disease.
Collapse
Affiliation(s)
- Shasha Luo
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China
| | - Huiyan Xu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China
| | - Lufei Yang
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Xuechun Gong
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Jinyan Shen
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Xuan Chen
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Zhifeng Wu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China. .,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China.
| |
Collapse
|
32
|
Joshi L, Plastira I, Bernhart E, Reicher H, Koshenov Z, Graier WF, Vujic N, Kratky D, Rivera R, Chun J, Sattler W. Lysophosphatidic Acid Receptor 5 (LPA 5) Knockout Ameliorates the Neuroinflammatory Response In Vivo and Modifies the Inflammatory and Metabolic Landscape of Primary Microglia In Vitro. Cells 2022; 11:cells11071071. [PMID: 35406635 PMCID: PMC8998093 DOI: 10.3390/cells11071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 12/02/2022] Open
Abstract
Systemic inflammation induces alterations in the finely tuned micromilieu of the brain that is continuously monitored by microglia. In the CNS, these changes include increased synthesis of the bioactive lipid lysophosphatidic acid (LPA), a ligand for the six members of the LPA receptor family (LPA1-6). In mouse and human microglia, LPA5 belongs to a set of receptors that cooperatively detect danger signals in the brain. Engagement of LPA5 by LPA polarizes microglia toward a pro-inflammatory phenotype. Therefore, we studied the consequences of global LPA5 knockout (-/-) on neuroinflammatory parameters in a mouse endotoxemia model and in primary microglia exposed to LPA in vitro. A single endotoxin injection (5 mg/kg body weight) resulted in lower circulating concentrations of TNFα and IL-1β and significantly reduced gene expression of IL-6 and CXCL2 in the brain of LPS-injected LPA5-/- mice. LPA5 deficiency improved sickness behavior and energy deficits produced by low-dose (1.4 mg LPS/kg body weight) chronic LPS treatment. LPA5-/- microglia secreted lower concentrations of pro-inflammatory cyto-/chemokines in response to LPA and showed higher maximal mitochondrial respiration under basal and LPA-activated conditions, further accompanied by lower lactate release, decreased NADPH and GSH synthesis, and inhibited NO production. Collectively, our data suggest that LPA5 promotes neuroinflammation by transmiting pro-inflammatory signals during endotoxemia through microglial activation induced by LPA.
Collapse
Affiliation(s)
- Lisha Joshi
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (Z.K.); (W.F.G.); (N.V.); (D.K.)
| | - Ioanna Plastira
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (Z.K.); (W.F.G.); (N.V.); (D.K.)
| | - Eva Bernhart
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (Z.K.); (W.F.G.); (N.V.); (D.K.)
| | - Helga Reicher
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (Z.K.); (W.F.G.); (N.V.); (D.K.)
| | - Zhanat Koshenov
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (Z.K.); (W.F.G.); (N.V.); (D.K.)
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (Z.K.); (W.F.G.); (N.V.); (D.K.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (Z.K.); (W.F.G.); (N.V.); (D.K.)
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (Z.K.); (W.F.G.); (N.V.); (D.K.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Richard Rivera
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (R.R.); (J.C.)
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (R.R.); (J.C.)
| | - Wolfgang Sattler
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (L.J.); (I.P.); (E.B.); (H.R.); (Z.K.); (W.F.G.); (N.V.); (D.K.)
- BioTechMed-Graz, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-71950
| |
Collapse
|
33
|
Hou W, Hao Y, Sun L, Zhao Y, Zheng X, Song L. The dual roles of autophagy and the GPCRs-mediating autophagy signaling pathway after cerebral ischemic stroke. Mol Brain 2022; 15:14. [PMID: 35109896 PMCID: PMC8812204 DOI: 10.1186/s13041-022-00899-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke, caused by a lack of blood supply in brain tissues, is the third leading cause of human death and disability worldwide, and usually results in sensory and motor dysfunction, cognitive impairment, and in severe cases, even death. Autophagy is a highly conserved lysosome-dependent process in which eukaryotic cells removal misfolded proteins and damaged organelles in cytoplasm, which is critical for energy metabolism, organelle renewal, and maintenance of intracellular homeostasis. Increasing evidence suggests that autophagy plays important roles in pathophysiological mechanisms under ischemic conditions. However, there are still controversies about whether autophagy plays a neuroprotective or damaging role after ischemia. G-protein-coupled receptors (GPCRs), one of the largest protein receptor superfamilies in mammals, play crucial roles in various physiological and pathological processes. Statistics show that GPCRs are the targets of about one-fifth of drugs known in the world, predicting potential values as targets for drug research. Studies have demonstrated that nutritional deprivation can directly or indirectly activate GPCRs, mediating a series of downstream biological processes, including autophagy. It can be concluded that there are interactions between autophagy and GPCRs signaling pathway, which provides research evidence for regulating GPCRs-mediated autophagy. This review aims to systematically discuss the underlying mechanism and dual roles of autophagy in cerebral ischemia, and describe the GPCRs-mediated autophagy, hoping to probe promising therapeutic targets for ischemic stroke through in-depth exploration of the GPCRs-mediated autophagy signaling pathway.
Collapse
Affiliation(s)
- Weichen Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Yang Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Xiangyu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| |
Collapse
|
34
|
Zheng Y, Yu Y, Chen XF, Yang SL, Tang XL, Xiang ZG. Intestinal Macrophage Autophagy and its Pharmacological Application in Inflammatory Bowel Disease. Front Pharmacol 2021; 12:803686. [PMID: 34899362 PMCID: PMC8652230 DOI: 10.3389/fphar.2021.803686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn’s disease (CD) and ulcerative colitis (UC), is a group of chronic inflammatory disorders. IBD is regarded as a severe healthcare problem worldwide, with high morbidity and lethality. So far, despite of numerous studies on this issue, the specific mechanisms of IBD still remain unclarified and ideal treatments are not available for IBD. The intestinal mucosal barrier is vital for maintaining the function of the intestinal self-defensive system. Among all of the components, macrophage is an important one in the intestinal self-defensive system, normally protecting the gut against exotic invasion. However, the over-activation of macrophages in pathological conditions leads to the overwhelming induction of intestinal inflammatory and immune reaction, thus damaging the intestinal functions. Autophagy is an important catabolic mechanism. It has been proven to participate the regulation of various kinds of inflammation- and immune-related disorders via the regulation of inflammation in related cells. Here in this paper, we will review the role and mechanism of intestinal macrophage autophagy in IBD. In addition, several well-studied kinds of agents taking advantage of intestinal macrophage autophagy for the treatment of IBD will also be discussed. We aim to bring novel insights in the development of therapeutic strategies against IBD.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| | - Yang Yu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xu-Feng Chen
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| | - Sheng-Lan Yang
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| | - Xiao-Long Tang
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| | - Zheng-Guo Xiang
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| |
Collapse
|
35
|
Barrett JP, Knoblach SM, Bhattacharya S, Gordish-Dressman H, Stoica BA, Loane DJ. Traumatic Brain Injury Induces cGAS Activation and Type I Interferon Signaling in Aged Mice. Front Immunol 2021; 12:710608. [PMID: 34504493 PMCID: PMC8423402 DOI: 10.3389/fimmu.2021.710608] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
Aging adversely affects inflammatory processes in the brain, which has important implications in the progression of neurodegenerative disease. Following traumatic brain injury (TBI), aged animals exhibit worsened neurological function and exacerbated microglial-associated neuroinflammation. Type I Interferons (IFN-I) contribute to the development of TBI neuropathology. Further, the Cyclic GMP-AMP Synthase (cGAS) and Stimulator of Interferon Genes (STING) pathway, a key inducer of IFN-I responses, has been implicated in neuroinflammatory activity in several age-related neurodegenerative diseases. Here, we set out to investigate the effects of TBI on cGAS/STING activation, IFN-I signaling and neuroinflammation in young and aged C57Bl/6 male mice. Using a controlled cortical impact model, we evaluated transcriptomic changes in the injured cortex at 24 hours post-injury, and confirmed activation of key neuroinflammatory pathways in biochemical studies. TBI induced changes were highly enriched for transcripts that were involved in inflammatory responses to stress and host defense. Deeper analysis revealed that TBI increased expression of IFN-I related genes (e.g. Ifnb1, Irf7, Ifi204, Isg15) and IFN-I signaling in the injured cortex of aged compared to young mice. There was also a significant age-related increase in the activation of the DNA-recognition pathway, cGAS, which is a key mechanism to propagate IFN-I responses. Finally, enhanced IFN-I signaling in the aged TBI brain was confirmed by increased phosphorylation of STAT1, an important IFN-I effector molecule. This age-related activation of cGAS and IFN-I signaling may prove to be a mechanistic link between microglial-associated neuroinflammation and neurodegeneration in the aged TBI brain.
Collapse
Affiliation(s)
- James P Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Susan M Knoblach
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, United States.,Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Surajit Bhattacharya
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, United States
| | - Heather Gordish-Dressman
- Center for Translational Science, Children's Research Institute, Children's National Health System, Washington, DC, United States.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Veterans Affairs (VA) Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, United States
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, United States.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Sun H, Wei X, Zeng C. Autophagy in Xp11 translocation renal cell carcinoma: from bench to bedside. Mol Cell Biochem 2021; 476:4231-4244. [PMID: 34345999 DOI: 10.1007/s11010-021-04235-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022]
Abstract
Xp11 translocation renal cell carcinoma (tRCC) characterized by the rearrangement of the TFE3 is recently identified as a unique subtype of RCC that urgently requires effective prevention and treatment strategies. Therefore, determining suitable therapeutic targets and fully understanding the biological significance of tRCC is essential. The importance of autophagy is increasingly acknowledged because it shows carcinogenic activity or suppressor effect. Autophagy is a physiological cellular process critical to maintaining cell homeostasis, which is involved in the lysosomal degradation of cytoplasmic organelles and macromolecules via the lysosomal pathway, suggesting that targeting autophagy is a potential therapeutic approach for cancer therapies. However, the underlying mechanism of autophagy in tRCC is still ambiguous. In this review, we summarize the autophagy-related signaling pathways associated with tRCC. Moreover, we examine the roles of autophagy and the immune response in tumorigenesis and investigate how these factors interact to facilitate or prevent tumorigenesis. Besides, we review the findings regarding the treatment of tRCC via induction or inhibition of autophagy. Hopefully, this study will shed some light on the functions and implications of autophagy and emphasize its role as a potential molecular target for therapeutic intervention in tRCC.
Collapse
Affiliation(s)
- Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China
| | - Xing Wei
- Department of Nephrology and Rheumatology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China.
| |
Collapse
|
37
|
Development and application of reverse genetic technology for the influenza virus. Virus Genes 2021; 57:151-163. [PMID: 33528730 PMCID: PMC7851324 DOI: 10.1007/s11262-020-01822-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/28/2020] [Indexed: 12/28/2022]
Abstract
Influenza virus is a common virus in people's daily lives, and it has certain infectivity in humans and animals. Influenza viruses have the characteristics of a high mutation rate and wide distribution. Reverse genetic technology is primarily used to modify viruses at the DNA level through targeted modification of the virus cDNA. Genetically modified influenza viruses have a unique advantage when researching the transmission and pathogenicity of influenza. With the continuous development of oncolytic viruses in recent years, studies have found that influenza viruses also have certain oncolytic activity. Influenza viruses can specifically recognize tumor cells; activate cytotoxic T cells, NK cells, dendritic cells, etc.; and stimulate the body to produce an immune response, thereby killing tumor cells. This article will review the development and application of influenza virus reverse genetic technology.
Collapse
|
38
|
Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway. Cell Mol Life Sci 2020; 78:1423-1444. [PMID: 33084946 PMCID: PMC7576986 DOI: 10.1007/s00018-020-03671-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Antiviral responses of interferons (IFNs) are crucial in the host immune response, playing a relevant role in controlling viralw infections. Three types of IFNs, type I (IFN-α, IFN-β), II (IFN-γ) and III (IFN-λ), are classified according to their receptor usage, mode of induction, biological activity and amino acid sequence. Here, we provide a comprehensive review of type I IFN responses and different mechanisms that viruses employ to circumvent this response. In the first part, we will give an overview of the different induction and signaling cascades induced in the cell by IFN-I after virus encounter. Next, highlights of some of the mechanisms used by viruses to counteract the IFN induction will be described. And finally, we will address different mechanism used by viruses to interference with the IFN signaling cascade and the blockade of IFN induced antiviral activities.
Collapse
|