1
|
Tonphu K, Mueangaun S, Lerkdumnernkit N, Sengking J, Tocharus J, Benjakul S, Mittal A, Tocharus C. Chitooligosaccharide-Epigallocatechin Gallate Conjugate Ameliorates Lipid Accumulation and Promotes Browning of White Adipose Tissue in High Fat Diet Fed Rats. Chem Biol Interact 2024:111316. [PMID: 39577827 DOI: 10.1016/j.cbi.2024.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
The prevalence of obesity has increased progressively worldwide. Obesity is characterized by excessive accumulation of fat in adipose tissues, leading to metabolic impairment. The anti-obese effects of chitooligosaccharide (COS) and epigallocatechin-3-gallate (EGCG) have been extensively clarified. This study aimed to investigate the effects and potential mechanisms of the COS-EGCG conjugate (CE) on anti-obesity, specifically by alleviating lipid accumulation and promoting the browning of white adipose tissue (WAT) in obese rats. Obesity as a consequence of a high-fat diet (HFD) was induced in male Wistar rats. The HFD was given for 16 weeks and the rats were then randomly subdivided into five groups namely: vehicle (control group), HFD plus CE at 150 mg/kg/day, HFD plus CE at 600 mg/kg/day, HFD plus COS at 600 mg/kg/day, and HFD plus atorvastatin at 10 mg/kg/day for 4 weeks. CE could reduce body weight, improve serum lipid profiles, and promote lipid metabolism via activation of AMP-activated protein kinase (AMPK) in WAT and enhance the processes of WAT browning by activating sirtuin 1 (Sirt 1), peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α), and uncoupling the protein 1 (UCP1) signaling pathway. CE reduced obesity and promoted WAT browning in HFD-fed rats. Therefore, CE might be a new therapy for metabolic syndrome and obesity.
Collapse
Affiliation(s)
- Kanokrada Tonphu
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirikul Mueangaun
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natcha Lerkdumnernkit
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
2
|
Tek NA, Şentüre ŞA, Ersoy N. Is Propolis a Potential Anti-Obesogenic Agent for Obesity? Curr Nutr Rep 2024; 13:186-193. [PMID: 38436884 PMCID: PMC11133030 DOI: 10.1007/s13668-024-00524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE OF REVIEW Propolis is a bee product that has been used for thousands of years. The chemical composition and biological activity of propolis, which has been investigated in the twentieth century, may vary according to location. Propolis polyphenols can induce thermogenesis in brown and beige fat tissue via the uncoupled protein-1 and creatinine kinase metabolic pathways. This review provides a comprehensive investigation of the structural and biological properties of propolis and provides insights into their promising potential strategies in body weight management. RECENT FINDINGS By raising overall energy expenditure, it might lead to body weight management. Furthermore, the phenolic components artepillin C, quercetin, catechin, and chlorogenic acid found in its composition may have anti-obesogenic effect by stimulating the sympathetic nervous system, enhancing browning in white adipose tissue, and triggering AMP-activated protein kinase activation and mitochondrial biogenesis. Propolis, a natural product, is effective in preventing obesity which is a contemporary pandemic.
Collapse
Affiliation(s)
- Nilüfer Acar Tek
- Faculty of Health Science, Department of Nutrition and Dietetic, Gazi University, Emek, Bişkek Main St. 6. St No: 2, 06490, Çankaya, Ankara, Turkey
| | - Şerife Akpınar Şentüre
- Faculty of Health Science, Department of Nutrition and Dietetic, Gazi University, Emek, Bişkek Main St. 6. St No: 2, 06490, Çankaya, Ankara, Turkey.
| | - Nursena Ersoy
- Faculty of Health Science, Department of Nutrition and Dietetic, Ankara University, Fatih Caddesi No:197/7 PK:06290, Keçiören, Ankara, Turkey
| |
Collapse
|
3
|
Wang Q, Hu GL, Qiu MH, Cao J, Xiong WY. Coffee, tea, and cocoa in obesity prevention: Mechanisms of action and future prospects. Curr Res Food Sci 2024; 8:100741. [PMID: 38694556 PMCID: PMC11061710 DOI: 10.1016/j.crfs.2024.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
Obesity, a major public health problem, causes numerous complications that threaten human health and increase the socioeconomic burden. The pathophysiology of obesity is primarily attributed to lipid metabolism disorders. Conventional anti-obesity medications have a high abuse potential and frequently deliver insufficient efficacy and have negative side-effects. Hence, functional foods are regarded as effective alternatives to address obesity. Coffee, tea, and cocoa, three widely consumed beverages, have long been considered to have the potential to prevent obesity, and several studies have focused on their intrinsic molecular mechanisms in past few years. Therefore, in this review, we discuss the mechanisms by which the bioactive ingredients in these three beverages counteract obesity from the aspects of adipogenesis, lipolysis, and energy expenditure (thermogenesis). The future prospects and challenges for coffee, tea, and cocoa as functional products for the treatment of obesity are also discussed, which can be pursued for future drug development and prevention strategies against obesity.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Gui-Lin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jun Cao
- Key Laboratory for Transboundary Ecosecurity of Southwest China (Ministry of Education), Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Wen-Yong Xiong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| |
Collapse
|
4
|
Ferreira C, Vieira P, Sá H, Malva J, Castelo-Branco M, Reis F, Viana S. Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases. Front Immunol 2024; 15:1360065. [PMID: 38558823 PMCID: PMC10978763 DOI: 10.3389/fimmu.2024.1360065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Helena Sá
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - João Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)/Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| |
Collapse
|
5
|
González I, Lindner C, Schneider I, Diaz E, Morales MA, Rojas A. Emerging and multifaceted potential contributions of polyphenols in the management of type 2 diabetes mellitus. World J Diabetes 2024; 15:154-169. [PMID: 38464365 PMCID: PMC10921170 DOI: 10.4239/wjd.v15.i2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern with a considerable impact on human life, long-term health expenditures, and substantial health losses. In this context, the use of dietary polyphenols to prevent and manage T2DM is widely documented. These dietary compounds exert their beneficial effects through several actions, including the protection of pancreatic islet β-cell, the antioxidant capacities of these molecules, their effects on insulin secretion and actions, the regulation of intestinal microbiota, and their contribution to ameliorate diabetic complications, particularly those of vascular origin. In the present review, we intend to highlight these multifaceted actions and the molecular mechanisms by which these plant-derived secondary metabolites exert their beneficial effects on type 2 diabetes patients.
Collapse
Affiliation(s)
- Ileana González
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile
| | - Erik Diaz
- Faculty of Medicine, Catholic University of Maule, Talca 3460000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| | - Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| |
Collapse
|
6
|
Moon YJ, Kim HS, Kim MJ, Im HY, Lee YH. Synergistic Effects of Heat-Treated Green Tea Extract and Enzymatically-Modified Isoquercitrin in Preventing Obesity. Nutrients 2023; 15:2931. [PMID: 37447257 DOI: 10.3390/nu15132931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Previous research has shown that both heat-treated green tea extract (HTGT) and enzymatically modified isoquercitrin (EMIQ) have anti-obesity effects. Given the absence of in vivo evidence demonstrating their synergistic effects, our study aimed to elucidate the combined obesity prevention potential of HTGT and EMIQ in mice. Mice were treated with these compounds for 8 weeks, while being fed a high-fat diet, to investigate their preventive anti-obesity effects. We demonstrated that the co-treatment of HTGT and EMIQ results in a synergistic anti-obesity effect, as determined by a Kruskal-Wallis test. Furthermore, the combined treatment of HTGT and EMIQ was more effective than orlistat in reducing body weight gain and adipocyte hypertrophy induced by high-fat diet. The co-treatment also significantly reduced total body fat mass and abdominal fat volume. Additionally, the group receiving the co-treatment exhibited increased energy expenditure and higher glucose intolerance. We observed a dose-dependent upregulation of genes associated with mitochondrial oxidative metabolism and PKA signaling, which is linked to lipolysis, in response to the co-treatment. The co-treatment group displayed elevated cAMP levels and AMPK activation in adipose tissue and increased excretion of fecal lipids. The results indicate that the co-treatment of HTGT and EMIQ holds the potential to be a promising combination therapy for combating obesity. To further validate the anti-obesity effect of the combined treatment of HTGT and EMIQ in human subjects, additional clinical studies are warranted.
Collapse
Affiliation(s)
- Ye-Jin Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee-Seong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ji Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeon-Yeong Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Zhang M, Li B, Tian J. Mitochondrial targets exploration of epigallocatechin gallate and theaflavin in regards to differences in stress protection under different temperatures. J Nutr Biochem 2023:109400. [PMID: 37271321 DOI: 10.1016/j.jnutbio.2023.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
The study investigated the impacts of epigallocatechin gallate (EGCG) and theaflavin (TF1) on temperature tolerance of nematodes and explored targets on mitochondria. Survival rate, mitochondrial membrane potential (MMP) and ATP content of nematodes at different temperatures incubated with EGCG or TF1 were quantified. Thermogenesis and function of ex-vivo mitochondria were characterized. Targeted proteins of substances were explored via drug affinity responsive target stability (DARTS) and RT-qPCR. Results showed that EGCG and TF1 increased survival rates of nematodes under heat and cold stress, respectively. TF1 exhibited lower MMP of nematodes and more mitochondrial thermogenesis than EGCG for the cold-protection, and upregulated gpi-1, pgk-1, acox-1.2, acox-1.3 and acaa-2 to compensate the energy loss due to the uncoupling and downregulation of sdha-1 and atp-1. EGCG upregulated ctl-1, hsp-60 and enol-1 expression for the thermo-protection, as well as pgk-1, acox-1.3 and acaa-2 to compensate energy loss due to the downregulation of sdha-1.
Collapse
Affiliation(s)
- Mengting Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, P. R. China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, P. R. China; Functional Food Engineering & Technology Research Center of Hubei Province, Wuhan, 430070, P. R. China
| | - Jing Tian
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, P. R. China; Functional Food Engineering & Technology Research Center of Hubei Province, Wuhan, 430070, P. R. China.
| |
Collapse
|
8
|
Jung UJ. Sarcopenic Obesity: Involvement of Oxidative Stress and Beneficial Role of Antioxidant Flavonoids. Antioxidants (Basel) 2023; 12:antiox12051063. [PMID: 37237929 DOI: 10.3390/antiox12051063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenic obesity, which refers to concurrent sarcopenia and obesity, is characterized by decreased muscle mass, strength, and performance along with abnormally excessive fat mass. Sarcopenic obesity has received considerable attention as a major health threat in older people. However, it has recently become a health problem in the general population. Sarcopenic obesity is a major risk factor for metabolic syndrome and other complications such as osteoarthritis, osteoporosis, liver disease, lung disease, renal disease, mental disease and functional disability. The pathogenesis of sarcopenic obesity is multifactorial and complicated, and it is caused by insulin resistance, inflammation, hormonal changes, decreased physical activity, poor diet and aging. Oxidative stress is a core mechanism underlying sarcopenic obesity. Some evidence indicates a protective role of antioxidant flavonoids in sarcopenic obesity, although the precise mechanisms remain unclear. This review summarizes the general characteristics and pathophysiology of sarcopenic obesity and focuses on the role of oxidative stress in sarcopenic obesity. The potential benefits of flavonoids in sarcopenic obesity have also been discussed.
Collapse
Affiliation(s)
- Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
9
|
Goodarzi G, Tehrani SS, Panahi G, Bahramzadeh A, Meshkani R. Combination Therapy of Metformin and p-Coumaric Acid Mitigates Metabolic Dysfunction Associated with Obesity and Non-Alcoholic Fatty Liver Disease in High-Fat Diet Obese C57BL/6 Mice. J Nutr Biochem 2023; 118:109369. [PMID: 37100305 DOI: 10.1016/j.jnutbio.2023.109369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
Metformin (MET) has been demonstrated to have favorable impact on nonalcoholic fatty liver disease (NAFLD); however, the combined effect of this drug with p-coumaric acid (PCA) on liver steatosis is unclear. The aim of the current study was to evaluate the combined effects of MET and PCA on NAFLD in a high-fat diet (HFD)-induced NAFLD mouse model. The obese mice received MET (230 mg/kg), PCA (200 mg/kg) monotherapies, and MET combination with PCA in the diet for 10 weeks. Our results showed that the combination of MET and PCA markedly ameliorated weight gain and fat deposition in HFD fed mice. Furthermore, the combination of MET and PCA lowered liver triglyceride (TG) content which was accompanied by decreased expression of lipogenic and increased expression of β-oxidation related genes and proteins. In addition, combination therapy of MET and PCA mitigated liver inflammation through inhibiting hepatic macrophage infiltration (F4/80), switching macrophage from M1 into M2 phenotype, and ameliorating nuclear factor-κB (NF-κB) activity in comparison with the monotherapy of MET or PCA. Furthermore, we found that MET and PCA combination therapy upregulated thermogenesis-related genes in BAT and sWAT. Combination therapy results in stimulating brown-like adipocyte (beige) formation in the sWAT of HFD mice. Taken together, these findings indicate that MET combined with PCA can improve NAFLD through decreasing lipid accumulation, inhibiting inflammation and inducing thermogenesis, and adipose tissue browning.
Collapse
Affiliation(s)
- Golnaz Goodarzi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R Iran
| | - Arash Bahramzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R Iran.
| |
Collapse
|
10
|
Li M, Qian M, Jiang Q, Tan B, Yin Y, Han X. Evidence of Flavonoids on Disease Prevention. Antioxidants (Basel) 2023; 12:antiox12020527. [PMID: 36830086 PMCID: PMC9952065 DOI: 10.3390/antiox12020527] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
A growing body of evidence highlights the properties of flavonoids in natural foods for disease prevention. Due to their antioxidative, anti-inflammatory, and anti-carcinogenic activities, flavonoids have been revealed to benefit skeletal muscle, liver, pancreas, adipocytes, and neural cells. In this review, we introduced the basic classification, natural sources, and biochemical properties of flavonoids, then summarize the experimental results and underlying molecular mechanisms concerning the effects of flavonoid consumption on obesity, cancers, and neurogenerative diseases that greatly threaten public health. Especially, the dosage and duration of flavonoids intervening in these diseases are discussed, which might guide healthy dietary habits for people of different physical status.
Collapse
Affiliation(s)
- Meng Li
- Hainan Institute, Zhejiang University, Sanya 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengqi Qian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xinyan Han
- Hainan Institute, Zhejiang University, Sanya 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-0571-88982446
| |
Collapse
|
11
|
Insights on Dietary Polyphenols as Agents against Metabolic Disorders: Obesity as a Target Disease. Antioxidants (Basel) 2023; 12:antiox12020416. [PMID: 36829976 PMCID: PMC9952395 DOI: 10.3390/antiox12020416] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Obesity is a condition that leads to increased health problems associated with metabolic disorders. Synthetic drugs are available for obesity treatment, but some of these compounds have demonstrated considerable side effects that limit their use. Polyphenols are vital phytonutrients of plant origin that can be incorporated as functional food ingredients. This review presents recent developments in dietary polyphenols as anti-obesity agents. Evidence supporting the potential application of food-derived polyphenols as agents against obesity has been summarized. Literature evidence supports the effectiveness of plant polyphenols against obesity. The anti-obesity mechanisms of polyphenols have been explained by their potential to inhibit obesity-related digestive enzymes, modulate neurohormones/peptides involved in food intake, and their ability to improve the growth of beneficial gut microbes while inhibiting the proliferation of pathogenic ones. Metabolism of polyphenols by gut microbes produces different metabolites with enhanced biological properties. Thus, research demonstrates that dietary polyphenols can offer a novel path to developing functional foods for treating obesity. Upcoming investigations need to explore novel techniques, such as nanocarriers, to improve the content of polyphenols in foods and their delivery and bioavailability at the target sites in the body.
Collapse
|
12
|
Fang J, Zeng L, He Y, Liu X, Zhang T, Wang Q. Effects of Dietary Tannic Acid on Obesity and Gut Microbiota in C57BL/6J Mice Fed with High-Fat Diet. Foods 2022; 11:3325. [PMID: 36359937 PMCID: PMC9659306 DOI: 10.3390/foods11213325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 07/21/2023] Open
Abstract
Dietary tannic acid, as a natural polyphenolic, has many important biological activities. This study aimed to investigate the effect of dietary tannic acid on obesity and gut microbiota in mice with a high-fat diet. Male C57BL/6J mice fed a high-fat diet were treated with dietary tannic acid for eight weeks. Results showed that dietary tannic acid reduced the body weight gain, regulated glycolipid metabolism, improved the insulin resistance, and attenuated the liver oxidative stress in high-fat diet-fed mice. Moreover, both dietary tannic acid intervention groups repaired the gut barrier damage caused by a high-fat diet, especially in the 50 mg/kg/d dietary tannic acid intervention group. Interestingly, the effect of dietary tannic acid on serum endotoxin lipopolysaccharide (LPS) content was correlated with the abundance of the LPS-producing microbiota. In addition, dietary tannic acid altered the abundance of obesity-related gut microbiota (Firmicutes, Bacteroidetes, Bacteroides, Alistipes, and Odoribacter) in the 150 mg/kg/d dietary tannic acid intervention group, while it was not effective in the 50 mg/kg/d dietary tannic acid intervention group. These findings suggested the potential effect of dietary tannic acid for the prevention and control of obesity.
Collapse
|
13
|
Chen CP, Su TC, Yang MJ, Chen WT, Siao AC, Huang LR, Lin YY, Kuo YC, Chung JF, Cheng CF, Ku HC, Kao YH. Green tea epigallocatechin gallate suppresses 3T3-L1 cell growth via microRNA-143/MAPK7 pathways. Exp Biol Med (Maywood) 2022; 247:1670-1679. [PMID: 35894140 PMCID: PMC9597208 DOI: 10.1177/15353702221108925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Green tea epigallocatechin gallate (EGCG) and microRNA (miRNA) molecules modulate obesity. Nevertheless, it is still unknown whether EGCG modulates fat cell growth via miRNA-related signaling. In this study, white preadipocytes were used to examine whether the antimitogenic effect of EGCG on fat cells is regulated by the miR-143/MAPK7 pathway. We showed that EGCG upregulated the levels of miR-143, but not miR-155, in 3T3-L1 preadipocytes. Moreover, EGCG downregulated MAPK7 mRNA and protein levels time- and dose-dependently. MAPK7 expression increased during 3T3-L1 cell proliferation. miR-143 overexpression in the absence of EGCG mimicked the effects of EGCG to suppress preadipocyte growth and MAPK7 expression, whereas knockdown of miR-143 antagonized the EGCG-altered levels of miR-143, MAPK7, and pERK1/2 and reversed the EGCG-inhibited cell growth. These findings suggest that EGCG inhibits 3T3-L1 cell growth via miR-143/MAPK7 pathway.
Collapse
Affiliation(s)
- Chia-Pei Chen
- Department of Life Sciences, National
Central University, Taoyuan 320
| | - Tsung-Chen Su
- Tea Research and Extension Station,
Council of Agriculture, Taoyuan 326
| | - Meei-Ju Yang
- Tea Research and Extension Station,
Council of Agriculture, Taoyuan 326
| | - Wen-Ting Chen
- Department of Life Sciences, National
Central University, Taoyuan 320
| | - An-Ci Siao
- Department of Life Sciences, National
Central University, Taoyuan 320
| | - Ling-Ru Huang
- Department of Life Sciences, National
Central University, Taoyuan 320
| | - Yen-Yue Lin
- Department of Life Sciences, National
Central University, Taoyuan 320,Department of Emergency Medicine,
Taoyuan Armed Forces General Hospital, Taoyuan 325,Department of Emergency Medicine,
Tri-Service General Hospital, National Defense Medical Center, Taipei 114
| | - Yow-Chii Kuo
- Department of Gastroenterology,
Landseed Hospital, Taoyuan 324
| | - Jia-Fang Chung
- Department of Pediatrics, Taipei Tzu
Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu
Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142,Institute of Biomedical Sciences,
Academia Sinica, Taipei 11529,Department of Pediatrics, Tzu Chi
University, Hualien 97004
| | - Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu
Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142
| | - Yung-Hsi Kao
- Department of Life Sciences, National
Central University, Taoyuan 320,Yung-Hsi Kao.
| |
Collapse
|
14
|
Chen Y, Hamidu S, Yang X, Yan Y, Wang Q, Li L, Oduro PK, Li Y. Dietary Supplements and Natural Products: An Update on Their Clinical Effectiveness and Molecular Mechanisms of Action During Accelerated Biological Aging. Front Genet 2022; 13:880421. [PMID: 35571015 PMCID: PMC9096086 DOI: 10.3389/fgene.2022.880421] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Accelerated biological aging, which involves the gradual decline of organ or tissue functions and the distortion of physiological processes, underlies several human diseases. Away from the earlier free radical concept, telomere attrition, cellular senescence, proteostasis loss, mitochondrial dysfunction, stem cell exhaustion, and epigenetic and genomic alterations have emerged as biological hallmarks of aging. Moreover, nutrient-sensing metabolic pathways are critical to an organism's ability to sense and respond to nutrient levels. Pharmaceutical, genetic, and nutritional interventions reverting physiological declines by targeting nutrient-sensing metabolic pathways can promote healthy aging and increase lifespan. On this basis, biological aging hallmarks and nutrient-sensing dependent and independent pathways represent evolving drug targets for many age-linked diseases. Here, we discuss and update the scientific community on contemporary advances in how dietary supplements and natural products beneficially revert accelerated biological aging processes to retrograde human aging and age-dependent human diseases, both from the clinical and preclinical studies point-of-view. Overall, our review suggests that dietary/natural products increase healthspan-rather than lifespan-effectively minimizing the period of frailty at the end of life. However, real-world setting clinical trials and basic studies on dietary supplements and natural products are further required to decisively demonstrate whether dietary/natural products could promote human lifespan.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sherif Hamidu
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Xintong Yang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Yuhong Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
15
|
Zhang P, Wu W, Du C, Ji X, Wang Y, Han Q, Xu H, Li C, Xu Y. RNA-seq profiling of white and brown adipocyte differentiation treated with epigallocatechin gallate. Sci Data 2022; 9:41. [PMID: 35136080 PMCID: PMC8826391 DOI: 10.1038/s41597-022-01149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
Due to serious adverse effects, many of the approved anti-obesity medicines have been withdrawn, and the selection of safer natural ingredients is of great interest. Epigallocatechin gallate (EGCG) is one of the major green tea catechins, and has been demonstrated to possess an anti-obesity function by regulating both white and brown adipose tissue activity. However, there are currently no publicly available studies describing the effects of EGCG on the two distinct adipose tissue transcriptomes. The stromal vascular fraction (SVF) cell derived from adipose tissue is a classic cell model for studying adipogenesis and fat accumulation. In the current study, primary WAT and BAT SVF cells were isolated and induced to adipogenic differentiation in the presence or absence of EGCG. RNA-seq was used to determine genes regulated by EGCG and identify the key differences between the two functionally distinct adipose tissues. Taken together, we provide detailed stage- and tissue-specific gene expression profiles affected by EGCG. These data will be valuable for obesity-related clinical/basic research. Measurement(s) | white adipose tissue transcriptome • brown adipose tissue transcriptome | Technology Type(s) | RNA sequencing | Factor Type(s) | epigallocatechin gallate presence |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.19067663
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Wei Wu
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Chunyu Du
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xiang Ji
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yaling Wang
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Qiu Han
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Hiaxia Xu
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Cencen Li
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China.
| | - Yongjie Xu
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China. .,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China.
| |
Collapse
|
16
|
Wang Z, Zeng M, Wang Z, Qin F, Wang Y, Chen J, Christian M, He Z. Food phenolics stimulate adipocyte browning via regulating gut microecology. Crit Rev Food Sci Nutr 2021:1-27. [PMID: 34738509 DOI: 10.1080/10408398.2021.1997905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fat browning has piqued the interest of researchers as a potential target for treating obesity and related metabolic disorders. Recruitment of brown adipocytes leads to enhanced energy dissipation and reduced adiposity, thus facilitating the maintenance of metabolic homeostasis. Evidence is increasing to support the crucial roles of polyphenols and gut microecology in turning fat "brown". However, it is not clear whether the intestinal microecology is involved in polyphenol-mediated regulation of adipose browning, so this concept is worthy of exploration. In this review, we summarize the current knowledge, mostly from studies with murine models, supporting the concept that the effects of food phenolics on brown fat activation and white fat browning can be attributed to their regulatory actions on gut microecology, including microbial community profile, gut metabolites, and gut-derived hormones. Furthermore, the potential underlying pathways involved are also discussed. Basically, understanding gut microecology paves the way to determine the underlying roles and mechanisms of food phenolics in adipose browning.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yongzhi Wang
- Food and Beverage Department of Damin Food (Zhangzhou) Co., Ltd, Zhangzhou, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Otton R, Petrovic N, Cannon B, Nedergaard J. On the Validity of Adipogenic Cell Lines as Model Systems for Browning Processes: In Authentic Brown, Brite/Beige, and White Preadipocytes, There is No Cell-Autonomous Thermogenic Recruitment by Green Tea Compounds. Front Nutr 2021; 8:715859. [PMID: 34485365 PMCID: PMC8415881 DOI: 10.3389/fnut.2021.715859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
The potential ability of nutritional compounds to induce or enhance the browning of adipocytes has attracted large interest as a workable means of combatting the obesity epidemic. Green tea compounds are discussed as such inducers of an enhanced thermogenic capacity and activity. However, the cell-autonomous effects of green tea compounds on adipocytes have until now only been demonstrated in adipogenic cell lines (3T3-L1 and 3T3-F442A), i.e., cells of undefined tissue lineage. In this study, we examine the ability of green tea compounds to cell-autonomously induce thermogenic recruitment in authentic brown and brite/beige adipocytes in vitro. In primary brown adipocytes, the green tea compounds suppressed basal UCP1 gene expression, and there was no positive interaction between the compounds and adrenergic stimulation. In white adipocytes, green tea compounds decreased both basal and norepinephrine-induced UCP1 mRNA levels, and this was associated with the suppression of cell differentiation, indicated by reduced lipogenic gene expression and lipid accumulation. A lack of interaction between rosiglitazone and green tea compounds suggests that the green tea compounds do not directly interact with the PPARγ pathway. We conclude that there is a negative effect of the green tea compounds on basal UCP1 gene expression, in both brown and white primary adipocytes, in contrast to the positive effects earlier reported from studies in adipogenic cell lines. We posit that the epigenetic status of the adipogenic cell lines is fundamentally different from that of genuine brown and white adipocytes, reflected, e.g., in several-thousand-fold differences in UCP1 gene expression levels. Thus, results obtained with adipogenic cell lines cannot unreservedly be extrapolated as being relevant for authentic effects in brown and white adipocytes. We suggest that this conclusion can be of general concern for studies attempting to establish physiologically relevant cell-autonomous effects.
Collapse
Affiliation(s)
- Rosemari Otton
- Interdisciplinary Post-Graduate Programme in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
18
|
Osuna-Prieto FJ, Martinez-Tellez B, Segura-Carretero A, Ruiz JR. Activation of Brown Adipose Tissue and Promotion of White Adipose Tissue Browning by Plant-based Dietary Components in Rodents: A Systematic Review. Adv Nutr 2021; 12:2147-2156. [PMID: 34265040 PMCID: PMC8634450 DOI: 10.1093/advances/nmab084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
Activation of brown adipose tissue (BAT) and promotion of white adipose tissue (WAT) browning is considered a potential tool to combat obesity and cardiometabolic disorders. The use of plant-based dietary components has become one of the most used strategies for activating BAT and promoting WAT browning in rodents. The main reason is because plant-based dietary components are usually recognized as safe when the dose is properly adjusted, and they can easily be administrated by being added to the diet or dissolved in water. The present systematic review aimed to study the effects of plant-based dietary components on activation of BAT and promotion of WAT browning in rodents. A systematic search of PubMed and Scopus (from 1978 to 2019) identified eligible studies. Studies assessing the effects of plant-based dietary components added to diet and/or water on uncoupling protein 1 (UCP1) expression in BAT and/or WAT were included. Studies that used dietary components of animal origin, did not specify the effects on UCP1, or were conducted in other species different from mice or rats were excluded. Of 3919 studies identified in the initial screening, 146 studies were finally included in the review. We found that tea extract catechins, resveratrol, capsaicin and capsinoids, cacao extract flavanols, and quercetin were the most studied components. Scientific evidence suggests that some of these dietary components activate BAT and promote WAT browning via activation of the AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) pathways. These findings reveal that there is strong scientific evidence supporting the use of plant-based dietary components to activate BAT and promote WAT browning in rodents and thus to potentially combat obesity and cardiometabolic disorders.
Collapse
Affiliation(s)
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain,Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Granada, Spain,Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park Avda. Del Conocimiento, Granada, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
19
|
Zhang Z, Yang D, Xiang J, Zhou J, Cao H, Che Q, Bai Y, Guo J, Su Z. Non-shivering Thermogenesis Signalling Regulation and Potential Therapeutic Applications of Brown Adipose Tissue. Int J Biol Sci 2021; 17:2853-2870. [PMID: 34345212 PMCID: PMC8326120 DOI: 10.7150/ijbs.60354] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
In mammals, thermogenic organs exist in the body that increase heat production and enhance energy regulation. Because brown adipose tissue (BAT) consumes energy and generates heat, increasing energy expenditure via BAT might be a potential strategy for new treatments for obesity and obesity-related diseases. Thermogenic differentiation affects normal adipose tissue generation, emphasizing the critical role that common transcriptional regulation factors might play in common characteristics and sources. An understanding of thermogenic differentiation and related factors could help in developing ways to improve obesity indirectly or directly through targeting of specific signalling pathways. Many studies have shown that the active components of various natural products promote thermogenesis through various signalling pathways. This article reviews recent major advances in this field, including those in the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA), cyclic guanosine monophosphate-GMP-dependent protein kinase G (cGMP-AKT), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), transforming growth factor-β/bone morphogenic protein (TGF-β/BMP), transient receptor potential (TRP), Wnt, nuclear factor-κ-light-chain-enhancer of activated B cells (NF-κΒ), Notch and Hedgehog (Hh) signalling pathways in brown and brown-like adipose tissue. To provide effective information for future research on weight-loss nutraceuticals or drugs, this review also highlights the natural products and their active ingredients that have been reported in recent years to affect thermogenesis and thus contribute to weight loss via the above signalling pathways.
Collapse
Affiliation(s)
- Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Di Yang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junwei Xiang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Cao
- Guangdong Cosmetics Engineering & Technology Research Center, School of Chemistry and Chemical Engneering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou 510663, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
20
|
Chodari L, Dilsiz Aytemir M, Vahedi P, Alipour M, Vahed SZ, Khatibi SMH, Ahmadian E, Ardalan M, Eftekhari A. Targeting Mitochondrial Biogenesis with Polyphenol Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4946711. [PMID: 34336094 PMCID: PMC8289611 DOI: 10.1155/2021/4946711] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Appropriate mitochondrial physiology is an essential for health and survival. Cells have developed unique mechanisms to adapt to stress circumstances and changes in metabolic demands, by meditating mitochondrial function and number. In this context, sufficient mitochondrial biogenesis is necessary for efficient cell function and haemostasis, which is dependent on the regulation of ATP generation and maintenance of mitochondrial DNA (mtDNA). These procedures play a primary role in the processes of inflammation, aging, cancer, metabolic diseases, and neurodegeneration. Polyphenols have been considered as the main components of plants, fruits, and natural extracts with proven therapeutic effects during the time. These components regulate the intracellular pathways of mitochondrial biogenesis. Therefore, the current review is aimed at representing an updated review which determines the effects of different natural polyphenol compounds from various plant kingdoms on modulating signaling pathways of mitochondrial biogenesis that could be a promising alternative for the treatment of several disorders.
Collapse
Affiliation(s)
- Leila Chodari
- Physiology Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Mutlu Dilsiz Aytemir
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06100, Sıhhiye, Ankara, Turkey
- İzmir Katip Çelebi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 35620, Çiğli, İzmir, Turkey
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
21
|
Liu J, Cao J, Li Y, Guo F. Beneficial Flavonoid in Foods and Anti-obesity Effect. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaoxian Cao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Okue S, Ishikawa E, Nakahara R, Ito T, Okura T, Sakae M, Miura A, Ozaki-Masuzawa Y, Hosono T, Seki T. Fish oil suppresses obesity more potently in lean mice than in diet-induced obese mice but ameliorates steatosis in such obese mice. Biosci Biotechnol Biochem 2021; 85:421-429. [PMID: 33604637 DOI: 10.1093/bbb/zbaa038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/18/2020] [Indexed: 11/14/2022]
Abstract
This study sought to clarify the antiobesity effects of fish oil (FO) in terms of prevention and amelioration. An isocaloric diet composed of lard or FO was given to lean C57BL/6J mice for the study of prevention and high-fat diet-induced obese (DIO) mice for the study of amelioration for 4 weeks. Body weight gain and food efficiency were potently suppressed by FO in lean mice compared to lard diet-fed mice. Uncoupling protein-1 (UCP-1) expression in inguinal white adipose tissue (WAT) was also significantly induced by FO in lean mice. FO also suppressed body weight gain and food efficiency in DIO mice but did not reduce body weight. FO ameliorated liver steatosis in DIO mice by mildly inducing UCP-1 in inguinal WAT. FO suppressed obesity more potently in lean mice than in DIO mice but ameliorated steatosis in the DIO mice.
Collapse
Affiliation(s)
- Sachiko Okue
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan
| | - Eimi Ishikawa
- Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Ren Nakahara
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan
| | - Tsubasa Ito
- Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Takumi Okura
- Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Mana Sakae
- Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Atsushi Miura
- Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Yori Ozaki-Masuzawa
- Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Takashi Hosono
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan.,Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Taiichiro Seki
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan.,Department of Chemistry and Life Science, Collage of Bioresource Sciences, Nihon University, Kanagawa, Japan
| |
Collapse
|
23
|
Mullins CA, Gannaban RB, Khan MS, Shah H, Siddik MAB, Hegde VK, Reddy PH, Shin AC. Neural Underpinnings of Obesity: The Role of Oxidative Stress and Inflammation in the Brain. Antioxidants (Basel) 2020; 9:antiox9101018. [PMID: 33092099 PMCID: PMC7589608 DOI: 10.3390/antiox9101018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity prevalence is increasing at an unprecedented rate throughout the world, and is a strong risk factor for metabolic, cardiovascular, and neurological/neurodegenerative disorders. While low-grade systemic inflammation triggered primarily by adipose tissue dysfunction is closely linked to obesity, inflammation is also observed in the brain or the central nervous system (CNS). Considering that the hypothalamus, a classical homeostatic center, and other higher cortical areas (e.g. prefrontal cortex, dorsal striatum, hippocampus, etc.) also actively participate in regulating energy homeostasis by engaging in inhibitory control, reward calculation, and memory retrieval, understanding the role of CNS oxidative stress and inflammation in obesity and their underlying mechanisms would greatly help develop novel therapeutic interventions to correct obesity and related comorbidities. Here we review accumulating evidence for the association between ER stress and mitochondrial dysfunction, the main culprits responsible for oxidative stress and inflammation in various brain regions, and energy imbalance that leads to the development of obesity. Potential beneficial effects of natural antioxidant and anti-inflammatory compounds on CNS health and obesity are also discussed.
Collapse
Affiliation(s)
- Caitlyn A. Mullins
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Ritchel B. Gannaban
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Md Shahjalal Khan
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - Harsh Shah
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Md Abu B. Siddik
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - Vijay K. Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79409, USA;
| | - Andrew C. Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
- Correspondence: ; Tel.: +1-806-834-1713
| |
Collapse
|
24
|
Choi C, Song HD, Son Y, Cho YK, Ahn SY, Jung YS, Yoon YC, Kwon SW, Lee YH. Epigallocatechin-3-Gallate Reduces Visceral Adiposity Partly through the Regulation of Beclin1-Dependent Autophagy in White Adipose Tissues. Nutrients 2020; 12:nu12103072. [PMID: 33050029 PMCID: PMC7600517 DOI: 10.3390/nu12103072] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/20/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is a primary bioactive phytochemical in green tea. Its therapeutic potential in metabolic diseases has been reported; however, the molecular mechanisms of the anti-obesity effect of EGCG have not been fully elucidated. In this study, we examined the effects of EGCG on lipid metabolism and autophagy in adipose tissue. After 8 weeks of high-fat diet feeding, mice were treated with EGCG (20 mg/kg/day) for 2 weeks to test in vivo anti-obesity effects of EGCG. EGCG treatment improved glucose tolerance and caused body weight loss. Interestingly, reduced adipose tissue mass was more prominent in visceral compared to subcutaneous white adipose tissue. Mechanistically, EGCG treatment increased autophagic flux in white adipose tissue through the AMP-activated protein kinase-mediated signaling pathway. Adipocyte-specific knockout of Beclin1 mitigated the effects of EGCG on visceral adipose tissue mass and glucose tolerance, indicating that the anti-obesity effect of EGCG requires Beclin1-dependent autophagy. Collectively, our data demonstrated that EGCG has anti-obesity effects through the upregulation of Beclin1-dependent autophagy and lipid catabolism in white adipose tissue (WAT).
Collapse
Affiliation(s)
- Cheoljun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.C.); (H.-D.S.); (Y.S.); (Y.K.C.); (S.-Y.A.); (Y.C.Y.); (S.W.K.)
| | - Hyun-Doo Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.C.); (H.-D.S.); (Y.S.); (Y.K.C.); (S.-Y.A.); (Y.C.Y.); (S.W.K.)
| | - Yeonho Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.C.); (H.-D.S.); (Y.S.); (Y.K.C.); (S.-Y.A.); (Y.C.Y.); (S.W.K.)
| | - Yoon Keun Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.C.); (H.-D.S.); (Y.S.); (Y.K.C.); (S.-Y.A.); (Y.C.Y.); (S.W.K.)
| | - Sang-Yeop Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.C.); (H.-D.S.); (Y.S.); (Y.K.C.); (S.-Y.A.); (Y.C.Y.); (S.W.K.)
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan 46241, Korea;
| | - Young Cheol Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.C.); (H.-D.S.); (Y.S.); (Y.K.C.); (S.-Y.A.); (Y.C.Y.); (S.W.K.)
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.C.); (H.-D.S.); (Y.S.); (Y.K.C.); (S.-Y.A.); (Y.C.Y.); (S.W.K.)
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.C.); (H.-D.S.); (Y.S.); (Y.K.C.); (S.-Y.A.); (Y.C.Y.); (S.W.K.)
- Correspondence: ; Tel.: +82-2-880-2139; Fax: 82-2-872-1795
| |
Collapse
|
25
|
Bordoni L, Gabbianelli R. Mitochondrial DNA and Neurodegeneration: Any Role for Dietary Antioxidants? Antioxidants (Basel) 2020; 9:E764. [PMID: 32824558 PMCID: PMC7466149 DOI: 10.3390/antiox9080764] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
The maintenance of the mitochondrial function is essential in preventing and counteracting neurodegeneration. In particular, mitochondria of neuronal cells play a pivotal role in sustaining the high energetic metabolism of these cells and are especially prone to oxidative damage. Since overproduction of reactive oxygen species (ROS) is involved in the pathogenesis of neurodegeneration, dietary antioxidants have been suggested to counteract the detrimental effects of ROS and to preserve the mitochondrial function, thus slowing the progression and limiting the extent of neuronal cell loss in neurodegenerative disorders. In addition to their role in the redox-system homeostasis, mitochondria are unique organelles in that they contain their own genome (mtDNA), which acts at the interface between environmental exposures and the molecular triggers of neurodegeneration. Indeed, it has been demonstrated that mtDNA (including both genetics and, from recent evidence, epigenetics) might play relevant roles in modulating the risk for neurodegenerative disorders. This mini-review describes the link between the mitochondrial genome and cellular oxidative status, with a particular focus on neurodegeneration; moreover, it provides an overview on potential beneficial effects of antioxidants in preserving mitochondrial functions through the protection of mtDNA.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | | |
Collapse
|
26
|
Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020; 12:E2393. [PMID: 32785059 PMCID: PMC7469047 DOI: 10.3390/nu12082393] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prevention and treatment of obesity is primary based on the follow-up of a healthy lifestyle, which includes a healthy diet with an important presence of bioactive compounds such as polyphenols. For many years, the health benefits of polyphenols have been attributed to their anti-oxidant capacity as free radical scavengers. More recently it has been described that polyphenols activate other cell-signaling pathways that are not related to ROS production but rather involved in metabolic regulation. In this review, we have summarized the current knowledge in this field by focusing on the metabolic effects of flavonoids. Flavonoids are widely distributed in the plant kingdom where they are used for growing and defensing. They are structurally characterized by two benzene rings and a heterocyclic pyrone ring and based on the oxidation and saturation status of the heterocyclic ring flavonoids are grouped in seven different subclasses. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases. We described the effects of each group of flavonoids in liver, white and brown adipose tissue and central nervous system and the metabolic and signaling pathways involved on them.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Giselle Arias
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
27
|
Remedying the Mitochondria to Cure Human Diseases by Natural Products. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5232614. [PMID: 32733635 PMCID: PMC7376439 DOI: 10.1155/2020/5232614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria are the ‘engine' of cells. Mitochondrial dysfunction is an important mechanism in many human diseases. Many natural products could remedy the mitochondria to alleviate mitochondria-involved diseases. In this review, we summarized the current knowledge of the relationship between the mitochondria and human diseases and the regulation of natural products to the mitochondria. We proposed that the development of mitochondrial regulators/nutrients from natural products to remedy mitochondrial dysfunction represents an attractive strategy for a mitochondria-involved disorder therapy. Moreover, investigating the mitochondrial regulation of natural products can potentiate the in-depth comprehension of the mechanism of action of natural products.
Collapse
|
28
|
Kumazoe M, Fujimura Y, Tachibana H. 67-kDa Laminin Receptor Mediates the Beneficial Effects of Green Tea Polyphenol EGCG. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40495-020-00228-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Iniguez AB, Zhu MJ. Hop bioactive compounds in prevention of nutrition-related noncommunicable diseases. Crit Rev Food Sci Nutr 2020; 61:1900-1913. [PMID: 32462886 DOI: 10.1080/10408398.2020.1767537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nutrition-related noncommunicable diseases (NR-NCDs) such as cardiovascular disease and type 2 diabetes both negatively impact the quality of life of many individuals and generate a substantial burden on society, demonstrating a need for intervention. Phytochemicals are investigated as a potential approach for combating NR-NCDs, and those found in hops have gained increased attention in recent decades. Hops, the strobile of the plant Humulus lupulus, are grown primarily for the brewing industry as they confer taste and increased shelf-life. The bitter acids represent the main compounds of interest for improving beer quality. Additionally, bitter acids as well as the prenylated chalcone xanthohumol, exhibit a wide range of health beneficial properties. This review summarizes those beneficial effects of bitter acids and xanthohumol on NR-NCDs, including inflammatory and immune diseases, obesity and metabolic disorders, as well as cancer prevention.
Collapse
Affiliation(s)
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
30
|
Stefania DS, Clodoveo ML, Cariello M, D'Amato G, Franchini C, Faienza MF, Corbo F. Polyphenols and obesity prevention: critical insights on molecular regulation, bioavailability and dose in preclinical and clinical settings. Crit Rev Food Sci Nutr 2020; 61:1804-1826. [PMID: 32436425 DOI: 10.1080/10408398.2020.1765736] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity represents one of the most important public health challenges of the 21st century and is characterized by a multifactorial etiology in which environmental, behavioral, metabolic, and genetic factors work together. Despite the rapid increase in prevalence of obesity in the last decades, especially in children, it remains a preventable disease. To battle obesity a multisector approach promoting healthier lifestyle in terms of physical activity and nutrition is needed. Specifically, biologically active dietary compounds, as polyphenols, are able to modulate the expression of genes involved in the development and progression of obesity and its comorbidities as demonstrated by multiple studies using different obesity models. However, human studies focusing on the transcriptomic modulation by polyphenols in obese patients are still limited and do not often recapitulate the results obtained in preclinical setting likely due to the underestimation of some variables such as bioavailability, dose and form (native vs. metabolized) of polyphenols used. The aim of this review is to summarize the state-of-art of nutrigenomic in vitro, in vivo and ex vivo studies as well as clinical trials based on dietary polyphenols to fight obesity. We also critical discuss the variables to be considered to fill the gap between preclinical and clinical settings.
Collapse
Affiliation(s)
- De Santis Stefania
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - M L Clodoveo
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - M Cariello
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - G D'Amato
- Neonatal Intensive Care Unit, Di Venere Hospital, Bari, Italy
| | - C Franchini
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - M F Faienza
- Pediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - F Corbo
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
31
|
Zhang W, An R, Li Q, Sun L, Lai X, Chen R, Li D, Sun S. Theaflavin TF3 Relieves Hepatocyte Lipid Deposition through Activating an AMPK Signaling Pathway by targeting Plasma Kallikrein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2673-2683. [PMID: 32050765 DOI: 10.1021/acs.jafc.0c00148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the leading cause of chronic liver diseases throughout the world. The deficit of pharmacotherapy for NAFLD calls for an urgent need for a new drug discovery and lifestyle management. Black tea is the most popular and functional drink consumed worldwide. Its main bioactive constituent theaflavin helps to prevent obesity-a major risk factor for NAFLD. To find new targets for the development of effective and safe therapeutic drugs from natural plants for NAFLD, we found a theaflavin monomer theaflavin-3,3'-digallate (TF3), which significantly reduced lipid droplet accumulation in hepatocytes, and directly bound and inhibited the activation of plasma kallikrein (PK), which was further proved to stimulate adenosine monophosphate activated protein kinase (AMPK) and its downstream targets. Taken together, we proposed that the TF3-PK-AMPK regulatory axis is a novel mechanism of lipid deposition mitigation, and PK could be a new target for NAFLD treatment.
Collapse
Affiliation(s)
- Wenji Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Ran An
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, P. R. China
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| |
Collapse
|
32
|
Polyphenol-rich green tea extract induces thermogenesis in mice by a mechanism dependent on adiponectin signaling. J Nutr Biochem 2019; 78:108322. [PMID: 32120266 DOI: 10.1016/j.jnutbio.2019.108322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 11/11/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Adiponectin is downregulated in obesity negatively impacting the thermogenesis and impairing white fat browning. Despite the notable effects of green tea (GT) extract in the enhancement of thermogenesis, if its effects are being mediated by adiponectin has been scarcely explored. For this purpose, we investigated the role of adiponectin in the thermogenic actions of GT extract by using an adiponectin-knockout mice model. Male wild-type (WT) and knockout (AdipoKO) C57Bl/6 mice (3 months) were divided into 6 groups: mice fed a standard diet+gavage with water (SD WT, and SD AdipoKO), high-fat diet (HFD)+gavage with water (HFD WT, and HFD AdipoKO), and HFD + gavage with 500 mg/kg of body weight (BW) of GT extract (HFD + GT WT, and HFD + GT AdipoKO). After 20 weeks of experimentation, mice were euthanized and adipose tissue was properly removed. Our findings indicate that treatment with GT extract reversed complications of obesity in WT mice by decreasing final BW gain, adiposity index, adipocyte size and insulin resistance (IR). However, the action of the GT extract was not effective in reversing those markers in the AdipoKO mice, although GT acts independently in the reversal of IR. GT-treatment induced enhancement in energy expenditure (EE), BAT thermogenesis, and promoted browning phenotype in the subcutaneous WAT (scWAT) of WT mice. On the other hand, the thermogenic program was markedly impaired in BAT and scWAT of AdipoKO mice. Our outcomes unveiled adiponectin as a key direct signal for GT extract inducing adaptive thermogenesis and browning in scWAT.
Collapse
|
33
|
Fang C, Kim H, Yanagisawa L, Bennett W, Sirven MA, Alaniz RC, Talcott ST, Mertens‐Talcott SU. Gallotannins and
Lactobacillus plantarum
WCFS1 Mitigate High‐Fat Diet‐Induced Inflammation and Induce Biomarkers for Thermogenesis in Adipose Tissue in Gnotobiotic Mice. Mol Nutr Food Res 2019; 63:e1800937. [DOI: 10.1002/mnfr.201800937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/15/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Chuo Fang
- Department of Nutrition and Food ScienceTexas A&M University College Station 77843 TX USA
| | - Hyemee Kim
- Department of Nutrition and Food ScienceTexas A&M University College Station 77843 TX USA
| | - Lora Yanagisawa
- Microbial Pathogenesis and ImmunologyCollege of MedicineTexas A&M University College Station 77843 TX USA
| | - William Bennett
- Department of Nutrition and Food ScienceTexas A&M University College Station 77843 TX USA
| | - Maritza A. Sirven
- Department of Nutrition and Food ScienceTexas A&M University College Station 77843 TX USA
| | - Robert C. Alaniz
- Microbial Pathogenesis and ImmunologyCollege of MedicineTexas A&M University College Station 77843 TX USA
| | - Stephen T. Talcott
- Department of Nutrition and Food ScienceTexas A&M University College Station 77843 TX USA
| | | |
Collapse
|
34
|
Dinh TC, Thi Phuong TN, Minh LB, Minh Thuc VT, Bac ND, Van Tien N, Pham VH, Show PL, Tao Y, Nhu Ngoc VT, Bich Ngoc NT, Jurgoński A, Thimiri Govinda Raj DB, Van Tu P, Ha VN, Czarzasta J, Chu DT. The effects of green tea on lipid metabolism and its potential applications for obesity and related metabolic disorders - An existing update. Diabetes Metab Syndr 2019; 13:1667-1673. [PMID: 31336539 DOI: 10.1016/j.dsx.2019.03.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
Abstract
Obesity is one of the top global issues, which induces several serious health consequences both physically and mentally, such as type 2 diabetes, cardiovascular diseases, dyslipidemia, eating disorders, depression and stress. However, the effective therapy to prevent and treat obesity and overweight, up to now, cannot be found nowadays. Several methods/medicines namely diet control, energy balance, environmental changes, genetic and stem cell therapies, new drugs/chemicals have been extensively studied to enhance the ability to control bodyweight and prevent obesity. Of all the aforementioned methods, green tea, used as a daily beverage, has shown beneficial impacts for the health, especially its anti-obesity effects. Available evidence shows that green tea can interrupt lipid emulsification, reduce adipocyte differentiation, increase thermogenesis, and reduce food intake, thus green tea improves the systemic metabolism and decreases fat mass. Here, we highlight and sum up the update investigations of anti-obesity effect of green tea as well as discuss the potential application of them for preventing obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Thien Chu Dinh
- Institute for Research and Development, Duy Tan University, Danang, Viet Nam
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, South Korea
| | - Le Bui Minh
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Ward 13, District 4, Ho Chi Minh City, Viet Nam
| | | | | | - Nguyen Van Tien
- 103 Military Central Hospital, Vietnam Military Medical University Hanoi, Viet Nam
| | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 8, 210095, China
| | | | | | - Adam Jurgoński
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Poland
| | | | - Pham Van Tu
- Faculty of Biology, Hanoi National University of Education, Hanoi, Viet Nam
| | - Vu Ngoc Ha
- Vietnam Academy of Social Sciences, Hanoi, Viet Nam
| | - Joanna Czarzasta
- Department of Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Dinh-Toi Chu
- School of Odonto Stomatology, Hanoi Medical University, Hanoi, Viet Nam; Faculty of Biology, Hanoi National University of Education, Hanoi, Viet Nam.
| |
Collapse
|
35
|
Zhou J, Mao L, Xu P, Wang Y. Effects of (-)-Epigallocatechin Gallate (EGCG) on Energy Expenditure and Microglia-Mediated Hypothalamic Inflammation in Mice Fed a High-Fat Diet. Nutrients 2018; 10:nu10111681. [PMID: 30400620 PMCID: PMC6266769 DOI: 10.3390/nu10111681] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022] Open
Abstract
Obesity is an escalating global epidemic caused by an imbalance between energy intake and expenditure. (−)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been reported to be conducive to preventing obesity and alleviating obesity-related chronic diseases. However, the role of EGCG in energy metabolism disorders and central nervous system dysfunction induced by a high-fat diet (HFD) remains to be elucidated. The aim of this study was to evaluate the effects of EGCG on brown adipose tissue (BAT) thermogenesis and neuroinflammation in HFD-induced obese C57BL/6J mice. Mice were randomly divided into four groups with different diets: normal chow diet (NCD), normal chow diet supplemented with 1% EGCG (NCD + EGCG), high-fat diet (HFD), and high-fat diet supplemented with 1% EGCG (HFD + EGCG). Investigations based on a four-week experiment were carried out including the BAT activity, energy consumption, mRNA expression of major inflammatory cytokines in the hypothalamus, nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) phosphorylation, and immunofluorescence staining of microglial marker Iba1 in hypothalamic arcuate nucleus (ARC). Experimental results demonstrated that dietary supplementation of EGCG significantly inhibited HFD-induced obesity by enhancing BAT thermogenesis, and attenuated the hypothalamic inflammation and microglia overactivation by regulating the NF-κB and STAT3 signaling pathways.
Collapse
Affiliation(s)
- Jihong Zhou
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Limin Mao
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Ping Xu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
36
|
Zein-polysaccharide nanoparticles as matrices for antioxidant compounds: A strategy for prevention of chronic degenerative diseases. Food Res Int 2018; 111:451-471. [DOI: 10.1016/j.foodres.2018.05.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023]
|
37
|
Desjardins EM, Steinberg GR. Emerging Role of AMPK in Brown and Beige Adipose Tissue (BAT): Implications for Obesity, Insulin Resistance, and Type 2 Diabetes. Curr Diab Rep 2018; 18:80. [PMID: 30120579 DOI: 10.1007/s11892-018-1049-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The global prevalence of type 2 diabetes (T2D) is escalating at alarming rates, demanding the development of additional classes of therapeutics to further reduce the burden of disease. Recent studies have indicated that increasing the metabolic activity of brown and beige adipose tissue may represent a novel means to reduce circulating glucose and lipids in people with T2D. The AMP-activated protein kinase (AMPK) is a cellular energy sensor that has recently been demonstrated to be important in potentially regulating the metabolic activity of brown and beige adipose tissue. The goal of this review is to summarize recent work describing the role of AMPK in brown and beige adipose tissue, focusing on its role in adipogenesis and non-shivering thermogenesis. RECENT FINDINGS Ablation of AMPK in mouse adipocytes results in cold intolerance, a reduction in non-shivering thermogenesis in brown adipose tissue (BAT), and the development of non-alcoholic fatty liver disease (NAFLD) and insulin resistance; effects associated with a defect in mitochondrial specific autophagy (mitophagy) within BAT. The effects of a β3-adrenergic agonist on the induction of BAT thermogenesis and the browning of white adipose tissue (WAT) are also blunted in mice lacking adipose tissue AMPK. A specific AMPK activator, A-769662, also results in the activation of BAT and the browning of WAT, effects which may involve demethylation of the PR domain containing 16 (Prdm16) promoter region, which is important for BAT development. AMPK plays an important role in the development and maintenance of brown and beige adipose tissue. Adipose tissue AMPK is reduced in people with insulin resistance, consistent with findings that mice lacking adipocyte AMPK develop greater NAFLD and insulin resistance. These data suggest that pharmacologically targeting adipose tissue AMPK may represent a promising strategy to enhance energy expenditure and reduce circulating glucose and lipids, which may be effective for the treatment of NAFLD and T2D.
Collapse
Affiliation(s)
- Eric M Desjardins
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
| |
Collapse
|
38
|
Effects of Isorhamnetin on Adipocyte Mitochondrial Biogenesis and AMPK Activation. Molecules 2018; 23:molecules23081853. [PMID: 30044453 PMCID: PMC6222361 DOI: 10.3390/molecules23081853] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 12/18/2022] Open
Abstract
Isorhamnetin (ISOR), 3-O-methylquercetin, is a naturally occurring flavonoid in many plants. It is a metabolite derived from quercetin and is known to exert beneficial effects on the prevention of obesity. However, the molecular mechanism of action involved in ISOR-mediated mitochondrial biogenesis, and AMP-activated protein kinase (AMPK) activation in 3T3-L1 cells remains unclear. The aim of this study was to determine whether ISOR affected mitochondrial biogenesis and AMPK activation, during 3T3-L1 adipocyte differentiation. Intracellular lipid and triglyceride accumulation, and glycerol-3-phosphate dehydrogenase (GPDH) activity decreased in ISOR-treated cells. The mRNA levels of adipogenic genes, such as the proliferator-activated receptor-γ (PPAR-γ), and adipocyte protein 2 (aP2), were inhibited by ISOR. In contrast, mRNA levels of mitochondrial genes, such as peroxisome proliferator-activated reporter gamma coactivator-1α (PGC-1α), nuclear respiratory factor (NRF)-1, transcription factor A (Tfam), and carnitine palmitoyl transferase-1α (CPT-1α), were all stimulated by ISOR treatment. Mitochondria DNA (mtDNA) copy number and AMPK activity were also stimulated by ISOR. The results suggested that the mitochondrial biogenic effect of ISOR in adipocytes might have been associated with stimulation of mitochondrial gene expression, mtDNA replication, and AMPK activation.
Collapse
|
39
|
Sheng L, Jena PK, Liu HX, Hu Y, Nagar N, Bronner DN, Settles ML, Bäumler AJ, Wan YJY. Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila. FASEB J 2018; 32:fj201800370R. [PMID: 29882708 PMCID: PMC6219838 DOI: 10.1096/fj.201800370r] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
Abstract
Dysregulated bile acid (BA) synthesis is accompanied by dysbiosis, leading to compromised metabolism. This study analyzes the effect of epigallocatechin-3-gallate (EGCG) on diet-induced obesity through regulation of BA signaling and gut microbiota. The data revealed that EGCG effectively reduced diet-increased obesity, visceral fat, and insulin resistance. Gene profiling data showed that EGCG had a significant impact on regulating genes implicated in fatty acid uptake, adipogenesis, and metabolism in the adipose tissue. In addition, metabolomics analysis revealed that EGCG altered the lipid and sugar metabolic pathways. In the intestine, EGCG reduced the FXR agonist chenodeoxycholic acid, as well as the FXR-regulated pathway, suggesting intestinal FXR deactivation. However, in the liver, EGCG increased the concentration of FXR and TGR-5 agonists and their regulated signaling. Furthermore, our data suggested that EGCG activated Takeda G protein receptor (TGR)-5 based on increased GLP-1 release and elevated serum PYY level. EGCG and antibiotics had distinct antibacterial effects. They also differentially altered body weight and BA composition. EGCG, but not antibiotics, increased Verrucomicrobiaceae, under which EGCG promoted intestinal bloom of Akkermansia muciniphila. Excitingly, A. muciniphila was as effective as EGCG in treating diet-induced obesity. Together, EGCG shifts gut microbiota and regulates BA signaling thereby having a metabolic beneficial effect.-Sheng, L., Jena, P. K., Liu, H.-X., Hu, Y., Nagar, N., Bronner, D. N., Settles, M. L., Bäumler, A. J. Wan, Y.-J. Y. Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila.
Collapse
Affiliation(s)
- Lili Sheng
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Prasant Kumar Jena
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Hui-Xin Liu
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Ying Hu
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Nidhi Nagar
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Denise N. Bronner
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Matthew L. Settles
- Bioinformatics Core Facility in the Genome Center, University of California, Davis, Davis, California, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
40
|
Rothenberg DO, Zhou C, Zhang L. A Review on the Weight-Loss Effects of Oxidized Tea Polyphenols. Molecules 2018; 23:E1176. [PMID: 29758009 PMCID: PMC6099746 DOI: 10.3390/molecules23051176] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/06/2018] [Accepted: 05/09/2018] [Indexed: 12/16/2022] Open
Abstract
The mechanistic systems in the body through which tea causes weight loss are complex and multi-dimensional. Additionally, the bioactive components in tea such as catechins, caffeine, and products of tea polyphenol oxidation vary greatly from one major tea type to the next. Green tea has been the primary subject of consideration for investigation into the preventative health effects of tea because it contains the highest levels of phenolic compounds and retains the highest antioxidant capabilities of any major tea type. However, recent research suggests decreasing body fat accumulation has little to do with antioxidant activity and more to do with enzyme inhibition, and gut microbiota interactions. This paper reviews several different tea polyphenol-induced weight-loss mechanisms, and purposes a way in which these mechanisms may be interrelated. Our original 'short-chain fatty acid (SCFA) hypothesis' suggests that the weight-loss efficacy of a given tea is determined by a combination of carbohydrate digestive enzyme inhibition and subsequent reactions of undigested carbohydrates with gut microbiota. These reactions among residual carbohydrates, tea polyphenols, and gut microbiota within the colon produce short-chain fatty acids, which enhance lipid metabolism through AMP-activated protein kinase (AMPK) activation. Some evidence suggests the mechanisms involved in SCFA generation may be triggered more strongly by teas that have undergone fermentation (black, oolong, and dark) than by non-fermented (green) teas. We discussed the mechanistic differences among fermented and non-fermented teas in terms of enzyme inhibition, interactions with gut microbiota, SCFA generation, and lipid metabolism. The inconsistent results and possible causes behind them are also discussed.
Collapse
Affiliation(s)
| | - Caibi Zhou
- Department of Tea Science, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Lingyun Zhang
- College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
41
|
Fan R, Koehler K, Chung S. Adaptive thermogenesis by dietary n-3 polyunsaturated fatty acids: Emerging evidence and mechanisms. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:59-70. [PMID: 29679742 DOI: 10.1016/j.bbalip.2018.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/31/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022]
Abstract
Brown/beige fat plays a crucial role in maintaining energy homeostasis through non-shivering thermogenesis in response to cold temperature and excess nutrition (adaptive thermogenesis). Although numerous molecular and genetic regulators have been identified, relatively little information is available regarding thermogenic dietary molecules. Recently, a growing body of evidence suggests that high consumption of n-3 polyunsaturated fatty acids (PUFA) or activation of GPR120, a membrane receptor of n-3 PUFA, stimulate adaptive thermogenesis. In this review, we summarize the emerging evidence that n-3 PUFA promote brown/beige fat formation and highlight the potential mechanisms whereby n-3 PUFA require GPR120 as a signaling platform or act independently. Human clinical trials are revisited in the context of energy expenditure. Additionally, we explore some future perspective that n-3 PUFA intake might be a useful strategy to boost or sustain metabolic activities of brown/beige fat at different lifecycle stages of pregnancy and senescence. Given that a high ratio of n-6/n-3 PUFA intake is associated with the development of obesity and type 2 diabetes, understanding the impact of n-6/n-3 ratio on energy expenditure and adaptive thermogenesis will inform the implementation of a novel nutritional strategy for preventing obesity.
Collapse
Affiliation(s)
- Rong Fan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, NE, USA
| | - Karsten Koehler
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, NE, USA
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, NE, USA.
| |
Collapse
|
42
|
The critical role of epigallocatechin gallate in regulating mitochondrial metabolism. Future Med Chem 2018. [DOI: 10.4155/fmc-2017-0204
expr 946749968 + 822201775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Epigallocatechin gallate (EGCG), one of polyphenols isolated from green tea, exhibits biology-benefiting effects with minimum severe adverse. EGCG is known to be a mitochondrion-targeting medicinal agent, regulating mitochondrial metabolism, including mitochondrial biogenesis, mitochondrial bioenergetics, and mitochondria-mediated cell cycle and apoptosis. EGCG might exhibit either antioxidative activity to prevent against oxidative stress or pro-oxidative activity to counteract cancer cells, which depends on the cellular stress situations, cell types and the concentration of EGCG. Recent research has gained positive and promising data. This review will discuss the interaction between EGCG and mitochondrion.
Collapse
|
43
|
The critical role of epigallocatechin gallate in regulating mitochondrial metabolism. Future Med Chem 2018; 10:795-809. [DOI: 10.4155/fmc-2017-0204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Epigallocatechin gallate (EGCG), one of polyphenols isolated from green tea, exhibits biology-benefiting effects with minimum severe adverse. EGCG is known to be a mitochondrion-targeting medicinal agent, regulating mitochondrial metabolism, including mitochondrial biogenesis, mitochondrial bioenergetics, and mitochondria-mediated cell cycle and apoptosis. EGCG might exhibit either antioxidative activity to prevent against oxidative stress or pro-oxidative activity to counteract cancer cells, which depends on the cellular stress situations, cell types and the concentration of EGCG. Recent research has gained positive and promising data. This review will discuss the interaction between EGCG and mitochondrion.
Collapse
|
44
|
Chiou YS, Lee PS, Pan MH. Food Bioactives and Their Effects on Obesity-Accelerated Inflammatory Bowel Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:773-779. [PMID: 29295622 DOI: 10.1021/acs.jafc.7b05854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Current views support the concept that obesity is linked to a worsening of the course of inflammatory bowel diseases (IBDs). Gut microbiota and adipose tissue macrophage (ATM) are considered key mediators or contributors in obesity-associated intestinal inflammation. Dietary components can have direct or indirect effects on "normal" or "healthy" microbial composition and participate in adiposity and metabolic status with gut inflammation. In this perspective, we highlight food-derived bioactives that have a potential application in the prevention of obesity-exacerbated IBD, targeting energy metabolism, M1 (classical activated)-M2 (alternatively activated) macrophage polarization, and gut microbiota.
Collapse
Affiliation(s)
- Yi-Shiou Chiou
- Institute of Food Science and Technology, National Taiwan University , Taipei 10617, Taiwan
| | - Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University , Taipei 10617, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University , Taipei 10617, Taiwan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University , Huanggang, Hubei 438000, People's Republic of China
- Department of Medical Research, China Medical University Hospital, China Medical University , Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University , Taichung 41354, Taiwan
| |
Collapse
|
45
|
Kosuru RY, Roy A, Das SK, Bera S. Gallic Acid and Gallates in Human Health and Disease: Do Mitochondria Hold the Key to Success? Mol Nutr Food Res 2017; 62. [PMID: 29178387 DOI: 10.1002/mnfr.201700699] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/15/2017] [Indexed: 12/17/2022]
Abstract
Gallic acid and gallate esters are widely used as dietary supplements or additives with clinical significances. Over the last few decades, a large number of publications have been reported stating the antioxidative, antiapoptotic, cardioprotective, neuroprotective, and anticancer properties of gallic acid and gallates, and mostly demonstrated their antioxidative or prooxidative properties influencing the reactive oxygen species (ROS) signaling networks. However, very little focus has been paid to clinical trials, and this restricted their use as a prescribed preventative supplement. Since mitochondria are the principal organelles responsible for ROS generation, we reviewed the existing literature of mitochondria-specific effects of gallates including ROS production, respiration, mitochondrial biogenesis, apoptosis, and the physico-chemical parameters affecting the outcome of gallate supplementation to various health scenarios such as cardiovascular diseases, neurodegeneration, hepatic ailments, or cancers. The major signaling pathways and the molecules targeted by gallic acid and its derivatives have also been discussed with emphasis on mitochondria as the target site. This review provides a better understanding of the effect of gallic acid and gallate esters on mitochondrial functions and in designing effective preventative measures against the onset of various diseases.
Collapse
Affiliation(s)
- Rekha Yamini Kosuru
- School of Life Sciences, B. S. Abdur Rahman University, Vandalur, Chennai, 600048, India
| | - Amrita Roy
- School of Life Sciences, B. S. Abdur Rahman University, Vandalur, Chennai, 600048, India
| | - Sujoy K Das
- Bioproducts Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, 600020, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India
| | - Soumen Bera
- School of Life Sciences, B. S. Abdur Rahman University, Vandalur, Chennai, 600048, India
| |
Collapse
|