1
|
Panizzutti B, Bortolasci CC, Spolding B, Kidnapillai S, Connor T, Martin SD, Truong TTT, Liu ZSJ, Gray L, Kowalski GM, McGee SL, Kim JH, Berk M, Walder K. Effects of antipsychotic drugs on energy metabolism. Eur Arch Psychiatry Clin Neurosci 2024; 274:1125-1135. [PMID: 38072867 DOI: 10.1007/s00406-023-01727-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/12/2023] [Indexed: 07/06/2024]
Abstract
Schizophrenia (SCZ) is a complex neuropsychiatric disorder associated with altered bioenergetic pathways and mitochondrial dysfunction. Antipsychotic medications, both first and second-generation, are commonly prescribed to manage SCZ symptoms, but their direct impact on mitochondrial function remains poorly understood. In this study, we investigated the effects of commonly prescribed antipsychotics on bioenergetic pathways in cultured neurons. We examined the impact of risperidone, aripiprazole, amisulpride, and clozapine on gene expression, mitochondrial bioenergetic profile, and targeted metabolomics after 24-h treatment, using RNA-seq, Seahorse XF24 Flux Analyser, and gas chromatography-mass spectrometry (GC-MS), respectively. Risperidone treatment reduced the expression of genes involved in oxidative phosphorylation, the tricarboxylic acid cycle, and glycolysis pathways, and it showed a tendency to decrease basal mitochondrial respiration. Aripiprazole led to dose-dependent reductions in various mitochondrial function parameters without significantly affecting gene expression. Aripiprazole, amisulpride and clozapine treatment showed an effect on the tricarboxylic acid cycle metabolism, leading to more abundant metabolite levels. Antipsychotic drug effects on mitochondrial function in SCZ are multifaceted. While some drugs have greater effects on gene expression, others appear to exert their effects through enzymatic post-translational or allosteric modification of enzymatic activity. Understanding these effects is crucial for optimising treatment strategies for SCZ. Novel therapeutic interventions targeting energy metabolism by post-transcriptional pathways might be more effective as these can more directly and efficiently regulate energy production.
Collapse
Affiliation(s)
- Bruna Panizzutti
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Briana Spolding
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Srisaiyini Kidnapillai
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Timothy Connor
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Sheree D Martin
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Trang T T Truong
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Zoe S J Liu
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Laura Gray
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Greg M Kowalski
- Metabolic Research Unit, School of Medicine, Institute for Physical Activity and Nutrition, Waurn Ponds, Geelong, VIC, Australia
| | - Sean L McGee
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Jee Hyun Kim
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Michael Berk
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
- Barwon Health, University Hospital Geelong, Geelong, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Orygen, The National Centre for Excellence in Youth Mental Health, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ken Walder
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia.
| |
Collapse
|
2
|
Rani N, Kaushik A, Kardam S, Kag S, Raj VS, Ambasta RK, Kumar P. Reimagining old drugs with new tricks: Mechanisms, strategies and notable success stories in drug repurposing for neurological diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:23-70. [PMID: 38789181 DOI: 10.1016/bs.pmbts.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Recent evolution in drug repurposing has brought new anticipation, especially in the conflict against neurodegenerative diseases (NDDs). The traditional approach to developing novel drugs for these complex disorders is laborious, time-consuming, and often abortive. However, drug reprofiling which is the implementation of illuminating novel therapeutic applications of existing approved drugs, has shown potential as a promising strategy to accelerate the hunt for therapeutics. The advancement of computational approaches and artificial intelligence has expedited drug repurposing. These progressive technologies have enabled scientists to analyse extensive datasets and predict potential drug-disease interactions. By prospecting into the existing pharmacological knowledge, scientists can recognise potential therapeutic candidates for reprofiling, saving precious time and resources. Preclinical models have also played a pivotal role in this field, confirming the effectiveness and mechanisms of action of repurposed drugs. Several studies have occurred in recent years, including the discovery of available drugs that demonstrate significant protective effects in NDDs, relieve debilitating symptoms, or slow down the progression of the disease. These findings highlight the potential of repurposed drugs to change the landscape of NDD treatment. Here, we present an overview of recent developments and major advances in drug repurposing intending to provide an in-depth analysis of traditional drug discovery and the strategies, approaches and technologies that have contributed to drug repositioning. In addition, this chapter attempts to highlight successful case studies of drug repositioning in various therapeutic areas related to NDDs and explore the clinical trials, challenges and limitations faced by researchers in the field. Finally, the importance of drug repositioning in drug discovery and development and its potential to address discontented medical needs is also highlighted.
Collapse
Affiliation(s)
- Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shefali Kardam
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Sonika Kag
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - V Samuel Raj
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India.
| |
Collapse
|
3
|
Dean B, Scarr E. Common changes in rat cortical gene expression after valproate or lithium treatment particularly affect pre- and post-synaptic pathways that regulate four neurotransmitters systems. World J Biol Psychiatry 2024; 25:54-64. [PMID: 37722808 DOI: 10.1080/15622975.2023.2258972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
OBJECTIVES We have postulated that common changes in gene expression after treatment with different therapeutic classes of psychotropic drugs contribute to their common therapeutic mechanisms of action. METHODS To test this hypothesis, we measured levels of cortical coding and non-coding RNA using GeneChip® Rat Exon 1.0 ST Array after treatment with vehicle (chow only), chow containing 1.8 g lithium carbonate/kg (n = 10) or chow containing 12 g sodium valproate/kg (n = 10) for 28 days. Differences in levels of RNA were identified using JMP Genomics 13 and the Panther Gene Ontology Classification System was used to identify potential consequences of RNA. RESULTS Compared to vehicle treatment, levels of cortical RNA for 543 and 583 coding and non-coding RNAs were different after treatment with valproate and lithium, respectively. Moreover, levels of 323 coding and non-coding RNAs were altered in a highly correlated way by treatment with valproate and lithium, changes that would impact on cholinergic, glutamatergic, serotonergic and dopaminergic neurotransmission as well as on voltage gated ion channels. CONCLUSIONS Our study suggests that treating with mood stabilisers cause many common changes in levels of RNA which will impact on CNS function, particularly affecting post-synaptic muscarinic receptor functioning and the release of multiple neurotransmitters.
Collapse
Affiliation(s)
- Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Bortolasci CC, Kidnapillai S, Spolding B, Truong TTT, Connor T, Swinton C, Panizzutti B, Liu ZSJ, Sanigorski A, Dean OM, Crowley T, Richardson M, Bozaoglu K, Vlahos K, Cowdery S, Watmuff B, Steyn SF, Wolmarans DW, Engelbrecht BJ, Perry C, Drummond K, Pang T, Jamain S, Gray L, McGee SL, Harvey BH, Kim JH, Leboyer M, Berk M, Walder K. Use of a gene expression signature to identify trimetazidine for repurposing to treat bipolar depression. Bipolar Disord 2023; 25:661-670. [PMID: 36890661 PMCID: PMC10946906 DOI: 10.1111/bdi.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
OBJECTIVES The aim of this study was to repurpose a drug for the treatment of bipolar depression. METHODS A gene expression signature representing the overall transcriptomic effects of a cocktail of drugs widely prescribed to treat bipolar disorder was generated using human neuronal-like (NT2-N) cells. A compound library of 960 approved, off-patent drugs were then screened to identify those drugs that affect transcription most similar to the effects of the bipolar depression drug cocktail. For mechanistic studies, peripheral blood mononuclear cells were obtained from a healthy subject and reprogrammed into induced pluripotent stem cells, which were then differentiated into co-cultured neurons and astrocytes. Efficacy studies were conducted in two animal models of depressive-like behaviours (Flinders Sensitive Line rats and social isolation with chronic restraint stress rats). RESULTS The screen identified trimetazidine as a potential drug for repurposing. Trimetazidine alters metabolic processes to increase ATP production, which is thought to be deficient in bipolar depression. We showed that trimetazidine increased mitochondrial respiration in cultured human neuronal-like cells. Transcriptomic analysis in induced pluripotent stem cell-derived neuron/astrocyte co-cultures suggested additional mechanisms of action via the focal adhesion and MAPK signalling pathways. In two different rodent models of depressive-like behaviours, trimetazidine exhibited antidepressant-like activity with reduced anhedonia and reduced immobility in the forced swim test. CONCLUSION Collectively our data support the repurposing of trimetazidine for the treatment of bipolar depression.
Collapse
Affiliation(s)
- Chiara C. Bortolasci
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Srisaiyini Kidnapillai
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Briana Spolding
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Trang T. T. Truong
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Timothy Connor
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Courtney Swinton
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Bruna Panizzutti
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Zoe S. J. Liu
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Andrew Sanigorski
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Olivia M. Dean
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Tamsyn Crowley
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
- Bioinformatics Core Research Facility (BCRF)Deakin UniversityGeelongAustralia
| | - Mark Richardson
- Bioinformatics Core Research Facility (BCRF)Deakin UniversityGeelongAustralia
| | - Kiymet Bozaoglu
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Katerina Vlahos
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Stephanie Cowdery
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Brad Watmuff
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Stephan F. Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
| | - De Wet Wolmarans
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
| | - Barend J. Engelbrecht
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
| | - Christina Perry
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Katherine Drummond
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Terence Pang
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Stéphane Jamain
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP‐HP, DMU IMPACT, FHU ADAPTFondation FondaMentalCréteilFrance
| | - Laura Gray
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Sean L. McGee
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Brian H. Harvey
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Mental Health and Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Jee Hyun Kim
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Marion Leboyer
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP‐HP, DMU IMPACT, FHU ADAPTFondation FondaMentalCréteilFrance
| | - Michael Berk
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Orygen, The National Centre of Excellence in Youth Mental HealthParkvilleAustralia
| | - Ken Walder
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| |
Collapse
|
5
|
Bortolasci CC, Jaehne EJ, Hernández D, Spolding B, Connor T, Panizzutti B, Dean OM, Crowley TM, Yung AR, Gray L, Kim JH, van den Buuse M, Berk M, Walder K. Metergoline Shares Properties with Atypical Antipsychotic Drugs Identified by Gene Expression Signature Screen. Neurotox Res 2023; 41:502-513. [PMID: 37922109 PMCID: PMC10682262 DOI: 10.1007/s12640-023-00673-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 11/05/2023]
Abstract
Novel approaches are required to find new treatments for schizophrenia and other neuropsychiatric disorders. This study utilised a combination of in vitro transcriptomics and in silico analysis with the BROAD Institute's Connectivity Map to identify drugs that can be repurposed to treat psychiatric disorders. Human neuronal (NT2-N) cells were treated with a combination of atypical antipsychotic drugs commonly used to treat psychiatric disorders (such as schizophrenia, bipolar disorder, and major depressive disorder), and differential gene expression was analysed. Biological pathways with an increased gene expression included circadian rhythm and vascular endothelial growth factor signalling, while the adherens junction and cell cycle pathways were transcriptionally downregulated. The Connectivity Map (CMap) analysis screen highlighted drugs that affect global gene expression in a similar manner to these psychiatric disorder treatments, including several other antipsychotic drugs, confirming the utility of this approach. The CMap screen specifically identified metergoline, an ergot alkaloid currently used to treat seasonal affective disorder, as a drug of interest. In mice, metergoline dose-dependently reduced MK-801- or methamphetamine-induced locomotor hyperactivity confirming the potential of metergoline to treat positive symptoms of schizophrenia in an animal model. Metergoline had no effects on prepulse inhibition deficits induced by MK-801 or methamphetamine. Taken together, metergoline appears a promising drug for further studies to be repurposed as a treatment for schizophrenia and possibly other psychiatric disorders.
Collapse
Affiliation(s)
- Chiara C Bortolasci
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Emily J Jaehne
- School of Psychology and Public Health, La Trobe University, Bundoora, Australia
| | - Damián Hernández
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia.
| | - Briana Spolding
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Timothy Connor
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Bruna Panizzutti
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Olivia M Dean
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
- Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Tamsyn M Crowley
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Alison R Yung
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
- School of Health Sciences, University of Manchester, Manchester, UK
- Centre for Youth Mental Health, University of Melbourne, Parkville, Australia
| | - Laura Gray
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
- Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Jee Hyun Kim
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
- Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | | | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Ken Walder
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| |
Collapse
|
6
|
Khanra S, Reddy P, Giménez-Palomo A, Park CHJ, Panizzutti B, McCallum M, Arumugham SS, Umesh S, Debnath M, Das B, Venkatasubramanian G, Ashton M, Turner A, Dean OM, Walder K, Vieta E, Yatham LN, Pacchiarotti I, Reddy YCJ, Goyal N, Kesavan M, Colomer L, Berk M, Kim JH. Metabolic regulation to treat bipolar depression: mechanisms and targeting by trimetazidine. Mol Psychiatry 2023; 28:3231-3242. [PMID: 37386057 PMCID: PMC10618096 DOI: 10.1038/s41380-023-02134-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Bipolar disorder's core feature is the pathological disturbances in mood, often accompanied by disrupted thinking and behavior. Its complex and heterogeneous etiology implies that a range of inherited and environmental factors are involved. This heterogeneity and poorly understood neurobiology pose significant challenges to existing drug development paradigms, resulting in scarce treatment options, especially for bipolar depression. Therefore, novel approaches are needed to discover new treatment options. In this review, we first highlight the main molecular mechanisms known to be associated with bipolar depression-mitochondrial dysfunction, inflammation and oxidative stress. We then examine the available literature for the effects of trimetazidine in said alterations. Trimetazidine was identified without a priori hypothesis using a gene-expression signature for the effects of a combination of drugs used to treat bipolar disorder and screening a library of off-patent drugs in cultured human neuronal-like cells. Trimetazidine is used to treat angina pectoris for its cytoprotective and metabolic effects (improved glucose utilization for energy production). The preclinical and clinical literature strongly support trimetazidine's potential to treat bipolar depression, having anti-inflammatory and antioxidant properties while normalizing mitochondrial function only when it is compromised. Further, trimetazidine's demonstrated safety and tolerability provide a strong rationale for clinical trials to test its efficacy to treat bipolar depression that could fast-track its repurposing to address such an unmet need as bipolar depression.
Collapse
Affiliation(s)
- Sourav Khanra
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Preethi Reddy
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Anna Giménez-Palomo
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Chun Hui J Park
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Bruna Panizzutti
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Madeleine McCallum
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Shyam Sundar Arumugham
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Shreekantiah Umesh
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Monojit Debnath
- Department of Human Genetics, NIMHANS, Bengaluru, Karnataka, India
| | - Basudeb Das
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Melanie Ashton
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Alyna Turner
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Olivia M Dean
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ken Walder
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Lakshmi N Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Isabella Pacchiarotti
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Y C Janardhan Reddy
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Nishant Goyal
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Muralidharan Kesavan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Lluc Colomer
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Michael Berk
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Jee Hyun Kim
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Hicks EM, Seah C, Cote A, Marchese S, Brennand KJ, Nestler EJ, Girgenti MJ, Huckins LM. Integrating genetics and transcriptomics to study major depressive disorder: a conceptual framework, bioinformatic approaches, and recent findings. Transl Psychiatry 2023; 13:129. [PMID: 37076454 PMCID: PMC10115809 DOI: 10.1038/s41398-023-02412-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and heterogeneous psychiatric syndrome with genetic and environmental influences. In addition to neuroanatomical and circuit-level disturbances, dysregulation of the brain transcriptome is a key phenotypic signature of MDD. Postmortem brain gene expression data are uniquely valuable resources for identifying this signature and key genomic drivers in human depression; however, the scarcity of brain tissue limits our capacity to observe the dynamic transcriptional landscape of MDD. It is therefore crucial to explore and integrate depression and stress transcriptomic data from numerous, complementary perspectives to construct a richer understanding of the pathophysiology of depression. In this review, we discuss multiple approaches for exploring the brain transcriptome reflecting dynamic stages of MDD: predisposition, onset, and illness. We next highlight bioinformatic approaches for hypothesis-free, genome-wide analyses of genomic and transcriptomic data and their integration. Last, we summarize the findings of recent genetic and transcriptomic studies within this conceptual framework.
Collapse
Affiliation(s)
- Emily M Hicks
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Carina Seah
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Alanna Cote
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Shelby Marchese
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
8
|
Lake J, Bortolasci CC, Stuart AL, Pasco JA, Kidnapillai S, Spolding B, Truong TTT, Panizzutti B, Liu ZSJ, Dean OM, Crowley T, Richardson M, Kim JH, Berk M, Williams LJ, Walder K. Metformin is Protective Against the Development of Mood Disorders. PHARMACOPSYCHIATRY 2023; 56:25-31. [PMID: 36170869 DOI: 10.1055/a-1936-3580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Mood disorders are a major cause of disability, and current treatment options are inadequate for reducing the burden on a global scale. The aim of this project was to identify drugs suitable for repurposing to treat mood disorders. METHODS This mixed-method study utilized gene expression signature technology and pharmacoepidemiology to investigate drugs that may be suitable for repurposing to treat mood disorders. RESULTS The transcriptional effects of a combination of drugs commonly used to treat mood disorders included regulation of the steroid and terpenoid backbone biosynthesis pathways, suggesting a mechanism involving cholesterol biosynthesis, and effects on the thyroid hormone signaling pathway. Connectivity Map analysis highlighted metformin, an FDA-approved treatment for type 2 diabetes, as a drug having global transcriptional effects similar to the mood disorder drug combination investigated. In a retrospective cohort study, we found evidence that metformin is protective against the onset of mood disorders. DISCUSSION These results provide proof-of-principle of combining gene expression signature technology with pharmacoepidemiology to identify potential novel drugs for treating mood disorders. Importantly, metformin may have utility in the treatment of mood disorders, warranting future randomized controlled trials to test its efficacy.
Collapse
Affiliation(s)
- Jacqueline Lake
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Amanda L Stuart
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Julie A Pasco
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia.,Department of Medicine-Western Health, University of Melbourne, St Albans, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Prahran, Australia.,Barwon Health, Geelong, Australia
| | - Srisaiyini Kidnapillai
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Briana Spolding
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Trang T T Truong
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Bruna Panizzutti
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Zoe S J Liu
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Olivia M Dean
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Tamsyn Crowley
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia.,Bioinformatics Core Research Facility (BCRF), Deakin University, Geelong, Australia
| | - Mark Richardson
- Bioinformatics Core Research Facility (BCRF), Deakin University, Geelong, Australia
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Australia
| | - Lana J Williams
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia.,Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| |
Collapse
|
9
|
Truong TTT, Panizzutti B, Kim JH, Walder K. Repurposing Drugs via Network Analysis: Opportunities for Psychiatric Disorders. Pharmaceutics 2022; 14:1464. [PMID: 35890359 PMCID: PMC9319329 DOI: 10.3390/pharmaceutics14071464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Despite advances in pharmacology and neuroscience, the path to new medications for psychiatric disorders largely remains stagnated. Drug repurposing offers a more efficient pathway compared with de novo drug discovery with lower cost and less risk. Various computational approaches have been applied to mine the vast amount of biomedical data generated over recent decades. Among these methods, network-based drug repurposing stands out as a potent tool for the comprehension of multiple domains of knowledge considering the interactions or associations of various factors. Aligned well with the poly-pharmacology paradigm shift in drug discovery, network-based approaches offer great opportunities to discover repurposing candidates for complex psychiatric disorders. In this review, we present the potential of network-based drug repurposing in psychiatry focusing on the incentives for using network-centric repurposing, major network-based repurposing strategies and data resources, applications in psychiatry and challenges of network-based drug repurposing. This review aims to provide readers with an update on network-based drug repurposing in psychiatry. We expect the repurposing approach to become a pivotal tool in the coming years to battle debilitating psychiatric disorders.
Collapse
Affiliation(s)
- Trang T. T. Truong
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong 3220, Australia; (T.T.T.T.); (B.P.); (J.H.K.)
| | - Bruna Panizzutti
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong 3220, Australia; (T.T.T.T.); (B.P.); (J.H.K.)
| | - Jee Hyun Kim
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong 3220, Australia; (T.T.T.T.); (B.P.); (J.H.K.)
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3010, Australia
| | - Ken Walder
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong 3220, Australia; (T.T.T.T.); (B.P.); (J.H.K.)
| |
Collapse
|
10
|
Truong TTT, Bortolasci CC, Spolding B, Panizzutti B, Liu ZSJ, Kidnapillai S, Richardson M, Gray L, Smith CM, Dean OM, Kim JH, Berk M, Walder K. Co-Expression Networks Unveiled Long Non-Coding RNAs as Molecular Targets of Drugs Used to Treat Bipolar Disorder. Front Pharmacol 2022; 13:873271. [PMID: 35462908 PMCID: PMC9024411 DOI: 10.3389/fphar.2022.873271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) may play a role in psychiatric diseases including bipolar disorder (BD). We investigated mRNA-lncRNA co-expression patterns in neuronal-like cells treated with widely prescribed BD medications. The aim was to unveil insights into the complex mechanisms of BD medications and highlight potential targets for new drug development. Human neuronal-like (NT2-N) cells were treated with either lamotrigine, lithium, quetiapine, valproate or vehicle for 24 h. Genome-wide mRNA expression was quantified for weighted gene co-expression network analysis (WGCNA) to correlate the expression levels of mRNAs with lncRNAs. Functional enrichment analysis and hub lncRNA identification was conducted on key co-expressed modules associated with the drug response. We constructed lncRNA-mRNA co-expression networks and identified key modules underlying these treatments, as well as their enriched biological functions. Processes enriched in key modules included synaptic vesicle cycle, endoplasmic reticulum-related functions and neurodevelopment. Several lncRNAs such as GAS6-AS1 and MIR100HG were highlighted as driver genes of key modules. Our study demonstrates the key role of lncRNAs in the mechanism(s) of action of BD drugs. Several lncRNAs have been suggested as major regulators of medication effects and are worthy of further investigation as novel drug targets to treat BD.
Collapse
Affiliation(s)
- Trang TT. Truong
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Chiara C. Bortolasci
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Briana Spolding
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Bruna Panizzutti
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Zoe SJ. Liu
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Srisaiyini Kidnapillai
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Mark Richardson
- Genomics Centre, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| | - Laura Gray
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Craig M. Smith
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Olivia M. Dean
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Jee Hyun Kim
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michael Berk
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Ken Walder
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
11
|
Imami AS, McCullumsmith RE, O’Donovan SM. Strategies to identify candidate repurposable drugs: COVID-19 treatment as a case example. Transl Psychiatry 2021; 11:591. [PMID: 34785660 PMCID: PMC8594646 DOI: 10.1038/s41398-021-01724-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Drug repurposing is an invaluable strategy to identify new uses for existing drug therapies that overcome many of the time and financial costs associated with novel drug development. The COVID-19 pandemic has driven an unprecedented surge in the development and use of bioinformatic tools to identify candidate repurposable drugs. Using COVID-19 as a case study, we discuss examples of machine-learning and signature-based approaches that have been adapted to rapidly identify candidate drugs. The Library of Integrated Network-based Signatures (LINCS) and Connectivity Map (CMap) are commonly used repositories and have the advantage of being amenable to use by scientists with limited bioinformatic training. Next, we discuss how these recent advances in bioinformatic drug repurposing approaches might be adapted to identify repurposable drugs for CNS disorders. As the development of novel therapies that successfully target the cause of neuropsychiatric and neurological disorders has stalled, there is a pressing need for innovative strategies to treat these complex brain disorders. Bioinformatic approaches to identify repurposable drugs provide an exciting avenue of research that offer promise for improved treatments for CNS disorders.
Collapse
Affiliation(s)
- Ali S. Imami
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo, Toledo, OH USA
| | - Robert E. McCullumsmith
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo, Toledo, OH USA ,grid.422550.40000 0001 2353 4951Neurosciences Institute, Promedica, Toledo, OH USA
| | - Sinead M. O’Donovan
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo, Toledo, OH USA
| |
Collapse
|
12
|
Ruan Y, Chen XH, Jiang F, Liu YG, Liang XL, Lv BM, Zhang HY, Zhang QY. Agent Clustering Strategy Based on Metabolic Flux Distribution and Transcriptome Expression for Novel Drug Development. Biomedicines 2021; 9:biomedicines9111640. [PMID: 34829869 PMCID: PMC8615746 DOI: 10.3390/biomedicines9111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
The network module-based method has been used for drug repositioning. The traditional drug repositioning method only uses the gene characteristics of the drug but ignores the drug-triggered metabolic changes. The metabolic network systematically characterizes the connection between genes, proteins, and metabolic reactions. The differential metabolic flux distribution, as drug metabolism characteristics, was employed to cluster the agents with similar MoAs (mechanism of action). In this study, agents with the same pharmacology were clustered into one group, and a total of 1309 agents from the CMap database were clustered into 98 groups based on differential metabolic flux distribution. Transcription factor (TF) enrichment analysis revealed the agents in the same group (such as group 7 and group 26) were confirmed to have similar MoAs. Through this agent clustering strategy, the candidate drugs which can inhibit (Japanese encephalitis virus) JEV infection were identified. This study provides new insights into drug repositioning and their MoAs.
Collapse
|
13
|
Panizzutti B, Bortolasci CC, Spolding B, Kidnapillai S, Connor T, Richardson MF, Truong TTT, Liu ZSJ, Gray L, Kim JH, Dean OM, Berk M, Walder K. Biological Mechanism(s) Underpinning the Association between Antipsychotic Drugs and Weight Gain. J Clin Med 2021; 10:4095. [PMID: 34575210 PMCID: PMC8467356 DOI: 10.3390/jcm10184095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Weight gain and consequent metabolic alterations are common side-effects of many antipsychotic drugs. Interestingly, several studies have suggested that improvement in symptoms and adverse metabolic effects are correlated. We used next generation sequencing data from NT-2 (human neuronal) cells treated with aripiprazole, amisulpride, risperidone, quetiapine, clozapine, or vehicle control, and compared with the Pillinger P-score (ranked from 0 to 1, indicating greater increase in weight gain and related metabolic parameters) to identify the genes most associated with the drugs' propensity to cause weight gain. The top 500 genes ranked for their correlation with the drugs' propensity to cause weight gain were subjected to pathway analysis using DAVID (NIH). We further investigated transcription factors (TFs) that are more likely to regulate the genes involved in these processes using the prediction tool of key TFs from TRRUST. The results suggest an enrichment for genes involved in lipid biosynthesis and metabolism, which are of interest for mechanisms underpinning weight-gain. The list of genes involved in the lipid pathways that correlated with weight gain was enriched for genes transcriptionally regulated by SREBF1 and SREBF2. Furthermore, quetiapine significantly increased the expression of SREBF1 and SREBF2 in NT-2 cells. Our results suggest that the effects of these antipsychotic drugs on lipid metabolism may be mediated, at least in part, via regulation of SREBF1/SREBF2 expression, with evidence of a direct effect of quetiapine on the expression of SREBF1/2. The effects of antipsychotic drugs on lipid metabolism may influence white matter structure (therapeutic effect) and the risk of weight gain, lipid disturbances, and, consequently, metabolic syndrome (adverse effects). Understanding the different molecular effects of these drugs could inform a personalized medicine approach in treating patients with schizophrenia.
Collapse
Affiliation(s)
- Bruna Panizzutti
- Institute for Innovation in Physical and Mental Health and Clinical Translation, IMPACT, School of Medicine, Deakin University, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Chiara C. Bortolasci
- Institute for Innovation in Physical and Mental Health and Clinical Translation, IMPACT, School of Medicine, Deakin University, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Briana Spolding
- Institute for Innovation in Physical and Mental Health and Clinical Translation, IMPACT, School of Medicine, Deakin University, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Srisaiyini Kidnapillai
- Institute for Innovation in Physical and Mental Health and Clinical Translation, IMPACT, School of Medicine, Deakin University, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Timothy Connor
- Institute for Innovation in Physical and Mental Health and Clinical Translation, IMPACT, School of Medicine, Deakin University, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Mark F. Richardson
- Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong 3220, Australia;
| | - Trang T. T. Truong
- Institute for Innovation in Physical and Mental Health and Clinical Translation, IMPACT, School of Medicine, Deakin University, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Zoe S. J. Liu
- Institute for Innovation in Physical and Mental Health and Clinical Translation, IMPACT, School of Medicine, Deakin University, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Laura Gray
- Institute for Innovation in Physical and Mental Health and Clinical Translation, IMPACT, School of Medicine, Deakin University, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
| | - Jee Hyun Kim
- Institute for Innovation in Physical and Mental Health and Clinical Translation, IMPACT, School of Medicine, Deakin University, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
| | - Olivia M. Dean
- Institute for Innovation in Physical and Mental Health and Clinical Translation, IMPACT, School of Medicine, Deakin University, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
| | - Michael Berk
- Institute for Innovation in Physical and Mental Health and Clinical Translation, IMPACT, School of Medicine, Deakin University, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville 3052, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville 3052, Australia
- Orygen Youth Health Research Centre, Parkville 3052, Australia
| | - Ken Walder
- Institute for Innovation in Physical and Mental Health and Clinical Translation, IMPACT, School of Medicine, Deakin University, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| |
Collapse
|
14
|
From serendipity to rational drug design in brain disorders: in silico, in vitro, and in vivo approaches. Curr Opin Pharmacol 2021; 60:177-182. [PMID: 34461562 DOI: 10.1016/j.coph.2021.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022]
Abstract
Prolonged life expectancy and stressful lifestyles have increased the risk of developing neurological disorders, including neurodegenerative and psychiatric illnesses. Despite obvious and immediate needs for effective treatment, drug discovery for neurological disorders has been largely serendipitous, whereas hypothesis-driven drug development programs have been remarkably poor. This may be partly due to insufficient knowledge of molecular mechanisms underlying disease pathophysiology, complex genetic and environmental risk factors, and oversimplified diagnostic criteria. Here, we review recent progress in cell type-specific investigations, bioinformatics analyses, and large reference databases, the integration of which, when combined with effective use of animal models, provides novel insights into disease mechanisms, suggests innovative drug development, and ultimately promises superior treatments for patients suffering from neurological disorders.
Collapse
|
15
|
Panizzutti B, Bortolasci CC, Spolding B, Kidnapillai S, Connor T, Richardson MF, Truong TTT, Liu ZSJ, Morris G, Gray L, Hyun Kim J, Dean OM, Berk M, Walder K. Transcriptional Modulation of the Hippo Signaling Pathway by Drugs Used to Treat Bipolar Disorder and Schizophrenia. Int J Mol Sci 2021; 22:7164. [PMID: 34281223 PMCID: PMC8268913 DOI: 10.3390/ijms22137164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Recent reports suggest a link between positive regulation of the Hippo pathway with bipolar disorder (BD), and the Hippo pathway is known to interact with multiple other signaling pathways previously associated with BD and other psychiatric disorders. In this study, neuronal-like NT2 cells were treated with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), valproate (0.5 mM), or vehicle control for 24 h. Genome-wide mRNA expression was quantified and analyzed using gene set enrichment analysis (GSEA), with genes belonging to Hippo, Wnt, Notch, TGF- β, and Hedgehog retrieved from the KEGG database. Five of the eight drugs downregulated the genes of the Hippo pathway and modulated several genes involved in the interacting pathways. We speculate that the regulation of these genes, especially by aripiprazole, clozapine, and quetiapine, results in a reduction of MAPK and NFκB pro-inflammatory signaling through modulation of Hippo, Wnt, and TGF-β pathways. We also employed connectivity map analysis to identify compounds that act on these pathways in a similar manner to the known psychiatric drugs. Thirty-six compounds were identified. The presence of antidepressants and antipsychotics validates our approach and reveals possible new targets for drug repurposing.
Collapse
Affiliation(s)
- Bruna Panizzutti
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Chiara C. Bortolasci
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Briana Spolding
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Srisaiyini Kidnapillai
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Timothy Connor
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Mark F. Richardson
- Genomics Centre, School of Life and Environmental Sciences, Deakin University, Burwood 3125, Australia;
| | - Trang T. T. Truong
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Zoe S. J. Liu
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Gerwyn Morris
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Laura Gray
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
| | - Jee Hyun Kim
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Olivia M. Dean
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
| | - Michael Berk
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville 3052, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville 3052, Australia
- Orygen Youth Health Research Centre, Parkville 3052, Australia
| | - Ken Walder
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| |
Collapse
|
16
|
Shukla R, Henkel ND, Alganem K, Hamoud AR, Reigle J, Alnafisah RS, Eby HM, Imami AS, Creeden JF, Miruzzi SA, Meller J, Mccullumsmith RE. Signature-based approaches for informed drug repurposing: targeting CNS disorders. Neuropsychopharmacology 2021; 46:116-130. [PMID: 32604402 PMCID: PMC7688959 DOI: 10.1038/s41386-020-0752-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/30/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
CNS disorders, and in particular psychiatric illnesses, lack definitive disease-altering therapeutics. The limited understanding of the mechanisms driving these illnesses with the slow pace and high cost of drug development exacerbates this issue. For these reasons, drug repurposing - both a less expensive and time-efficient practice compared to de novo drug development - has been a promising strategy to overcome the paucity of treatments available for these debilitating disorders. While empirical drug-repurposing has been a routine practice in clinical psychiatry, innovative, informed, and cost-effective repurposing efforts using big data ("omics") have been designed to characterize drugs by structural and transcriptomic signatures. These strategies, in conjunction with ontological integration, provide an important opportunity to address knowledge-based challenges associated with drug development for CNS disorders. In this review, we discuss various signature-based in silico approaches to drug repurposing, its integration with multiple omics platforms, and how this data can be used for clinically relevant, evidence-based drug repurposing. These tools provide an exciting translational avenue to merge omics-based drug discovery platforms with patient-specific disease signatures, ultimately facilitating the identification of new therapies for numerous psychiatric disorders.
Collapse
Affiliation(s)
- Rammohan Shukla
- Department of Neurosciences, University of Toledo, Toledo, OH, USA.
| | | | - Khaled Alganem
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | - James Reigle
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Hunter M Eby
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Ali S Imami
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Justin F Creeden
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Scott A Miruzzi
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Jaroslaw Meller
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Electrical Engineering and Computing Systems, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Informatics, Nicolaus Copernicus University, Torun, Poland
| | - Robert E Mccullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
17
|
Kamal N, McGee SL, Eng K, Brown G, Beattie S, Collier F, Gill S, Page RS. Transcriptomic analysis of adhesive capsulitis of the shoulder. J Orthop Res 2020; 38:2280-2289. [PMID: 32270543 DOI: 10.1002/jor.24686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 02/04/2023]
Abstract
Adhesive capsulitis (AC) is a disabling condition of the shoulder joint affecting 2 to 5% of the general population. Our understanding of the molecular mechanisms is limited. The present study aimed to determine potential biomarkers of AC through transcriptomic analysis. This multi-centre study investigated patients undergoing arthroscopic capsulotomy surgery for resistant AC compared to those undergoing arthroscopic stabilization surgery for glenohumeral instability (control). Tissue samples were harvested from the anterior capsule during surgery. Total RNA was extracted and RNA-sequencing-based transcriptomics were performed. A number of genes deemed differentially expressed in RNA-sequencing analysis were validated using real-time reverse transcription polymerase chain reaction (RT-PCR). Baseline characteristics of the AC group (n = 22) were; mean age 52.7 years (SD: 10.2), 73% female, and Oxford Shoulder Score 19.6 (SD: 8.0), compared with the control group (n = 26), average age 23.9 years (SD: 5.2), 15% female, and Oxford Shoulder Score 39.0 (SD: 7.4). Transcriptomic analysis with false discovery rate correction and log2 fold change cut-off of ±1.5 revealed 545 differentially expressed genes in AC relative to control. Bioinformatic analyses were carried out to identify biological processes and pathways enriched in this dataset. Real-time RT-PCR using two different normalization processes confirmed increased expression of matrix metallopeptidase 13 (MMP13) and platelet-derived growth factor subunit B (PDGFB), in patients with AC, while tumor necrosis factor α (TNFA) expression was reduced. These findings provide a comprehensive assessment of transcriptional changes associated with AC that give insights into the aetiology of the disease and provides a resource for molecular targets to better diagnose and treat this condition.
Collapse
Affiliation(s)
- Nima Kamal
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Geelong, Australia
| | - Sean L McGee
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Geelong, Australia
| | - Kevin Eng
- Orthopaedic Department, Barwon Health, Geelong, Australia
| | - Graeme Brown
- Orthopaedic Department, Barwon Health, Geelong, Australia
| | - Sally Beattie
- Orthopaedic Department, Barwon Health, Geelong, Australia.,Barwon Centre for Orthopaedic Research and Education (B-CORE), Barwon Health and St. John of God Hospital, Geelong, Australia
| | - Fiona Collier
- Orthopaedic Department, Barwon Health, Geelong, Australia.,Geelong Centre for Emerging Infectious Diseases (GCEID), Geelong, Australia
| | - Stephen Gill
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Geelong, Australia.,Orthopaedic Department, Barwon Health, Geelong, Australia.,Barwon Centre for Orthopaedic Research and Education (B-CORE), Barwon Health and St. John of God Hospital, Geelong, Australia
| | - Richard S Page
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Geelong, Australia.,Orthopaedic Department, Barwon Health, Geelong, Australia.,Barwon Centre for Orthopaedic Research and Education (B-CORE), Barwon Health and St. John of God Hospital, Geelong, Australia
| |
Collapse
|
18
|
Li X, Rousseau JF, Ding Y, Song M, Lu W. Understanding Drug Repurposing From the Perspective of Biomedical Entities and Their Evolution: Bibliographic Research Using Aspirin. JMIR Med Inform 2020; 8:e16739. [PMID: 32543442 PMCID: PMC7327595 DOI: 10.2196/16739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/08/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Drug development is still a costly and time-consuming process with a low rate of success. Drug repurposing (DR) has attracted significant attention because of its significant advantages over traditional approaches in terms of development time, cost, and safety. Entitymetrics, defined as bibliometric indicators based on biomedical entities (eg, diseases, drugs, and genes) studied in the biomedical literature, make it possible for researchers to measure knowledge evolution and the transfer of drug research. OBJECTIVE The purpose of this study was to understand DR from the perspective of biomedical entities (diseases, drugs, and genes) and their evolution. METHODS In the work reported in this paper, we extended the bibliometric indicators of biomedical entities mentioned in PubMed to detect potential patterns of biomedical entities in various phases of drug research and investigate the factors driving DR. We used aspirin (acetylsalicylic acid) as the subject of the study since it can be repurposed for many applications. We propose 4 easy, transparent measures based on entitymetrics to investigate DR for aspirin: Popularity Index (P1), Promising Index (P2), Prestige Index (P3), and Collaboration Index (CI). RESULTS We found that the maxima of P1, P3, and CI are closely associated with the different repurposing phases of aspirin. These metrics enabled us to observe the way in which biomedical entities interacted with the drug during the various phases of DR and to analyze the potential driving factors for DR at the entity level. P1 and CI were indicative of the dynamic trends of a specific biomedical entity over a long time period, while P2 was more sensitive to immediate changes. P3 reflected the early signs of the practical value of biomedical entities and could be valuable for tracking the research frontiers of a drug. CONCLUSIONS In-depth studies of side effects and mechanisms, fierce market competition, and advanced life science technologies are driving factors for DR. This study showcases the way in which researchers can examine the evolution of DR using entitymetrics, an approach that can be valuable for enhancing decision making in the field of drug discovery and development.
Collapse
Affiliation(s)
- Xin Li
- Information Retrieval and Knowledge Mining Laboratory, School of Information Management, Wuhan University, Wuhan, China.,School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, United States
| | - Justin F Rousseau
- Department of Population Health and Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ying Ding
- School of Information, Dell Medical School, The University of Texas Austin, Austin, TX, United States
| | - Min Song
- Department of Library and Information Science, Yonsei University, Seoul, Republic of Korea
| | - Wei Lu
- Information Retrieval and Knowledge Mining Laboratory, School of Information Management, Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Kidnapillai S, Wade B, Bortolasci CC, Panizzutti B, Spolding B, Connor T, Crowley T, Jamain S, Gray L, Leboyer M, Berk M, Walder K. Drugs used to treat bipolar disorder act via microRNAs to regulate expression of genes involved in neurite outgrowth. J Psychopharmacol 2020; 34:370-379. [PMID: 31913086 DOI: 10.1177/0269881119895534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The drugs commonly used to treat bipolar disorder have limited efficacy and drug discovery is hampered by the paucity of knowledge of the pathophysiology of this disease. This study aims to explore the role of microRNAs in bipolar disorder and understand the molecular mechanisms of action of commonly used bipolar disorder drugs. METHODS The transcriptional effects of bipolar disorder drug combination (lithium, valproate, lamotrigine and quetiapine) in cultured human neuronal cells were studied using next generation sequencing. Differential expression of genes (n=20) and microRNAs (n=6) was assessed and the differentially expressed microRNAs were confirmed with TaqMan MicroRNA Assays. The expression of the differentially expressed microRNAs were inhibited to determine bipolar disorder drug effects on their target genes (n=8). Independent samples t-test was used for normally distributed data and Kruskal-Wallis/Mann-Whitney U test was used for data not distributed normally. Significance levels were set at p<0.05. RESULTS We found that bipolar disorder drugs tended to increase the expression of miR-128 and miR-378 (p<0.05). Putative target genes of these microRNAs targeted pathways including those identified as "neuron projection development" and "axonogenesis". Many of the target genes are inhibitors of neurite outgrowth and neurogenesis and were downregulated following bipolar disorder drug combination treatment (all p<0.05). The bipolar disorder drug combination tended to decrease the expression of the target genes (NOVA1, GRIN3A, and VIM), however this effect could be reversed by the application of microRNA inhibitors. CONCLUSIONS We conclude that at a transcriptional level, bipolar disorder drugs affect several genes in concert that would increase neurite outgrowth and neurogenesis and hence neural plasticity, and that this effect is mediated (at least in part) by modulation of the expression of these two key microRNAs.
Collapse
Affiliation(s)
| | - Ben Wade
- Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia
| | - Chiara C Bortolasci
- Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia
| | - Bruna Panizzutti
- Laboratory of Molecular Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Briana Spolding
- Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia
| | - Timothy Connor
- Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia
| | - Tamsyn Crowley
- Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia.,Bioinformatics Core Research Facility (BCRF), Deakin University, Geelong, VIC, Australia
| | | | - Laura Gray
- Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | | | - Michael Berk
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Orygen, National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
20
|
Köhler-Forsberg O, Petersen L, Berk M, Gasse C, Østergaard SD. The effect of combined treatment with SSRIs and renin-angiotensin system (RAS) drugs: A propensity score matched cohort study. Eur Neuropsychopharmacol 2020; 32:120-130. [PMID: 32001138 DOI: 10.1016/j.euroneuro.2020.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
Drugs acting on the renin-angiotensin system (RAS) may have beneficial effects on mental health. We investigated whether use of drugs acting on the RAS, as add-on to selective serotonin reuptake inhibitors (SSRIs), was associated with a reduced risk of psychiatric hospital contacts. We identified all individuals initiating treatment with an SSRI between 1997 and 2012. Individuals using an SSRI without concomitant use of a RAS drug (SSRI-only users) were propensity score matched 1:1 to individuals using both an SSRI and a drug acting on the RAS (SSRI+RAS users). The SSRI-only and SSRI+RAS users were followed for up to three years or until December 31, 2013. We performed Cox proportional hazard regression analyses to calculate risks for psychiatric hospital contacts, hospital contacts due to depression, suicidal behavior, and all-cause mortality. We followed 30,311 SSRI-only users and 30,311 SSRI+RAS users for a total of 49,327 person-years. Compared to SSRI-only users, concomitant use of SSRI+RAS was associated with a significantly reduced risk for psychiatric hospital contacts (hazard rate ratio (HRR)=0.91; 95%-confidence intervals (95%-CI)=0.84-0.98) and lower mortality rate (HRR=0.70; 95%-CI=0.66-0.75). The associations between SSRI+RAS use and psychiatric hospital contacts for depression (HRR=0.92; 95%-CI=0.80-1.05) and suicidal behavior (HRR=1.06; 95%-CI=0.79-1.42) were not statistically significant. In this observational cohort study, concomitant use of an SSRI and a drug acting on the RAS was associated with a slightly reduced risk for psychiatric hospital contacts, when compared to use of an SSRI alone.
Collapse
Affiliation(s)
- Ole Köhler-Forsberg
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Palle Juul-Jensens Boulevard 175, 8200 Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark.
| | - Liselotte Petersen
- National Centre for Register-Based Research (NCRR), Aarhus University, Aarhus, Denmark; iPSYCH, The Lundbeck Initiative for Integrated Research in Psychiatry, Aarhus, Denmark; Centre for Integrated Register-based Research (CIRRAU), Aarhus University, Aarhus, Denmark
| | - Michael Berk
- Deakin University, School of Medicine, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Geelong, Victoria, Australia; Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, Victoria, Australia
| | - Christiane Gasse
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Palle Juul-Jensens Boulevard 175, 8200 Aarhus, Denmark; iPSYCH, The Lundbeck Initiative for Integrated Research in Psychiatry, Aarhus, Denmark; Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
| | - Søren Dinesen Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; iPSYCH, The Lundbeck Initiative for Integrated Research in Psychiatry, Aarhus, Denmark; Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
| |
Collapse
|
21
|
Kidnapillai S, Bortolasci CC, Panizzutti B, Spolding B, Connor T, Bonifacio K, Sanigorski A, Dean OM, Crowley T, Jamain S, Gray L, Leboyer M, Berk M, Walder K. Drugs used in the treatment of bipolar disorder and their effects on cholesterol biosynthesis - A possible therapeutic mechanism. World J Biol Psychiatry 2019; 20:766-777. [PMID: 31535581 DOI: 10.1080/15622975.2019.1669823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objectives: To understand the therapeutic mechanisms of bipolar disorder (BD) drugs at molecular and cellular levels.Methods: Next generation sequencing was used to determine the transcriptional effects of a combination of four commonly prescribed BD drugs (lithium, valproate, lamotrigine and quetiapine) or vehicle (0.2% DMSO) in NT2-N (human neuronal) cells and rats. Differential expression of genes and pathway analysis were performed using edgeR in R and Gene Set Enrichment Analysis software respectively. Free cholesterol levels and neurite outgrowth were quantified in NT2-N cells following combination and individual BD drug treatments.Results: Pathway analysis showed up-regulation of many elements of the cholesterol biosynthesis pathway in NT2-N cells and oxidative phosphorylation in rat brains. Intracellular cholesterol transport genes were upregulated (NPC1, NPC2 and APOE), while the cholesterol efflux gene (ABCA1) was downregulated. BD drug combination tended to increase intracellular cholesterol levels and neurite outgrowth, but these effects were not seen for the drugs when used individually.Conclusions: These data suggest that BD drug combination is increasing cholesterol biosynthesis and the newly synthesised cholesterol is being utilised within the cells, possibly for synthesis of new membranes to facilitate neurite outgrowth. This mechanism possibly underpins clinical efficacy in individuals with BD treated with polypharmacy.
Collapse
Affiliation(s)
- Srisaiyini Kidnapillai
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Chiara C Bortolasci
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Bruna Panizzutti
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA) and Programa de Pós-graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Briana Spolding
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Timothy Connor
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Kamila Bonifacio
- Laboratory of Graduation Research, State University of Londrina, Londrina, Brazil
| | - Andrew Sanigorski
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Olivia M Dean
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Tamsyn Crowley
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,Bioinformatics Core Research Facility (BCRF), Deakin University, Geelong, Australia
| | - Stéphane Jamain
- INSERM U955, Psychiatrie Translationnelle, Université Paris Est, Créteil, France
| | - Laura Gray
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Marion Leboyer
- INSERM U955, Psychiatrie Translationnelle, Université Paris Est, Créteil, France
| | - Michael Berk
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Australia Parkville.,Department of Psychiatry, The University of Melbourne, Parkville, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| |
Collapse
|
22
|
Karunakaran KB, Chaparala S, Ganapathiraju MK. Potentially repurposable drugs for schizophrenia identified from its interactome. Sci Rep 2019; 9:12682. [PMID: 31481665 PMCID: PMC6722087 DOI: 10.1038/s41598-019-48307-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
We previously presented the protein-protein interaction network of schizophrenia associated genes, and from it, the drug-protein interactome which showed the drugs that target any of the proteins in the interactome. Here, we studied these drugs further to identify whether any of them may potentially be repurposable for schizophrenia. In schizophrenia, gene expression has been described as a measurable aspect of the disease reflecting the action of risk genes. We studied each of the drugs from the interactome using the BaseSpace Correlation Engine, and shortlisted those that had a negative correlation with differential gene expression of schizophrenia. This analysis resulted in 12 drugs whose differential gene expression (drug versus normal) had an anti-correlation with differential expression for schizophrenia (disorder versus normal). Some of these drugs were already being tested for their clinical activity in schizophrenia and other neuropsychiatric disorders. Several proteins in the protein interactome of the targets of several of these drugs were associated with various neuropsychiatric disorders. The network of genes with opposite drug-induced versus schizophrenia-associated expression profiles were significantly enriched in pathways relevant to schizophrenia etiology and GWAS genes associated with traits or diseases that had a pathophysiological overlap with schizophrenia. Drugs that targeted the same genes as the shortlisted drugs, have also demonstrated clinical activity in schizophrenia and other related disorders. This integrated computational analysis will help translate insights from the schizophrenia drug-protein interactome to clinical research - an important step, especially in the field of psychiatric drug development which faces a high failure rate.
Collapse
Affiliation(s)
- Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Indian Institute of Science, Bengaluru, India
| | | | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, USA.
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
23
|
Systems Biology Approaches to Investigate Genetic and Epigenetic Molecular Progression Mechanisms for Identifying Gene Expression Signatures in Papillary Thyroid Cancer. Int J Mol Sci 2019; 20:ijms20102536. [PMID: 31126066 PMCID: PMC6566633 DOI: 10.3390/ijms20102536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022] Open
Abstract
Thyroid cancer is the most common endocrine cancer. Particularly, papillary thyroid cancer (PTC) accounts for the highest proportion of thyroid cancer. Up to now, there are few researches discussing the pathogenesis and progression mechanisms of PTC from the viewpoint of systems biology approaches. In this study, first we constructed the candidate genetic and epigenetic network (GEN) consisting of candidate protein–protein interaction network (PPIN) and candidate gene regulatory network (GRN) by big database mining. Secondly, system identification and system order detection methods were applied to prune candidate GEN via next-generation sequencing (NGS) and DNA methylation profiles to obtain the real GEN. After that, we extracted core GENs from real GENs by the principal network projection (PNP) method. To investigate the pathogenic and progression mechanisms in each stage of PTC, core GEN was denoted in respect of KEGG pathways. Finally, by comparing two successive core signaling pathways of PTC, we not only shed light on the causes of PTC progression, but also identified essential biomarkers with specific gene expression signature. Moreover, based on the identified gene expression signature, we suggested potential candidate drugs to prevent the progression of PTC with querying Connectivity Map (CMap).
Collapse
|
24
|
de Anda‐Jáuregui G, McGregor BA, Guo K, Hur J. A Network Pharmacology Approach for the Identification of Common Mechanisms of Drug-Induced Peripheral Neuropathy. CPT Pharmacometrics Syst Pharmacol 2019; 8:211-219. [PMID: 30762308 PMCID: PMC6482281 DOI: 10.1002/psp4.12383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023] Open
Abstract
Drug-induced peripheral neuropathy is a side effect of a variety of therapeutic agents that can affect therapeutic adherence and lead to regimen modifications, impacting patient quality of life. The molecular mechanisms involved in the development of this condition have yet to be completely described in the literature. We used a computational network pharmacology approach to explore the Connectivity Map, a large collection of transcriptional profiles from drug perturbation experiments to identify common genes affected by peripheral neuropathy-inducing drugs. Consensus profiles for 98 of these drugs were used to construct a drug-gene perturbation network. We identified 27 genes significantly associated with neuropathy-inducing drugs. These genes may have a potential role in the action of neuropathy-inducing drugs. Our results suggest that molecular mechanisms, including alterations in mitochondrial function, microtubule and cytoskeleton function, ion channels, transcriptional regulation including epigenetic mechanisms, signal transduction, and wound healing, may play a critical role in drug-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Guillermo de Anda‐Jáuregui
- Department of Biomedical SciencesSchool of Medicine & Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
- Present address:
Computational Genomics DivisionNational Institute of Genomic MedicineColonia Arenal TepepanDelegación TlalpanMéxico DFMexico
| | - Brett A. McGregor
- Department of Biomedical SciencesSchool of Medicine & Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Kai Guo
- Department of Biomedical SciencesSchool of Medicine & Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Junguk Hur
- Department of Biomedical SciencesSchool of Medicine & Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
25
|
DNA Methylation as a Biomarker of Treatment Response Variability in Serious Mental Illnesses: A Systematic Review Focused on Bipolar Disorder, Schizophrenia, and Major Depressive Disorder. Int J Mol Sci 2018; 19:ijms19103026. [PMID: 30287754 PMCID: PMC6213157 DOI: 10.3390/ijms19103026] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022] Open
Abstract
So far, genetic studies of treatment response in schizophrenia, bipolar disorder, and major depression have returned results with limited clinical utility. A gene × environment interplay has been proposed as a factor influencing not only pathophysiology but also the treatment response. Therefore, epigenetics has emerged as a major field of research to study the treatment of these three disorders. Among the epigenetic marks that can modify gene expression, DNA methylation is the best studied. We performed a systematic search (PubMed) following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA guidelines for preclinical and clinical studies focused on genome-wide and gene-specific DNA methylation in the context of schizophrenia, bipolar disorders, and major depressive disorder. Out of the 112 studies initially identified, we selected 31 studies among them, with an emphasis on responses to the gold standard treatments in each disorder. Modulations of DNA methylation levels at specific CpG sites have been documented for all classes of treatments (antipsychotics, mood stabilizers, and antidepressants). The heterogeneity of the models and methodologies used complicate the interpretation of results. Although few studies in each disorder have assessed the potential of DNA methylation as biomarkers of treatment response, data support this hypothesis for antipsychotics, mood stabilizers and antidepressants.
Collapse
|