1
|
D'Addario C, Di Bartolomeo M. Epigenetic Control in Schizophrenia. Subcell Biochem 2025; 108:191-215. [PMID: 39820863 DOI: 10.1007/978-3-031-75980-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Schizophrenia is a severe and complex psychiatric condition ranking among the top 15 leading causes of disability worldwide. Despite the well-established heritability component, a complex interplay between genetic and environmental risk factors plays a key role in the development of schizophrenia and psychotic disorders in general. This chapter covers all the clinical evidence showing how the analysis of the epigenetic modulation in schizophrenia might be relevant to understand the pathogenesis of schizophrenia as well as potentially useful to develop new pharmacotherapies.
Collapse
Affiliation(s)
- Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
2
|
Kaurani L, Islam MR, Heilbronner U, Krüger DM, Zhou J, Methi A, Strauss J, Pradhan R, Schröder S, Burkhardt S, Schuetz AL, Pena T, Erlebach L, Bühler A, Budde M, Senner F, Kohshour MO, Schulte EC, Schmauß M, Reininghaus EZ, Juckel G, Kronenberg-Versteeg D, Delalle I, Odoardi F, Flügel A, Schulze TG, Falkai P, Sananbenesi F, Fischer A. Regulation of Zbp1 by miR-99b-5p in microglia controls the development of schizophrenia-like symptoms in mice. EMBO J 2024; 43:1420-1444. [PMID: 38528182 PMCID: PMC11021462 DOI: 10.1038/s44318-024-00067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
Current approaches to the treatment of schizophrenia have mainly focused on the protein-coding part of the genome; in this context, the roles of microRNAs have received less attention. In the present study, we analyze the microRNAome in the blood and postmortem brains of schizophrenia patients, showing that the expression of miR-99b-5p is downregulated in both the prefrontal cortex and blood of patients. Lowering the amount of miR-99b-5p in mice leads to both schizophrenia-like phenotypes and inflammatory processes that are linked to synaptic pruning in microglia. The microglial miR-99b-5p-supressed inflammatory response requires Z-DNA binding protein 1 (Zbp1), which we identify as a novel miR-99b-5p target. Antisense oligonucleotides against Zbp1 ameliorate the pathological effects of miR-99b-5p inhibition. Our findings indicate that a novel miR-99b-5p-Zbp1 pathway in microglia might contribute to the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany.
| | - Md Rezaul Islam
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Dennis M Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Jiayin Zhou
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Aditi Methi
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Judith Strauss
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Ranjit Pradhan
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Sophie Schröder
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Anna-Lena Schuetz
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Tonatiuh Pena
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Lena Erlebach
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Anika Bühler
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany
| | - Max Schmauß
- Clinic for Psychiatry, Psychotherapy and Psychosomatics, Augsburg University, Medical Faculty, Bezirkskrankenhaus Augsburg, Augsburg, 86156, Germany
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, 8036, Austria
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, 44791, Germany
| | - Deborah Kronenberg-Versteeg
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ivana Delalle
- Department of Pathology, Lifespan Academic Medical Center, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Francesca Odoardi
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
| | - Farahnaz Sananbenesi
- Research Group for Genome Dynamics in Brain Diseases, 37077, Göttingen, Germany.
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37077, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Lee DY, Kim C, Kim J, Yun J, Lee Y, Chui CSL, Son SJ, Park RW, You SC. Comparative estimation of the effects of antihypertensive medications on schizophrenia occurrence: a multinational observational cohort study. BMC Psychiatry 2024; 24:128. [PMID: 38365637 PMCID: PMC10870661 DOI: 10.1186/s12888-024-05578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The association between antihypertensive medication and schizophrenia has received increasing attention; however, evidence of the impact of antihypertensive medication on subsequent schizophrenia based on large-scale observational studies is limited. We aimed to compare the schizophrenia risk in large claims-based US and Korea cohort of patients with hypertension using angiotensin-converting enzyme (ACE) inhibitors versus those using angiotensin receptor blockers (ARBs) or thiazide diuretics. METHODS Adults aged 18 years who were newly diagnosed with hypertension and received ACE inhibitors, ARBs, or thiazide diuretics as first-line antihypertensive medications were included. The study population was sub-grouped based on age (> 45 years). The comparison groups were matched using a large-scale propensity score (PS)-matching algorithm. The primary endpoint was incidence of schizophrenia. RESULTS 5,907,522; 2,923,423; and 1,971,549 patients used ACE inhibitors, ARBs, and thiazide diuretics, respectively. After PS matching, the risk of schizophrenia was not significantly different among the groups (ACE inhibitor vs. ARB: summary hazard ratio [HR] 1.15 [95% confidence interval, CI, 0.99-1.33]; ACE inhibitor vs. thiazide diuretics: summary HR 0.91 [95% CI, 0.78-1.07]). In the older subgroup, there was no significant difference between ACE inhibitors and thiazide diuretics (summary HR, 0.91 [95% CI, 0.71-1.16]). The risk for schizophrenia was significantly higher in the ACE inhibitor group than in the ARB group (summary HR, 1.23 [95% CI, 1.05-1.43]). CONCLUSIONS The risk of schizophrenia was not significantly different between the ACE inhibitor vs. ARB and ACE inhibitor vs. thiazide diuretic groups. Further investigations are needed to determine the risk of schizophrenia associated with antihypertensive drugs, especially in people aged > 45 years.
Collapse
Affiliation(s)
- Dong Yun Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Chungsoo Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Jiwoo Kim
- Big Data Department, Health Insurance Review and Assessment Service, Wonju, Korea
| | - Jeongwon Yun
- Big Data Department, Health Insurance Review and Assessment Service, Wonju, Korea
| | - Yujin Lee
- Big Data Department, Health Insurance Review and Assessment Service, Wonju, Korea
| | - Celine Sze Ling Chui
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, Hong Kong, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administration Region, Hong Kong Science Park, Hong Kong, China
| | - Sang Joon Son
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Korea
| | - Rae Woong Park
- Department of Biomedical Informatics, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.
| | - Seng Chan You
- Department of Biomedicine Systems Informatics, Yonsei University College of Medicine, Seoul, Korea.
- Institute for Innovation in Digital Healthcare, Yonsei University, 50-1 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Corazza LA, Dousseau GC, de Freitas JL, Torres IA, Rocha MSG. A Case of NEDMAGA: Neurodevelopmental Disorder with Movement Abnormalities, Abnormal Gait, and Autistic Features. Mov Disord Clin Pract 2024; 11:181-183. [PMID: 38386481 PMCID: PMC10883404 DOI: 10.1002/mdc3.13954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 02/24/2024] Open
|
5
|
Kushima I, Aleksic B, Kimura H, Nakatochi M, Lo T, Ikeda M, Arai M, Hashimoto R, Numata S, Okamura Y, Obara T, Inada T, Ozaki N. X chromosome aneuploidies and schizophrenia: association analysis and phenotypic characterization. Psychiatry Clin Neurosci 2022; 76:667-673. [PMID: 36073611 PMCID: PMC10086948 DOI: 10.1111/pcn.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/27/2022]
Abstract
AIM The aims of the present study were: (i) to examine the association between schizophrenia (SCZ) and 47, XXY or 47, XXX in a large case-control sample; and (ii) to characterize the clinical features of patients with SCZ with these X chromosome aneuploidies. METHODS To identify 47, XXY and 47, XXX, array comparative genomic hybridization (aCGH) was performed in 3188 patients with SCZ and 3586 controls. We examined the association between 47, XXY and 47, XXX and SCZ in males and females separately using exact conditional tests to control for platform effects. Clinical data were retrospectively examined for patients with SCZ with X chromosome aneuploidies. RESULTS Of the analyzed samples, 3117 patients (97.8%) and 3519 controls (98.1%) passed our quality control. X chromosome aneuploidies were exclusively identified in patients: 47, XXY in seven patients (0.56%), 47, XXX in six patients (0.42%). Statistical analysis revealed a significant association between SCZ and 47, XXY (P = 0.028) and 47, XXX (P = 0.011). Phenotypic data were available from 12 patients. Treatment-resistance to antipsychotics and manic symptoms were observed in six patients each (four with 47, XXY and two with 47, XXX for both), respectively. Statistical analysis revealed that treatment-resistance to antipsychotics, mood stabilizer use, and manic symptoms were significantly more common in patients with 47, XXY than in male patients without pathogenic copy number variations. CONCLUSION These findings indicate that both 47, XXY and 47, XXX are significantly associated with risk for SCZ. Patients with SCZ with 47, XXY may be characterized by treatment-resistance and manic symptoms.
Collapse
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Makoto Arai
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Yasunobu Okamura
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Taku Obara
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Langley K, Martin J, Thapar A. Genetics of Attention-Deficit Hyperactivity Disorder. Curr Top Behav Neurosci 2022; 57:243-268. [PMID: 35538303 DOI: 10.1007/7854_2022_338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) has long been recognized as being a highly heritable condition and our understanding of the genetic contributions to ADHD has grown over the past few decades. This chapter will discuss the studies that have examined its heritability and the efforts to identify specific genetic risk-variants at the molecular genetic level. We outline the various techniques that have been used to characterize genetic contributions to ADHD, describing what we have learnt so far, what there is still to learn and the methodologies that can be used to further our knowledge. In doing so we will discuss research into rare and common genetic variants, polygenic risk scores, and gene-environment interplay, while also describing what genetic studies have revealed about the biological processes involved in ADHD and what they have taught us about the overlap between ADHD and other psychiatric and somatic disorders. Finally, we will discuss the strengths and limitations of the current methodologies and clinical implications of genetic research to date.
Collapse
Affiliation(s)
- Kate Langley
- School of Psychology, Cardiff University, Cardiff, UK. .,MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.
| | - Joanna Martin
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.,Division of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK.,Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, UK
| | - Anita Thapar
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.,Division of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK.,Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
Ping J, Zhang J, Wan J, Huang C, Luo J, Du B, Jiang T. A Polymorphism in the BDNF Gene (rs11030101) is Associated With Negative Symptoms in Chinese Han Patients With Schizophrenia. Front Genet 2022; 13:849227. [PMID: 35368680 PMCID: PMC8974295 DOI: 10.3389/fgene.2022.849227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aimed to investigate the association between brain-derived neurotrophic factor (BDNF) and cyclic adenosine monophosphate response element binding protein (CREB) gene polymorphisms and schizophrenia.Methods: This study used a case-control design, and diagnoses were made based on the Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition criteria. One hundred and thirty-four patients with schizophrenia were recruited from the Third People’s Hospital of Zhongshan City from January 2018 to April 2020. Sixty-four healthy controls were recruited from the same region. Genotypes at the BDNF gene single nucleotide polymorphisms rs11030101, rs2030324, and rs6265 and the CREB gene single nucleotide polymorphisms rs6740584 and rs2551640 were determined using a MassARRAY mass spectrometer. Linkage disequilibrium and haplotype analyses were performed, and genotype and allele frequencies were compared between groups. The positive and negative symptom scale (PANSS) was used to evaluate the association between the BDNF and CREB gene polymorphisms and schizophrenic symptoms.Results: There was no significant difference in genotype or allele frequencies for rs11030101, rs2030324, rs6265, rs6740584, or rs2551640 between schizophrenic patients and controls (p > 0.05). In addition, there were no significant differences in rs11030101, rs2030324, rs6265, rs6740584, or rs2551640 genotype frequencies between the two groups in the dominant, recessive, or over-dominant models (p > 0.05). Three loci in the BDNF gene and two loci in the CREB gene were in a state of strong linkage disequilibrium. The frequency of haplotype AAC (rs11030101/rs2030324/rs626), composed of three loci in the BDNF gene, was significantly increased in schizophrenic patients compared with control subjects. There were significant differences in the subscores of PANSSS for negative symptoms, in patients with different rs11030101 genotypes of the BDNF gene (p < 0.05). There was also significant differences in the PANSS scores for the general symptom G12 (judgment and lack of insight) in patients with different rs6265 genotypes of the BDNF gene (p < 0.05).Conclusion: The BDNF gene rs11030101/rs2030324/rs6265 AAC haplotype was potentially associated with an increased risk of schizophrenia. In addition, genotypes at the rs11030101 and rs6265 loci may affect the negative symptoms and general symptoms of schizophrenic patients, respectively.
Collapse
Affiliation(s)
- Junjiao Ping
- Department of Psychiatry, The Third People’s Hospital of Zhongshan City, Zhongshan, China
- Joint Laboratory of Psychiatric Genetic Research, The Third People’s Hospital of Zhongshan, Zhongshan, China
| | - Jie Zhang
- Department of Psychiatry, The Third People’s Hospital of Zhongshan City, Zhongshan, China
- Joint Laboratory of Psychiatric Genetic Research, The Third People’s Hospital of Zhongshan, Zhongshan, China
- Department of Psychiatry, Gannan Medical University, Ganzhou, China
| | - Jing Wan
- Department of Early Intervention, Third People’s Hospital of Zhongshan City, Zhongshan, China
| | - Caiying Huang
- Department of Early Intervention, Third People’s Hospital of Zhongshan City, Zhongshan, China
| | - Jiali Luo
- Department of Psychiatry, The Third People’s Hospital of Zhongshan City, Zhongshan, China
- Joint Laboratory of Psychiatric Genetic Research, The Third People’s Hospital of Zhongshan, Zhongshan, China
| | - Baoguo Du
- Department of Clinical Psychology, The Third People’s Hospital of Zhongshan City, Zhongshan, China
- *Correspondence: Baoguo Du, ; Tingyun Jiang,
| | - Tingyun Jiang
- Department of Psychiatry, The Third People’s Hospital of Zhongshan City, Zhongshan, China
- *Correspondence: Baoguo Du, ; Tingyun Jiang,
| |
Collapse
|
8
|
Involvement of Rare Mutations of SCN9A, DPP4, ABCA13, and SYT14 in Schizophrenia and Bipolar Disorder. Int J Mol Sci 2021; 22:ijms222413189. [PMID: 34947986 PMCID: PMC8709054 DOI: 10.3390/ijms222413189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/05/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023] Open
Abstract
Rare mutations associated with schizophrenia (SZ) and bipolar disorder (BD) usually have high clinical penetrance; however, they are highly heterogeneous and personalized. Identifying rare mutations is instrumental in making the molecular diagnosis, understanding the pathogenesis, and providing genetic counseling for the affected individuals and families. We conducted whole-genome sequencing analysis in two multiplex families with the dominant inheritance of SZ and BD. We detected a G327E mutation of SCN9A and an A654V mutation of DPP4 cosegregating with SZ and BD in one three-generation multiplex family. We also identified three mutations cosegregating with SZ and BD in another two-generation multiplex family, including L711S of SCN9A, M4554I of ABCA13, and P159L of SYT14. These five missense mutations were rare and deleterious. Mutations of SCN9A have initially been reported to cause congenital insensitivity to pain and neuropathic pain syndromes. Further studies showed that rare mutations of SCN9A were associated with seizure and autism spectrum disorders. Our findings suggest that SZ and BD might also be part of the clinical phenotype spectra of SCN9A mutations. Our study also indicates the oligogenic involvement in SZ and BD and supports the multiple-hit model of SZ and BD.
Collapse
|
9
|
Chen CH, Huang A, Huang YS, Fang TH. Identification of a Rare Novel KMT2C Mutation That Presents with Schizophrenia in a Multiplex Family. J Pers Med 2021; 11:jpm11121254. [PMID: 34945726 PMCID: PMC8707139 DOI: 10.3390/jpm11121254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/18/2023] Open
Abstract
Schizophrenia is a complex genetic disorder involving many common variants with modest effects and rare mutations with high penetrance. Rare mutations associated with schizophrenia are highly heterogeneous and private for affected individuals and families. Identifying such mutations can help establish the molecular diagnosis, elucidate the pathogenesis, and provide helpful genetic counseling for affected patients and families. We performed a whole-exome sequencing analysis to search for rare pathogenic mutations co-segregating with schizophrenia transmitted in a dominant inheritance in a two-generation multiplex family. We identified a rare missense mutation H1574R (Histidine1574Arginine, rs199796552) of KMT2C (lysine methyltransferase 2C) co-segregating with affected members in this family. The mutation is a novel deleterious mutation of KMT2C, not reported before in the literature. The KMT2C encodes a histone 3 lysine 4 (H3K4)-specific methyltransferase and involves epigenetic regulation of brain gene expression. Mutations of KMT2C have been found in neurodevelopmental disorders, such as Kleefstra syndrome, intellectual disability, and autism spectrum disorders. Our finding suggests that schizophrenia might be one of the clinical phenotype spectra of KMT2C mutations, and KMT2C might be a novel risk gene for schizophrenia. Nevertheless, the co-segregation of this mutation with schizophrenia in this family might also be due to chance; functional assays of this mutation are needed to address this issue.
Collapse
Affiliation(s)
- Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan;
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Correspondence:
| | - Ailing Huang
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 981, Taiwan;
| | - Yu-Shu Huang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan;
| | - Ting-Hsuan Fang
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| |
Collapse
|
10
|
Primary Psychosis: Risk and Protective Factors and Early Detection of the Onset. Diagnostics (Basel) 2021; 11:diagnostics11112146. [PMID: 34829493 PMCID: PMC8622963 DOI: 10.3390/diagnostics11112146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 01/15/2023] Open
Abstract
Primary psychosis, which includes schizophrenia and other psychoses not caused by other psychic or physical conditions, has a strong impact worldwide in terms of disability, suffering and costs. Consequently, improvement of strategies to reduce the incidence and to improve the prognosis of this disorder is a current need. The purpose of this work is to review the current scientific literature on the main risk and protective factors of primary psychosis and to examine the main models of prevention, especially those related to the early detection of the onset. The conditions more strongly associated with primary psychosis are socio-demographic and economic factors such as male gender, birth in winter, ethnic minority, immigrant status, and difficult socio-economic conditions while the best-established preventive factors are elevated socio-economic status and an economic well-being. Risk and protective factors may be the targets for primordial, primary, and secondary preventive strategies. Acting on modifiable factors may reduce the incidence of the disorder or postpone its onset, while an early detection of the new cases enables a prompt treatment and a consequential better prognosis. According to this evidence, the study of the determinants of primary psychosis has a pivotal role in designing and promoting preventive policies aimed at reducing the burden of disability and suffering of the disorder.
Collapse
|
11
|
De Los Angeles A, Fernando MB, Hall NAL, Brennand KJ, Harrison PJ, Maher BJ, Weinberger DR, Tunbridge EM. Induced Pluripotent Stem Cells in Psychiatry: An Overview and Critical Perspective. Biol Psychiatry 2021; 90:362-372. [PMID: 34176589 PMCID: PMC8375580 DOI: 10.1016/j.biopsych.2021.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023]
Abstract
A key challenge in psychiatry research is the development of high-fidelity model systems that can be experimentally manipulated to explore and test pathophysiological mechanisms of illness. In this respect, the emerging capacity to derive neural cells and circuits from human induced pluripotent stem cells (iPSCs) has generated significant excitement. This review aims to provide a critical appraisal of the potential for iPSCs in illuminating pathophysiological mechanisms in the context of other available technical approaches. We discuss the selection of iPSC phenotypes relevant to psychiatry, the information that researchers can draw on to help guide these decisions, and how researchers choose between the use of 2-dimensional cultures and the use of more complex 3-dimensional model systems. We discuss the strengths and limitations of current models and the challenges and opportunities that they present. Finally, we discuss the potential of iPSC-based model systems for clarifying the mechanisms underlying genetic risk for psychiatry and the steps that will be needed to ensure that robust and reliable conclusions can be drawn. We argue that while iPSC-based models are ideally placed to study fundamental processes occurring within and between neural cells, they are often less well suited for case-control studies, given issues relating to statistical power and the challenges in identifying which cellular phenotypes are meaningful at the level of the whole individual. Our aim is to highlight the importance of considering the hypotheses of a given study to guide decisions about which, if any, iPSC-based system is most appropriate to address it.
Collapse
Affiliation(s)
- Alejandro De Los Angeles
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Michael B Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicola A L Hall
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Brady J Maher
- Lieber Institute for Brain Development, Baltimore, Maryland; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, Maryland; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Tunbridge
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom.
| |
Collapse
|
12
|
Early magnetic resonance imaging biomarkers of schizophrenia spectrum disorders: Toward a fetal imaging perspective. Dev Psychopathol 2021; 33:899-913. [PMID: 32489161 DOI: 10.1017/s0954579420000218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is mounting evidence to implicate the intrauterine environment as the initial pathogenic stage for neuropsychiatric disease. Recent developments in magnetic resonance imaging technology are making a multimodal analysis of the fetal central nervous system a reality, allowing analysis of structural and functional parameters. Exposures to a range of pertinent risk factors whether preconception or in utero can now be indexed using imaging techniques within the fetus' physiological environment. This approach may determine the first "hit" required for diseases that do not become clinically manifest until adulthood, and which only have subtle clinical markers during childhood and adolescence. A robust characterization of a "multi-hit" hypothesis may necessitate a longitudinal birth cohort; within this investigative paradigm, the full range of genetic and environmental risk factors can be assessed for their impact on the early developing brain. This will lay the foundation for the identification of novel biomarkers and the ability to devise methods for early risk stratification and disease prevention. However, these early markers must be followed over time: first, to account for neural plasticity, and second, to assess the effects of postnatal exposures that continue to drive the individual toward disease. We explore these issues using the schizophrenia spectrum disorders as an illustrative paradigm. However, given the potential richness of fetal magnetic resonance imaging, and the likely overlap of biomarkers, these concepts may extend to a range of neuropsychiatric conditions.
Collapse
|
13
|
Glenn MJ, Batallán Burrowes AA, Yu W, Blackmer‐Raynolds L, Norchi A, Doak AL. Progression of behavioral deficits during periadolescent development differs in female and male DISC1 knockout rats. GENES, BRAIN, AND BEHAVIOR 2021; 21:e12741. [PMID: 33960643 PMCID: PMC9744521 DOI: 10.1111/gbb.12741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
Mutations in the disrupted in schizophrenia-1 (DISC1) gene are associated with an increased risk of developing psychological disorders including schizophrenia, bipolar disorder, and depression. Assessing the impact of knocking out genes, like DISC1, in animal models provides valuable insights into the relationship between the gene and behavioral outcomes. Previous research has relied on mouse models to assess these impacts, however these may not yield as reliable or rich a behavioral analysis as can be obtained using rats. Thus, the goal of the present study was to characterize the behavioral effects of a biallelic functional deletion of the DISC1 gene in the Sprague Dawley rat. Female and male wild type and DISC1 knockout rats were assessed beginning just prior to weaning and during the post-weaning periadolescent period. The primary outcomes evaluated were activity, anxiety, responses to novel objects and conspecifics, and prepulse inhibition. These behaviors were selected as analogous indices of psychological dysfunction in humans. The DISC1 knockout had significant effects on behavior, although the kind and magnitude of deficits was different for females and males: in females, effects included hyperactivity, aversion to novelty, and a modest prepulse inhibition deficit; in males, effects in anxiety and neophobia were mild but their prepulse inhibition deficit was large. These data confirm that the DISC1 knockout rat model is an excellent way to reproduce and study symptoms of psychological disorders and provides compelling evidence for differential consequences of its dysfunction for females and males in the progression and emergence of specific behavioral deficits.
Collapse
Affiliation(s)
| | - Ariel A. Batallán Burrowes
- Department of PsychologyColby CollegeWatervilleMaineUSA,Present address:
Center for Studies in Behavioral Neurobiology, Department of PsychologyConcordia UniversityMontréalQuébecCanada
| | - Waylin Yu
- Department of PsychologyColby CollegeWatervilleMaineUSA,Present address:
Department of Pharmacology, School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Lisa Blackmer‐Raynolds
- Department of PsychologyColby CollegeWatervilleMaineUSA,Present address:
Department of PhysiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Amanda Norchi
- Department of PsychologyColby CollegeWatervilleMaineUSA
| | | |
Collapse
|
14
|
Bristow GC, Thomson DM, Openshaw RL, Mitchell EJ, Pratt JA, Dawson N, Morris BJ. 16p11 Duplication Disrupts Hippocampal-Orbitofrontal-Amygdala Connectivity, Revealing a Neural Circuit Endophenotype for Schizophrenia. Cell Rep 2021; 31:107536. [PMID: 32320645 DOI: 10.1016/j.celrep.2020.107536] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/18/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023] Open
Abstract
Chromosome 16p11.2 duplications dramatically increase risk for schizophrenia, but the mechanisms remain largely unknown. Here, we show that mice with an equivalent genetic mutation (16p11.2 duplication mice) exhibit impaired hippocampal-orbitofrontal and hippocampal-amygdala functional connectivity. Expression of schizophrenia-relevant GABAergic cell markers (parvalbumin and calbindin) is selectively decreased in orbitofrontal cortex, while somatostatin expression is decreased in lateral amygdala. When 16p11.2 duplication mice are tested in cognitive tasks dependent on hippocampal-orbitofrontal connectivity, performance is impaired in an 8-arm maze "N-back" working memory task and in a touchscreen continuous performance task. Consistent with hippocampal-amygdala dysconnectivity, deficits in ethologically relevant social behaviors are also observed. Overall, the cellular/molecular, brain network, and behavioral alterations markedly mirror those observed in schizophrenia patients. Moreover, the data suggest that 16p11.2 duplications selectively impact hippocampal-amygdaloid-orbitofrontal circuitry, supporting emerging ideas that dysfunction in this network is a core element of schizophrenia and defining a neural circuit endophenotype for the disease.
Collapse
Affiliation(s)
- Greg C Bristow
- Department of Biomedical and Life Sciences, University of Lancaster, Lancaster LA1 4YW, UK
| | - David M Thomson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Rebecca L Openshaw
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow G12 8QQ, UK
| | - Emma J Mitchell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Neil Dawson
- Department of Biomedical and Life Sciences, University of Lancaster, Lancaster LA1 4YW, UK
| | - Brian J Morris
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow G12 8QQ, UK.
| |
Collapse
|
15
|
Abstract
The formation of the human brain, which contains nearly 100 billion neurons making an average of 1000 connections each, represents an astonishing feat of self-organization. Despite impressive progress, our understanding of how neurons form the nervous system and enable function is very fragmentary, especially for the human brain. New technologies that produce large volumes of high-resolution measurements-big data-are now being brought to bear on this problem. Single-cell molecular profiling methods allow the exploration of neural diversity with increasing spatial and temporal resolution. Advances in human genetics are shedding light on the genetic architecture of neurodevelopmental disorders, and new approaches are revealing plausible neurobiological mechanisms underlying these conditions. Here, we review the opportunities and challenges of integrating large-scale genomics and genetics for the study of brain development.
Collapse
Affiliation(s)
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK. .,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| |
Collapse
|
16
|
Rujescu D, Herrling M, Hartmann AM, Maul S, Giegling I, Konte B, Strupp M. High-risk Allele for Herpes Labialis Severity at the IFNL3/4 Locus is Associated With Vestibular Neuritis. Front Neurol 2020; 11:570638. [PMID: 33133009 PMCID: PMC7579408 DOI: 10.3389/fneur.2020.570638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: Vestibular neuritis (VN) is a peripheral vestibular disorder leading to a sudden loss of unilateral vestibular function. Although the underlying etiological mechanisms for disease development are not yet known, there is evidence that a latent infection with herpes simplex virus type 1 (HSV-1) might be involved. The polymorphism rs12979860 has been associated with the severity of recurrent herpes labialis and hepatitis C virus (HCV) clearance and treatment outcome and is located within the first intron of the IFNL4 gene on chromosome 19.q13.2. This case control study was conducted to evaluate the association of rs12979860 with VN occurrence. Methods: DNA was extracted from EDTA blood of 151 VN patients and 1,775 healthy controls. Genotyping of rs12979860 was performed using iPLEX and MassARRAY Matrix Assisted Laser Desorption Ionization—Time of Flight (MALDI-TOF) mass spectrometry. For association analyses, an additive, dominant and recessive logistic regression model was calculated, using age and sex as covariates. Results: A significant association of rs12979860 with VN was obtained for the additive [OR = 1.51 (1.18–1.92); p = 9.23 × 10−4] and dominant models [OR = 2.15 (1.48–3.13); p = 5.86 × 10−5], with the T allele being more frequent in the VN group. Conclusion: By detecting a significant association of the rs12979860-T risk allele for herpes labialis severity with susceptibility to VN, this study gives further indirect evidence for an involvement of HSV-1 in VN pathology, thereby strengthening the virus hypothesis.
Collapse
Affiliation(s)
- Dan Rujescu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Marko Herrling
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Munich, Germany
| | - Annette M Hartmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephan Maul
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ina Giegling
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Bettina Konte
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Strupp
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Munich, Germany.,Department of Neurology, University Hospital Munich, Munich, Germany
| |
Collapse
|
17
|
Trifu SC, Kohn B, Vlasie A, Patrichi BE. Genetics of schizophrenia (Review). Exp Ther Med 2020; 20:3462-3468. [PMID: 32905096 PMCID: PMC7465115 DOI: 10.3892/etm.2020.8973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
A comprehensive review of the body of genetic studies on schizophrenia seems even more daunting than the battle a psychiatrist wages daily in the office with her archenemy of a thousand faces. The following article reunites some genetic, epigenetic and environmental factors of schizophrenia from revered and vast studies in a chronological and progressive fashion. Twin studies set the basics of heritability and a particular study by Davis and Phelps considers the widely ignored influence of prenatal environment in the development of schizophrenia. Mostly ignited by linkage studies, candidate gene studies explore further by fine-mapping the hypothesized variants [mostly in the forms single nucleotide polymorphisms (SNPs) and less but with greater impact copy number variations (CNVs)] associated with the disease. Genome-wide association studies (GWAS) increase considerably the sample sizes and thus the validity of the results, while the next-generation sequencing (NGS) attain the highest yet unreplicated level of validity results.
Collapse
Affiliation(s)
- Simona Corina Trifu
- Department of Neurosciences, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bianca Kohn
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Andrei Vlasie
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Bogdan-Eduard Patrichi
- Department of Psychiatry and Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
18
|
Smigielski L, Jagannath V, Rössler W, Walitza S, Grünblatt E. Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol Psychiatry 2020; 25:1718-1748. [PMID: 31907379 DOI: 10.1038/s41380-019-0601-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022]
Abstract
Schizophrenia and other psychotic disorders are highly debilitating psychiatric conditions that lack a clear etiology and exhibit polygenic inheritance underlain by pleiotropic genes. The prevailing explanation points to the interplay between predisposing genes and environmental exposure. Accumulated evidence suggests that epigenetic regulation of the genome may mediate dynamic gene-environment interactions at the molecular level by modulating the expression of psychiatric phenotypes through transcription factors. This systematic review summarizes the current knowledge linking schizophrenia and other psychotic disorders to epigenetics, based on PubMed and Web of Science database searches conducted according to the PRISMA guidelines. Three groups of mechanisms in case-control studies of human tissue (i.e., postmortem brain and bio-fluids) were considered: DNA methylation, histone modifications, and non-coding miRNAs. From the initial pool of 3,204 records, 152 studies met our inclusion criteria (11,815/11,528, 233/219, and 2,091/1,827 cases/controls for each group, respectively). Many of the findings revealed associations with epigenetic modulations of genes regulating neurotransmission, neurodevelopment, and immune function, as well as differential miRNA expression (e.g., upregulated miR-34a, miR-7, and miR-181b). Overall, actual evidence moderately supports an association between epigenetics and schizophrenia and other psychotic disorders. However, heterogeneous results and cross-tissue extrapolations call for future work. Integrating epigenetics into systems biology may critically enhance research on psychosis and thus our understanding of the disorder. This may have implications for psychiatry in risk stratification, early recognition, diagnostics, precision medicine, and other interventional approaches targeting epigenetic fingerprints.
Collapse
Affiliation(s)
- Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland. .,The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.
| | - Vinita Jagannath
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Merck Sharp & Dohme (MSD) R&D Innovation Centre, London, UK
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany.,Laboratory of Neuroscience, Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Silva MC, Haggarty SJ. Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci 2020; 1471:18-56. [PMID: 30875083 PMCID: PMC8193821 DOI: 10.1111/nyas.14012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Development of effective therapeutics for neurological disorders has historically been challenging partly because of lack of accurate model systems in which to investigate disease etiology and test new therapeutics at the preclinical stage. Human stem cells, particularly patient-derived induced pluripotent stem cells (iPSCs) upon differentiation, have the ability to recapitulate aspects of disease pathophysiology and are increasingly recognized as robust scalable systems for drug discovery. We review advances in deriving cellular models of human central nervous system (CNS) disorders using iPSCs along with strategies for investigating disease-relevant phenotypes, translatable biomarkers, and therapeutic targets. Given their potential to identify novel therapeutic targets and leads, we focus on phenotype-based, small-molecule screens employing human stem cell-derived models. Integrated efforts to assemble patient iPSC-derived cell models with deeply annotated clinicopathological data, along with molecular and drug-response signatures, may aid in the stratification of patients, diagnostics, and clinical trial success, shifting translational science and precision medicine approaches. A number of remaining challenges, including the optimization of cost-effective, large-scale culture of iPSC-derived cell types, incorporation of aging into neuronal models, as well as robustness and automation of phenotypic assays to support quantitative drug efficacy, toxicity, and metabolism testing workflows, are covered. Continued advancement of the field is expected to help fully humanize the process of CNS drug discovery.
Collapse
Affiliation(s)
- M. Catarina Silva
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| |
Collapse
|
20
|
McNeill RV, Ziegler GC, Radtke F, Nieberler M, Lesch KP, Kittel-Schneider S. Mental health dished up-the use of iPSC models in neuropsychiatric research. J Neural Transm (Vienna) 2020; 127:1547-1568. [PMID: 32377792 PMCID: PMC7578166 DOI: 10.1007/s00702-020-02197-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Genetic and molecular mechanisms that play a causal role in mental illnesses are challenging to elucidate, particularly as there is a lack of relevant in vitro and in vivo models. However, the advent of induced pluripotent stem cell (iPSC) technology has provided researchers with a novel toolbox. We conducted a systematic review using the PRISMA statement. A PubMed and Web of Science online search was performed (studies published between 2006–2020) using the following search strategy: hiPSC OR iPSC OR iPS OR stem cells AND schizophrenia disorder OR personality disorder OR antisocial personality disorder OR psychopathy OR bipolar disorder OR major depressive disorder OR obsessive compulsive disorder OR anxiety disorder OR substance use disorder OR alcohol use disorder OR nicotine use disorder OR opioid use disorder OR eating disorder OR anorexia nervosa OR attention-deficit/hyperactivity disorder OR gaming disorder. Using the above search criteria, a total of 3515 studies were found. After screening, a final total of 56 studies were deemed eligible for inclusion in our study. Using iPSC technology, psychiatric disease can be studied in the context of a patient’s own unique genetic background. This has allowed great strides to be made into uncovering the etiology of psychiatric disease, as well as providing a unique paradigm for drug testing. However, there is a lack of data for certain psychiatric disorders and several limitations to present iPSC-based studies, leading us to discuss how this field may progress in the next years to increase its utility in the battle to understand psychiatric disease.
Collapse
Affiliation(s)
- Rhiannon V McNeill
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Georg C Ziegler
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Franziska Radtke
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy University Hospital, University of Würzburg, Würzburg, Germany
| | - Matthias Nieberler
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
| |
Collapse
|
21
|
Pozhidaev IV, Boiko AS, Loonen AJM, Paderina DZ, Fedorenko OY, Tenin G, Kornetova EG, Semke AV, Bokhan NA, Wilffert B, Ivanova SA. Association of Cholinergic Muscarinic M4 Receptor Gene Polymorphism with Schizophrenia. APPLICATION OF CLINICAL GENETICS 2020; 13:97-105. [PMID: 32368127 PMCID: PMC7183770 DOI: 10.2147/tacg.s247174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Background Previous studies have linked muscarinic M4 receptors (CHRM4) to schizophrenia. Specifically, the rs2067482 polymorphism was found to be highly associated with this disease. Purpose To test whether rs2067482 and rs72910092 are potential risk factors for schizophrenia and/or pharmacogenetic markers for antipsychotic-induced tardive dyskinesia. Patients and Methods We genotyped DNA of 449 patients with schizophrenia and 134 healthy controls for rs2067482 and rs72910092 polymorphisms of the CHRM4 gene with the use of the MassARRAY® System by Agena Bioscience. Mann–Whitney test was used to compare qualitative traits and χ2 test was used for categorical traits. Results The frequency of genotypes and alleles of rs72910092 did not differ between patients with schizophrenia and control subjects. We did not reveal any statistical differences for both rs2067482 and rs72910092 between schizophrenia patients with and without tardive dyskinesia. The frequency of the C allele of the polymorphic variant rs2067482 was significantly higher in healthy persons compared to patients with schizophrenia (OR=0.51, 95% CI [0.33–0.80]; p=0.003). Accordingly, the CC genotype was found significantly more often in healthy persons compared to patients with schizophrenia (OR=0.49, 95% CI [0.31–0.80]; p=0.010). Conclusion Our study found the presence of the minor allele (T) of rs2067482 variant being associated with schizophrenia. We argue that the association of rs2067482 with schizophrenia may be via its regulatory effect on some other gene with protein kinase C and casein Kknase substrate in neurons 3 (PACSIN3) as a possible candidate. Neither rs2067482 nor rs72910092 is associated with tardive dyskinesia.
Collapse
Affiliation(s)
- Ivan V Pozhidaev
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation
| | - Anastasiia S Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Anton J M Loonen
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Diana Z Paderina
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation
| | - Olga Yu Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Gennadiy Tenin
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Elena G Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| | - Arkadiy V Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| | - Bob Wilffert
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk Polytechnic University, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
22
|
Polymorphisms in CRYBB2 encoding βB2-crystallin are associated with antisaccade performance and memory function. Transl Psychiatry 2020; 10:113. [PMID: 32317624 PMCID: PMC7174396 DOI: 10.1038/s41398-020-0791-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 02/03/2023] Open
Abstract
βB2-crystallin (gene symbol: Crybb2/CRYBB2) was first described as a structural protein of the ocular lens before it was detected in various brain regions of the mouse, including the hippocampus and the cerebral cortex. Mutations in the mouse Crybb2 gene lead to alterations of sensorimotor gating measured as prepulse inhibition (PPI) and reduced hippocampal size, combined with an altered number of parvalbumin-positive GABAergic interneurons. Decreased PPI and alterations of parvalbumin-positive interneurons are also endophenotypes that typically occur in schizophrenia. To verify the results found in mice, we genotyped 27 single nucleotide polymorphisms (SNPs) within the CRYBB2 gene and its flanking regions and investigated different schizophrenia typical endophenotypes in a sample of 510 schizophrenia patients and 1322 healthy controls. In the case-control study, no association with schizophrenia was found. However, 3 of the 4 investigated haplotype blocks indicated a decreased CRYBB2 mRNA expression. Two of these blocks were associated with poorer antisaccade task performance and altered working memory-linked functional magnetic resonance imaging signals. For the two haplotypes associated with antisaccade performance, suggestive evidence was found with visual memory and in addition, haplotype block 4 showed a nominally significant association with reduced sensorimotor gating, measured as P50 ratio. These results were not schizophrenia-specific, but could be detected in a combined sample of patients and healthy controls. This is the first study to demonstrate the importance of βB2-crystallin for antisaccade performance and memory function in humans and therefore provides implications for βB2-crystallin function in the human brain.
Collapse
|
23
|
Ma L, Semick SA, Chen Q, Li C, Tao R, Price AJ, Shin JH, Jia Y, Brandon NJ, Cross AJ, Hyde TM, Kleinman JE, Jaffe AE, Weinberger DR, Straub RE. Schizophrenia risk variants influence multiple classes of transcripts of sorting nexin 19 (SNX19). Mol Psychiatry 2020; 25:831-843. [PMID: 30635639 DOI: 10.1038/s41380-018-0293-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/16/2018] [Accepted: 10/03/2018] [Indexed: 01/15/2023]
Abstract
Genome-wide association studies (GWAS) have identified many genomic loci associated with risk for schizophrenia, but unambiguous identification of the relationship between disease-associated variants and specific genes, and in particular their effect on risk conferring transcripts, has proven difficult. To better understand the specific molecular mechanism(s) at the schizophrenia locus in 11q25, we undertook cis expression quantitative trait loci (cis-eQTL) mapping for this 2 megabase genomic region using postmortem human brain samples. To comprehensively assess the effects of genetic risk upon local expression, we evaluated multiple transcript features: genes, exons, and exon-exon junctions in multiple brain regions-dorsolateral prefrontal cortex (DLPFC), hippocampus, and caudate. Genetic risk variants strongly associated with expression of SNX19 transcript features that tag multiple rare classes of SNX19 transcripts, whereas they only weakly affected expression of an exon-exon junction that tags the majority of abundant transcripts. The most prominent class of SNX19 risk-associated transcripts is predicted to be overexpressed, defined by an exon-exon splice junction between exons 8 and 10 (junc8.10) and that is predicted to encode proteins that lack the characteristic nexin C terminal domain. Risk alleles were also associated with either increased or decreased expression of multiple additional classes of transcripts. With RACE, molecular cloning, and long read sequencing, we found a number of novel SNX19 transcripts that further define the set of potential etiological transcripts. We explored epigenetic regulation of SNX19 expression and found that DNA methylation at CpG sites near the primary transcription start site and within exon 2 partially mediate the effects of risk variants on risk-associated expression. ATAC sequencing revealed that some of the most strongly risk-associated SNPs are located within a region of open chromatin, suggesting a nearby regulatory element is involved. These findings indicate a potentially complex molecular etiology, in which risk alleles for schizophrenia generate epigenetic alterations and dysregulation of multiple classes of SNX19 transcripts.
Collapse
Affiliation(s)
- Liang Ma
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Stephen A Semick
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Chao Li
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Ran Tao
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Amanda J Price
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA.,McKusick-Nathans Institute of Genetic Medicine, Baltimore, MD, 21205, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Yankai Jia
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | | | - Nicholas J Brandon
- AstraZeneca Neuroscience, IMED Biotech Unit, AstraZeneca R&D, Boston, MA, 02451, USA
| | - Alan J Cross
- AstraZeneca Neuroscience, IMED Biotech Unit, AstraZeneca R&D, Boston, MA, 02451, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA.,Department of Mental Health, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA.,Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA.,McKusick-Nathans Institute of Genetic Medicine, Baltimore, MD, 21205, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Richard E Straub
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA.
| |
Collapse
|
24
|
Maul S, Giegling I, Fabbri C, Corponi F, Serretti A, Rujescu D. Genetics of resilience: Implications from genome-wide association studies and candidate genes of the stress response system in posttraumatic stress disorder and depression. Am J Med Genet B Neuropsychiatr Genet 2020; 183:77-94. [PMID: 31583809 DOI: 10.1002/ajmg.b.32763] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/22/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022]
Abstract
Resilience is the ability to cope with critical situations through the use of personal and socially mediated resources. Since a lack of resilience increases the risk of developing stress-related psychiatric disorders such as posttraumatic stress disorder (PTSD) and major depressive disorder (MDD), a better understanding of the biological background is of great value to provide better prevention and treatment options. Resilience is undeniably influenced by genetic factors, but very little is known about the exact underlying mechanisms. A recently published genome-wide association study (GWAS) on resilience has identified three new susceptibility loci, DCLK2, KLHL36, and SLC15A5. Further interesting results can be found in association analyses of gene variants of the stress response system, which is closely related to resilience, and PTSD and MDD. Several promising genes, such as the COMT (catechol-O-methyltransferase) gene, the serotonin transporter gene (SLC6A4), and neuropeptide Y (NPY) suggest gene × environment interaction between genetic variants, childhood adversity, and the occurrence of PTSD and MDD, indicating an impact of these genes on resilience. GWAS on PTSD and MDD provide another approach to identifying new disease-associated loci and, although the functional significance for disease development for most of these risk genes is still unknown, they are potential candidates due to the overlap of stress-related psychiatric disorders and resilience. In the future, it will be important for genetic studies to focus more on resilience than on pathological phenotypes, to develop reasonable concepts for measuring resilience, and to establish international cooperations to generate sufficiently large samples.
Collapse
Affiliation(s)
- Stephan Maul
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ina Giegling
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Filippo Corponi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
25
|
Karamaouna P, Zouraraki C, Giakoumaki SG. Cognitive Functioning and Schizotypy: A Four-Years Study. Front Psychiatry 2020; 11:613015. [PMID: 33488431 PMCID: PMC7820122 DOI: 10.3389/fpsyt.2020.613015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Although there is ample evidence from cross-sectional studies indicating cognitive deficits in high schizotypal individuals that resemble the cognitive profile of schizophrenia-spectrum patients, there is still lack of evidence by longitudinal/follow-up studies. The present study included assessments of schizotypal traits and a wide range of cognitive functions at two time points (baseline and 4-years assessments) in order to examine (a) their stability over time, (b) the predictive value of baseline schizotypy on cognition at follow-up and (c) differences in cognition between the two time points in high negative schizotypal and control individuals. Only high negative schizotypal individuals were compared with controls due to the limited number of participants falling in the other schizotypal groups at follow-up. Seventy participants (mean age: 36.17; 70% females) were assessed at baseline and follow-up. Schizotypal traits were evaluated with the Schizotypal Personality Questionnaire. We found that schizotypal traits decreased over time, except in a sub-group of participants ("schizotypy congruent") that includes individuals who consistently meet normative criteria of inclusion in either a schizotypal or control group. In these individuals, negative schizotypy and aspects of cognitive-perceptual and disorganized schizotypy remained stable. The stability of cognitive functioning also varied over time: response inhibition, aspects of cued attention switching, set-shifting and phonemic/semantic verbal fluency improved at follow-up. High negative schizotypy at baseline predicted poorer response inhibition and semantic switching at follow-up while high disorganized schizotypy predicted poorer semantic processing and complex processing speed/set-shifting. The between-group analyses revealed that response inhibition, set-shifting and complex processing speed/set-shifting were poorer in negative schizotypals compared with controls at both time points, while maintaining set and semantic switching were poorer only at follow-up. Taken together, the findings show differential stability of the schizotypal traits over time and indicate that different aspects of schizotypy predict a different pattern of neuropsychological task performance during a 4-years time window. These results are of significant use in the formulation of targeted early-intervention strategies for high-risk populations.
Collapse
Affiliation(s)
- Penny Karamaouna
- Laboratory of Neuropsychology, Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno, Greece.,University of Crete Research Center for the Humanities, The Social and Educational Sciences (UCRC), University of Crete, Rethymno, Greece
| | - Chrysoula Zouraraki
- Laboratory of Neuropsychology, Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno, Greece.,University of Crete Research Center for the Humanities, The Social and Educational Sciences (UCRC), University of Crete, Rethymno, Greece
| | - Stella G Giakoumaki
- Laboratory of Neuropsychology, Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno, Greece.,University of Crete Research Center for the Humanities, The Social and Educational Sciences (UCRC), University of Crete, Rethymno, Greece
| |
Collapse
|
26
|
Balan S, Toyoshima M, Yoshikawa T. Contribution of induced pluripotent stem cell technologies to the understanding of cellular phenotypes in schizophrenia. Neurobiol Dis 2019; 131:104162. [DOI: 10.1016/j.nbd.2018.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 02/07/2023] Open
|
27
|
Postolache TT, del Bosque-Plata L, Jabbour S, Vergare M, Wu R, Gragnoli C. Co-shared genetics and possible risk gene pathway partially explain the comorbidity of schizophrenia, major depressive disorder, type 2 diabetes, and metabolic syndrome. Am J Med Genet B Neuropsychiatr Genet 2019; 180:186-203. [PMID: 30729689 PMCID: PMC6492942 DOI: 10.1002/ajmg.b.32712] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022]
Abstract
Schizophrenia (SCZ) and major depressive disorder (MDD) in treatment-naive patients are associated with increased risk for type 2 diabetes (T2D) and metabolic syndrome (MetS). SCZ, MDD, T2D, and MetS are often comorbid and their comorbidity increases cardiovascular risk: Some risk genes are likely co-shared by them. For instance, transcription factor 7-like 2 (TCF7L2) and proteasome 26S subunit, non-ATPase 9 (PSMD9) are two genes independently reported as contributing to T2D and SCZ, and PSMD9 to MDD as well. However, there are scarce data on the shared genetic risk among SCZ, MDD, T2D, and/or MetS. Here, we briefly describe T2D, MetS, SCZ, and MDD and their genetic architecture. Next, we report separately about the comorbidity of SCZ and MDD with T2D and MetS, and their respective genetic overlap. We propose a novel hypothesis that genes of the prolactin (PRL)-pathway may be implicated in the comorbidity of these disorders. The inherited predisposition of patients with SCZ and MDD to psychoneuroendocrine dysfunction may confer increased risk of T2D and MetS. We illustrate a strategy to identify risk variants in each disorder and in their comorbid psychoneuroendocrine and mental-metabolic dysfunctions, advocating for studies of genetically homogeneous and phenotype-rich families. The results will guide future studies of the shared predisposition and molecular genetics of new homogeneous endophenotypes of SCZ, MDD, and metabolic impairment.
Collapse
Affiliation(s)
- Teodor T. Postolache
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, Maryland,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Denver, Colorado,Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, Maryland
| | - Laura del Bosque-Plata
- National Institute of Genomic Medicine, Nutrigenetics and Nutrigenomic Laboratory, Mexico City, Mexico
| | - Serge Jabbour
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolic Disease, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael Vergare
- Department of Psychiatry and Human Behavior, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rongling Wu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania,Department of Statistics, Penn State College of Medicine, Hershey, Pennsylvania
| | - Claudia Gragnoli
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolic Disease, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania,Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania,Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, Italy
| |
Collapse
|
28
|
Piluso G, Monteleone P, Galderisi S, Giugliano T, Bertolino A, Rocca P, Rossi A, Mucci A, Aguglia E, Andriola I, Bellomo A, Comparelli A, Gambi F, Fagiolini A, Marchesi C, Roncone R, Sacchetti E, Santonastaso P, Siracusano A, Stratta P, Tortorella A, Steardo L, Bucci P, Nigro V, Maj M. Assessment of de novo copy-number variations in Italian patients with schizophrenia: Detection of putative mutations involving regulatory enhancer elements. World J Biol Psychiatry 2019; 20:126-136. [PMID: 29069978 DOI: 10.1080/15622975.2017.1395072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Variants appearing de novo in genes regulating key neurodevelopmental processes and/or in non-coding cis-regulatory elements (CREs), as enhancers, may increase the risk for schizophrenia. However, CREs involvement in schizophrenia needs to be explored more deeply. METHODS We investigated de novo copy-number variations (CNVs) in the whole-genomic DNA obtained from 46 family trios of schizophrenia probands by using the Enhancer Chip, a customised array CGH able to investigate the whole genome with a 300-kb resolution, specific disease loci at a ten-fold higher resolution, and which was highly enriched in probes in more than 1,250 enhancer elements selected from Vista Enhancer Browser. RESULTS In seven patients, we found de novo CNVs, two of which overlapped VISTA enhancer elements. De novo CNVs encompass genes (CNTNAP2, MAGI1, TSPAN7 and MET) involved in brain development, while that involving the enhancer element hs1043, also includes ZIC1, which plays a role in neural development and is responsible of behavioural abnormalities in Zic mutant mice. CONCLUSIONS These findings provide further evidence for the involvement of de novo CNVs in the pathogenesis of schizophrenia and suggest that CNVs affecting regulatory enhancer elements could contribute to the genetic vulnerability to the disorder.
Collapse
Affiliation(s)
- Giulio Piluso
- a Department of Biochemistry, Biophysics and General Pathology , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Palmiero Monteleone
- b Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Neuroscience , University of Salerno , Salerno , Italy
| | - Silvana Galderisi
- c Department of Psychiatry , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Teresa Giugliano
- a Department of Biochemistry, Biophysics and General Pathology , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Alessandro Bertolino
- d Department of Neurological and Psychiatric Sciences , University of Bari , Bari , Italy
| | - Paola Rocca
- e Department of Neuroscience, Section of Psychiatry , University of Turin , Turin , Italy
| | - Alessandro Rossi
- f Department of Biotechnological and Applied Clinical Sciences, Section of Psychiatry , University of L'Aquila , L'Aquila , Italy
| | - Armida Mucci
- c Department of Psychiatry , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Eugenio Aguglia
- g Department of Clinical and Molecular Biomedicine, Psychiatry Unit , University of Catania , Catania , Italy
| | - Ileana Andriola
- d Department of Neurological and Psychiatric Sciences , University of Bari , Bari , Italy
| | - Antonello Bellomo
- h Department of Medical Sciences, Psychiatry Unit , University of Foggia , Foggia , Italy
| | - Anna Comparelli
- i Department of Neurosciences, Mental Health and Sensory Organs , S. Andrea Hospital, Sapienza University of Rome , Rome , Italy
| | - Francesco Gambi
- j Department of Neuroscience and Imaging, Chair of Psychiatry , G. D'Annunzio University , Chieti , Italy
| | - Andrea Fagiolini
- k Department of Molecular Medicine and Clinical Department of Mental Health , University of Siena , Siena , Italy
| | - Carlo Marchesi
- l Department of Neuroscience, Psychiatry Unit , University of Parma , Parma , Italy
| | - Rita Roncone
- m Department of Life, Health and Environmental Sciences, Unit of Psychiatry , University of L'Aquila , L'Aquila , Italy
| | - Emilio Sacchetti
- n Psychiatric Unit, School of Medicine, Department of Mental Health , University of Brescia and Spedali Civili Hospital , Brescia , Italy
| | - Paolo Santonastaso
- o Psychiatric Clinic, Department of Neurosciences , University of Padua , Padua , Italy
| | - Alberto Siracusano
- p Department of Systems Medicine, Chair of Psychiatry , Tor Vergata University of Rome , Rome , Italy
| | - Paolo Stratta
- f Department of Biotechnological and Applied Clinical Sciences, Section of Psychiatry , University of L'Aquila , L'Aquila , Italy
| | | | - Luca Steardo
- c Department of Psychiatry , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Paola Bucci
- c Department of Psychiatry , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Vincenzo Nigro
- a Department of Biochemistry, Biophysics and General Pathology , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Mario Maj
- c Department of Psychiatry , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | | |
Collapse
|
29
|
Igeta H, Watanabe Y, Morikawa R, Ikeda M, Otsuka I, Hoya S, Koizumi M, Egawa J, Hishimoto A, Iwata N, Someya T. Rare compound heterozygous missense SPATA7 variations and risk of schizophrenia; whole-exome sequencing in a consanguineous family with affected siblings, follow-up sequencing and a case-control study. Neuropsychiatr Dis Treat 2019; 15:2353-2363. [PMID: 31695380 PMCID: PMC6707433 DOI: 10.2147/ndt.s218773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Whole-exome sequencing (WES) of multiplex families is a promising strategy for identifying causative variations for common diseases. To identify rare recessive risk variations for schizophrenia, we performed a WES study in a consanguineous family with affected siblings. We then performed follow-up sequencing of SPATA7 in schizophrenia-affected families. In addition, we performed a case-control study to investigate association between SPATA7 variations and schizophrenia. PATIENTS AND METHODS WES was performed on two affected siblings and their unaffected parents, who were second cousins, of a multiplex schizophrenia family. Subsequently, we sequenced the coding region of SPATA7, a potential risk gene identified by the WES analysis, in 142 affected offspring from 137 families for whom parental DNA samples were available. We further tested rare recessive SPATA7 variations, identified by WES and sequencing, for associations with schizophrenia in 2,756 patients and 2,646 controls. RESULTS Our WES analysis identified rare compound heterozygous missense SPATA7 variations, p.Asp134Gly and p.Ile332Thr, in both affected siblings. Sequencing SPATA7 coding regions from 137 families identified no rare recessive variations in affected offspring. In the case-control study, we did not detect the rare compound heterozygous SPATA7 missense variations in patients or controls. CONCLUSION Our data does not support the role of the rare compound heterozygous SPATA7 missense variations p.Asp134Gly and p.Ile332Thr in conferring a substantial risk of schizophrenia.
Collapse
Affiliation(s)
- Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryo Morikawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Satoshi Hoya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masataka Koizumi
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
30
|
Rovný R, Marko M, Katina S, Murínová J, Roháriková V, Cimrová B, Repiská G, Minárik G, Riečanský I. Association between genetic variability of neuronal nitric oxide synthase and sensorimotor gating in humans. Nitric Oxide 2018; 80:32-36. [PMID: 30096361 DOI: 10.1016/j.niox.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/15/2018] [Accepted: 08/06/2018] [Indexed: 11/17/2022]
Abstract
Research increasingly suggests that nitric oxide (NO) plays a role in the pathogenesis of schizophrenia. One important line of evidence comes from genetic studies, which have repeatedly detected an association between the neuronal isoform of nitric oxide synthase (nNOS or NOS1) and schizophrenia. However, the pathogenetic pathways linking nNOS, NO, and the disorder remain poorly understood. A deficit in sensorimotor gating is considered to importantly contribute to core schizophrenia symptoms such as psychotic disorganization and thought disturbance. We selected three candidate nNOS polymorphisms (Ex1f-VNTR, rs6490121 and rs41279104), associated with schizophrenia and cognition in previous studies, and tested their association with the efficiency of sensorimotor gating in healthy human adults. We found that risk variants of Ex1f-VNTR and rs6490121 (but not rs41279104) were associated with a weaker prepulse inhibition (PPI) of the acoustic startle reflex, a standard measure of sensorimotor gating. Furthermore, the effect of presence of risk variants in Ex1f-VNTR and rs6490121 was additive: PPI linearly decreased with increasing number of risk alleles, being highest in participants with no risk allele, while lowest in individuals who carry three risk alleles. Our findings indicate that NO is involved in the regulation of sensorimotor gating, and highlight one possible pathogenetic mechanism for NO playing a role in the development of schizophrenia psychosis.
Collapse
Affiliation(s)
- Rastislav Rovný
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Marko
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Stanislav Katina
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jana Murínová
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Roháriková
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Cimrová
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Gabriela Repiská
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Gabriel Minárik
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Igor Riečanský
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Social, Cognitive and Affective Neuroscience Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria.
| |
Collapse
|
31
|
Abstract
Neuroimaging and recent genetics discoveries have raised many questions regarding the current diagnostic criteria of psychiatric diseases and the current classifications used, which are still based on subjective clinical assessment. Despite high-quality research in brain neuroscience and evidence-based guidelines in many psychiatric diseases, some therapeutic issues are still a matter of debate. These controversial issues will be discussed in this 20th anniversary issue.
Collapse
|
32
|
Sengpiel F. Overview: neuroplasticity and synaptic function in neuropsychiatric disorders. J Physiol 2018; 596:2745-2746. [PMID: 30008191 PMCID: PMC6046064 DOI: 10.1113/jp275940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Frank Sengpiel
- School of Biosciences, Cardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| |
Collapse
|
33
|
LIU D, CEN H, JIANG K, XU Y. Research Progress in Biological Studies of Schizophrenia in China in 2017. SHANGHAI ARCHIVES OF PSYCHIATRY 2018; 30:147-153. [PMID: 30858666 PMCID: PMC6410407 DOI: 10.11919/j.issn.1002-0829.218041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Schizophrenia is a severe mental disorder and its etiology and pathological mechanism are unknown. This article mainly introduces the progress of biological studies of schizophrenia in China in 2017, including neuroimaging, genetics, and immunology studies. It also introduces the research progress of high-risk psychotic syndrome and physiotherapy.
Collapse
Affiliation(s)
- Dengtang LIU
- * Mailing address: 600 South Wanping RD, Shanghai, China. Postcode: 200030.
| | | | | | | |
Collapse
|
34
|
Velásquez E, Nogueira FCS, Velásquez I, Schmitt A, Falkai P, Domont GB, Martins-de-Souza D. Synaptosomal Proteome of the Orbitofrontal Cortex from Schizophrenia Patients Using Quantitative Label-Free and iTRAQ-Based Shotgun Proteomics. J Proteome Res 2017; 16:4481-4494. [PMID: 28949146 DOI: 10.1021/acs.jproteome.7b00422] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schizophrenia is a chronic and incurable neuropsychiatric disorder that affects about one percent of the world population. The proteomic characterization of the synaptosome fraction of the orbitofrontal cortex is useful for providing valuable information about the molecular mechanisms of synaptic functions in these patients. Quantitative analyses of synaptic proteins were made with eight paranoid schizophrenia patients and a pool of eight healthy controls free of mental diseases. Label-free and iTRAQ labeling identified a total of 2018 protein groups. Statistical analyses revealed 12 and 55 significantly dysregulated proteins by iTRAQ and label-free, respectively. Quantitative proteome analyses showed an imbalance in the calcium signaling pathway and proteins such as reticulon-1 and cytochrome c, related to endoplasmic reticulum stress and programmed cell death. Also, it was found that there is a significant increase in limbic-system-associated membrane protein and α-calcium/calmodulin-dependent protein kinase II, associated with the regulation of human behavior. Our data contribute to a better understanding about apoptosis as a possible pathophysiological mechanism of this disease as well as neural systems supporting social behavior in schizophrenia. This study also is a joint effort of the Chr 15 C-HPP team and the Human Brain Proteome Project of B/D-HPP. All MS proteomics data are deposited in the ProteomeXchange Repository under PXD006798.
Collapse
Affiliation(s)
- Erika Velásquez
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro , Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil
| | - Fabio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro , Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil.,Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro , Rio de Janeiro, 21941-598 Rio de Janeiro, Brazil
| | | | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich (LMU) , 80336 Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich (LMU) , 80336 Munich, Germany
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro , Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP) , Campinas, 13083-862 São Paulo, Brazil.,UNICAMP's Neurobiology Center , Campinas, 13083-888 São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico , São Paulo, 01060-970 São Paulo, Brazil
| |
Collapse
|
35
|
Attempts to replicate genetic associations with schizophrenia in a cohort from north India. NPJ SCHIZOPHRENIA 2017; 3:28. [PMID: 28855605 PMCID: PMC5577284 DOI: 10.1038/s41537-017-0030-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/22/2022]
Abstract
Schizophrenia is a chronic, severe, heritable disorder. Genome-wide association studies, conducted predominantly among Caucasians, have indicated > 100 risk alleles, with most significant SNPs on chromosome 6. There is growing interest as to whether these risk alleles are relevant in other ethnic groups as well. Neither an Indian genome-wide association studies nor a systematic replication of GWAS findings from other populations are reported. Thus, we analyzed 32 SNPs, including those associated in the Caucasian ancestry GWAS and other candidate gene studies, in a north Indian schizophrenia cohort (n = 1009 patients; n = 1029 controls) using a Sequenom mass array. Cognitive functioning was also assessed using the Hindi version of the Penn Computerized Neuropsychological Battery in a subset of the sample. MICB (rs6916394) a previously noted Caucasian candidate, was associated with schizophrenia at the p = 0.02 level. One SNP, rs2064430, AHI1 (6q23.3, SZ Gene database SNP) was associated at the p = 0.04 level. Other candidates had even less significance with rs6932590, intergenic (p = 0.07); rs3130615, MICB (p = 0.08); rs6916921, NFKBIL1 (p = 0.08) and rs9273012, HLA-DQA1 (p = 0.06) and haplotypic associations (p = 0.01-0.05) of 6p SNPs were detected. Of note, nominally significant associations with cognitive variables were identified, after covarying for age and diagnostic status. SNPs with p < 0.01 were: rs3130375, with working memory (p = 0.007); rs377763, with sensorimotor (p = 0.004); rs6916921, NFKBIL1 with emotion (p = 0.01). This relative lack of significant positive associations is likely influenced by the sample size and/or differences in the genetic architecture of schizophrenia across populations, encouraging population specific studies to identify shared and unique genetic risk factors for schizophrenia. POPULATION GENETICS CAUCASIANS AND INDIANS EXHIBIT GENETIC DISJUNCTION IN SCHIZOPHRENIA: A tenuous link between schizophrenia's genetic basis in Caucasians and Indians calls for more comprehensive research on the latter. Large-scale analyses of the human genome have identified over a hundred genetic variations associated with schizophrenia; however, these have focused largely on European and North American populations. Researchers led by the University of Delhi's BK Thelma, and Smita Deshpande of the Dr. Ram Manohar Lohia Hospital, India, selected 32 gene variations from past studies to look for similar associations in Indians. Many assays met limited success, though the team found significant correlations between certain variations and specific cognitive hallmarks of schizophrenia. Aside from differences in genetic architecture, the lack of adequate and comparable genetic data on schizophrenia in Indians may contribute to this apparent difference to schizophrenia in Caucasian patients. This shows a clear need for more schizophrenia genetic studies in India.
Collapse
|
36
|
Chaumette B, Kebir O, Krebs MO. [Genetics and epigenetics of schizophrenia and other psychoses]. Biol Aujourdhui 2017; 211:69-82. [PMID: 28682228 DOI: 10.1051/jbio/2017015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Schizophrenia and other psychoses are categorical psychiatric diagnoses corresponding to frequent and heterogeneous disorders. Their physiopathology still remains largely unknown despite numerous recent advances. In particular, the last decade has identified different types of genetic variants, thanks to emergence of high-throughput methods. These methods allow both the identification of rare variants with a large effect such as punctual mutations or copy-number variants and the identification of frequent variants with a limited effect such as polymorphisms. Many impacted genes have been identified showing a very high genetic heterogeneity of psychoses. These genes are overrepresented in synaptic and neurotransmission pathways. Only a small fraction of psychoses could be easily explained by genetics but this screening in clinical practice is important as it can lead to therapeutic challenge or genetic counselling. Nowadays, it is clear that the pathophysiology of the psychoses can only be understood by an integrative approach taking into account the interaction between genes and environment. This interaction could be mediated by the epigenome defined as the modification of gene expression without changes in DNA sequence. Epigenome is stable but could be modified by environmental factors. Several epigenetic mechanisms have been studied in psychosis, in particular the DNA methylation, the modification of histones and the microRNA. All of these mechanisms are under regulation by genetic factors and variants in these epigenetic-involved genes and cofactors have been also associated with schizophrenia. Thus, pathophysiology of psychosis is complex and morestudiesare needed before definitive conclusions. Altogether, the recent advances in the genetics and epigenetics of psychosis are promising and could open the way to a recategorization of these disorders as well as the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Boris Chaumette
- Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Oussama Kebir
- INSERM, U894, Laboratoire "Physiopathologie des maladies psychiatriques", Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014 Paris, France Institut de Psychiatrie-GDR 3557, Centre Hospitalier Sainte-Anne, Paris, France
| | - Marie-Odile Krebs
- INSERM, U894, Laboratoire "Physiopathologie des maladies psychiatriques", Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014 Paris, France Institut de Psychiatrie-GDR 3557, Centre Hospitalier Sainte-Anne, Paris, France
| |
Collapse
|
37
|
|