1
|
Aroke EN, Nagidi JG, Srinivasasainagendra V, Quinn TL, Agbor FBAT, Kinnie KR, Tiwari HK, Goodin BR. The Pace of Biological Aging Partially Explains the Relationship Between Socioeconomic Status and Chronic Low Back Pain Outcomes. J Pain Res 2024; 17:4317-4329. [PMID: 39712464 PMCID: PMC11662669 DOI: 10.2147/jpr.s481452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Having a lower socioeconomic status (SES) is a predictor of age-related chronic conditions, including chronic low back pain (cLBP). We aimed to examine whether the pace of biological aging mediates the relationship between SES and cLBP outcomes - pain intensity, pain interference, and physical performance. Methods We used the Dunedin Pace of Aging Calculated from the Epigenome (DunedinPACE) software to determine the pace of biological aging in adults ages 18 to 85 years with no cLBP (n = 74), low-impact pain (n = 56), and high-impact pain (n = 77). Results The mean chronological age of the participants was 40.9 years (SD= 15.1); 107 (51.7%) were female, and 108 (52.2%) were Black. On average, the pace of biological aging was 5% faster [DunedinPACE = 1.05 (SD = 0.14)] in the sample (DunedinPACE value of 1 = normal pace of aging). Individuals with higher levels of education had a significantly slower pace of biological aging than those with lower education levels (F = 5.546, p = 0.001). After adjusting for sex and race, household income level significantly correlated with the pace of biological aging (r = -0.17, p = 0.02), pain intensity (r = -0.21, p = 0.003), pain interference (r = -0.21, p = 0.003), and physical performance (r = 0.20, p = 0.005). In mediation analyses adjusting for sex, race, and body mass index (BMI), the pace of biological aging mediates the relationship between household income (but not education) level and cLBP intensity, interference, as well as physical performance. Discussion Results indicate that lower SES contributes to faster biological aging, possibly contributing to greater pain intensity and interference, as well as lower physical performance. Future interventions slowing the pace of biological aging may improve cLBP outcomes.
Collapse
Affiliation(s)
- Edwin N Aroke
- Department of Acute, Chronic, and Continuing Care, School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jai Ganesh Nagidi
- Department of Computer Science, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vinodh Srinivasasainagendra
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tammie L Quinn
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fiona B A T Agbor
- Department of Acute, Chronic, and Continuing Care, School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kiari R Kinnie
- Department of Acute, Chronic, and Continuing Care, School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Burel R Goodin
- Department of Anesthesiology, School of Medicine, Washington University, St Louis, MO, USA
| |
Collapse
|
2
|
Klopack ET, Seshadri G, Arpawong TE, Cole S, Thyagarajan B, Crimmins EM. Development of a novel transcriptomic measure of aging: Transcriptomic Mortality-risk Age (TraMA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.04.24318517. [PMID: 39677460 PMCID: PMC11643192 DOI: 10.1101/2024.12.04.24318517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Increasingly, research suggests that aging is a coordinated multi-system decline in functioning that occurs at multiple biological levels. We developed and validated a transcriptomic (RNA-based) aging measure we call Transcriptomic Mortality-risk Age (TraMA) using RNA-seq data from the 2016 Health and Retirement Study using elastic net Cox regression analyses to predict 4-year mortality hazard. In a holdout test sample, TraMA was associated with earlier mortality, more chronic conditions, poorer cognitive functioning, and more limitations in activities of daily living. TraMA was also externally validated in the Long Life Family Study and several publicly available datasets. Results suggest that TraMA is a robust, portable RNAseq-based aging measure that is comparable, but independent from past biological aging measures (e.g., GrimAge). TraMA is likely to be of particular value to researchers interested in understanding the biological processes underlying health and aging, and for social, psychological, epidemiological, and demographic studies of health and aging.
Collapse
|
3
|
Kim DJ, Kang JH, Kim JW, Kim SB, Lee YK, Cheon MJ, Lee BC. Assessing the utility of epigenetic clocks for health prediction in South Korean. FRONTIERS IN AGING 2024; 5:1493406. [PMID: 39687863 PMCID: PMC11646986 DOI: 10.3389/fragi.2024.1493406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Epigenetic clocks have been developed to track both chronological age and biological age, which is defined by physiological biomarkers and the risk of adverse health outcomes. Epigenetic age acceleration (EAA) has been found to predict various diseases, aging-related factors, and mortality. However, epigenetic clocks have predominantly been developed with individuals of European or Hispanic ancestry, and their association with health outcomes and environmental factors has not been sufficiently assessed in East Asian populations. Here, we investigated nine epigenetic clocks: five trained on chronological age (first-generation) and four on biological age (second-generation), using DNA methylation data from blood samples of South Koreans. EAAs of second-generation epigenetic clocks reflected the risk of chronic diseases (type 2 diabetes and hypertension), levels of health-related blood markers (alanine aminotransferase, aspartate aminotransferase, high density lipoprotein, triglyceride, and high sensitivity C-reactive protein), and lung functions (percentage of predicted FEV1 and percentage of predicted FVC), while EAAs of first generation clocks did not. Using follow-up data, we also found that EAAs of second-generation clocks were associated with the time to onset risks of chronic diseases. Health behavior factors (drinking, smoking, exercise, body mass index, and waist-hip ratio), socioeconomic status (income level and educational attainment), and psychosocial status were associated with EAAs of second-generation clocks, while only smoking status was associated with EAAs of first-generation clocks. We conducted validation analyses in an independent South Korean cohort and replicated the association of EAAs with health outcomes and environmental factors. Age acceleration of epigenetic clocks is influenced by various environmental factors and can serve as an effective predictor of health in South Korea.
Collapse
|
4
|
Choi EY, Ailshire JA. Neighborhood Stressors and Epigenetic Age Acceleration Among Older Americans. J Gerontol B Psychol Sci Soc Sci 2024; 79:gbae176. [PMID: 39432567 PMCID: PMC11582398 DOI: 10.1093/geronb/gbae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 10/23/2024] Open
Abstract
OBJECTIVES Exposure to stressful neighborhood environments is a well-established risk factor for health deterioration and premature death. However, the biological underpinnings are not fully understood. Epigenetic aging may function as a key molecular pathway to adverse health outcomes among residents of high-stress neighborhoods. This study examines the associations between neighborhood social stressors (socioeconomic deprivation, observed and perceived disorder, and low social cohesion) and epigenetic age (DunedinPACE and Principal component adjusted [PC] PCHorvath, PCHannum, PCPhenoAge, PCGrimAge). Further, we identify subpopulations most vulnerable to neighborhood stressors. METHODS Respondent data are from the 2016 Health and Retirement Study (HRS) DNA methylation subsample. Neighborhood data come from respondent reports (2014/2016) and the census (2012-2016 ACS). The analytic sample included 3,146 adults ages 56 and older (mean age = 68.8), of whom 54.9% were women and 19.3% were non-White. RESULTS In multilevel regression models adjusting for sociodemographic covariates, all neighborhood stressors were associated with faster DunedinPACE (B = 0.008 to 0.017). Neighborhood deprivation, perceived disorder, and low cohesion were associated with PCPhenoAge (B = 0.27 to 0.40) or PCGrimAge acceleration (B = 0.23). Health behaviors explained these associations to some degree. However, no significant associations were found with PCHorvath and PCHannum. In interaction analyses, adverse associations with deprivation, observed disorder, and low cohesion were more pronounced for women. No consistent interactions were found for race/ethnic and education groups. DISCUSSION Our findings indicate that neighborhood stressors can accelerate epigenetic aging, with older women particularly vulnerable to their effects. These findings provide insights into the biological foundations of health disparities rooted in neighborhood environments.
Collapse
Affiliation(s)
- Eun Young Choi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Jennifer A Ailshire
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Chervova O, Panteleeva K, Chernysheva E, Widayati TA, Baronik ŽF, Hrbková N, Schneider JL, Bobak M, Beck S, Voloshin V. Breaking new ground on human health and well-being with epigenetic clocks: A systematic review and meta-analysis of epigenetic age acceleration associations. Ageing Res Rev 2024; 102:102552. [PMID: 39423872 DOI: 10.1016/j.arr.2024.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Epigenetic clocks provide an accurate molecular readout of epigenetic age and epigenetic age acceleration (EAA) derived from DNA methylation data have shown promise as biomarkers of ageing. This systematic review synthesised research on associations between EAA measures and various physiological, cognitive, social, and environmental factors. A comprehensive search strategy identified 299 publications reporting 1050 unique EAA-factor associations based on 53 methylation clocks. Random-effects meta-analyses pooled results across studies for selected EAA-factor pairs. Significant pooled associations emerged, providing insights into relationships between specific factors and accelerated epigenetic ageing. We developed a novel four-level classification system to categorise this diverse range of factors and enable a structured synthesis. To aid further research planning in this rapidly evolving field, TEAPEE (Tracker of EAA Associations with Phenotype & Environmental Exposure) - an interactive, searchable web table detailing all EAA-factor associations - was developed, cataloguing the epigenetic clocks, associated factors, classification categories, and direct links to the original studies. This resource will empower future investigations into the multifaceted determinants of epigenetic ageing, contributing to a deeper understanding of the epigenome's sensitivity to various life experiences and exposures.
Collapse
Affiliation(s)
- Olga Chervova
- UCL Research Department of Epidemiology & Public Health, University College London, London, United Kingdom; UCL Cancer Institute, University College London, London, United Kingdom.
| | - Kseniia Panteleeva
- University of Cambridge, School of Clinical Medicine, Cambridge, United Kingdom
| | - Elizabeth Chernysheva
- University of Otago, Department of Pathology and Biomedical Science, Christchurch, New Zealand
| | | | | | - Natálie Hrbková
- UCL Cancer Institute, University College London, London, United Kingdom
| | | | - Martin Bobak
- UCL Research Department of Epidemiology & Public Health, University College London, London, United Kingdom
| | - Stephan Beck
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Vitaly Voloshin
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
6
|
Besser LM, Forrester SN, Arabadjian M, Bancks MP, Culkin M, Hayden KM, Le ET, Pierre-Louis I, Hirsch JA. Structural and social determinants of health: The multi-ethnic study of atherosclerosis. PLoS One 2024; 19:e0313625. [PMID: 39556532 PMCID: PMC11573213 DOI: 10.1371/journal.pone.0313625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Researchers have increasingly recognized the importance of structural and social determinants of health (SSDOH) as key drivers of a multitude of diseases and health outcomes. The Multi-Ethnic Study of Atherosclerosis (MESA) is an ongoing, longitudinal cohort study of subclinical cardiovascular disease (CVD) that has followed geographically and racially/ethnically diverse participants starting in 2000. Since its inception, MESA has incorporated numerous SSDOH assessments and instruments to study in relation to CVD and aging outcomes. In this paper, we describe the SSDOH data available in MESA, systematically review published papers using MESA that were focused on SSDOH and provide a roadmap for future SSDOH-related studies. METHODS AND FINDINGS The study team reviewed all published papers using MESA data (n = 2,125) through January 23, 2023. Two individuals systematically reviewed titles, abstracts, and full text to determine the final number of papers (n = 431) that focused on at least one SSDOH variable as an exposure, outcome, or stratifying/effect modifier variable of main interest (discrepancies resolved by a third individual). Fifty-seven percent of the papers focused on racialized/ethnic groups or other macrosocial/structural factors (e.g., segregation), 16% focused on individual-level inequalities (e.g. income), 14% focused on the built environment (e.g., walking destinations), 10% focused on social context (e.g., neighborhood socioeconomic status), 34% focused on stressors (e.g., discrimination, air pollution), and 4% focused on social support/integration (e.g., social participation). Forty-seven (11%) of the papers combined MESA with other cohorts for cross-cohort comparisons and replication/validation (e.g., validating algorithms). CONCLUSIONS Overall, MESA has made significant contributions to the field and the published literature, with 20% of its published papers focused on SSDOH. Future SSDOH studies using MESA would benefit by using recently added instruments/data (e.g., early life educational quality), linking SSDOH to biomarkers to determine underlying causal mechanisms linking SSDOH to CVD and aging outcomes, and by focusing on intersectionality, understudied SSDOH (i.e., social support, social context), and understudied outcomes in relation to SSDOH (i.e., sleep, respiratory health, cognition/dementia).
Collapse
Affiliation(s)
- Lilah M. Besser
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami, Boca Raton, Florida, United States of America
| | - Sarah N. Forrester
- Division of Epidemiology, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Milla Arabadjian
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, New York, United States of America
| | - Michael P. Bancks
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Margaret Culkin
- Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Kathleen M. Hayden
- Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Elaine T. Le
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami, Boca Raton, Florida, United States of America
| | - Isabelle Pierre-Louis
- Division of Epidemiology, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Jana A. Hirsch
- Urban Health Collaborative and Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
7
|
Han LKM, Aghajani M, Penninx BWJH, Copeland WE, Aberg KA, van den Oord EJCG. Lagged effects of childhood depressive symptoms on adult epigenetic aging. Psychol Med 2024; 54:1-9. [PMID: 39370998 PMCID: PMC11496221 DOI: 10.1017/s0033291724001570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Cross-sectional studies have identified health risks associated with epigenetic aging. However, it is unclear whether these risks make epigenetic clocks 'tick faster' (i.e. accelerate biological aging). The current study examines concurrent and lagged within-person changes of a variety of health risks associated with epigenetic aging. METHODS Individuals from the Great Smoky Mountains Study were followed from age 9 to 35 years. DNA methylation profiles were assessed from blood, at multiple timepoints (i.e. waves) for each individual. Health risks were psychiatric, lifestyle, and adversity factors. Concurrent (N = 539 individuals; 1029 assessments) and lagged (N = 380 individuals; 760 assessments) analyses were used to determine the link between health risks and epigenetic aging. RESULTS Concurrent models showed that BMI (r = 0.15, PFDR < 0.01) was significantly correlated to epigenetic aging at the subject-level but not wave-level. Lagged models demonstrated that depressive symptoms (b = 1.67 months per symptom, PFDR = 0.02) in adolescence accelerated epigenetic aging in adulthood, also when models were fully adjusted for BMI, smoking, and cannabis and alcohol use. CONCLUSIONS Within-persons, changes in health risks were unaccompanied by concurrent changes in epigenetic aging, suggesting that it is unlikely for risks to immediately 'accelerate' epigenetic aging. However, time lagged analyses indicated that depressive symptoms in childhood/adolescence predicted epigenetic aging in adulthood. Together, findings suggest that age-related biological embedding of depressive symptoms is not instant but provides prognostic opportunities. Repeated measurements and longer follow-up times are needed to examine stable and dynamic contributions of childhood experiences to epigenetic aging across the lifespan.
Collapse
Affiliation(s)
- Laura K. M. Han
- Department of Psychiatry, Amsterdam UMC, location Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, location Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Institute of Child & Education Studies, Section Forensic Family & Youth Care, Leiden University, The Netherlands
| | - Brenda W. J. H. Penninx
- Department of Psychiatry, Amsterdam UMC, location Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - Karolina A. Aberg
- The Center for Biomarker Research and Precision Medicine, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Edwin J. C. G. van den Oord
- The Center for Biomarker Research and Precision Medicine, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
8
|
Esposito S, Bonaccio M, Di Castelnuovo A, Ruggiero E, Persichillo M, Magnacca S, De Curtis A, Cerletti C, Donati MB, de Gaetano G, Iacoviello L, Gialluisi A. Life-Course Socioeconomic Trajectories and Biological Aging: The Importance of Lifestyles and Physical Wellbeing. Nutrients 2024; 16:3353. [PMID: 39408320 PMCID: PMC11478881 DOI: 10.3390/nu16193353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Studies investigating the associations between life-course socioeconomic status (SES) and biological aging (the difference between biological and chronological age, Δage) have mostly been focused on epigenetic clocks and on a limited number of mediators. The aim of this study was to investigate this relationship using a blood-based aging clock, as well as the potential mediation of different factors including lifestyles or their proxies and physical and mental wellbeing. METHODS A deep-learning aging clock based on 36 blood markers was deployed, in a large Italian population cohort: the Moli-sani study (N = 4772; ≥35 years; 48% men). SES was defined as an eight-level trajectory over the life course, which was tested with Δage in linear models incrementally adjusted for age, sex, and prevalent health conditions. Moreover, the proportion of associations explained by diverse potential mediators, including diet, smoking, physical activity, alcohol, body mass index (BMI), and physical and mental quality of life (QoL) was estimated. RESULTS Compared to participants with a stably high SES, those showing an educational and financial downward trajectory were older than their CA (β (95%CI) = 1.28 (0.73-1.83) years), as were those with a stably low SES (0.75 (0.25-01.25) years). These associations were largely explained by the tested mediators (overall proportion: 36.2% and 66.3%, respectively), prominently by physical QoL (20.7% and 41.0%), BMI (16.8% and 34.3%), lifestyle (10.6% and 24.6%), and dietary inflammatory score (5.3% and 9.2%). CONCLUSIONS These findings indicate that life-course socioeconomic inequalities are associated with accelerated biological aging, suggesting physical wellbeing and pro-inflammatory lifestyles as potential public health targets to slow down this process in susceptible socioeconomic strata of the population.
Collapse
Affiliation(s)
- Simona Esposito
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Marialaura Bonaccio
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Augusto Di Castelnuovo
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Emilia Ruggiero
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Mariarosaria Persichillo
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Sara Magnacca
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Bari, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Bari, Italy
| | | |
Collapse
|
9
|
Yusipov I, Kalyakulina A, Trukhanov A, Franceschi C, Ivanchenko M. Map of epigenetic age acceleration: A worldwide analysis. Ageing Res Rev 2024; 100:102418. [PMID: 39002646 DOI: 10.1016/j.arr.2024.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
We present a systematic analysis of epigenetic age acceleration based on by far the largest collection of publicly available DNA methylation data for healthy samples (93 datasets, 23 K samples), focusing on the geographic (25 countries) and ethnic (31 ethnicities) aspects around the world. We employed the most popular epigenetic tools for assessing age acceleration and examined their quality metrics and ability to extrapolate to epigenetic data from different tissue types and age ranges different from the training data of these models. In most cases, the models proved to be inconsistent with each other and showed different signs of age acceleration, with the PhenoAge model tending to systematically underestimate and different versions of the GrimAge model tending to systematically overestimate the age prediction of healthy subjects. Referring to data availability and consistency, most countries and populations are still not represented in GEO, moreover, different datasets use different criteria for determining healthy controls. Because of this, it is difficult to fully isolate the contribution of "geography/environment", "ethnicity" and "healthiness" to epigenetic age acceleration. Among the explored metrics, only the DunedinPACE, which measures aging rate, appears to adequately reflect the standard of living and socioeconomic indicators in countries, although it has a limited application to blood methylation data only. Invariably, by epigenetic age acceleration, males age faster than females in most of the studied countries and populations.
Collapse
Affiliation(s)
- Igor Yusipov
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Alena Kalyakulina
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Arseniy Trukhanov
- Mriya Life Institute, National Academy of Active Longevity, Moscow 124489, Russia.
| | - Claudio Franceschi
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Mikhail Ivanchenko
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| |
Collapse
|
10
|
García-delaTorre P, Rivero-Segura NA, Sánchez-García S, Becerril-Rojas K, Sandoval-Rodriguez FE, Castro-Morales D, Cruz-Lopez M, Vazquez-Moreno M, Rincón-Heredia R, Ramirez-Garcia P, Gomez-Verjan JC. GrimAge is elevated in older adults with mild COVID-19 an exploratory analysis. GeroScience 2024; 46:3511-3524. [PMID: 38358578 PMCID: PMC11226692 DOI: 10.1007/s11357-024-01095-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
COVID-19 has been contained; however, the side effects associated with its infection continue to be a challenge for public health, particularly for older adults. On the other hand, epigenetic status contributes to the inter-individual health status and is associated with COVID-19 severity. Nevertheless, current studies focus only on severe COVID-19. Considering that most of the worldwide population developed mild COVID-19 infection. In the present exploratory study, we aim to analyze the association of mild COVID-19 with epigenetic ages (HorvathAge, HannumAge, GrimAge, PhenoAge, SkinAge, and DNAmTL) and clinical variables obtained from a Mexican cohort of older adults. We found that all epigenetic ages significantly differ from the chronological age, but only GrimAge is elevated. Additionally, both the intrinsic epigenetic age acceleration (IEAA) and the extrinsic epigenetic age acceleration (EEAA) are accelerated in all patients. Moreover, we found that immunological estimators and DNA damage were associated with PhenoAge, SkinBloodHorvathAge, and HorvathAge, suggesting that the effects of mild COVID-19 on the epigenetic clocks are mainly associated with inflammation and immunology changes. In conclusion, our results show that the effects of mild COVID-19 on the epigenetic clock are mainly associated with the immune system and an increase in GrimAge, IEAA, and EEAA.
Collapse
Affiliation(s)
- Paola García-delaTorre
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, México
| | | | - Sergio Sánchez-García
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | | | | | - Diana Castro-Morales
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), 10200, Mexico City, Mexico
| | - Miguel Cruz-Lopez
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Miguel Vazquez-Moreno
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Perla Ramirez-Garcia
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), 10200, Mexico City, Mexico
| | - Juan Carlos Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), 10200, Mexico City, Mexico.
| |
Collapse
|
11
|
Crimmins EM, Klopack ET, Kim JK. Generations of epigenetic clocks and their links to socioeconomic status in the Health and Retirement Study. Epigenomics 2024; 16:1031-1042. [PMID: 39023350 PMCID: PMC11404624 DOI: 10.1080/17501911.2024.2373682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Aim: This is a brief description of links between nine epigenetic clocks related to human aging and socioeconomic and behavioral characteristics as well as health outcomes.Materials & methods: We estimate frequently used and novel clocks from one data source, the Health and Retirement Study.Results: While all of these clocks are thought to reflect "aging," they use different CpG sites and do not strongly relate to each other. First and fourth generation clocks are not as linked to socioeconomic status or health outcomes as second and third generation clocks.Conclusion: Epigenetic clocks reflect exciting new tools and their continued evolution is likely to improve our understanding of how exposures get under the skin to accelerate aging.
Collapse
Affiliation(s)
- Eileen M Crimmins
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Eric T Klopack
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Jung Ki Kim
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
12
|
Brown RL, Alegria KE, Hamlat E, Tomiyama AJ, Laraia B, Crimmins EM, Moffitt TE, Epel ES. Psychosocial Disadvantage During Childhood and Midlife Health: NIMHD Social Epigenomics Program. JAMA Netw Open 2024; 7:e2421841. [PMID: 39073819 PMCID: PMC11287423 DOI: 10.1001/jamanetworkopen.2024.21841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/22/2024] [Indexed: 07/30/2024] Open
Abstract
Importance Low childhood socioeconomic status (SES) is a social hallmark of aging that contributes to adult health disparities and earlier morbidity and mortality. Childhood perceptions of stress are associated with child health outcomes and may contribute to premature biological aging into adulthood. Objective To describe the association of childhood SES and perceived stress with midlife insulin resistance and epigenetic age and to explore whether late adolescent adiposity mediates the observed associations. Design, Setting, and Participants The longitudinal cohort National Heart, Lung, and Blood Institute Growth and Health Study enrolled girls aged 10 years from January 1987 to May 1988, and followed them up to 19 years of age. Participants from Richmond, California, were recruited again at midlife in 2016 to assess insulin resistance and epigenetic age. Analyses were conducted from August 2, 2023, to March 18, 2024. A total of 433 participants were eligible and included in the analyses (specific sample sizes ranged across analyses from 303 to 391). Exposures Childhood levels of SES at 10 years of age (parental educational level and income) and perceived stress at 11 years of age. Main Outcomes and Measures The hypotheses tested were formulated after data collection. Outcomes included the homeostatic model assessment of insulin resistance (HOMA-IR) and the GrimAge and DunedinPACE epigenetic clocks. Waist circumference in late adolescence was tested as a mediator. Results Among the 433 participants, the mean (SD) age was 39.4 (1.2) years; 218 (50.3%) were Black and 215 (49.7%) were White; and 135 (31.2%) had parents with a college degree or higher. Higher parental educational level was associated with lower HOMA-IR (B = -0.22 [95% CI, -0.41 to -0.02]; P = .03), lower midlife GrimAge (B = -1.76 [95% CI, -2.85 to -0.66] years; P = .002), and slower midlife DunedinPACE (B = -0.03 [95% CI, -6.29 to -0.002]; P = .04). Childhood perceived stress was indirectly associated through late adolescent adiposity with midlife HOMA-IR (B = 0.01 [95% CI, 0.001-0.01]; P = .02) and midlife GrimAge (B = 0.02 [95% CI, 0.003-0.04] years; P = .01). Conclusions and Relevance In this longitudinal cohort study of midlife health and aging, childhood social hallmarks of aging were associated with midlife insulin resistance and epigenetic age (GrimAge and DunedinPACE). Future studies should identify malleable factors that may slow the impact of social hallmarks of aging.
Collapse
Affiliation(s)
- Ryan L. Brown
- Center for Health and Community, University of California, San Francisco
| | - Katie E. Alegria
- Center for Health and Community, University of California, San Francisco
| | - Elissa Hamlat
- Center for Health and Community, University of California, San Francisco
| | | | - Barbara Laraia
- School of Public Health, University of California, Berkeley
| | - Eileen M. Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles
| | - Terrie E. Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - Elissa S. Epel
- Center for Health and Community, University of California, San Francisco
| |
Collapse
|
13
|
Martínez-Magaña JJ, Hurtado-Soriano J, Rivero-Segura NA, Montalvo-Ortiz JL, Garcia-delaTorre P, Becerril-Rojas K, Gomez-Verjan JC. Towards a Novel Frontier in the Use of Epigenetic Clocks in Epidemiology. Arch Med Res 2024; 55:103033. [PMID: 38955096 DOI: 10.1016/j.arcmed.2024.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Health problems associated with aging are a major public health concern for the future. Aging is a complex process with wide intervariability among individuals. Therefore, there is a need for innovative public health strategies that target factors associated with aging and the development of tools to assess the effectiveness of these strategies accurately. Novel approaches to measure biological age, such as epigenetic clocks, have become relevant. These clocks use non-sequential variable information from the genome and employ mathematical algorithms to estimate biological age based on DNA methylation levels. Therefore, in the present study, we comprehensively review the current status of the epigenetic clocks and their associations across the human phenome. We emphasize the potential utility of these tools in an epidemiological context, particularly in evaluating the impact of public health interventions focused on promoting healthy aging. Our review describes associations between epigenetic clocks and multiple traits across the life and health span. Additionally, we highlighted the evolution of studies beyond mere associations to establish causal mechanisms between epigenetic age and disease. We explored the application of epigenetic clocks to measure the efficacy of interventions focusing on rejuvenation.
Collapse
Affiliation(s)
- José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Post-Traumatic Stress Disorder, Clinical Neuroscience Division, West Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | | | | | - Janitza L Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Post-Traumatic Stress Disorder, Clinical Neuroscience Division, West Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Paola Garcia-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional, Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | |
Collapse
|
14
|
Markon KE, Mann F, Freilich C, Cole S, Krueger RF. Associations between epigenetic age acceleration and longitudinal measures of psychosocioeconomic stress and status. Soc Sci Med 2024; 352:116990. [PMID: 38824837 PMCID: PMC11239272 DOI: 10.1016/j.socscimed.2024.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/10/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024]
Abstract
Relationships between epigenetic aging markers and psychosocial variables such as socioeconomic status and stress have been well-documented, but are often examined cross-sectionally or retrospectively, and have tended to focus on objective markers of SES or major life events. Here, we examined associations between psychosocial variables, including measures of socioeconomic status and social stress, and epigenetic aging markers in adulthood, using longitudinal data spanning three decades from the Midlife in the United States (MIDUS) study. The largest effects were observed for epigenetic markers of change in health, such as DunedinPACE and GrimAge, and for associations involving education, income, net assets, general social stress, inequality-related stress, and financial stress. Analyses of polygenic indices suggests that at least in the case of education, the link to epigenetic aging cannot be accounted for by common genetic variants.
Collapse
|
15
|
Krieger N, Testa C, Chen JT, Johnson N, Watkins SH, Suderman M, Simpkin AJ, Tilling K, Waterman PD, Coull BA, De Vivo I, Smith GD, Diez Roux AV, Relton C. Epigenetic Aging and Racialized, Economic, and Environmental Injustice: NIMHD Social Epigenomics Program. JAMA Netw Open 2024; 7:e2421832. [PMID: 39073820 PMCID: PMC11287398 DOI: 10.1001/jamanetworkopen.2024.21832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/10/2024] [Indexed: 07/30/2024] Open
Abstract
Importance Epigenetic age acceleration is associated with exposure to social and economic adversity and may increase the risk of premature morbidity and mortality. However, no studies have included measures of structural racism, and few have compared estimates within or across the first and second generation of epigenetic clocks. Objective To determine whether epigenetic age acceleration is positively associated with exposures to diverse measures of racialized, economic, and environmental injustice measured at different levels and time periods. Design, Setting, and Participants This cross-sectional study used data from the My Body My Story (MBMS) study between August 8, 2008, and December 31, 2010, and examination 5 of the Multi-Ethnic Atherosclerosis Study (MESA) from April 1, 2010, to February 29, 2012. In the MBMS, DNA extraction was performed in 2021; linkage of structural measures to the MBMS and MESA, in 2022. US-born individuals were randomly selected from 4 community health centers in Boston, Massachusetts (MBMS), and 4 field sites in Baltimore, Maryland; Forsyth County, North Carolina; New York City, New York; and St Paul, Minnesota (MESA). Data were analyzed from November 13, 2021, to August 31, 2023. Main Outcomes and Measures Ten epigenetic clocks (6 first-generation and 4 second-generation), computed using DNA methylation data (DNAm) from blood spots (MBMS) and purified monocytes (MESA). Results The US-born study population included 293 MBMS participants (109 men [37.2%], 184 women [62.8%]; mean [SD] age, 49.0 [8.0] years) with 224 Black non-Hispanic and 69 White non-Hispanic participants and 975 MESA participants (492 men [50.5%], 483 women [49.5%]; mean [SD] age, 70.0 [9.3] years) with 229 Black non-Hispanic, 191 Hispanic, and 555 White non-Hispanic participants. Of these, 140 (11.0%) exhibited accelerated aging for all 5 clocks whose estimates are interpretable on the age (years) scale. Among Black non-Hispanic MBMS participants, epigenetic age acceleration was associated with being born in a Jim Crow state by 0.14 (95% CI, 0.003-0.27) SDs and with birth state conservatism by 0.06 (95% CI, 0.01-0.12) SDs, pooling across all clocks. Low parental educational level was associated with epigenetic age acceleration, pooling across all clocks, for both Black non-Hispanic (0.24 [95% CI, 0.08-0.39] SDs) and White non-Hispanic (0.27 [95% CI, 0.03-0.51] SDs) MBMS participants. Adult impoverishment was positively associated with the pooled second-generation clocks among the MESA participants (Black non-Hispanic, 0.06 [95% CI, 0.01-0.12] SDs; Hispanic, 0.07 [95% CI, 0.01-0.14] SDs; White non-Hispanic, 0.05 [95% CI, 0.01-0.08] SDs). Conclusions and Relevance The findings of this cross-sectional study of MBMS and MESA participants suggest that epigenetic age acceleration was associated with racialized and economic injustice, potentially contributing to well-documented inequities in premature mortality. Future research should test the hypothesis that epigenetic accelerated aging may be one of the biological mechanisms underlying the well-documented elevated risk of premature morbidity and mortality among social groups subjected to racialized and economic injustice.
Collapse
Affiliation(s)
- Nancy Krieger
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Christian Testa
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Jarvis T. Chen
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Nykesha Johnson
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Sarah Holmes Watkins
- MRC (Medical Research Council) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Matthew Suderman
- MRC (Medical Research Council) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Andrew J. Simpkin
- School of Mathematical and Statistical Sciences, National University of Ireland, Galway
| | - Kate Tilling
- MRC (Medical Research Council) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Pamela D. Waterman
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Brent A. Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - George Davey Smith
- MRC (Medical Research Council) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Ana V. Diez Roux
- Urban Health Collective and Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - Caroline Relton
- MRC (Medical Research Council) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| |
Collapse
|
16
|
Harris KM, Levitt B, Gaydosh L, Martin C, Meyer JM, Mishra AA, Kelly AL, Aiello AE. Sociodemographic and Lifestyle Factors and Epigenetic Aging in US Young Adults: NIMHD Social Epigenomics Program. JAMA Netw Open 2024; 7:e2427889. [PMID: 39073811 PMCID: PMC11287395 DOI: 10.1001/jamanetworkopen.2024.27889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Importance Epigenetic clocks represent molecular evidence of disease risk and aging processes and have been used to identify how social and lifestyle characteristics are associated with accelerated biological aging. However, most research is based on samples of older adults who already have measurable chronic disease. Objective To investigate whether and how sociodemographic and lifestyle characteristics are associated with biological aging in a younger adult sample across a wide array of epigenetic clock measures. Design, Setting, and Participants This cohort study was conducted using data from the National Longitudinal Study of Adolescent to Adult Health, a US representative cohort of adolescents in grades 7 to 12 in 1994 followed up for 25 years to 2018 over 5 interview waves. Participants who provided blood samples at wave V (2016-2018) were analyzed, with samples tested for DNA methylation (DNAm) in 2021 to 2024. Data were analyzed from February 2023 to May 2024. Exposure Sociodemographic (sex, race and ethnicity, immigrant status, socioeconomic status, and geographic location) and lifestyle (obesity status by body mass index [BMI] in categories of reference range or underweight [<25], overweight [25 to <30], obesity [30 to <40], and severe obesity [≥40]; exercise level; tobacco use; and alcohol use) characteristics were assessed. Main Outcome and Measure Biological aging assessed from banked blood DNAm using 16 epigenetic clocks. Results Data were analyzed from 4237 participants (mean [SD] age, 38.4 [2.0] years; percentage [SE], 51.3% [0.01] female and 48.7% [0.01] male; percentage [SE], 2.7% [<0.01] Asian or Pacific Islander, 16.7% [0.02] Black, 8.7% [0.01] Hispanic, and 71.0% [0.03] White). Sociodemographic and lifestyle factors were more often associated with biological aging in clocks trained to estimate morbidity and mortality (eg, PhenoAge, GrimAge, and DunedinPACE) than clocks trained to estimate chronological age (eg, Horvath). For example, the β for an annual income less than $25 000 vs $100 000 or more was 1.99 years (95% CI, 0.45 to 3.52 years) for PhenoAgeAA, 1.70 years (95% CI, 0.68 to 2.72 years) for GrimAgeAA, 0.33 SD (95% CI, 0.17 to 0.48 SD) for DunedinPACE, and -0.17 years (95% CI, -1.08 to 0.74 years) for Horvath1AA. Lower education, lower income, higher obesity levels, no exercise, and tobacco use were associated with faster biological aging across several clocks; associations with GrimAge were particularly robust (no college vs college or higher: β = 2.63 years; 95% CI, 1.67-3.58 years; lower vs higher annual income: <$25 000 vs ≥$100 000: β = 1.70 years; 95% CI, 0.68-2.72 years; severe obesity vs no obesity: β = 1.57 years; 95% CI, 0.51-2.63 years; no weekly exercise vs ≥5 bouts/week: β = 1.33 years; 95% CI, 0.67-1.99 years; current vs no smoking: β = 7.16 years; 95% CI, 6.25-8.07 years). Conclusions and Relevance This study found that important social and lifestyle factors were associated with biological aging in a nationally representative cohort of younger adults. These findings suggest that molecular processes underlying disease risk may be identified in adults entering midlife before disease is manifest and inform interventions aimed at reducing social inequalities in heathy aging and longevity.
Collapse
Affiliation(s)
- Kathleen Mullan Harris
- Department of Sociology, University of North Carolina at Chapel Hill
- Carolina Population Center, University of North Carolina at Chapel Hill
| | - Brandt Levitt
- Carolina Population Center, University of North Carolina at Chapel Hill
| | - Lauren Gaydosh
- Department of Sociology, University of Texas at Austin
- Population Research Center, University of Texas at Austin
| | - Chantel Martin
- Carolina Population Center, University of North Carolina at Chapel Hill
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| | - Jess M Meyer
- Department of Population Health, University of Kansas Medical Center, Kansas City
| | | | - Audrey L Kelly
- Population Research Center, University of Texas at Austin
| | - Allison E Aiello
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
- Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
17
|
Mesa R, Llabre M, Lee D, Rundek T, Kezios K, Hazzouri AZA, Elfassy T. Social Determinants of Health and Biological Age among Diverse U.S. Adults, NHANES 2011-2018. RESEARCH SQUARE 2024:rs.3.rs-4540892. [PMID: 38978574 PMCID: PMC11230476 DOI: 10.21203/rs.3.rs-4540892/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We examined the sex-specific association between education and income with biological age (BA) and by race/ethnicity. The Klemera-Doubal method was used to calculate BA among 6,213 females and 5,938 males aged 30-75 years who were Hispanic, non-Hispanic (NH) White, NH Black (NHB), or NH Asian (NHA). Compared with a college education, less than a high school education was associated with greater BA by 3.06 years (95% CI: 1.58, 4.54) among females only; associations were strongest among NHB, Hispanic, and NHA females. Compared with an annual income of ≥$75,000, an income <$25,000 was associated with greater BA by 4.95 years (95% CI: 3.42, 6.48) among males and 2.76 years among females (95% CI: 1.51, 4.01); associations were strongest among NHW and NHA adults, and Hispanic males. Targeting upstream sources of structural disadvantage among racial/ethnic minority groups, in conjunction with improvements in income and education, may promote healthy aging in these populations.
Collapse
Affiliation(s)
- Robert Mesa
- University of Miami Miller School of Medicine
| | | | - David Lee
- University of Miami Miller School of Medicine
| | | | | | | | | |
Collapse
|
18
|
Tamargo JA, Cruz-Almeida Y. Food insecurity and epigenetic aging in middle-aged and older adults. Soc Sci Med 2024; 350:116949. [PMID: 38723585 DOI: 10.1016/j.socscimed.2024.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Food insecurity is recognized as a key social determinant of health for older adults. While food insecurity has been associated with morbidity and mortality, few studies have examined how it may contribute to accelerated biological aging. A potential mechanism by which food insecurity may contribute to aging is via epigenetic alterations. We examined the relationship between food insecurity and epigenetic aging, a novel measure of biological aging, in a nationally representative sample of middle-aged and older adults in the United States. METHODS Cross-sectional analysis of adults 50 years of age and older from the 2016 Health and Retirement Study (HRS). Financial food insecurity was self-reported via two questions that ascertained having enough money for food or eating less than they felt they should. Epigenetic aging was measured via epigenetic clocks based on DNA methylation patterns that predict aging correlates of morbidity and mortality. Linear regressions were performed to test for differences in the epigenetic clocks, adjusting for biological, socioeconomic, and behavioral factors. RESULTS The analysis consisted of 3875 adults with mean age of 68.5 years. A total of 8.1% reported food insecurity. Food insecurity was associated with several characteristics, including younger age, race/ethnic minority, lower income, total wealth, and educational attainment, higher BMI, and less physical activity. Food insecurity was associated with accelerated epigenetic aging compared to food security, as measured via second (Zhang, PhenoAge, GrimAge) and third (DunedinPoAm) generation epigenetic clocks. In particular, food insecurity remained significantly associated with accelerated Zhang (B = 0.09, SE = 0.03, p = 0.011) and GrimAge (B = 0.57, SE = 0.24, p = 0.022) in the fully adjusted models. CONCLUSIONS Food insecurity is associated with accelerated epigenetic aging among middle-aged and older adults in the United States. Food insecurity may contribute to DNA methylation alterations across the genome and biological age acceleration. These findings add to a growing understanding of the influence of socioeconomic status on the epigenome and health in aging.
Collapse
Affiliation(s)
- Javier A Tamargo
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA; Institute on Aging, University of Florida, Gainesville, FL, USA; Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA.
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA; Institute on Aging, University of Florida, Gainesville, FL, USA; Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Kusters CDJ, Klopack ET, Crimmins EM, Seeman TE, Cole S, Carroll JE. Short Sleep and Insomnia Are Associated With Accelerated Epigenetic Age. Psychosom Med 2024; 86:453-462. [PMID: 37594243 PMCID: PMC10879461 DOI: 10.1097/psy.0000000000001243] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Short sleep and insomnia are each associated with a greater risk of age-related disease, which suggests that insufficient sleep may accelerate biological aging. We examine whether short sleep and insomnia alone or together relates to epigenetic age among older adults. METHODS A total of 3795 men (46.3%) and women aged 56 to 100 years from the Health and Retirement Study were included. Insomnia was defined as reporting at least one insomnia symptom (difficulty falling asleep, waking up at night, or waking up too early in the morning) and feeling unrested when waking up most of the time. Those reporting <6 hours of bedtime were categorized as short sleepers. Three second- or third-generation epigenetic age acceleration clocks were derived from the 2016 Health and Retirement Study Venous Blood Study. The linear regression analysis was adjusted for age, sex, race/ethnicity, education, and obesity status. RESULTS Insomnia and short sleep were associated with acceleration of GrimAge of 0.49 (95% confidence interval [CI] = 0.03-0.94 years; p = .04) and 1.29 (95% CI = 0.52-2.07 years; p = .002) years, respectively, as well as a faster pace of aging (DunedinPACE; 0.018 [95% CI = 0.004-0.033; p = .02] and 0.022 [95% CI = -0.004 to 0.048; p = .11]). Compared with healthy sleepers, individuals with the combination of short sleep and insomnia had an accelerated GrimAge (0.97 years; 95% CI = 0.07-1.87 years, p = .04) and a greater DunedinPACE (0.032; 95% CI = 0.003-0.060, p = .04). CONCLUSIONS Our findings indicate that short sleep, insomnia, and the combination of the two are linked to epigenetic age acceleration, suggesting that these individuals have an older biological age that may contribute to risk of comorbidity and mortality.
Collapse
Affiliation(s)
- Cynthia D J Kusters
- From the Department of Epidemiology (Kusters, Seeman), Fielding School of Public Health, UCLA; Davis School of Gerontology (Klopack, Crimmins), and Leonard Davis School of Gerontology, USC; Department of Geriatrics (Seeman), and Cousins Center for Psychoneuroimmunology (Cole, Carroll), Jane & Terry Semel Institute for Neuroscience & Human Behavior, Department of Psychiatry, David Geffen School of Medicine, UCLA, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
20
|
Furuya S, Fletcher JM. Retirement Makes You Old? Causal Effect of Retirement on Biological Age. Demography 2024; 61:901-931. [PMID: 38779956 DOI: 10.1215/00703370-11380637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Retirement is a critical life event for older people. Health scholars have scrutinized the health effects of retirement, but its consequences on age-related diseases and mortality are unclear. We extend this body of research by integrating measurements of biological age, representing the physiological decline preceding disease onset. Using data from the UK Biobank and a fuzzy regression discontinuity design, we estimated the effects of retirement on two biomarker-based biological age measures. Results showed that retirement significantly increases biological age for those induced to retire by the State Pension eligibility by 0.871-2.503 years, depending on sex and specific biological age measurement. Given the emerging scientific discussion about direct interventions to biological age to achieve additional improvements in population health, the positive effect of retirement on biological age has important implications for an increase in the State Pension eligibility age and its potential consequences on population health, public health care policy, and older people's labor force participation. Overall, this study provides novel empirical evidence contributing to the question of what social factors make people old.
Collapse
Affiliation(s)
- Shiro Furuya
- Department of Sociology, Center for Demography and Ecology, and Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason M Fletcher
- Center for Demography and Ecology, La Follette School of Public Affairs, Department of Population Health Science, and Department of Agricultural and Applied Economics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
21
|
Cánepa ET, Berardino BG. Epigenetic mechanisms linking early-life adversities and mental health. Biochem J 2024; 481:615-642. [PMID: 38722301 DOI: 10.1042/bcj20230306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/15/2024]
Abstract
Early-life adversities, whether prenatal or postnatal exposure, have been linked to adverse mental health outcomes later in life increasing the risk of several psychiatric disorders. Research on its neurobiological consequences demonstrated an association between exposure to adversities and persistent alterations in the structure, function, and connectivity of the brain. Consistent evidence supports the idea that regulation of gene expression through epigenetic mechanisms are involved in embedding the impact of early-life experiences in the genome and mediate between social environments and later behavioral phenotypes. In addition, studies from rodent models and humans suggest that these experiences and the acquired risk factors can be transmitted through epigenetic mechanisms to offspring and the following generations potentially contributing to a cycle of disease or disease risk. However, one of the important aspects of epigenetic mechanisms, unlike genetic sequences that are fixed and unchangeable, is that although the epigenetic markings are long-lasting, they are nevertheless potentially reversible. In this review, we summarize our current understanding of the epigenetic mechanisms involved in the mental health consequences derived from early-life exposure to malnutrition, maltreatment and poverty, adversities with huge and pervasive impact on mental health. We also discuss the evidence about transgenerational epigenetic inheritance in mammals and experimental data suggesting that suitable social and pharmacological interventions could reverse adverse epigenetic modifications induced by early-life negative social experiences. In this regard, these studies must be accompanied by efforts to determine the causes that promote these adversities and that result in health inequity in the population.
Collapse
Affiliation(s)
- Eduardo T Cánepa
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Bruno G Berardino
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| |
Collapse
|
22
|
Qiao X, Straight B, Ngo D, Hilton CE, Owuor Olungah C, Naugle A, Lalancette C, Needham BL. Severe drought exposure in utero associates to children's epigenetic age acceleration in a global climate change hot spot. Nat Commun 2024; 15:4140. [PMID: 38755138 PMCID: PMC11099019 DOI: 10.1038/s41467-024-48426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
The goal of this study is to examine the association between in utero drought exposure and epigenetic age acceleration (EAA) in a global climate change hot spot. Calculations of EAA in adults using DNA methylation have been found to accurately predict chronic disease and longevity. However, fewer studies have examined EAA in children, and drought exposure in utero has not been investigated. Additionally, studies of EAA in low-income countries with diverse populations are rare. We assess EAA using epigenetic clocks and two DNAm-based pace-of-aging measurements from whole saliva samples in 104 drought-exposed children and 109 same-sex sibling controls in northern Kenya. We find a positive association between in utero drought exposure and EAA in two epigenetic clocks (Hannum's and GrimAge) and a negative association in the DNAm based telomere length (DNAmTL) clock. The combined impact of drought's multiple deleterious stressors may reduce overall life expectancy through accelerated epigenetic aging.
Collapse
Affiliation(s)
- Xi Qiao
- Department of Statistics, Western Michigan University, Kalamazoo, MI, USA
| | - Bilinda Straight
- School of Environment, Geography, & Sustainability, Western Michigan University, Kalamazoo, MI, USA.
| | - Duy Ngo
- Department of Statistics, Western Michigan University, Kalamazoo, MI, USA
| | - Charles E Hilton
- Department of Anthropology, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Charles Owuor Olungah
- Department of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya
| | - Amy Naugle
- Department of Psychology, Western Michigan University, Kalamazoo, MI, USA
| | | | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Whitman ET, Ryan CP, Abraham WC, Addae A, Corcoran DL, Elliott ML, Hogan S, Ireland D, Keenan R, Knodt AR, Melzer TR, Poulton R, Ramrakha S, Sugden K, Williams BS, Zhou J, Hariri AR, Belsky DW, Moffitt TE, Caspi A. A blood biomarker of the pace of aging is associated with brain structure: replication across three cohorts. Neurobiol Aging 2024; 136:23-33. [PMID: 38301452 PMCID: PMC11017787 DOI: 10.1016/j.neurobiolaging.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
Biological aging is the correlated decline of multi-organ system integrity central to the etiology of many age-related diseases. A novel epigenetic measure of biological aging, DunedinPACE, is associated with cognitive dysfunction, incident dementia, and mortality. Here, we tested for associations between DunedinPACE and structural MRI phenotypes in three datasets spanning midlife to advanced age: the Dunedin Study (age=45 years), the Framingham Heart Study Offspring Cohort (mean age=63 years), and the Alzheimer's Disease Neuroimaging Initiative (mean age=75 years). We also tested four additional epigenetic measures of aging: the Horvath clock, the Hannum clock, PhenoAge, and GrimAge. Across all datasets (total N observations=3380; total N individuals=2322), faster DunedinPACE was associated with lower total brain volume, lower hippocampal volume, greater burden of white matter microlesions, and thinner cortex. Across all measures, DunedinPACE and GrimAge had the strongest and most consistent associations with brain phenotypes. Our findings suggest that single timepoint measures of multi-organ decline such as DunedinPACE could be useful for gauging nervous system health.
Collapse
Affiliation(s)
- Ethan T Whitman
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
| | - Calen P Ryan
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, USA
| | | | - Angela Addae
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - David L Corcoran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maxwell L Elliott
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Sean Hogan
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - David Ireland
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Ross Keenan
- Brain Research New Zealand-Rangahau Roro Aotearoa, Centre of Research Excellence, Universities of Auckland and Otago, New Zealand; Christchurch Radiology Group, Christchurch, New Zealand
| | - Annchen R Knodt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Tracy R Melzer
- Brain Research New Zealand-Rangahau Roro Aotearoa, Centre of Research Excellence, Universities of Auckland and Otago, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Sandhya Ramrakha
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | | | - Jiayi Zhou
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, USA
| | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Daniel W Belsky
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, USA; Department of Epidemiology, Columbia University Mailman School of Public Health, New York, USA
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC, USA; King's College London, Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, & Neuroscience, London, UK; PROMENTA, Department of Psychology, University of Oslo, Norway; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC, USA; King's College London, Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, & Neuroscience, London, UK; PROMENTA, Department of Psychology, University of Oslo, Norway; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
24
|
Suglia SF, Clausing ES, Shelton RC, Conneely K, Prada-Ortega D, DeVivo I, Factor-Litvak P, Cirillo P, Baccarelli AA, Cohn B, Link BG. Cumulative Stress Across the Life Course and Biological Aging in Adulthood. Psychosom Med 2024; 86:137-145. [PMID: 38345302 PMCID: PMC11001534 DOI: 10.1097/psy.0000000000001284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
OBJECTIVE Psychosocial stressors have been linked with accelerated biological aging in adults; however, few studies have examined stressors across the life course in relation to biological aging. METHODS In 359 individuals (57% White, 34% Black) from the Child Health and Development Studies Disparities study, economic (income, education, financial strain), social (parent-child relations, caretaker responsibilities) and traumatic (death of a sibling or child, violence exposure) stressors were assessed at multiple time points (birth and ages 9, 15, and 50 years). Experiences of major discrimination were assessed at age 50. Life period stress scores were then assessed as childhood (birth-age 15 years) and adulthood (age 50 years). At age 50 years, participants provided blood samples, and DNA methylation was assessed with the EPIC BeadChip. Epigenetic age was estimated using six epigenetic clocks (Horvath, Hannum, Skin and Blood age, PhenoAge, GrimAge, Dunedin Pace of Aging). Age acceleration was determined using residuals from regressing chronologic age on each of the epigenetic age metrics. Telomere length was assessed using the quantitative polymerase chain reaction-based methods. RESULTS In linear regression models adjusted for race and gender, total life stress, and childhood and adult stress independently predicted accelerated aging based on GrimAge and faster pace of aging based on the DunedinPace. Associations were attenuated after adjusting for smoking status. In sex-stratified analyses, greater childhood stress was associated with accelerated epigenetic aging among women but not men. No associations were noted with telomere length. CONCLUSIONS We found that cumulative stressors across the life course were associated with accelerated epigenetic age, with differences by sex (e.g., accelerated among women). Further research of this association in large and diverse samples is needed.
Collapse
Affiliation(s)
- Shakira F Suglia
- From the Department of Epidemiology (Suglia), Rollins School of Public Health, Emory University, Atlanta, Georgia; School of Global Integrative Studies (Clausing) and Center for Brain, Biology, and Behavior (Clausing), University of Nebraska-Lincoln, Lincoln, Nebraska; Department of Sociomedical Sciences (Shelton), Mailman School of Public Health, New York, New York; Department of Human Genetics (Conneely, Baccarelli), School of Medicine, Emory University, Atlanta, Georgia; Department of Environmental Health (Prada-Ortega), Mailman School of Public Health, New York, New York; Department of Epidemiology (DeVivo), Harvard T. H. Chan School of Public Health; Channing Division of Network Medicine (DeVivo), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Epidemiology (Factor-Litvak), Mailman School of Public Health, New York, New York; Child Health and Development Studies (Cirillo, Cohn), Public Health Institute, Berkeley; and Department of Sociology (Link), University of California Riverside, Riverside, California
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Martz CD, Benner AD, Goosby BJ, Mitchell C, Gaydosh L. Structural racism in primary schools and changes in epigenetic age acceleration among Black and White youth. Soc Sci Med 2024; 347:116724. [PMID: 38458127 PMCID: PMC11134904 DOI: 10.1016/j.socscimed.2024.116724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/14/2023] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
Structural racism generates racial inequities in U.S. primary education, including segregated schools, inequitable funding and resources, racial disparities in discipline and achievement, and hostile racial climates, which are risk factors for adverse youth health and development. Black youth are disproportionately exposed to adverse school contexts that may become biologically embedded via stress-mediated epigenetic pathways. This study examined whether childhood exposure to adverse school contexts is associated with changes in epigenetic aging during adolescent development. DNA methylation-based epigenetic clocks were calculated from saliva samples at ages 9 and 15 among Black (n = 774) and White (n = 287) youth in the Future of Families and Child Wellbeing Study (2009-2015). We performed latent class analyses to identify race-specific primary school contexts using administrative data on segregation, discipline, achievement, resources, economic disadvantage, and racial harassment. We then estimated change in epigenetic age acceleration from childhood to adolescence across school typologies using GrimAge, PhenoAge, and DunedinPACE epigenetic clocks. Three distinct school contexts were identified for Black youth: segregated and highly-disadvantaged (17.0%), segregated and moderately-disadvantaged (52.1%), and integrated and moderately-disadvantaged (30.8%). Two school contexts emerged for White youth: integrated and unequal (46.5%) and predominantly White & advantaged (53.5%). At age 15, Black youth who attended segregated and highly-disadvantaged primary schools experienced increases in their speed of epigenetic aging with GrimAge and DunedinPACE. Slowed epigenetic aging with GrimAge was observed for Black youth who attended integrated and moderately-disadvantaged schools. School contexts were not associated with changes in epigenetic age acceleration for White youth. Our findings suggest that manifestations of structural racism in primary school contexts are associated with early-life epigenetic age acceleration and may forecast future health inequities.
Collapse
Affiliation(s)
- Connor D Martz
- Population Research Center, The University of Texas at Austin, United States.
| | - Aprile D Benner
- Population Research Center, The University of Texas at Austin, United States; Department of Human Development and Family Sciences, The University of Texas at Austin, United States
| | - Bridget J Goosby
- Population Research Center, The University of Texas at Austin, United States; Department of Sociology, The University of Texas at Austin, United States
| | - Colter Mitchell
- Institute for Social Research, University of Michigan, United States
| | - Lauren Gaydosh
- Population Research Center, The University of Texas at Austin, United States; Department of Sociology, The University of Texas at Austin, United States
| |
Collapse
|
26
|
Harris KM, Levitt B, Gaydosh L, Martin C, Meyer JM, Mishra AA, Kelly AL, Aiello AE. The Sociodemographic and Lifestyle Correlates of Epigenetic Aging in a Nationally Representative U.S. Study of Younger Adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.585983. [PMID: 38585956 PMCID: PMC10996523 DOI: 10.1101/2024.03.21.585983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Importance Epigenetic clocks represent molecular evidence of disease risk and aging processes and have been used to identify how social and lifestyle characteristics are associated with accelerated biological aging. However, most of this research is based on older adult samples who already have measurable chronic disease. Objective To investigate whether and how sociodemographic and lifestyle characteristics are related to biological aging in a younger adult sample across a wide array of epigenetic clock measures. Design Nationally representative prospective cohort study. Setting United States (U.S.). Participants Data come from the National Longitudinal Study of Adolescent to Adult Health, a national cohort of adolescents in grades 7-12 in U.S. in 1994 followed for 25 years over five interview waves. Our analytic sample includes participants followed-up through Wave V in 2016-18 who provided blood samples for DNA methylation (DNAm) testing (n=4237) at Wave V. Exposure Sociodemographic (sex, race/ethnicity, immigrant status, socioeconomic status, geographic location) and lifestyle (obesity status, exercise, tobacco, and alcohol use) characteristics. Main Outcome Biological aging assessed from blood DNAm using 16 epigenetic clocks when the cohort was aged 33-44 in Wave V. Results While there is considerable variation in the mean and distribution of epigenetic clock estimates and in the correlations among the clocks, we found sociodemographic and lifestyle factors are more often associated with biological aging in clocks trained to predict current or dynamic phenotypes (e.g., PhenoAge, GrimAge and DunedinPACE) as opposed to clocks trained to predict chronological age alone (e.g., Horvath). Consistent and strong associations of faster biological aging were found for those with lower levels of education and income, and those with severe obesity, no weekly exercise, and tobacco use. Conclusions and Relevance Our study found important social and lifestyle factors associated with biological aging in a nationally representative cohort of younger-aged adults. These findings indicate that molecular processes underlying disease risk can be identified in adults entering midlife before disease is manifest and represent useful targets for interventions to reduce social inequalities in heathy aging and longevity. Key Points Question: Are epigenetic clocks, measures of biological aging developed mainly on older-adult samples, meaningful for younger adults and associated with sociodemographic and lifestyle characteristics in expected patterns found in prior aging research?Findings: Sociodemographic and lifestyle factors were associated with biological aging in clocks trained to predict morbidity and mortality showing accelerated aging among those with lower levels of education and income, and those with severe obesity, no weekly exercise, and tobacco use.Meaning: Age-related molecular processes can be identified in younger-aged adults before disease manifests and represent potential interventions to reduce social inequalities in heathy aging and longevity.
Collapse
|
27
|
Mutambudzi M, Brown MT, Chen NW. Association of Epigenetic Age and Everyday Discrimination With Longitudinal Trajectories of Chronic Health Conditions in Older Adults. J Gerontol A Biol Sci Med Sci 2024; 79:glae005. [PMID: 38190429 PMCID: PMC10878241 DOI: 10.1093/gerona/glae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 01/10/2024] Open
Abstract
We investigated the strength of the association between baseline epigenetic age, everyday discrimination, and trajectories of chronic health conditions (CHCs) across 3 study waves, among adults 50 years of age and older. We used 2016-2020 data from the Health and Retirement Study (HRS). Data for the PhenoAge and DNAm GrimAge second-generation epigenetic clocks were from the 2016 HRS Venous Blood Study. CHC trajectories were constructed using latent class growth curve models. Multinomial logistic regression models assessed the strength of the association between accelerated epigenetic age, everyday discrimination, and the newly constructed CHC trajectories for participants with complete data (n = 2 893). In the fully adjusted model, accelerated PhenoAge (relative risk ratios [RRR] = 2.53, 95% confidence interval [95% CI] = 1.81, 3.55) and DNAm GrimAge (RRR = 2.79, 95% CI = 1.95, 4.00) were associated with classification into the high CHC trajectory class. Racial disparities were evident, with increased risk of classification into the high trajectory class for Black (PhenoAge: RRR = 1.69, 95% CI = 1.07, 2.68) and reduced risk for Hispanic (PhenoAge: RRR = 0.32, 95% CI = 0.16, 0.64; DNAm GrimAge: RRR = 0.34, 95% CI = 0.17, 0.68), relative to White participants. Everyday discrimination was associated with classification into the medium-high (RRR = 1.28, 95% CI = 1.00, 1.64) and high (RRR = 1.52, 95% CI = 1.07, 2.16) trajectory classes in models assessing DNAm GrimAge. More research is needed to better understand the longitudinal health outcomes of accelerated aging and adverse social exposures. Such research may provide insights into vulnerable adults who may need varied welfare supports earlier than the mandated chronological age for access to federal and state resources.
Collapse
Affiliation(s)
- Miriam Mutambudzi
- Department of Public Health, Falk College of Sports and Human Dynamic, Syracuse University, Syracuse, New York, USA
| | - Maria T Brown
- School of Social Work and Aging Studies Institute, Syracuse University, Syracuse, New York, USA
| | - Nai-Wei Chen
- Department of Biomedical Informatics, Biostatistics and Medical Epidemiology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
28
|
Laubach ZM, Bozack A, Aris IM, Slopen N, Tiemeier H, Hivert MF, Cardenas A, Perng W. Maternal prenatal social experiences and offspring epigenetic age acceleration from birth to mid-childhood. Ann Epidemiol 2024; 90:28-34. [PMID: 37839726 PMCID: PMC10842218 DOI: 10.1016/j.annepidem.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE Investigate associations of maternal social experiences with offspring epigenetic age acceleration (EAA) from birth through mid-childhood among 205 mother-offspring dyads of minoritized racial and ethnic groups. METHODS We used linear regression to examine associations of maternal experiences of racial bias or discrimination (0 = none, 1-2 = intermediate, or 3+ = high), social support (tertile 1 = low, 2 = intermediate, 3 = high), and socioeconomic status index (tertile 1 = low, 2 = intermediate, 3 = high) during the prenatal period with offspring EAA according to Horvath's Pan-Tissue, Horvath's Skin and Blood, and Intrinsic EAA clocks at birth, 3 years, and 7 years. RESULTS In comparison to children of women who did not experience any racial bias or discrimination, those whose mothers reported highest levels of racial bias or discrimination had lower Pan-Tissue clock EAA in early (-0.50 years; 90% CI: -0.91, -0.09) and mid-childhood (-0.75 years; -1.41, -0.08). We observed similar associations for the Skin and Blood clock and Intrinsic EAA. Maternal experiences of discrimination were not associated with Pan-Tissue EAA at birth. Neither maternal social support nor socioeconomic status predicted offspring EAA. CONCLUSIONS Children whose mothers experienced higher racial bias or discrimination exhibited slower EAA. Future studies are warranted to confirm these findings and establish associations of early-life EAA with long-term health outcomes.
Collapse
Affiliation(s)
- Zachary M Laubach
- Department of Ecology and Evolutionary Biology (EBIO), University of Colorado Boulder
| | - Anne Bozack
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA
| | - Izzuddin M Aris
- Division of Chronic Disease Research Across the Lifecourse (CORAL), Department of Population Medicine, Harvard Medical School, Boston, MA
| | - Natalie Slopen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CORAL), Department of Population Medicine, Harvard Medical School, Boston, MA; Diabetes Unit, Massachusetts General Hospital, Boston, MA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD Center), Department of Epidemiology, Colorado School of Public Health, Aurora, CO.
| |
Collapse
|
29
|
Zhang A, Zhang Y, Meng Y, Ji Q, Ye M, Zhou L, Liu M, Yi C, Karlsson IK, Fang F, Hägg S, Zhan Y. Associations between psychological resilience and epigenetic clocks in the health and retirement study. GeroScience 2024; 46:961-968. [PMID: 37707649 PMCID: PMC10828333 DOI: 10.1007/s11357-023-00940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
The aim of this study was to evaluate the associations between psychological resilience and epigenetic clocks assessed by DNA methylation age predictions. We used data from 4018 participants in the Health and Retirement Study. Multivariable linear regression models were used to estimate the association between psychological resilience and epigenetic clocks adjusted for age, sex, race, body mass index, smoking status, and years of education. Thirteen epigenetic clocks were used in our analysis and were highly correlated with one another. A higher psychological resilience score was associated with slower DNA methylation age acceleration for the majority of epigenetic clocks after multivariable adjustment. These findings imply that people with a higher level of psychological resilience may experience slower DNA methylation age acceleration and biological aging.
Collapse
Affiliation(s)
- Aijie Zhang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yasi Zhang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yaxian Meng
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qianqian Ji
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Meijie Ye
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Liqiong Zhou
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China.
| | - Miao Liu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Chao Yi
- Department of Chronic Disease Control, Guangming Center for Disease Control and Prevention, Shenzhen, China
| | - Ida K Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China.
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
30
|
Miao J, Wu Y, Lu Q. Statistical methods for gene-environment interaction analysis. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL STATISTICS 2024; 16:e1635. [PMID: 38699459 PMCID: PMC11064894 DOI: 10.1002/wics.1635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/12/2023] [Indexed: 05/05/2024]
Abstract
Most human complex phenotypes result from multiple genetic and environmental factors and their interactions. Understanding the mechanisms by which genetic and environmental factors interact offers valuable insights into the genetic architecture of complex traits and holds great potential for advancing precision medicine. The emergence of large population biobanks has led to the development of numerous statistical methods aiming at identifying gene-environment interactions (G × E). In this review, we present state-of-the-art statistical methodologies for G × E analysis. We will survey a spectrum of approaches for single-variant G × E mapping, followed by various techniques for polygenic G × E analysis. We conclude this review with a discussion on the future directions and challenges in G × E research.
Collapse
Affiliation(s)
- Jiacheng Miao
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Yixuan Wu
- University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Center for Demography of Health and Aging, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
31
|
Krieger N, Testa C, Chen JT, Johnson N, Watkins SH, Suderman M, Simpkin AJ, Tilling K, Waterman PD, Coull BA, De Vivo I, Smith GD, Roux AVD, Relton C. Epigenetic aging & embodying injustice: US My Body My Story and Multi-Ethnic Atherosclerosis Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.13.23299930. [PMID: 38168159 PMCID: PMC10760288 DOI: 10.1101/2023.12.13.23299930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Importance Epigenetic accelerated aging is associated with exposure to social and economic adversity and may increase risk of premature morbidity and mortality. However, no studies have included measures of structural racism and few have compared estimates within or across the 1st and 2nd generation of epigenetic clocks (the latter additionally trained on phenotypic data). Objective To determine if accelerated epigenetic aging is associated with exposures to diverse measures of racialized, economic, and environmental injustice measured at different levels and time periods. Design Cross-sectional My Body My Story Study (MBMS; US, 2008-2010) and Exam 5 Multi-Ethnic Atherosclerosis Study (MESA; US, 2010-2012). MBMS DNA extraction: 2021; linkage of structural measures to MBMS and MESA: 2022. Setting MBMS recruited a random sample of US-born Black non-Hispanic (BNH) and white non-Hispanic (WNH) participants from 4 community health centers in Boston, MA. The MESA Exam 5 epigenetic component included 975 randomly selected US-born BNH, WNH, and Hispanic participants from four field sites: Baltimore, MD; Forsyth County, NC; New York City, NY; St. Paul, MN. Participants US-born persons (MBMS: 224 BNH, 69 WNH; MESA: 229 BNH, 555 WNH, 191 Hispanic). Main outcome and measures 10 epigenetic clocks (six 1st generation; four 2nd generation), computed using DNA methylation data (DNAm) from blood spots (MBMS; N = 293) and purified monocytes (MESA; N = 975). Results Among Black non-Hispanic MBMS participants, epigenetic age acceleration was associated with being born in a Jim Crow state by 0.14 standard deviations (95% confidence interval [CI] 0.00, 0.27) and with birth state conservatism (0.06, 95% CI 0.00, 0.05), pooling across all clocks, as was low parental education for both Black non-Hispanic and white non-Hispanic MBMS participants (respectively: 0.24, 95% CI 0.08, 0.39, and 0.27, 95% CI 0.03, 0.51. Adult impoverishment was positively associated with the pooled 2nd generation clocks among the MESA participants (Black non-Hispanic: 0.06, 95% CI 0.01, 0.12; white non-Hispanic: 0.05, 95% CI 0.01, 0.08; Hispanic: 0.07, 95% CI 0.01, 0.14). Conclusions and Relevance Epigenetic accelerated aging may be one of the biological mechanisms linking exposure to racialized and economic injustice to well-documented inequities in premature morbidity and mortality.
Collapse
Affiliation(s)
- Nancy Krieger
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Christian Testa
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Jarvis T. Chen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Nykesha Johnson
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Sarah H. Watkins
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Andrew J. Simpkin
- School of Mathematical and Statistical Sciences, National University of Ireland, Galway, Ireland
| | - Kate Tilling
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Pamela D. Waterman
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Ana V. Diez Roux
- Urban Health Collective and Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| |
Collapse
|
32
|
Christian LM, Wilson SJ, Madison AA, Prakash RS, Burd CE, Rosko AE, Kiecolt-Glaser JK. Understanding the health effects of caregiving stress: New directions in molecular aging. Ageing Res Rev 2023; 92:102096. [PMID: 37898293 PMCID: PMC10824392 DOI: 10.1016/j.arr.2023.102096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Dementia caregiving has been linked to multiple health risks, including infectious illness, depression, anxiety, immune dysregulation, weakened vaccine responses, slow wound healing, hypertension, cardiovascular disease, metabolic syndrome, diabetes, frailty, cognitive decline, and reduced structural and functional integrity of the brain. The sustained overproduction of proinflammatory cytokines is a key pathway behind many of these risks. However, contrasting findings suggest that some forms of caregiving may have beneficial effects, such as maintaining caregivers' health and providing a sense of meaning and purpose which, in turn, may contribute to lower rates of functional decline and mortality. The current review synthesizes these disparate literatures, identifies methodological sources of discrepancy, and integrates caregiver research with work on aging biomarkers to propose a research agenda that traces the mechanistic pathways of caregivers' health trajectories with a focus on the unique stressors facing spousal caregivers as compared to other informal caregivers. Combined with a focus on psychosocial moderators and mechanisms, studies using state-of-the-art molecular aging biomarkers such as telomere length, p16INK4a, and epigenetic age could help to reconcile mixed literature on caregiving's sequelae by determining whether and under what conditions caregiving-related experiences contribute to faster aging, in part through inflammatory biology. The biomarkers predict morbidity and mortality, and each contributes non-redundant information about age-related molecular changes -together painting a more complete picture of biological aging. Indeed, assessing changes in these biopsychosocial mechanisms over time would help to clarify the dynamic relationships between caregiving experiences, psychological states, immune function, and aging.
Collapse
Affiliation(s)
- Lisa M Christian
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Stephanie J Wilson
- Department of Psychology, Southern Methodist University, University Park, TX, USA
| | - Annelise A Madison
- The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Ruchika S Prakash
- Department of Psychology, The Ohio State University, Columbus, OH, USA; Center for Cognitive and Behavioral Brain Imaging, Ohio State University, Columbus, OH, USA
| | - Christin E Burd
- Departments of Molecular Genetics, Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Ashley E Rosko
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Janice K Kiecolt-Glaser
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
33
|
Andrasfay T, Crimmins E. Occupational characteristics and epigenetic aging among older adults in the United States. Epigenetics 2023; 18:2218763. [PMID: 37300823 PMCID: PMC10259313 DOI: 10.1080/15592294.2023.2218763] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/30/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Occupational characteristics have been studied as risk factors for several age-related diseases and are thought to impact the ageing process, although there has been limited empirical work demonstrating an association between adverse occupational characteristics and accelerated ageing and this prior work has yielded mixed results. We used the 2010 and 2016 waves of the Health and Retirement Study (n = 1,251) to examine the association between occupation categories and self-reported working conditions of American adults at midlife and their subsequent epigenetic ageing as measured through five epigenetic clocks: PCHorvath, PCHannum, PCPhenoAge, PCGrimAge, and DunedinPACE. We found that individuals working in sales/clerical, service, and manual work show evidence of epigenetic age acceleration compared to those working in managerial/professional jobs and that the associations were stronger with second- and third-generation clocks. Individuals reporting high stress and high physical effort at work showed evidence of epigenetic age acceleration only on PCGrimAge and DunedinPACE. Most of these associations were attenuated after adjustment for race/ethnicity, educational attainment, and lifestyle-related risk factors. Sales/clerical work remained significantly associated with PCHorvath and PCHannum, while service work remained significantly associated with PCGrimAge. The results suggest that manual work and occupational physical activity may appear to be risk factors for epigenetic age acceleration through their associations with socioeconomic status, while stress at work may be a risk factor for epigenetic age acceleration through its associations with health behaviours outside of work. Additional work is needed to understand when in the life course and the specific mechanisms through which these associations occur.
Collapse
Affiliation(s)
- Theresa Andrasfay
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Eileen Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Wang W, Dearman A, Bao Y, Kumari M. Partnership status and positive DNA methylation age acceleration across the adult lifespan in the UK. SSM Popul Health 2023; 24:101551. [PMID: 38034479 PMCID: PMC10682041 DOI: 10.1016/j.ssmph.2023.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023] Open
Abstract
Although a significant body of research has shown that married people are healthier and live longer, empirical research on sex differences in the link between marital status and health suggests results are mixed. Moreover, the sex disparities in marital status and health relationships vary across adulthood. The literature on partnership status and measures of ageing is largely focused on older age groups and is limited in its view of early adulthood. Data from waves 2 and 3 (2010-2012) of Understanding Society: UKHLS were used to examine the association of current partnership status with epigenetic age acceleration (AA) assessed with DNA methylation (DNAm) algorithms 'Phenoage' and ' DunedinPACE ' in 3492 participants (aged 16-97). Regression models were estimated separately for men and women, and further stratified by age groups. Divorced/separated and widowed people showed positive age acceleration compared to the married/cohabiting people (reference group). Some sex differences were apparent, especially, among the single and divorced/separated groups. Age differences were also apparent, for example in men, being single was negatively associated with DNAmAA in the youngest group, but positively in the oldest group compared to partnered counterparts. These findings illustrate the importance of partnerships on the ageing process, in particular marital change through divorce and widowhood for positive age acceleration in adults. For single groups, observations were heterogenous by age and sex.
Collapse
Affiliation(s)
- Wen Wang
- Institute for Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Anna Dearman
- Institute for Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Yanchun Bao
- Department of Mathematics, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Meena Kumari
- Institute for Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
35
|
Ho KM, Lee A, Wu W, Chan MT, Ling L, Lipman J, Roberts J, Litton E, Joynt GM, Wong M. Flattening the biological age curve by improving metabolic health: to taurine or not to taurine, that' s the question. J Geriatr Cardiol 2023; 20:813-823. [PMID: 38098466 PMCID: PMC10716614 DOI: 10.26599/1671-5411.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
The aging population is an important issue around the world especially in developed countries. Although medical advances have substantially extended life span, the same cannot be said for the duration of health span. We are seeing increasing numbers of elderly people who are frail and/or have multiple chronic conditions; all of these can affect the quality of life of the elderly population as well as increase the burden on the healthcare system. Aging is mechanistically related to common medical conditions such as diabetes mellitus, ischemic heart disease, cognitive decline, and frailty. A recently accepted concept termed 'Accelerated Biological Aging' can be diagnosed when a person's biological age-as measured by biomarkers of DNA methylation-is older than their corresponding chronological age. Taurine, a conditionally essential amino acid, has received much attention in the past few years. A substantial number of animal studies have provided a strong scientific foundation suggesting that this amino acid can improve cellular and metabolic health, including blood glucose control, so much that it has been labelled one of the 'longevity amino acids'. In this review article, we propose the rationale that an adequately powered randomized-controlled-trial (RCT) is needed to confirm whether taurine can meaningfully improve metabolic and microbiome health, and biological age. This trial should incorporate certain elements in order to provide the much-needed evidence to guide doctors, and also the community at large, to determine whether this promising and inexpensive amino acid is useful in improving human metabolic health.
Collapse
Affiliation(s)
- Kwok M. Ho
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
- School of Veterinary & Life Sciences, Murdoch University, Perth, Australia
| | - Anna Lee
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - William Wu
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T.V. Chan
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Lowell Ling
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Jeffrey Lipman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Jason Roberts
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Edward Litton
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
| | - Gavin M. Joynt
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Martin Wong
- JC School of Public Health and Primary Care, Centre for Health Education and Health Promotion, Chinese University of Hong Kong, Hong Kong, China
- School of Public Health, Peking University, Beijing, China
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Schmitz LL, Duffie E, Zhao W, Ratliff SM, Ding J, Liu Y, Merkin SS, Smith JA, Seeman T. Associations of Early-Life Adversity With Later-Life Epigenetic Aging Profiles in the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol 2023; 192:1991-2005. [PMID: 37579321 PMCID: PMC10988110 DOI: 10.1093/aje/kwad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/28/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023] Open
Abstract
Epigenetic biomarkers of accelerated aging have been widely used to predict disease risk and may enhance our understanding of biological mechanisms between early-life adversity and disparities in aging. With respect to childhood adversity, most studies have used parental education or childhood disadvantage and/or have not examined the role played by socioemotional or physical abuse and trauma in epigenetic profiles at older ages. This study leveraged data from the Multi-Ethnic Study of Atherosclerosis (MESA) on experiences of threat and deprivation in participants' early lives (i.e., before the age of 18 years) to examine whether exposure to specific dimensions of early-life adversity is associated with epigenetic profiles at older ages that are indicative of accelerated biological aging. The sample included 842 MESA respondents with DNA methylation data collected between 2010 and 2012 who answered questions on early-life adversities in a 2018-2019 telephone follow-up. We found that experiences of deprivation, but not threat, were associated with later-life GrimAge epigenetic aging signatures that were developed to predict mortality risk. Results indicated that smoking behavior partially mediates this association, which suggests that lifestyle behaviors may act as downstream mechanisms between parental deprivation in early life and accelerated epigenetic aging in later life.
Collapse
Affiliation(s)
- Lauren L Schmitz
- Correspondence to Dr. Lauren L. Schmitz, Robert M. La Follette School of Public Affairs, University of Wisconsin–Madison, 1225 Observatory Drive, Madison, WI 53706 (e-mail: )
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
deSteiguer AJ, Raffington L, Sabhlok A, Tanksley P, Tucker-Drob EM, Harden KP. Stability of DNA-Methylation Profiles of Biological Aging in Children and Adolescents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564766. [PMID: 37961459 PMCID: PMC10635005 DOI: 10.1101/2023.10.30.564766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background and Objectives Methylation profile scores (MPSs) index biological aging and aging-related disease in adults and are cross-sectionally associated with social determinants of health in childhood. MPSs thus provide an opportunity to trace how aging-related biology responds to environmental changes in early life. Information regarding the stability of MPSs in early life is currently lacking. Method We use longitudinal data from children and adolescents ages 8-18 (N = 428, M age = 12.15 years) from the Texas Twin Project. Participants contributed two waves of salivary DNA-methylation data (mean lag = 3.94 years), which were used to construct four MPSs reflecting multi-system physiological decline and mortality risk (PhenoAgeAccel and GrimAgeAccel), pace of biological aging (DunedinPACE), and cognitive function (Epigenetic-g). Furthermore, we exploit variation among participants in whether they were exposed to the COVID-19 pandemic during the course of study participation, in order to test how a historical period characterized by environmental disruption might affect children's aging-related MPSs. Results All MPSs showed moderate longitudinal stability (test-retest rs = 0.42, 0.44, 0.46, 0.51 for PhenoAgeAccel, GrimAgeAccel, and Epigenetic-g, and DunedinPACE, respectively). No differences in the stability of MPSs were apparent between those whose second assessment took place after the onset of the COVID-19 pandemic vs. those for whom both assessments took place prior to the pandemic. Conclusions Aging-related DNA-methylation patterns are less stable in childhood than has been previously observed in adulthood. Further developmental research on the methylome is necessary to understand which environmental perturbations in childhood impact trajectories of biological aging and when children are most sensitive to those impacts.
Collapse
Affiliation(s)
- Abby J. deSteiguer
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Laurel Raffington
- Max Planck Research Group Biosocial – Biology, Social Disparities, and Development, Max Planck Institute for Human Development, Berlin, Germany
| | - Aditi Sabhlok
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Peter Tanksley
- Population Research Center, The University of Texas at Austin, Austin, TX, USA
| | - Elliot M. Tucker-Drob
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, The University of Texas at Austin, Austin, TX, USA
| | - K. Paige Harden
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
38
|
Harvanek ZM, Boks MP, Vinkers CH, Higgins-Chen AT. The Cutting Edge of Epigenetic Clocks: In Search of Mechanisms Linking Aging and Mental Health. Biol Psychiatry 2023; 94:694-705. [PMID: 36764569 PMCID: PMC10409884 DOI: 10.1016/j.biopsych.2023.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Individuals with psychiatric disorders are at increased risk of age-related diseases and early mortality. Recent studies demonstrate that this link between mental health and aging is reflected in epigenetic clocks, aging biomarkers based on DNA methylation. The reported relationships between epigenetic clocks and mental health are mostly correlational, and the mechanisms are poorly understood. Here, we review recent progress concerning the molecular and cellular processes underlying epigenetic clocks as well as novel technologies enabling further studies of the causes and consequences of epigenetic aging. We then review the current literature on how epigenetic clocks relate to specific aspects of mental health, such as stress, medications, substance use, health behaviors, and symptom clusters. We propose an integrated framework where mental health and epigenetic aging are each broken down into multiple distinct processes, which are then linked to each other, using stress and schizophrenia as examples. This framework incorporates the heterogeneity and complexity of both mental health conditions and aging, may help reconcile conflicting results, and provides a basis for further hypothesis-driven research in humans and model systems to investigate potentially causal mechanisms linking aging and mental health.
Collapse
Affiliation(s)
- Zachary M Harvanek
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Marco P Boks
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University of Utrecht, Utrecht, the Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Albert T Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
39
|
Yannatos I, Stites SD, Boen C, Xie SX, Brown RT, McMillan CT. Epigenetic age and socioeconomic status contribute to racial disparities in cognitive and functional aging between Black and White older Americans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.29.23296351. [PMID: 37873230 PMCID: PMC10592997 DOI: 10.1101/2023.09.29.23296351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Epigenetic age, a biological aging marker measured by DNA methylation, is a potential mechanism by which social factors drive disparities in age-related health. Epigenetic age gap is the residual between epigenetic age measures and chronological age. Previous studies showed associations between epigenetic age gap and age-related outcomes including cognitive capacity and performance on some functional measures, but whether epigenetic age gap contributes to disparities in these outcomes is unknown. We use data from the Health and Retirement Study to examine the role of epigenetic age gap in racial disparities in cognitive and functional outcomes and consider the role of socioeconomic status (SES). Epigenetic age measures are GrimAge or Dunedin Pace of Aging methylation (DPoAm). Cognitive outcomes are cross-sectional score and two-year change in Telephone Interview for Cognitive Status (TICS). Functional outcomes are prevalence and incidence of limitations performing Instrumental Activities of Daily Living (IADLs). We find, relative to White participants, Black participants have lower scores and greater decline in TICS, higher prevalence and incidence rates of IADL limitations, and higher epigenetic age gap. Age- and gender-adjusted analyses reveal that higher GrimAge and DPoAm gap are both associated with worse cognitive and functional outcomes and mediate 6-11% of racial disparities in cognitive outcomes and 19-39% of disparities in functional outcomes. Adjusting for SES attenuates most DPoAm associations and most mediation effects. These results support that epigenetic age gap contributes to racial disparities in cognition and functioning and may be an important mechanism linking social factors to disparities in health outcomes.
Collapse
Affiliation(s)
- Isabel Yannatos
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Shana D. Stites
- Department of Psychiatry, Perelman School of Medicine, Philadelphia, USA
| | - Courtney Boen
- Department of Sociology, University of Pennsylvania, Philadelphia, USA
| | - Sharon X. Xie
- Deptartment of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, USA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, USA
| | - Rebecca T. Brown
- Division of Geriatric Medicine, Perelman School of Medicine, Philadelphia, USA
- Geriatrics and Extended Care Program, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
- Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, USA
| | - Corey T. McMillan
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
40
|
Ho KM, Morgan DJ, Johnstone M, Edibam C. Biological age is superior to chronological age in predicting hospital mortality of the critically ill. Intern Emerg Med 2023; 18:2019-2028. [PMID: 37635161 PMCID: PMC10543822 DOI: 10.1007/s11739-023-03397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
Biological age is increasingly recognized as being more accurate than chronological age in determining chronic health outcomes. This study assessed whether biological age, assessed on intensive care unit (ICU) admission, can predict hospital mortality. This retrospective cohort study, conducted in a tertiary multidisciplinary ICU in Western Australia, used the Levine PhenoAge model to estimate each patient's biological age (also called PhenoAge). Each patient's PhenoAge was calibrated to generate a regression residual which was equivalent to biological age unexplained by chronological age in the local context. PhenoAgeAccel was a dichotomized measure of the residuals, and its presence suggested that one was biologically older than the corresponding chronological age. Of the 2950 critically ill adult patients analyzed, 291 died (9.9%) before hospital discharge. Both PhenoAge and its residuals (after regressing on chronological age) had a significantly better ability to differentiate between hospital survivors and non-survivors than chronological age (area under the receiver-operating-characteristic curve 0.648 and 0.654 vs. 0.547 respectively). Being phenotypically older than one's chronological age was associated with an increased risk of mortality (PhenoAgeAccel hazard ratio [HR] 1.997, 95% confidence interval [CI] 1.568-2.542; p = 0.001) in a dose-related fashion and did not reach a plateau until at least a 20-year gap. This adverse association remained significant (adjusted HR 1.386, 95% CI 1.077-1.784; p = 0.011) after adjusted for severity of acute illness and comorbidities. PhenoAgeAccel was more prevalent among those with pre-existing chronic cardiovascular disease, end-stage renal failure, cirrhosis, immune disease, diabetes mellitus, or those treated with immunosuppressive therapy. Being phenotypically older than one's chronological age was more common among those with comorbidities, and this was associated with an increased risk of mortality in a dose-related fashion in the critically ill that was not fully explained by comorbidities and severity of acute illness.
Collapse
Affiliation(s)
- Kwok M Ho
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, WA, Robin Warren Drive, 6150, Australia.
- University of Western Australia, Perth, WA, 6009, Australia.
- Murdoch University, Perth, WA, 6150, Australia.
| | - David J Morgan
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, WA, Robin Warren Drive, 6150, Australia
| | - Mason Johnstone
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, WA, Robin Warren Drive, 6150, Australia
| | - Cyrus Edibam
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, WA, Robin Warren Drive, 6150, Australia
| |
Collapse
|
41
|
Whitman ET, Ryan CP, Abraham WC, Addae A, Corcoran DL, Elliott ML, Hogan S, Ireland D, Keenan R, Knodt AR, Melzer TR, Poulton R, Ramrakha S, Sugden K, Williams BS, Zhou J, Hariri AR, Belsky DW, Moffitt TE, Caspi A. A blood biomarker of accelerated aging in the body associates with worse structural integrity in the brain: replication across three cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.06.23295140. [PMID: 37732266 PMCID: PMC10508789 DOI: 10.1101/2023.09.06.23295140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Biological aging is the correlated decline of multi-organ system integrity central to the etiology of many age-related diseases. A novel epigenetic measure of biological aging, DunedinPACE, is associated with cognitive dysfunction, incident dementia, and mortality. Here, we tested for associations between DunedinPACE and structural MRI phenotypes in three datasets spanning midlife to advanced age: the Dunedin Study (age=45 years), the Framingham Heart Study Offspring Cohort (mean age=63 years), and the Alzheimer's Disease Neuroimaging Initiative (mean age=75 years). We also tested four additional epigenetic measures of aging: the Horvath clock, the Hannum clock, PhenoAge, and GrimAge. Across all datasets (total N observations=3,380; total N individuals=2,322), faster DunedinPACE was associated with lower total brain volume, lower hippocampal volume, and thinner cortex. In two datasets, faster DunedinPACE was associated with greater burden of white matter hyperintensities. Across all measures, DunedinPACE and GrimAge had the strongest and most consistent associations with brain phenotypes. Our findings suggest that single timepoint measures of multi-organ decline such as DunedinPACE could be useful for gauging nervous system health.
Collapse
Affiliation(s)
- Ethan T Whitman
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Calen P Ryan
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, USA
| | | | - Angela Addae
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - David L Corcoran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maxwell L Elliott
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Sean Hogan
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - David Ireland
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Ross Keenan
- Brain Research New Zealand-Rangahau Roro Aotearoa, Centre of Research Excellence, Universities of Auckland and Otago, New Zealand
- Christchurch Radiology Group, Christchurch, New Zealand
| | - Annchen R Knodt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Tracy R Melzer
- Brain Research New Zealand-Rangahau Roro Aotearoa, Centre of Research Excellence, Universities of Auckland and Otago, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Sandhya Ramrakha
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | | | - Jiayi Zhou
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, USA
| | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Daniel W Belsky
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, USA
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- King's College London, Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, & Neuroscience, London, UK
- PROMENTA, Department of Psychology, University of Oslo, Norway
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- King's College London, Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, & Neuroscience, London, UK
- PROMENTA, Department of Psychology, University of Oslo, Norway
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
42
|
Korous KM, Surachman A, Rogers CR, Cuevas AG. Parental education and epigenetic aging in middle-aged and older adults in the United States: A life course perspective. Soc Sci Med 2023; 333:116173. [PMID: 37595421 PMCID: PMC10530379 DOI: 10.1016/j.socscimed.2023.116173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Epigenetic aging is one plausible mechanism by which socioeconomic status (SES) contributes to disparities in morbidity and mortality. Although the association between SES and epigenetic aging is well documented, the role of parental education into adulthood remains understudied. We examined (1) if parental education was independently associated with epigenetic aging, (2) whether upward educational mobility buffered this association, and (3) if the benefit of parental education was differentiated by race/ethnicity. Secondary data analysis of a subsample (n = 3875) of Non-Hispanic [NH] Black, Hispanic, NH White, and NH other race participants from the Venous Blood Study within Health and Retirement Study were examined. Thirteen clocks based on DNA methylation of cytosine-phosphate-guanine sites were used to calculate epigenetic aging. Participants' education (personal) and their report of their respective parent's education (parental; mother's and/or father's) were included as independent variables; several potential confounders were also included. Direct associations and interactions between parental and personal education were estimated via survey-weighted generalized linear models; marginal means for epigenetic aging were estimated and contrasts were made between the education subcategories. Analyses were also stratified by race/ethnicity. Our results showed that higher parental education was independently associated with slower epigenetic aging among four clocks, whereas higher personal education magnified this association among four different epigenetic clocks. Participants with the lowest parental and personal education had higher marginal means (i.e., accelerated aging) compared to participants with the highest parental and personal education, and there was little evidence of upward mobility. These associations were more frequently observed among NH White participants, whereas fewer were observed for Hispanic and NH Black participants. Overall, our findings support that early-life circumstances may be biologically embedded through epigenetic aging, which may also limit the biological benefits associated with one's own education.
Collapse
Affiliation(s)
- Kevin M Korous
- Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Agus Surachman
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Charles R Rogers
- Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Adolfo G Cuevas
- Social and Behavioral Sciences Department, School of Global Public Health, New York University, New York, NY, USA.
| |
Collapse
|
43
|
Jackson P, Spector AL, Strath LJ, Antoine LH, Li P, Goodin BR, Hidalgo BA, Kempf MC, Gonzalez CE, Jones AC, Foster TC, Peterson JA, Quinn T, Huo Z, Fillingim R, Cruz-Almeida Y, Aroke EN. Epigenetic age acceleration mediates the relationship between neighborhood deprivation and pain severity in adults with or at risk for knee osteoarthritis pain. Soc Sci Med 2023; 331:116088. [PMID: 37473540 PMCID: PMC10407756 DOI: 10.1016/j.socscimed.2023.116088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/08/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
An estimated 250 million people worldwide suffer from knee osteoarthritis (KOA), with older adults having greater risk. Like other age-related diseases, residents of high-deprivation neighborhoods experience worse KOA pain outcomes compared to their more affluent neighbors. The purpose of this study was to examine the relationship between neighborhood deprivation and pain severity in KOA and the influence of epigenetic age acceleration (EpAA) on that relationship. The sample of 128 participants was mostly female (60.9%), approximately half non-Hispanic Black (49.2%), and had a mean age of 58 years. Spearman bivariate correlations revealed that pain severity positively correlated with EpAA (ρ = 0.47, p ≤ 0.001) and neighborhood deprivation (ρ = 0.25, p = 0.004). We found a positive significant relationship between neighborhood deprivation and EpAA (ρ = 0.47, p ≤ 0.001). Results indicate a mediating relationship between neighborhood deprivation (predictor), EpAA (mediator), and pain severity (outcome variable). There was a significant indirect effect of neighborhood deprivation on pain severity through EpAA, as the mediator accounted for a moderate portion of the total effect, PM = 0.44. Epigenetic age acceleration may act as a mechanism through which neighborhood deprivation leads to worse KOA pain outcomes and may play a role in the well-documented relationship between the neighborhood of residence and age-related diseases.
Collapse
Affiliation(s)
- Pamela Jackson
- School of Public Health, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Antoinette L Spector
- School of Rehabilitation Sciences and Technology, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI, 53201, USA; Pain Research and Intervention Center of Excellence (PRICE), University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| | - Larissa J Strath
- Department of Community Dentistry and Behavioral Science, University of Florida, 1329 16th Street Southwest, Gainesville, FL, 32608, USA; Pain Research and Intervention Center of Excellence (PRICE), University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| | - Lisa H Antoine
- Department of Psychology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Peng Li
- School of Nursing, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Burel R Goodin
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, USA.
| | - Bertha A Hidalgo
- School of Public Health, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Mirjam-Colette Kempf
- School of Nursing, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Cesar E Gonzalez
- Department of Psychology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Alana C Jones
- School of Public Health, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Thomas C Foster
- Department of Neuroscience, University of Florida, 1149 Newell Dr, Gainesville, FL, 32610, USA.
| | - Jessica A Peterson
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| | - Tammie Quinn
- Department of Psychology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, 2004 Mowry Road, Gainesville, FL, 32603, USA.
| | - Roger Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, 1329 16th Street Southwest, Gainesville, FL, 32608, USA; Pain Research and Intervention Center of Excellence (PRICE), University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| | - Yenisel Cruz-Almeida
- Department of Community Dentistry and Behavioral Science, University of Florida, 1329 16th Street Southwest, Gainesville, FL, 32608, USA; Pain Research and Intervention Center of Excellence (PRICE), University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA; Department of Neuroscience, University of Florida, 1149 Newell Dr, Gainesville, FL, 32610, USA.
| | - Edwin N Aroke
- School of Nursing, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
44
|
Watkins SH, Testa C, Chen JT, De Vivo I, Simpkin AJ, Tilling K, Diez Roux AV, Davey Smith G, Waterman PD, Suderman M, Relton C, Krieger N. Epigenetic clocks and research implications of the lack of data on whom they have been developed: a review of reported and missing sociodemographic characteristics. ENVIRONMENTAL EPIGENETICS 2023; 9:dvad005. [PMID: 37564905 PMCID: PMC10411856 DOI: 10.1093/eep/dvad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/17/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
Epigenetic clocks are increasingly being used as a tool to assess the impact of a wide variety of phenotypes and exposures on healthy ageing, with a recent focus on social determinants of health. However, little attention has been paid to the sociodemographic characteristics of participants on whom these clocks have been based. Participant characteristics are important because sociodemographic and socioeconomic factors are known to be associated with both DNA methylation variation and healthy ageing. It is also well known that machine learning algorithms have the potential to exacerbate health inequities through the use of unrepresentative samples - prediction models may underperform in social groups that were poorly represented in the training data used to construct the model. To address this gap in the literature, we conducted a review of the sociodemographic characteristics of the participants whose data were used to construct 13 commonly used epigenetic clocks. We found that although some of the epigenetic clocks were created utilizing data provided by individuals from different ages, sexes/genders, and racialized groups, sociodemographic characteristics are generally poorly reported. Reported information is limited by inadequate conceptualization of the social dimensions and exposure implications of gender and racialized inequality, and socioeconomic data are infrequently reported. It is important for future work to ensure clear reporting of tangible data on the sociodemographic and socioeconomic characteristics of all the participants in the study to ensure that other researchers can make informed judgements about the appropriateness of the model for their study population.
Collapse
Affiliation(s)
- Sarah Holmes Watkins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Christian Testa
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Jarvis T Chen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Immaculata De Vivo
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Andrew J Simpkin
- School of Medicine, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Kate Tilling
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Ana V Diez Roux
- Department of Epidemiology and Biostatistics and Urban Health Collaborative, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA
| | - George Davey Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Pamela D Waterman
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Matthew Suderman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Caroline Relton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Nancy Krieger
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
45
|
Gaylord A, Cohen A, Kupsco A. Biomarkers of aging through the life course: A Recent Literature Update. CURRENT OPINION IN EPIDEMIOLOGY AND PUBLIC HEALTH 2023; 2:7-17. [PMID: 38130910 PMCID: PMC10732539 DOI: 10.1097/pxh.0000000000000018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Purpose of review The development of biomarkers of aging has greatly advanced epidemiological studies of aging processes. However, much debate remains on the timing of aging onset and the causal relevance of these biomarkers. In this review, we discuss the most recent biomarkers of aging that have been applied across the life course. Recent findings The most recently developed aging biomarkers that have been applied across the life course can be designated into three categories: epigenetic clocks, epigenetic markers of chronic inflammation, and mitochondrial DNA copy number. While these have been applied at different life stages, the development, validation, and application of these markers has been largely centered on populations of older adults. Few studies have examined trajectories of aging biomarkers across the life course. As the wealth of molecular and biochemical data increases, emerging biomarkers may be able to capture complex and system-specific aging processes. Recently developed biomarkers include novel epigenetic clocks; clocks based on ribosomal DNA, transcriptomic profiles, proteomics, metabolomics, and inflammatory markers; clonal hematopoiesis of indeterminate potential gene mutations; and multi-omics approaches. Summary Attention should be placed on aging at early and middle life stages to better understand trajectories of aging biomarkers across the life course. Additionally, novel biomarkers will provide greater insight into aging processes. The specific mechanisms of aging reflected by these biomarkers should be considered when interpreting results.
Collapse
Affiliation(s)
- Abigail Gaylord
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Alan Cohen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
- Research Center on Aging and Research Center of Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
46
|
Krieger N, Chen JT, Testa C, Diez Roux A, Tilling K, Watkins S, Simpkin AJ, Suderman M, Davey Smith G, De Vivo I, Waterman PD, Relton C. Use of Correct and Incorrect Methods of Accounting for Age in Studies of Epigenetic Accelerated Aging: Implications and Recommendations for Best Practices. Am J Epidemiol 2023; 192:800-811. [PMID: 36721372 PMCID: PMC10160768 DOI: 10.1093/aje/kwad025] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/28/2022] [Accepted: 01/27/2023] [Indexed: 02/02/2023] Open
Abstract
Motivated by our conduct of a literature review on social exposures and accelerated aging as measured by a growing number of epigenetic "clocks" (which estimate age via DNA methylation (DNAm) patterns), we report on 3 different approaches in the epidemiologic literature-1 incorrect and 2 correct-on the treatment of age in these and other studies using other common exposures (i.e., body mass index and alcohol consumption). Among the 50 empirical articles reviewed, the majority (n = 29; 58%) used the incorrect method of analyzing accelerated aging detrended for age as the outcome and did not control for age as a covariate. By contrast, only 42% used correct methods, which are either to analyze accelerated aging detrended for age as the outcome and control for age as a covariate (n = 16; 32%) or to analyze raw DNAm age as the outcome and control for age as a covariate (n = 5; 10%). In accord with prior demonstrations of bias introduced by use of the incorrect approach, we provide simulation analyses and additional empirical analyses to illustrate how the incorrect method can lead to bias towards the null, and we discuss implications for extant research and recommendations for best practices.
Collapse
Affiliation(s)
- Nancy Krieger
- Correspondence to Dr. Nancy Krieger, Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Kresge 717, Boston, MA 02115 (e-mail: )
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Protsenko E, Wolkowitz OM, Yaffe K. Associations of stress and stress-related psychiatric disorders with GrimAge acceleration: review and suggestions for future work. Transl Psychiatry 2023; 13:142. [PMID: 37130894 PMCID: PMC10154294 DOI: 10.1038/s41398-023-02360-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 05/04/2023] Open
Abstract
The notion of "biological aging" as distinct from chronological aging has been of increasing interest in psychiatry, and many studies have explored associations of stress and psychiatric illness with accelerated biological aging. The "epigenetic clocks" are one avenue of this research, wherein "biological age" is estimated using DNA methylation data from specific CpG dinucleotide sites within the human genome. Many iterations of the epigenetic clocks have been developed, but the GrimAge clock continues to stand out for its ability to predict morbidity and mortality. Several studies have now explored associations of stress, PTSD, and MDD with GrimAge acceleration (GrimAA). While stress, PTSD, and MDD are distinct psychiatric entities, they may share common mechanisms underlying accelerated biological aging. Yet, no one has offered a review of the evidence on associations of stress and stress-related psychopathology with GrimAA. In this review, we identify nine publications on associations of stress, PTSD, and MDD with GrimAA. We find that results are mixed both within and across each of these exposures. However, we also find that analytic methods - and specifically, the choice of covariates - vary widely between studies. To address this, we draw upon popular methods from the field of clinical epidemiology to offer (1) a systematic framework for covariate selection, and (2) an approach to results reporting that facilitates analytic consensus. Although covariate selection will differ by the research question, we encourage researchers to consider adjustment for tobacco, alcohol use, physical activity, race, sex, adult socioeconomic status, medical comorbidity, and blood cell composition.
Collapse
Affiliation(s)
- Ekaterina Protsenko
- Department of Psychiatry, Stanford University School of Medicine, Palo Alto, CA, USA.
- Department Epidemiology & Biostatistics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA.
| | - Owen M Wolkowitz
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Kristine Yaffe
- Department Epidemiology & Biostatistics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| |
Collapse
|
48
|
Bozack AK, Rifas-Shiman SL, Gold DR, Laubach ZM, Perng W, Hivert MF, Cardenas A. DNA methylation age at birth and childhood: performance of epigenetic clocks and characteristics associated with epigenetic age acceleration in the Project Viva cohort. Clin Epigenetics 2023; 15:62. [PMID: 37046280 PMCID: PMC10099681 DOI: 10.1186/s13148-023-01480-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Epigenetic age acceleration (EAA) and epigenetic gestational age acceleration (EGAA) are biomarkers of physiological development and may be affected by the perinatal environment. The aim of this study was to evaluate performance of epigenetic clocks and to identify biological and sociodemographic correlates of EGAA and EAA at birth and in childhood. In the Project Viva pre-birth cohort, DNA methylation was measured in nucleated cells in cord blood (leukocytes and nucleated red blood cells, N = 485) and leukocytes in early (N = 120, median age = 3.2 years) and mid-childhood (N = 460, median age = 7.7 years). We calculated epigenetic gestational age (EGA; Bohlin and Knight clocks) and epigenetic age (EA; Horvath and skin & blood clocks), and respective measures of EGAA and EAA. We evaluated the performance of clocks relative to chronological age using correlations and median absolute error. We tested for associations of maternal-child characteristics with EGAA and EAA using mutually adjusted linear models controlling for estimated cell type proportions. We also tested associations of Horvath EA at birth with childhood EAA. RESULTS Bohlin EGA was strongly correlated with chronological gestational age (Bohlin EGA r = 0.82, p < 0.001). Horvath and skin & blood EA were weakly correlated with gestational age, but moderately correlated with chronological age in childhood (r = 0.45-0.65). Maternal smoking during pregnancy was associated with higher skin & blood EAA at birth [B (95% CI) = 1.17 weeks (- 0.09, 2.42)] and in early childhood [0.34 years (0.03, 0.64)]. Female newborns and children had lower Bohlin EGAA [- 0.17 weeks (- 0.30, - 0.04)] and Horvath EAA at birth [B (95% CI) = - 2.88 weeks (- 4.41, - 1.35)] and in childhood [early childhood: - 0.3 years (- 0.60, 0.01); mid-childhood: - 0.48 years (- 0.77, - 0.18)] than males. When comparing self-reported Asian, Black, Hispanic, and more than one race or other racial/ethnic groups to White, we identified significant differences in EGAA and EAA at birth and in mid-childhood, but associations varied across clocks. Horvath EA at birth was positively associated with childhood Horvath and skin & blood EAA. CONCLUSIONS Maternal smoking during pregnancy and child sex were associated with EGAA and EAA at multiple timepoints. Further research may provide insight into the relationship between perinatal factors, pediatric epigenetic aging, and health and development across the lifespan.
Collapse
Affiliation(s)
- Anne K Bozack
- Department of Epidemiology and Population Health, Stanford University, Research Park, 1701 Page Mill Road, Stanford, CA, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Zachary M Laubach
- Department of Ecology and Evolutionary Biology (EEB), University of Colorado Boulder, Boulder, CO, USA
| | - Wei Perng
- Department of Epidemiology, Colorado School of Public Health and Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Research Park, 1701 Page Mill Road, Stanford, CA, USA.
| |
Collapse
|
49
|
Baumer Y, Pita M, Baez A, Ortiz-Whittingham L, Cintron M, Rose R, Gray V, Osei Baah F, Powell-Wiley T. By what molecular mechanisms do social determinants impact cardiometabolic risk? Clin Sci (Lond) 2023; 137:469-494. [PMID: 36960908 PMCID: PMC10039705 DOI: 10.1042/cs20220304] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
While it is well known from numerous epidemiologic investigations that social determinants (socioeconomic, environmental, and psychosocial factors exposed to over the life-course) can dramatically impact cardiovascular health, the molecular mechanisms by which social determinants lead to poor cardiometabolic outcomes are not well understood. This review comprehensively summarizes a variety of current topics surrounding the biological effects of adverse social determinants (i.e., the biology of adversity), linking translational and laboratory studies with epidemiologic findings. With a strong focus on the biological effects of chronic stress, we highlight an array of studies on molecular and immunological signaling in the context of social determinants of health (SDoH). The main topics covered include biomarkers of sympathetic nervous system and hypothalamic-pituitary-adrenal axis activation, and the role of inflammation in the biology of adversity focusing on glucocorticoid resistance and key inflammatory cytokines linked to psychosocial and environmental stressors (PSES). We then further discuss the effect of SDoH on immune cell distribution and characterization by subset, receptor expression, and function. Lastly, we describe epigenetic regulation of the chronic stress response and effects of SDoH on telomere length and aging. Ultimately, we highlight critical knowledge gaps for future research as we strive to develop more targeted interventions that account for SDoH to improve cardiometabolic health for at-risk, vulnerable populations.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Mario A. Pita
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Manuel A. Cintron
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Rebecca R. Rose
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Veronica C. Gray
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Foster Osei Baah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
50
|
Valencia CI, Saunders D, Daw J, Vasquez A. DNA methylation accelerated age as captured by epigenetic clocks influences breast cancer risk. Front Oncol 2023; 13:1150731. [PMID: 37007096 PMCID: PMC10050548 DOI: 10.3389/fonc.2023.1150731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction Breast cancer continues to be the leading form of cancer among women in the United States. Additionally, disparities across the breast cancer continuum continue to increase for women of historically marginalized populations. The mechanism driving these trends are unclear, however, accelerated biological age may provide key insights into better understanding these disease patterns. Accelerated age measured by DNA methylation using epigenetic clocks is to date the most robust method for estimating accelerated age. Here we synthesize the existing evidence on epigenetic clocks measurement of DNA methylation based accelerated age and breast cancer outcomes. Methods Our database searches were conducted from January 2022 to April 2022 and yielded a total of 2,908 articles for consideration. We implemented methods derived from guidance of the PROSPERO Scoping Review Protocol to assess articles in the PubMed database on epigenetic clocks and breast cancer risk. Results Five articles were deemed appropriate for inclusion in this review. Ten epigenetic clocks were used across the five articles demonstrating statistically significant results for breast cancer risk. DNA methylation accelerated age varied by sample type. The studies did not consider social factors or epidemiological risk factors. The studies lacked representation of ancestrally diverse populations. Discussion DNA methylation based accelerated age as captured by epigenetic clocks has a statistically significant associative relationship with breast cancer risk, however, important social factors that contribute to patterns of methylation were not comprehensively considered in the available literature. More research is needed on DNA methylation based accelerated age across the lifespan including during menopausal transition and in diverse populations. This review demonstrates that DNA methylation accelerated age may provide key insights for tackling increasing rates of U.S. breast cancer incidence and overall disease disparities experienced by women from minoritized backgrounds.
Collapse
Affiliation(s)
- Celina I. Valencia
- Department of Family and Community Medicine, College of Medicine—Tucson, University of Arizona, Tucson, AZ, United States
| | - Devin Saunders
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, United States
| | - Jennifer Daw
- Cancer Biology Program, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Adria Vasquez
- Department of Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|